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Disjointness of Möbius from asymptotically periodic
functions
Fei Wei

Abstract: We investigate Sarnak’s Möbius Disjointness Conjec-
ture through asymptotically periodic functions. It is shown that
Sarnak’s conjecture for rigid dynamical systems is equivalent to
the disjointness of Möbius from asymptotically periodic functions.
We give sufficient conditions and a partial answer to the later one.
As an application, we show that Sarnak’s conjecture holds for a
class of rigid dynamical systems, which improves an earlier result
of Kanigowski-Lemańczyk-Radziwiłł.
Keywords: Asymptotically periodic function, mean state, Möbius
function, Sarnak’s Möbius Disjointness Conjecture.

1. Introduction

Let N = {0, 1, 2, . . .} denote the set of natural numbers and N∗ = {1, 2, . . .}.
Functions from N (or N∗) into C are called arithmetic functions. Many prob-
lems in number theory can often be reformulated in terms of properties of
arithmetic functions. For example, the Möbius function μ(n) is defined by 0
if n is not square free (i.e., divisible by a nontrivial square), and (−1)r if n
is the product of r distinct primes. It is well known that the Prime Number
Theorem is equivalent to that

∑
n≤x μ(n) = o(x); the Riemann Hypothesis

holds if and only if
∑

n≤x μ(n) = o(x 1
2+ε), for any ε > 0.

An arithmetic function f is said to be disjoint from another one g if∑N
n=1 f(n)g(n) = o(N). Disjointness is a commonly concerned relation be-

tween arithmetic functions. The disjointness of Möbius from arithmetic func-
tions plays an important role in number theory since they reflect certain
random distribution among the values of the Möbius function and are closely
related to the distribution of primes. For example, the disjointness of μ(n)
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from periodic functions is equivalent to the prime number theorem in arith-
metic progressions. Sarnak ([35]) conjectured that the Möbius function is
disjoint from all arithmetic functions arising from any topological dynamical
systems with zero topological entropy. More specifically,

Conjecture 1 (Sarnak’s Möbius Disjointness Conjecture (SMDC)). Let X be
a compact Hausdorff space and T a continuous map on X with zero topological
entropy, then

lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0) = 0

for any x0 ∈ X and f ∈ C(X).

In recent years, a lot of progress have been made on Conjecture 1. See
[2, 3, 11, 12, 18, 19, 20, 23, 26, 27, 33, 37, 39, 42, 43], to list a few. In the
following, we shall discuss only the results that are more related to this paper.
Sarnak proved that SMDC is implied by Chowla’s conjecture which is stated
as follows [6].

Conjecture 2 (Chowla’s conjecture). Let a0, a1, a2, . . . , am be distinct natu-
ral numbers, and is ∈ {1, 2} for s = 0, 1, 2, . . . ,m, not all is are even numbers.
Then

lim
N→∞

1
N

N∑
n=1

μi0(n + a0)μi1(n + a1) · · · μim(n + am) = 0.

Chowla’s conjecture is a longstanding open problem in number theory. It
is open even in one of its simplest forms:

∑N
n=1 μ(n)μ(n + 2) = o(N). This

estimate should be closely related to the twin prime conjecture.

1.1. Asymptotically periodic functions

In order to use tools from operator algebra to study Sarnak’s conjecture,
Ge introduced the following notion of asymptotically periodic function in the
survey paper [13] and proved that the Möbius function is disjoint from certain
asymptotically periodic functions.

Definition 1.1. A function f ∈ l∞(N) is called asymptotically periodic1

if for any mean state E, there is a sequence {nj}∞j=1 of positive integers such
that f − Anjf has limit zero in HE .

1This definition is a little weaker than [13, Definition 5.7], in which the sequence
{nj}∞j=1 is independent of E.
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In the above definition, the action A on l∞(N), the algebra of all bounded
arithmetic functions endowed with the pointwise addition and multiplication,
is defined as

(1) Af(n) = f(n + 1),

for all f ∈ l∞(N) and n ∈ N. The mean states E on l∞(N) are given by
certain limits of 1

N

∑N−1
n=0 f(n) along “ultrafilters” and HE is the Hilbert space

obtained by the GNS construction on l∞(N) with respect to E. We refer
readers to Section 4 for more details.

In this paper, we further study properties of asymptotically periodic func-
tions, the Möbius disjointness of asymptotically periodic functions and give
some applications of these results to Sarnak’s conjecture. We first introduce
the following subclass of asymptotically periodic functions.

Definition 1.2. A function f ∈ l∞(N) is called strongly asymptotically
periodic if for any mean state E, there is a sequence {nj}∞j=1 of positive
integers such that when j goes to infinity, f −Alnjf converges to zero in HE

uniformly with respect to all l ∈ N.

Here are some examples. The function e2πi
√
n is a strongly asymptotically

periodic function. For any strictly increasing sequence {Nj}∞j=0 (N0 = 0)
and any bounded sequence {aj}∞j=0 of complex numbers, define f(n) = aj
when Nj ≤ n < Nj+1. Then f is strongly asymptotically periodic. If θ is
an irrational number, then e2πinθ is an asymptotically periodic function but
not in the strong sense. The function e2πin2θ with θ irrational is disjoint from
all asymptotically periodic functions. These results and more examples of
strongly asymptotically periodic functions are shown in Section 4.

In [8], Eberlein introduced the notion of weakly almost periodic (WAP)
functions. These functions have been studied in dynamical systems (see e.g.,
[15, 36]). Moreover, all these functions can be realized in topological dynam-
ical systems with zero topological entropy (see [37, Theorem 9.1]). We shall
show that WAP functions belong to the class of asymptotically periodic func-
tions satisfying conditions (4) and (5) below, see Proposition 5.5.

Interestingly, there are strongly asymptotically periodic functions that
cannot be realized in any topological dynamical system with zero topological
entropy. In the following we give an example to illustrate it.

Proposition 1.3. Suppose s ≥ 1 and m1, . . . ,ms ∈ N with at least one
mi ≥ 1. Let f = Am1(μ2) · · ·Ams(μ2). Then f(n) is a strongly asymptoti-
cally periodic functions. Moreover, f(n) cannot be realized in any topological
dynamical system with zero topological entropy, i.e., there does not exist a
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topological dynamical system (X,T ) such that the topological entropy of T is
zero and f(n) = F (T nx0) for some F ∈ C(X) and x0 ∈ X.

1.2. The Möbius disjointness of asymptotically periodic functions

We are interested in the following problem.

Problem 1. Is μ disjoint from all asymptotically periodic functions?

We now explain a motivation for us to investigate the above problem. The
positive answer to Chowla’s conjecture implies that the set {Anμ : n ≥ 0} is
an orthogonal set (with respect to a given mean state) of vectors of the same
norm. Denote the norm of μ as c. By Bessel’s inequality, we have

(2) 〈f, f〉 ≥ 1
c2

∑
n∈N

|〈Anμ, f〉|2

for any f ∈ l∞(N). Assume that f is an asymptotically periodic function,
then there exists a sequence {nj}∞j=1 of distinct positive integers such that
limj→∞ |〈Anjμ, f−Anjf〉| = 0. This implies that limj→∞ |〈Anjμ, f〉| = |〈μ, f〉|,
then 〈μ, f〉 = 0 by the inequality (2).

The process of exploring Problem 1 motivates us to study the average
value of the Möbius function in short arithmetic progressions. Precisely, we
should estimate the second moment of this average:

∑N
n=1 |

∑h
l=1 μ(n + kl)|2.

About this, we show the following result.

Theorem 1.4. Let k be a positive integer. Then for any h ≥ 3,

(3) lim sup
N→∞

1
N

N∑
n=1

∣∣∣∣∣
h∑

l=1
μ(n + kl)

∣∣∣∣∣
2

� k

ϕ(k)
log log h

log h h2.

Throughout this paper, f � g means that there is an absolute constant
c, such that |f | ≤ c|g|; f = g+O(h) means f−g � h. We use ϕ(k) to denote
the Euler totient function.

We are more concerned about whether the left hand side of formula (3) is
still o(h2) when k is far large than h. The estimate presented in formula (3)
implies that this holds for k as large as exp(ho(1)) since k/ϕ(k) � log log k.
We expect that the right hand side of formula (3) is o(h2) independent of
k ≥ 1. This is likely to be true because the positive answer to Chowla’s
conjecture implies that the left hand side of formula (3) should be 6

π2h.
In Theorem 1.4, we can replace μ by non-pretentious 1-bounded multi-

plicative functions such as the Liouville functions and μ(n)χ(n), where χ is a



Disjointness of Möbius from asymptotically periodic functions 867

Dirichlet character, see Proposition 6.1. Moreover, we recently extended The-
orem 1.4 to the case that μ(n) is replaced by μ(n)e(P (n)) for any P (x) ∈ R[x]
([42]), and this is possible to be generalized to μ(n) twisted by any nilsequence.

Using Theorem 1.4, we give a partial answer to Problem 1, which states
that μ(n) is disjoint from a class of asymptotically periodic functions. Pre-
cisely,

Theorem 1.5. Let f ∈ l∞(N) satisfying that for any mean state E, there
are sequences {hj}∞j=1 and {nj}∞j=1 of positive integers with

(4) lim
j→∞

log log hj

log hj

nj

ϕ(nj)
= 0

such that

(5) lim
j→∞

1
hj

hj∑
l=1

E(|f − Alnjf |2) = 0.

Then we have

lim
N→∞

1
N

N∑
n=1

μ(n)f(n) = 0.

By the definition of strongly asymptotically periodicity, it is not hard to
check the following result as an application of Theorem 1.5.

Corollary 1.6. Problem 1 holds for all strongly asymptotically periodic func-
tions.

For solving Problem 1 completely, we provide a sufficient condition as
follows.

Proposition 1.7. Assume that

(6) lim sup
N→∞

1
N

N∑
n=1

∣∣∣∣∣
h∑

l=1
μ(n + kl)

∣∣∣∣∣
2

= o(h2),

where the little “o” term is independent of k ≥ 1. Then Problem 1 holds.

It is unknown if the converse of the above proposition is true. It is proved
in Proposition 4.9 that the disjointness of Möbius from all strongly asymp-
totically periodic functions is equivalent to that for any given k,

lim sup
N→∞

1
N

N∑
n=1

∣∣∣∣∣
h∑

l=1
μ(n + kl)

∣∣∣∣∣
2

= o(h2).
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Although many asymptotically periodic functions cannot be realized in
topological dynamical systems with zero topological entropy, they can be ap-
proximated measure-theoretically by realizable functions (see Theorem 7.2).
This leads to the following result.

Theorem 1.8. Assume that Sarnak’s Möbius Disjointness Conjecture is true,
then Problem 1 holds.

1.3. Applications to Sarnak’s conjecture for rigid dynamical
systems

Before introducing more results, we first recall the definition of rigid dynam-
ical system. Let (X,B, ν, T ) be a measure-preserving dynamical system, i.e.,
X is a compact metric space, T a continuous map on X, B the Borel σ-
algebra of subsets of X and ν a T -invariant Borel probability measure. Such
a dynamical system is called rigid if there is a sequence {nj}∞j=1 of positive
integers such that for any f ∈ L2(X, ν),

lim
j→∞

‖f ◦ T nj − f‖2
L2(ν) = 0.

Rigid dynamical systems contain dynamical systems with discrete spectrum
and a large class of skew products on the torus over a rotation of the circle
[25]. In the following for simplicity, we use (X, ν, T ) to denote a measure-
preserving dynamical system.

From the viewpoint of dynamical systems, asymptotically periodic func-
tions correspond to rigid measure-preserving dynamical systems (see Theorem
5.3). The major tool we use to build this connection between arithmetics and
dynamics is anqie (of natural numbers), which was introduced by Ge in [13].
We refer readers to Section 3 for knowledge on anqie. Based on this con-
nection, corresponding to Problem 1, it is natural to consider the following
problem.

Problem 2 (Sarnak’s conjecture for rigid dynamical systems). Let X be a
compact metric space and T a continuous map on X. Suppose x0 ∈ X satisfies
the following condition: for any ν in the weak* closure of { 1

N

∑N−1
n=0 δTnx0 :

N = 1, 2, . . .} in the space of Borel probability measures on X, there is a
dense set F ⊆ C(X), such that for each g(x) ∈ F we can find a sequence
{nj}∞j=1 (may depend on ν, g) of positive integers satisfying

(7) lim
j→∞

‖g ◦ T nj − g‖2
L2(ν) = 0.
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Is it true that for any f ∈ C(X),

lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0) = 0?

Proposition 1.9. Problem 1 holds if and only if Problem 2 holds.

When ν satisfies the condition in Problem 2, (X,T, ν) is rigid and then has
zero measure-theoretic entropy (see e.g., [34, Example 5.3.3]), while (X,T )
may not have zero topological entropy, see the paragraphs below Proposition
7.1 for an example. Recently, in [23], Kanigowski, Lemańczyk and Radziwiłł
gave a partial answer to Problem 2.

Theorem 1.10. [23, Theorem 2.1] With the same assumptions as Problem
2, if T is a homeomorphism and for each g(x) ∈ F we can find a sequence
{nj}∞j=1 (may depend on ν, g) of positive integers satisfying either

(BPV rigidity): there is a constant c > 0 such that
∑

p|nj

1
p < c for any

j = 1, 2, . . ., and
lim
j→∞

‖g ◦ T nj − g‖2
L2(ν) = 0.

or
(PR rigidity): for some δ > 0, the following holds:

lim
j→∞

nδ
j∑

l=−nδ
j

‖g ◦ T lnj − g‖2
L2(ν) = 0.

Then for any f ∈ C(X),

lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0) = 0.

Employing the estimate we obtained in Theorem 1.4, we improve the
above theorem to the following.

Theorem 1.11. With the same assumptions as Problem 2, if T is a contin-
uous map and for each g(x) ∈ F , there are sequences {hj}∞j=1 and {nj}∞j=1 of
positive integers with

(8) lim
j→∞

log log hj

log hj

nj

ϕ(nj)
= 0
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satisfying

(9) lim
j→∞

1
hj

hj∑
l=1

‖g ◦ T lnj − g‖2
L2(ν) = 0.

Then for any f ∈ C(X),

lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0) = 0.

Moreover, the above disjointness also holds over short intervals in average,
that is

lim
h→∞

lim sup
N→∞

1
Nh

N∑
n=1

∣∣∣ h∑
l=1

μ(n + l)f(Tn+lx0)
∣∣∣ = 0.

In comparison with Theorem 1.10, we relax T to a continuous map. Also
both BPV rigidity and PR rigidity are included in the scenario described by
conditions (8), (9). See Remark 8.1 for details. There are examples that satisfy
conditions (8), (9), but not BPV rigidity and PR rigidity (see Remark 8.3).
Indeed, we show that conditions (8), (9) hold for any (X, ν, T ) with discrete
spectrum in Proposition 5.4, while the set of these dynamical systems are
not strictly contained in the set of rigid dynamical systems satisfying BPV
rigidity or PR rigidity (see Remark 8.4).

Related to the above result, we recently proved that Sarnak’s conjecture
holds for product flows between rigid dynamical systems satisfying conditions
in Theorem 1.11 and affine linear flows on compact abelian groups of zero
topological entropy [42].

Our paper is organized as follows. In Section 2, we list some frequently
used notation, and prove some preliminary results. In Section 3, we study
properties of anqies and describe the topological characterizations of an-
qies in terms of the generating arithmetic functions. We perform the GNS
constructions on anqies, and show some examples of asymptotically and
strongly asymptotically periodic functions in Section 4, where Proposition 1.3
is proved. In Section 5, we study the connections between arithmetic func-
tions and measure-preserving dynamical systems. In Section 6, we show the
estimate about the self-correlations of the Möbius stated in Theorem 1.4. In
Section 7, we prove Theorems 1.5, 1.8, and Proposition 1.7. As applications,
we prove Proposition 1.9 and Theorem 1.11 in Section 8.

This work arose as part of my Ph.D. thesis at the Chinese Academy of
Sciences [40] under the supervision of Professor Liming Ge. We refer to [7, 22]
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for basics and preliminary results in operator algebra, to [14, 21] for that on
topological dynamics and number theory.

2. Preliminaries

In this section, we prove some preliminary results. First, we list some notation
that will be used.

Let H be a Hilbert space. Denote by B(H) the algebra consists of all
bounded linear operators on H. By Riesz representation theorem, for any
T ∈ B(H), there is a unique bounded linear operator T ∗ satisfying 〈Tx, y〉 =
〈x, T ∗y〉 for any x, y ∈ H. Such a T ∗ is called the adjoint of T . We call a norm-
closed *-subalgebra of B(H) a C*-algebra. In this paper, we always assume
that all C*-algebras are unital.

Suppose that A is a C*-algebra. We use A� to denote the set of all bounded
linear functionals on A. Denote by (A�)1 the unit ball in A�, i.e., (A�)1 = {ρ ∈
A� : ‖ρ‖ ≤ 1}. In general, the space A� can be equipped with many topological
structures. Among them, the norm topology and weak* topology are used
most frequently. For ρ ∈ A�, its norm is given by ‖ρ‖ = supx∈A,‖x‖≤1 |ρ(x)|.
When x ∈ A, the equation σx(ρ) = |ρ(x)| defines a semi-norm on A�. The
family {σx : x ∈ A} of semi-norms determines the weak* topology on A�.
Note that each ρ0 ∈ A� has a base of neighborhoods consisting of sets of
the form {ρ ∈ A� : |ρ(xj) − ρ0(xj)| < ε} (j = 1, . . . ,m), where ε > 0 and
x1, . . . , xm ∈ A.

A non-zero linear functional ρ on an abelian C*-algebra A is called a
multiplicative state if for any A,B ∈ A, ρ(AB) = ρ(A)ρ(B).

Suppose now that A is an abelian C*-algebra and X is its maximal ideal
space. We define the map γ : A → C(X) by

(10) γ(f)(ρ) = ρ(f), f ∈ A, ρ ∈ X.

Here we use the fact that X is also the space of all multiplicative states of A.
The map γ is known as the Gelfand transform from A onto C(X), which is
a *-isomorphism (see, e.g., [7, Theorem 2.1]).

It is known that the above Hausdorff space X is weak* compact. Next
we show that A is countably generated as an abelian C*-algebra if and only
if X is metrizable and the topology induced by the metric coincides with the
weak* topology. The sufficient part directly follows from [22, Remark 3.4.15].
The necessary part is shown in the following proposition.

Proposition 2.1. Let A be an abelian C*-algebra. If A is countably gen-
erated, then (A�)1 is metrizable and the topology induced by the metric is
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equivalent to the weak* topology on (A�)1. In particular, the maximal ideal
space of A is a compact metrizable space.

Proof. Since A is countably generated, there is a countable dense subset in
A. Let {g1, g2, . . .} be a dense subset of (A)1, the unit ball in A. For any
ρ1, ρ2 ∈ (A�)1, we define d(ρ1, ρ2) =

∑∞
i=1

|(ρ1−ρ2)(gi)|
2i . It is not hard to check

that d is a metric on (A�)1. Moreover, for any net {ρα} of elements of (A�)1,
the net {d(ρα, ρ)} converges to 0 is equivalent to the condition that, for any
i ≥ 1, the net {ρα(gi)} converges to ρ(gi).

Next, we show that the weak* topology is equivalent to the topology
induced by the metric d on (A�)1. Suppose that the net {ρα} of elements in
(A�)1, weak* converges to ρ. Then, for any i ≥ 1, the net {ρα(gi)} converges to
ρ(gi). Thus the net {d(ρα, ρ)} converges to 0. Conversely, if the net {d(ρα, ρ)}
converges to 0, where ρα ∈ (A�)1, then {ρα(gi)} converges to ρ(gi) for any
i ≥ 1. Note that, for any α, ‖ρα‖ ≤ 1. Then for any g ∈ A, the net {ρα(g)}
converges to ρ(g). So the net {ρα} is weak* convergent to ρ in (A�)1.

By Alaoglu-Bourbaki theorem (A�)1 is weak* compact. Let X be the
maximal ideal space of A. Then, relative to the weak* topology, X is a closed
subset of (A�)1. From the above analysis, we see that the weak* topology on
(A�)1 coincides with the topology induced by the metric d on it. Thus X is a
compact metrizable space.

Proposition 2.2. Suppose that A is a C*-subalgebra of l∞(N) and X the
maximal ideal space of A. Let ι : N → X be the map given by

(11) ι(n) : f �→ f(n),

for any f ∈ A. Then the weak* closure of ι(N) is X (write ι(N) = X).

Proof. Assume on the contrary that ι(N) = X. Choose y ∈ X \ ι(N). By
Urysohn’s lemma, there is a G ∈ C(X) such that G(y) = 1 and G(x) = 0 for
any x ∈ ι(N). By equation (10), for any n ∈ N, 0 = G(ι(n)) = ι(n)(γ−1G) =
(γ−1G)(n). Then γ−1(G) = 0 and G = 0 correspondingly. This contradicts
G(y) = 1. Hence ι(N) = X.

If ι is injective, then we can view N as a subset of X. For A = l∞(N),
ι is injective. We shall use βN to denote the maximal ideal space of l∞(N),
which is also known as the Stone-Čech compactification of N [4]. Since l∞(N)
is not a separable C*-algebra, it is not countably generated as a C*-algebra.
Correspondingly, the maximal ideal space βN is not metrizable.
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3. Anqie of N

In this section, we briefly introduce the concept of anqie and list some results
that will be used later. For more about anqie, we refer to [13] and [41].

Definition 3.1. Let X be a compact Hausdorff space and ι a map from N

to X with dense range. We call X an anqie (of N) if ι(n) �→ ι(n + 1) is a
well-defined map on ι(N) and it can be extended to a continuous map from
X into itself. If we denote this extended map by σA, we also call (X, σA) an
anqie (of N).

We now explain a little about the above notion. For a general map ι :
N → X, ι(n) �→ ι(n + 1) may not be well-defined, such as ι : N → S1 (the
unit circle) defined as ι(n) = e2πi

√
n. Even though ι(n) �→ ι(n + 1) is well

defined, it may not induce a continuous map on X, such as ι : N → S1

defined as ι(n) = e2πin2θ with θ irrational. So an anqie of N preserves the
addition structure of natural numbers when N is mapped to X. Here is a
simple example of anqie.

Example 3.2. Let θ be an irrational number with 0 < θ < 1. Define ι : n �→
e2πinθ, a map from N into S1. It is easy to see that ι has a dense range in S1

and e2πinθ �→ e2πi(n+1)θ = e2πiθe2πinθ induces a continuous map z �→ e2πiθz,
denoted by σA on S1. Thus (S1, σA) is an anqie of N.

Next we consider how to construct anqies of N. One way to obtain anqies
of N is to construct point transitive topological dynamical systems. Recall
that a topological dynamical system (or, equivalently an N-dynamics) is a
pair (X,T ), where X is a compact Hausdorff space and T a continuous map
on X. Suppose that (X,T, x0) is a point transitive topological dynamical
system, i.e., the set {T nx0 : n ∈ N} is dense in X. Then ι : n �→ T nx0 is a
map from N to X with dense range. It is easy to see that ι(n) �→ ι(n+1) can
be extended to the continuous map T on X. Then (X,T ) is an anqie of N.
Summarize the above analysis, we conclude that an N-dynamics (X,T ) is an
anqie of N if it is point transitive. In this construction, the structure of anqie
depends on the choice of the transitive point.

Another method to construct anqies is through C*-algebras.

Proposition 3.3. Suppose that A is a C*-subalgebra of l∞(N) and X the
maximal ideal space of A. Then X is an anqie of N with the map ι given by
equation (11) if and only if A is closed under the action A defined in (1),
i.e., Af ∈ A for any f ∈ A.
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Proof. Suppose that X is an anqie of N. Then the map ι(n) �→ ι(n + 1) is
extended to a continuous map on X, denoted by σA. Given f ∈ A, assume
that F = γ(f) ∈ C(X) (see equation (10)). Note that F ◦ σA ∈ C(X). Let
g = γ−1(F ◦ σA) in A. Then g(n) = F ◦ σA(ι(n)) = F (ι(n+ 1)) = f(n+ 1) =
Af(n). Thus g = Af in A. This shows that A is A-invariant.

On the other hand, suppose that A is closed under A. Let σA be the map
from X to itself given by σAρ(f) = ρ(Af) for any ρ ∈ X and f ∈ A. It is easy
to see that σA(ι(n)) = ι(n+1). Now we show that σA is a continuous map on
X. If {ρα} is a weak* convergent net of elements of X, with limit ρ, then for
any f ∈ A, ρα(Af) = (σAρα)(f) converges to ρ(Af) = (σAρ)(f). Thus the
net {σAρα} weak* converges to σAρ in X. Hence σA is the continuous map
on X extended by ι(n) �→ ι(n + 1) and X is an anqie of N.

From the above proposition, we can obtain anqies of N through construct-
ing A-invariant C*-subalgebras of l∞(N). In particular, we often consider the
anqie generated by a single arithmetic function f , i.e., the C*-algebra gener-
ated by {1, Ajf : j ∈ N}. Denote it by Af . We use Xf to denote the maximal
ideal space of Af . From Proposition 3.3, we know that ι(n) �→ ι(n+1) can be
extended to a continuous map on Xf , denoted by σA. We also call (Xf , σA)
or Af the anqie generated by f . Let f(N) denote the closure of f(N) in the
complex plane C. Since Af contains f , there is a continuous map from Xf

onto f(N). But these two spaces may not be the same.
The following theorem describes Xf in terms of f(N) and gives a repre-

sentation of σA (corresponding to the Bernoulli shift on a product space).

Theorem 3.4. [13, Theorem 2.3]Suppose that f is a function in l∞(N) and
that Xf is the maximal ideal space of the anqie Af generated by f . Denote
by

∏
N f(N) the Cartesian product of f(N) indexed by N, endowed with the

product topology. Assume that B is the Bernoulli shift on
∏

N f(N) defined by

B : (a0, a1, a2, . . .) �→ (a1, a2, a3, . . .).

Let F be the map from Xf into
∏

N f(N), such that for any ρ ∈ Xf ,

(12) F (ρ) = (ρ(f), ρ(Af), . . .).

The following statements hold.
(i) The space Xf is homeomorphic to F (Xf ).
(ii) F (Xf ) is the closure of {(f(n), f(n + 1), . . .) : n ∈ N} in

∏
N f(N).

(iii) The restriction of the Bernoulli shift B on F (Xf ) is identified with
σA on Xf .
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Remark 3.5. It follows from the above theorem that for f ∈ l∞(N), Xf

can be identified as the set of all pointwise limits of sequences {Anf , n =
0, 1, 2, . . .} in l∞(N). This still holds when the semigroup N is replaced by the
group Z or a general abelian topological group G. While for the case of Z or
G, Xf has been extensively studied in dynamical systems (see e.g., [8], [36]
and [15]). In [8], Eberlein introduced the concept of weakly almost periodic
function, i.e., f ∈ l∞(G) with Xf weak compact in l∞(G). Let W (G) denote
the set of these functions. In [36], Veech introduced a *-subalgebra K(G) of
l∞(G) consisting of all f ∈ l∞(G) with Xf norm separable in l∞(G), which
contains W (G). Recently, the Möbius disjointness of W (Z) has been proved
in [37] and that of K(Z) has been proved in [20].

Applying Theorem 3.4, we can obtain many interesting examples of anqies
(Xf , σA). The following two examples are given in [13, 41].

Example 3.6. Let f(n) = e2πi
√
n, for n ∈ N. Then Xf is homeomorphic

to {e− 1
n f(n) : n ∈ N} ∪ S1, a subset of C, denoted by X. And σA is the

identity map on S1, while, on the set {e− 1
n f(n) : n ∈ N}, σA maps e−

1
n f(n)

to e−
1

n+1 f(n + 1).

Example 3.7. Suppose that θ is irrational and f(n) = e2πin2θ, then Xf is
homeomorphic to S1 ×S1. Moreover, if we identify S1 ×S1 with R/Z×R/Z,
then we can rewrite the map σA as

σA(α1, α2) =
(

0 1
−1 2

)(
α1
α2

)
+

(
0
2θ

)
.

At the end of this section, we state the following result which will be used
in later parts of this paper. Recall that for two topological dynamical systems
(X1, T1) and (X2, T2), if there is a continuous surjective map ϕ from X1 onto
X2 such that ϕ ◦ T1 = T2 ◦ ϕ, we call ϕ a factor map and (X2, T2) a factor
of (X1, T1). Moreover, if ϕ is a homeomorphism, we say that (X1, T1) and
(X2, T2) are (topologically) conjugate (to each other).

Proposition 3.8. Let f be an arithmetic function realized in (X,T ), i.e.,
there is a continuous function g ∈ C(X) and x0 ∈ X such that f(n) =
g(T nx0). Suppose that Xf is the maximal ideal space of the anqie generated
by f . Let Y be the closure of the set {T nx0 : n ∈ N} in X. Then (Xf , σA) is
a factor of (Y, T ).

Proof. Since � : n �→ T nx0 is a map from N to Y with dense range, it
induces an embedding from C(Y ) into l∞(N) (denoted by � again), i.e., for
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any h ∈ C(Y ), �(h)(n) = h(T nx0). Then �(C(Y )) is a C*-subalgebra of
l∞(N). Denote the maximal ideal space of �(C(Y )) by Ỹ . By Proposition 2.2,
the map T nx0 �→ ι(n) can be extended to a homeomorphism from Y onto Ỹ
(denoted by � again). Note that �(g) = f . So Af , the anqie generated by f ,
is a *-subalgebra of �(C(Y )).

Since each multiplicative state on �(C(Y )) (an element in Ỹ ) is also a
multiplicative state on Af (an element in Xf ) and that every maximal ideal
in Af extends to a maximal ideal (may not be unique) in �(C(Y )), the induced
map π from Ỹ onto Xf given by

π(ρ)(h) = ρ(h), ρ ∈ Ỹ , h ∈ Af .

is continuous and surjective. It is not hard to check that π ◦ � : Y → Xf is a
factor map. Then (Xf , σA) is a factor of (Y, T ).

4. Mean states and asymptotically periodic functions

In number theory, we are often more concerned about the estimates of the
form 1

x

∑
n≤x f(n). For this purpose, we shall consider states on l∞(N) given

by certain limits of 1
N

∑N−1
n=0 f(n) along “ultrafilters”. Then the inner product

of two functions f and g given by the states is exactly certain limits of sums
like 1

N

∑N−1
n=0 f(n)g(n).

Recall that βN is the maximal ideal space of l∞(N). Elements in βN \ N
are called free ultrafilters. By Proposition 2.2, N is dense in βN. Given a
free ultrafilter ω, for any f ∈ l∞(N), there is a subsequence {mj}∞j=1 of N
(depending on f) such that ω(f) = limj→∞ f(mj). We usually write ω(f) =
limn→ω f(n), called the limit of f at ω.

For a C*-subalgebra A of l∞(N), the linear functional ρ is called a state
on A if ρ(1) = 1 and ρ(f) ≥ 0 for any f ∈ A with f ≥ 0. We shall study the
A-invariant states on anqies defined below.

Definition 4.1. Suppose that A is an A-invariant C*-subalgebra of l∞(N),
i.e., Af ∈ A for any f ∈ A. A state ρ on A is called A-invariant, or
“invariant” for short, if ρ(Af) = ρ(f) for any f ∈ A.

Invariant states may or may not be related to average values of functions.
Here we give an example to explain this phenomena.

Example 4.2. Let G = ∪∞
n=1{n2 − n, n2 − n + 1, . . . , n2 − 1} be a subset

of N, and Gn = {i ∈ G : 0 ≤ i ≤ n − 1}. Define Fn(f) = 1
|Gn|

∑
i∈Gn

f(i)
for f ∈ l∞(N). Then for each given f the function n �→ Fn(f) gives rise to
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a function in l∞(N). Choose ω ∈ βN \ N, and define Fω(f) = limn→ω Fn(f).
Then Fω is an A-invariant state on l∞(N). If χG is the characteristic function
supported on G, then Fω(χG) = 1. But the relative density of G in N is zero.
Thus Fω(f) does not depend on the average sum 1

n

∑n−1
i=0 f(i).

On the other hand, there are A-invariant states depending on average
values of functions, which are called “mean states” in [13, Definition 5.3].

Definition 4.3. Suppose ω ∈ βN\N is a given free ultrafilter. For any n ∈ N

and any f in l∞(N), we define En(f) = 1
n

∑n−1
j=0 f(j). Then, for each given f ,

the function n → En(f) gives rise to another function in l∞(N). The limit of
En(f) at ω is denoted by Eω(f). Then Eω is an A-invariant state defined on
l∞(N) or called “a mean state” (or, “a mean” for short).

From now on, we shall use E to denote a given mean state on l∞(N)
(depending on a free ultrafilter). For a real-valued function f ∈ l∞(N), we
always have:

lim inf
n→∞

1
n

n−1∑
j=0

f(j) ≤ E(f) ≤ lim sup
n→∞

1
n

n−1∑
j=0

f(j).

Suppose A is a countably generated anqie of N. For each N ∈ N, define
the state ρN on A by ρN (f) = 1

N

∑N−1
j=0 f(j). So {ρN}∞N=1 is a sequence in

(A�)1. By Proposition 2.1, (A�)1 is metrizable and compact, so there is a
subsequence {ρNm}∞m=1 that converges to some ρ ∈ (A�)1. We call this ρ the
limit of ρNm or the state given (uniquely) by the sequence {Nm}∞m=1. It is not
hard to check that ρ is an A-invariant state, and for any free ultrafilter ω in
the closure of {Nm : m = 1, 2, 3, . . .} in βN, the restriction of Eω on A is ρ.

Now we perform the GNS construction on l∞(N) with respect to E. Define
〈f, g〉E = E(ḡf), the semi-inner product on l∞(N) and ‖f‖E = (〈f, f〉E) 1

2 ,
the semi-norm on l∞(N) (see [22, Proposition 4.3.1]). We use K to denote the
subalgebra of l∞(N) containing all f so that E(|f |2) = 〈f, f〉E = 0. Then K
is a closed two-sided ideal in l∞(N). Thus B := l∞(N)/K is a C*-algebra, and
〈 , 〉E induces an inner product on B. For f ∈ l∞(N), we may use f̃ (or simply
f if there is no ambiguity) to denote the coset f + K in B. When f̃ , g̃ ∈ B,
we still use

(13) 〈f̃ , g̃〉E = E(fg) = lim
n→ω

1
n

n−1∑
j=0

f(j)g(j)
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to denote the inner product on B and

(14) ‖f̃‖E = (〈f̃ , f̃〉E)
1
2 =

(
lim
n→ω

1
n

n−1∑
j=0

|f(j)|2
) 1

2

for the (Hilbert space) vector norm on B. The completion of B under this
norm is denoted by HE .

Remark 4.4. Our later results will depend on E but not on a specific one.
Therefore, our definitions or properties stated later are for any mean state E.
For example, if f and g are orthogonal, E(fg) = 0 holds for any mean state
E. The orthogonality of arithmetic functions may be viewed as disjointness
between two functions in number theory.

Next, we study some properties of (strongly) asymptotically periodic func-
tions (Definitions 1.3 and 1.4). We start from the following generalized no-
tion of periodicity that introduced in [13, Section 5]. An arithmetic function
f ∈ l∞(N) is said to be essentially periodic (or “e-periodic”) if there is an
integer n0 ≥ 1 such that f = An0f in HE . The smallest such n0 (≥ 1) is
called the e-period of f . From the definition of strongly asymptotically pe-
riodic functions, it is easy to see that e-periodic functions belong exactly to
this class.

In the following, we use e(x) to denote e2πix for simplicity, and 1S to
denote the indicator of a predicate S, that is 1S = 1 when S is true and 1S = 0
when S is false. It is not hard to check that e(

√
n) is an e-periodic function

of e-period 1. Note that arithmetic functions satisfying f(n) = f(n + 1) for
all n must be constant ones. Thus e-periodic functions are far from periodic
ones. In the following, we shall construct e-periodic functions with e-period
k, for any k ≥ 1.

Example 4.5. Let {mj}∞j=1 and {nj}∞j=1 be two sequences of positive in-
tegers with limj→∞mj = limj→∞ nj = ∞. For any given q, choose α =
{0, 1, . . . , 1}, β = {1, 0, . . . , 0} as two vectors of length q. We construct the
function f (written as {f(n)}∞n=1) successively:

αα · · · α︸ ︷︷ ︸
m1

ββ · · · β︸ ︷︷ ︸
n1

αα · · · α︸ ︷︷ ︸
m2

ββ · · · β︸ ︷︷ ︸
n2

· · ·.

Then f is an e-periodic function with e-period q, and so a strongly asymp-
totically periodic function.
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The proof of the above fact is more involved. Here are some details.
By limj→∞mj = limj→∞ nj = ∞, for any ε > 0, there is an j0 such that

qmj , qnj >
1
ε +1 when j > j0. Then the number of n between 1 and N satisfy-

ing f(n+q) = f(n) is less than 2qj0+qNε. Moreover, limN→∞
1
N

∑N
n=1 |f(n+

q) − f(n)|2 ≤ limN→∞(2qj0
N + qε) ≤ qε. Since ε is arbitrarily small, it follows

that limN→∞
1
N

∑N
n=1 |f(n + q) − f(n)|2 = 0. It is easy to see that for any

positive integer l ≤ q− 1, limN→∞
1
N

∑N
n=1 |f(n+ l)− f(n)|2 = 0. Hence f is

an e-periodic function with e-period q.
In Example 4.5, if the two sequences {mj}∞j=1 and {nj}∞j=1 further satisfy

limj→∞
mj

nj
= a = 0, then we can show that f is not the weak limit of periodic

functions. That is for any mean state E, there does not exist a sequence
{fn}∞n=1 of periodic functions, such that the limit of f − fn is zero in HE .

Using a similar argument to the proof of Example 4.5, we have the fol-
lowing result.

Example 4.6. Let {Nj}∞j=0 be a sequence of natural numbers with N0 = 0
and limj→∞(Nj+1 −Nj) = ∞. Let q ≥ 1 and a ≥ 0 be given integers. Define
f(n) to be aj1n≡a(mod q) when Nj ≤ n < Nj+1 for j = 0, 1, . . ., where {aj}∞j=0
is a sequence of complex numbers with supj |aj | < ∞. Then f is an e-periodic
function with e-period q, and so a strongly asymptotically periodic function.

By Definitions 1.1 and 1.2, e-periodic and strongly asymptotically peri-
odic functions are asymptotically periodic. There are many asymptotically
periodic functions that are far from e-periodic ones. For example, if θ is ir-
rational then f(n) = e(nθ) is asymptotically periodic. But it is not the weak
(or l2-) limit of e-periodic functions. In fact, we have the following result.

Proposition 4.7. Let θ be an irrational number and f(n) = e(nθ). Then f

is orthogonal to all e-periodic functions, that is for any e-periodic function g,
E(fg) = 0 holds for all mean states E.

Proof. Suppose that the e-period of g is k. Given a mean state E, by the A-
invariance of E, E(fg) = 〈f, g〉E = 〈Alkf,Alkg〉E = 〈Alkf, g〉E for any l ≥ 1.
Thus 〈f, g〉E = 〈 1

m

∑m
l=1 A

lkf, g〉E . For any ε > 0, we can choose a sufficiently
large integer m such that | 1

m

∑m
l=1 e((n + lk)θ)| = | 1

m

∑m
l=1 e(lkθ)| < ε for

any n ∈ N. Hence ‖ 1
m

∑m
l=1 A

lkf‖E < ε. It follows from the Cauchy-Schwarz
inequality that |〈f, g〉E | < ε‖g‖l∞ . Letting ε → 0. Then 〈f, g〉E = 0.

Next, we provide another example of strongly asymptotically periodic
function.
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Example 4.8. Let f ∈ l∞(N). Suppose that the closure of {(f(n), f(n +
1), . . .) : n ∈ N} in

∏
N f(N), endowed with the product topology, is countable.

Then f is a strongly asymptotically periodic function.

In the following, we give some detailed argument for the above nontriv-
ial fact. Denote Af as the anqie generated by f and Xf as the maximal
ideal space of Af . By Theorem 3.4, Xf is homeomorphic to the closure of
{(f(n), f(n + 1), . . .) : n ∈ N} in

∏
N f(N) and so is a countable space. Let

E be a mean state on l∞(N). Then the restriction E on Af is an invariant
state on Af . By Theorem 5.1, there is a σA-invariant probability measure ν

on Xf such that E(g) =
∫
Xf

g(x) dν for any g ∈ Af . Since Xf is a countable
and compact metric space, ν must be an atomic measure. Assume that ν

is supported at x1, x2, . . . in Xf . For each xi, there are two nature numbers
si and ti such that A−si{xi} ∩ A−ti{xi} = ∅. Thus there is a ki such that
Akixi = xi. Set nj =

∏j
i=1 ki. So for each l ≥ 1,

‖f − Alnjf‖2
E = E(|f − Alnjf |2)

=
∫
Xf

|(f − f ◦ Alnj )(x)|2 dν

=
∞∑

m=1
|f(xm) − f ◦ Alnj (xm)|2 ν({xm})

=
∞∑

m=j+1
|f(xm) − f ◦ Alnj (xm)|2 ν({xm}).

Then

‖f − Alnjf‖2
E ≤ 4‖f‖2

l∞

∞∑
m=j+1

ν({xm}) → 0

as j goes to ∞. Hence f is a strongly asymptotically periodic function.

Proposition 4.9. The Möbius function is disjoint from all strongly asymp-
totically periodic functions if and only if for any given integer q ≥ 1,

(15) lim sup
N→∞

1
N

N∑
n=1

∣∣∣∣∣
h∑

l=1
μ(n + ql)

∣∣∣∣∣
2

= o(h2).

Proof. We first prove “ ⇒ ” part. Given integers q ≥ 1 and a ≥ 0. Take
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aj = e(θj) such that

∑
Nj≤n<Nj+1

μ(n)e(θj)1n≡a(mod q) =
∣∣∣∣∣ ∑
Nj≤n<Nj+1
n≡a(mod q)

μ(n)
∣∣∣∣∣.

Then the Möbius disjointness of f(n) for any f(n) defined as in Example 4.6
is equivalent to

lim
m→∞

1
Nm

m−1∑
j=0

∣∣∣∣∣ ∑
Nj≤n<Nj+1
n≡a(mod q)

μ(n)
∣∣∣∣∣ = 0

for any sequence {Nj}∞j=0 with N0 = 0 and limj→∞(Nj+1 −Nj) = ∞. This is
further equivalent to (see e.g., [19, Lemma 5.2])

(16) lim
h→∞

lim sup
N→∞

1
Nh

N∑
m=1

∣∣∣∣∣
m+h∑
n=m

n≡a(mod q)

μ(n)
∣∣∣∣∣ = 0.

It is not hard to check that for N large enough,

(17)
N∑

n=1

∣∣∣∣∣
h∑

l=1
μ(n + ql)

∣∣∣∣∣ = 1
q

q∑
a=1

N∑
m=1

∣∣∣∣∣
m+hq∑
n=m

n≡a(mod q)

μ(n)
∣∣∣∣∣ + O(N).

Note that q is given and by the trivial estimate,

lim sup
N→∞

1
N

N∑
n=1

∣∣∣∣∣1h
h∑

l=1
μ(n + ql)

∣∣∣∣∣
2

≤ lim sup
N→∞

1
N

N∑
n=1

∣∣∣∣∣ 1h
h∑

l=1
μ(n + ql)

∣∣∣∣∣.
By equations (16) and (17), we obtain equation (15).

We then prove “ ⇐ ” part. Let f(n) be a strongly asymptotically periodic
function. It suffices to show that for any mean state E, 〈f, μ〉E = E(fμ) = 0.
By the strongly asymptotical periodicity of f , for any ε > 0, there is a positive
integer n0 such that

(18) ‖f − Aln0f‖E < ε

for any l ∈ N. By equation (15), there is a sufficiently large l0 such that

lim sup
N→∞

1
N

N∑
n=1

∣∣∣∣∣ 1l0
l0∑
l=1

μ(n + ln0)
∣∣∣∣∣
2

< ε.
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This implies

(19) ‖ 1
l0

l0∑
l=1

Aln0μ‖E < ε.

Note that for any l ∈ N, 〈f, μ〉E = 〈Aln0f,Aln0μ〉E = 〈Aln0f − f,Aln0μ〉E +
〈f,Aln0μ〉E . Then

(20) 〈f, μ〉E = 1
l0

l0∑
l=1

〈Aln0f − f,Aln0μ〉E + 〈f, 1
l0

l0∑
l=1

Aln0μ〉E .

By the Cauchy-Schwarz inequality and equations (18), (19), (20), we conclude
that |〈f, μ〉E | < ε(‖f‖l∞ + 1) for any ε > 0. Letting ε → 0, 〈f, μ〉E = 0.

There are many arithmetic functions that are not asymptotically periodic,
such as f(n) = e(n2θ) with θ irrational. This follows from the fact ‖f −
Amf‖E =

√
2 for any m ≥ 1 and any mean state E. Moreover, this function

is orthogonal to all asymptotically periodic functions, which is claimed in [13,
Theorem 5.9] without proof. Here we give the proof in the following theorem.

Theorem 4.10. Let f(n) = e(n2θ) with θ irrational. We have
(i) For any l = m, 〈Alf,Amf〉E = 0 for any mean state E.
(ii) The function f is orthogonal to all asymptotically periodic functions

in l∞(N).

Proof. (i) This result is true as

〈Alf,Amf〉E = e((l2 −m2)θ) · lim
N→∞

1
N

N∑
j=1

e((2l − 2m)jθ) = 0.

(ii) Let g be an asymptotically periodic function. Assume on the contrary that
|〈f, g〉E | > δ for some δ > 0. By definition, there is a sequence {nj}∞j=1 such
that limj→∞ ‖Anjg−g‖E = 0. So when j is large enough, ‖Anjg−g‖E < δ/2.
By the Cauchy-Schwarz inequality and the fact that ‖f‖E = 1, we have

|〈g, Anjf〉E | = |〈g − Anjg, Anjf〉E + 〈Anjg, Anjf〉E |
≥ |〈Anjg, Anjf〉E | − |〈g − Anjg, Anjf〉E |
> δ/2.

It follows from (i) that the set {Anjf : j = 1, 2, . . .} is an orthogonal set in
HE . By Bessel’s inequality, ‖g‖2

E ≥ ∑∞
j=1 |〈g, Anjf〉E |2 = ∞. This contradicts

the fact that g ∈ l∞(N). Hence 〈f, g〉E = 0 for any mean state E.
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Remark 4.11. Based on the above proof, an arithmetic function is orthog-
onal to all asymptotically periodic functions if it satisfies condition (i) of
Theorem 4.10.

Theorem 4.12. Let r ≥ 2 and μr(n) = 1 if n is r-th power-free and zero
otherwise. For any s ≥ 1 and m1, . . . ,ms ∈ N,

∏s
i=1 A

mi(μr) is strongly
asymptotically periodic.

Proof. It suffices to prove that μr is strongly asymptotically periodic. Let pj
be the j-th prime, define the sequence {nj}∞j=1 by nj = pr1p

r
2 · · · prj . By [30],

for any positive integer m, we have for any mean state E,

〈μr, A
mμr〉E = lim

N→∞

1
N

N∑
n=1

μr(n)μr(n + m) =
∏
p

(1 − 2
pr

)
∏
pr|m

(1 + 1
pr − 2).

So for any positive integer l, 〈μr, A
lnjμr〉E ≥ 〈μr, A

njμr〉E . Moreover,

‖μr − Alnjμr‖2
E ≤‖μr − Anjμr‖2

E = 2〈μr, μr〉E − 2〈μr, A
njμr〉E

=2
∞∑
n=1

μ(n)
nr

− 2
∏
p

(1 − 1
pr

)
∏
p>pj

(1 + 1
pr − 2)−1

=2
∏
p

(1 − 1
pr

)(1 −
∏
p>pj

(1 + 1
pr − 2)−1)

tends to 0 when j goes to infinity. Then {μr − Alnjμr}∞j=1 converges to zero
in HE uniformly with respect to all l ∈ N.

Now we prove Proposition 1.3.

Proof of Proposition 1.3. We know that f = Am1(μ2) · · ·Ams(μ2) is strongly
asymptotically periodic by Theorem 4.12. Let (Xf , σA) be the anqie generated
by f . Then by Theorem 3.4, we describe Xf as a closed subspace X̃f of {0, 1}N
and represent σf as the Bernoulli shift B on the space. It follows from [35]
that (X̃f , B) has positive topological entropy and then (Xf , σA) has positive
entropy. Assume on the contrary that there is a dynamical system (X,T )
with the topological entropy of T zero, such that f(n) = F (T nx0) for some
F ∈ C(X) and x0 ∈ X. By Proposition 3.8, the topological entropy of T
is greater than or equal to that of σA. This contradicts the assumption that
the topological entropy of T is zero. Hence f(n) cannot be realized in any
dynamical systems with zero topological entropy.

In the next section, we shall see that the anqie of N generated by any
asymptotically periodic function is closely related to a rigid dynamical system.



884 Fei Wei

5. σA-invariant measures

Suppose that (X, σA) (or A) is an anqie of N. It is a basic fact that a con-
tinuous map on X is always (Borel) measurable. Then σA is a measurable
transformation. We call a (Borel) measure ν on X σA-invariant if for any
Borel set F of X, ν(F ) = ν((σA)−1F ). In the following, we show that for any
given invariant state on A, there is an induced σA-invariant Borel probability
measure on X.

Theorem 5.1. Let (X, σA) (or A) be an anqie of N. Suppose ρ is an invariant
state on A. Then there is a unique σA-invariant Borel probability measure ν
on X such that for any g ∈ A,

(21) ρ(g) =
∫
X
g(x) dν,

where g(x) is the image of g under the Gelfand transform (see equation (10)).

Proof. Since ρ is an invariant state on A and A ∼= C(X), ρ can be viewed as
a state on C(X) satisfying ρ(f ◦ σA) = ρ(f) for any f ∈ C(X). By the Riesz
representation theorem, there is a unique Borel measure ν on X, such that
for any f ∈ C(X),

(22) ρ(f) =
∫
X
f(x) dν.

Moreover, ν is regular and it has the property that for any compact subset
K ⊂ X,

(23) ν(K) = inf{ρ(h) : h ∈ C(X), h|K = 1}.

In the following, we show that ν(σ−1
A (F )) = ν(F ) for any Borel set F . First

we prove that if ν(F ) = 0, then ν(σ−1
A (F )) = 0. In fact, by the regularity of

ν, for any ε > 0, there is a compact set K ⊂ σ−1
A (F ) such that

(24) ν(σ−1
A (F )) < ν(K) + ε.

Note that σA(K) ⊂ F . So ν(σA(K)) = 0. By equation (23), there is an
h ∈ C(X) such that h|σA(K) = 1 and ρ(h) < ε. By equation (23) again,
ν(K) ≤ ρ(h ◦ σA) = ρ(h) < ε. Then ν(σ−1

A (F )) < 2ε by equation (24). Since
ε can be arbitrarily small, ν(σ−1

A (F )) = 0.
Now we assume that ν(F ) = 0. By Lusin’s Theorem, there is a sequence

{fn}∞n=1 in C(X) and a Borel set G with ν(G) = 0, such that ‖fn‖ ≤ 1 and
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limn→∞ fn(x) = χF (x) for any x ∈ X \ G, where χF is the characteristic
function supported on F . Thus limn→∞ fn ◦ σA(x) = χF ◦ σA(x) for x ∈
X \σ−1

A G. By the analysis in the above paragraph, ν(σ−1
A G) = 0. By equation

(22) and the Lebesgue Dominated Convergence Theorem,

lim
n→∞

ρ(fn) = lim
n→∞

∫
X
fn(x) dν = ν(F )

and
lim
n→∞

ρ(fn ◦ σA) = lim
n→∞

∫
X
fn ◦ σA(x) dν = ν(σ−1

A (F )).

Since ρ(fn) = ρ(fn ◦ A), we obtain ν(F ) = ν(σ−1
A (F )) as claimed.

Finally, it follows from ρ(1) = 1 that ν(X) = 1. Thus ν is a σA-invariant
Borel probability measure on X.

We call the σA-invariant (Borel) probability measure ν given by equation
(21) the measure induced by ρ. Suppose A is a countably generated anqie of
N, then by Proposition 2.1, (A�)1 is a compact metrizable space. Hence for
any mean state E on l∞(N), there is a sequence {Nm}∞m=1 of positive integers
such that for any g ∈ A, E(g) = limm→∞

1
Nm

∑Nm−1
n=0 g(n). By Theorem 5.1,

there is a σA-invariant probability measure ν on X such that for any g ∈ A,

(25) lim
m→∞

1
Nm

Nm−1∑
n=0

g(n) =
∫
X
g(x)dν.

On the other hand, for any x ∈ X define a Borel probability measure δx on
X such that for any Borel set B in B, δx(B) = 1 if x ∈ B, and 0 otherwise.
For each N ≥ 1, define

(26) δN,x = 1
N

N−1∑
n=0

δ(σA)nx.

It is easy to check that δN,x is a Borel probability measure on X. Now fix
x = ι(0), i.e., the multiplicative state on A given by ι(0) : f �→ f(0) for any
f ∈ A. Then

∫
X
g(x)dδNm,ι(0) = 1

Nm

Nm−1∑
n=0

∫
X
g(x)dδ(σA)n(ι(0)) = 1

Nm

Nm−1∑
n=0

g(n)

holds for any g ∈ A, correspondingly g(x) ∈ C(X). By equation (25),

lim
m→∞

∫
X
g(x)dδNm,ι(0) =

∫
X
g(x)dν.
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We call ν the (weak*) limit of δNm,ι(0). In [9], ι(0) is also called the quasi-
generic for ν along {Nm}∞m=1.

Remark 5.2. Let Af be the anqie generated by f and Xf the maximal ideal
space of Af . By Theorem 3.4, Xf is the closure of {(f(n), f(n+ 1), . . .) : n ∈
N} in

∏
N f(N). Suppose that ρ is an invariant state on Af , and ν the measure

induced by ρ. Naturally, ν can be extended to a probability measure (denote
by ν̃) on

∏
N f(N), which is defined by ν̃(F ) = ν(F ∩Xf ) for any Borel set F

of
∏

N f(N). It is easy to see that ν̃ is B-invariant, where B is the Bernoulli
shift on

∏
N f(N). In the following, we still use ν to denote ν̃ if it makes no

ambiguity.

Next, we discuss the connection between asymptotically periodic func-
tions and rigid dynamical systems.

Theorem 5.3. Suppose that f is an asymptotically periodic function. Let
(Xf , σA) (or, Af ) be the anqie generated by f . Let E be a mean state and ν
the measure induced by E on Xf . Then (Xf , ν, σA) is rigid.

Proof. By the definition of asymptotically periodic function, there is a se-
quence of positive integers {nj}∞j=1 with limj→∞E(|Anjf − f |2) = 0. It is not
hard to check that for any g ∈ Af , limj→∞E(|Anjg − g|2) = 0. Thus for any
g(x) ∈ C(Xf ), by equation (21), we have

(27) lim
j→∞

∫
Xf

|g ◦ (σA)nj (x) − g(x)|2dν = 0.

By Lusin’s Theorem, for any Borel set F of Xf , there is a sequence {gn}∞n=1 of
continuous functions on Xf with ‖gn‖ ≤ 1 such that limn→∞ gn(x) = χF (x)
for almost all x. Then by Lebesgue’s Dominated Convergence Theorem, for
any ε > 0, there is a gn0 such that

∫
Xf

|χF (x)− gn0(x)|dν < ε/3. By equation
(27), there is a sufficiently large K such that

∫
Xf

|gn0◦(σA)nj (x)−gn0(x)|2dν <

ε/3 when j > K. Thus

ν((σA)−njF�F ) =
∫
Xf

|χF ◦ (σA)nj (x) − χF (x)|dν

≤
∫
Xf

|χF ◦ (σA)nj (x) − gn0 ◦ (σA)nj (x)|dν

+
∫
Xf

|gn0 ◦ (σA)nj (x) − gn0(x)|dν

+
∫
Xf

|gn0(x) − χF (x)|dν < ε.
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Hence limj→∞ ν((σA)−njF�F ) = 0.

It is known that for a measure-preserving dynamical system (X, ν, T )
with T a homeomorphism, if ν has discrete spectrum, then T is rigid (see
e.g., [34])). In the following, we show that this rigidity satisfies conditions
(8), (9) in Theorem 1.11.

Proposition 5.4. Let X be a compact metric space and T : X → X be a
homeomorphism. Let ν be a T -invariant probability measure on X. Suppose
that ν has discrete spectrum. Then (X, ν, T ) satisfies conditions (8), (9) in
Theorem 1.11. That is, for any g(x) ∈ L2(X, ν), there are sequences {hj}∞j=1
and {nj}∞j=1 of positive integers with

(28) lim
j→∞

log log hj

log hj

nj

ϕ(nj)
= 0

such that

(29) lim
j→∞

1
hj

hj∑
l=1

‖g ◦ T lnj − g‖2
L2(ν) = 0.

Proof. Since ν has discrete spectrum, by definition there is a standard or-
thogonal basis {gs(x)}∞s=1 in L2(X, ν) with gs(Tx) = e2πiλsgs(x) for some
real number λs, where s = 1, 2, . . .. Let g(x) = 0 ∈ L2(X, ν), write g(x) =∑∞

s=1 asgs(x). Then ‖g‖2
L2(ν) =

∑∞
s=1 |as|2 < ∞. For j = 1, 2, . . ., choose εj =

‖g‖2
L2(ν)/j and Nj ≥ 1 with

∑∞
s=Nj+1 |as|2 < εj

8 . Let tj = 2‖g‖2
L2(ν)e

Nj/εj .
Choose nj such that |e2πinjλs − 1| ≤ 1/tj for s = 1, . . . , Nj , where 1 ≤
nj ≤ t

Nj

j . Let hj = t
1/2
j . By the choice of nj and hj , as well as the estimate

nj

ϕ(nj) � log log nj , it is not hard to check that they satisfy condition (28).
Then

1
hj

hj∑
l=1

‖g ◦ T lnj − g‖2
L2(ν) = ‖

∞∑
s=1

asgs ◦ T lnj (x) −
∞∑
s=1

asgs(x)‖2
L2(ν)

= 1
hj

hj∑
l=1

∞∑
s=1

|as|2|e2πilnjλs − 1|2

= 1
hj

hj∑
l=1

Nj∑
s=1

|as|2|e2πilnjλs − 1|2 + 1
hj

hj∑
l=1

∞∑
s=Nj+1

|as|2|e2πilnjλs − 1|2

≤ 1
hj

hj∑
l=1

Nj‖g‖2
L2(ν)

l2

t2j
+ εj

2 ≤
Nj‖g‖2

L2(ν)

tj
+ εj

2 < εj → 0, as j → ∞.
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Proposition 5.5. Let f ∈ l∞(Z) be a weakly almost periodic function (see
Remark 3.5 for definition). Then f1 (=f restricted to N) belongs to the class
of asymptotically periodic functions described by conditions (4) and (5). That
is, for any mean state E, there are sequences {hj}∞j=1 and {nj}∞j=1 of positive
integers with

(30) lim
j→∞

log log hj

log hj

nj

ϕ(nj)
= 0

such that

(31) lim
j→∞

1
hj

hj∑
l=1

E(|f − Alnjf |2) = 0.

Proof. Let Af be the C*-algebra of l∞(Z) generated by 1 and {Anf : n ≥ 0}.
We use Xf to denote the maximal ideal space of Af and σA the homeomor-
phism on Xf induced by n �→ n + 1 on Z. Let E be a mean state on l∞(N)
depending on ω (see Definition 4.3), where ω is in the weak* closure of the se-
quence {Nm}∞m=1 of positive integers in βN. Then E can be naturally treated
as a state on Af in the way that

g �→ E(g1)

for any g(n) ∈ Af , where g1(n) is the restriction of g(n) to N. Define the state
ρNm on Af by ρNm(g) = 1

Nm

∑Nm−1
n=0 g(n) for any g ∈ Af . So E is in the weak*

closure of {ρNm}∞m=1 in (A�
f )1. Since (A�

f )1 is compact and metrizable, there
is a subsequence {Nms}∞s=1 of positive integers satisfying for any g ∈ Af ,

(32) E(g) = lim
s→∞

1
Nms

Nms−1∑
n=0

g(n).

By Theorem 5.1, there is a σA-invariant probability measure ν on Xf such
that for any g ∈ Af ,

(33) lim
s→∞

1
Nms

Nms−1∑
n=0

g(n) =
∫
Xf

g̃(x)dν,

where g̃(x) is the image of g(n) under the Gelfand transform. Thanks to
[20, Proposition 5.1], ν has discrete spectrum. By Proposition 5.4, there are
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sequences {nj}∞j=1 and {hj}∞j=1 of positive integers satisfying condition (30)
such that

lim
j→∞

1
hj

hj∑
l=1

‖f̃((σA)lnjx) − f̃(x)‖2
L2(ν) = 0.

By equations (32) and (33),

lim
j→∞

1
hj

hj∑
l=1

E(|f − Alnjf |2) = lim
j→∞

1
hj

hj∑
l=1

∫
Xf

|f̃((σA)lnjx) − f̃(x)|2dν = 0.

To summarize, through invariant states we establish a connection between
arithmetics and measurable dynamics. Specifically, for any given arithmetic
function f in l∞(N), it corresponds to a measure-preserving dynamical system
(Xf , ν, σA). So we can apply tools in ergodic theory to study the system
(Xf , ν, σA) and further study properties of f .

6. Proof of Theorem 1.4

Theorem 1.4 comes from a general result on the average of bounded multi-
plicative functions in short arithmetic progressions (see Proposition 6.1 be-
low). In the statement of the next result, we shall use the following distance
function of Granville and Soundararajan,

Dk(f(n), g(n);x) :=
(∑

p≤x
p�k

1 − Re(f(p)g(p))
p

) 1
2

for two multiplicative functions f(n) and g(n) with |f(n)|, |g(n)| ≤ 1 for all
n ≥ 1. This distance function was used in [1] to measure the pretentious-
ness between any multiplicative function f(n) and some function for which
exceptional modulus k does exist. Throughout define

Mk(f ;x;T ) : = inf
|t|≤T

Dk(f, n �→ nit;x)2,

Mk(f ; k;x;T ) : = inf
χ(mod k)

inf
|t|≤T

Dk(fχ, n �→ nit;x)2.
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Proposition 6.1. Let X be large enough with 1 ≤ k ≤ (logX)1/32. Let
3 ≤ h ≤ X/k. Let f(n) be a multiplicative function with |f(n)| ≤ 1 for all
n ≥ 1. Then

k∑
a=1

(a,k)=1

2X∑
x=X

∣∣∣∣∣
x+hk∑
n=x

n≡a(mod k)

f(n)
∣∣∣∣∣
2

�h2Xϕ(k)
( k

ϕ(k)
log log h

log h + 1
(logX)1/300 + Mk(f ; k;X; 2X) + 1

exp(Mk(f ; k;X; 2X))
)
.

(34)

The major ingredient of our proof of the above result is the estimate [28]
on averages of multiplicative functions in short intervals and the large sieve.
We defer the proof to Appendix C. Here we list some recent results on averages
of multiplicative functions in short arithmetic progressions: the method used
in [29] can give that the coefficient before log log h

log h is k in formula (34); [23,
Theorem 3.1] gave the result that when f = μ(n), then for any ε > 0, the left
hand side of formula (34)≤ εh2Xϕ(k), whenever

∑
p|k 1/p ≤ (1−ε)

∑
p≤h 1/p;

For general multiplicative function, [24, Theorem 1.6, Corollary 1.7] gave the
result that for any ε > 0, the left hand side of formula (34)≤ εh2Xϕ(k) when
k is hε2-typical (i.e., there are not many prime factors of k less than hε2).

The reason that we give the estimate in form of formula (34) is that our
main interest is to concern about when k is far larger than h, whether the first
term of the right hand side of formula (34) is still h2Xϕ(k)oh(1). According to
our result, this is true if k is as large as exp(ho(1)) since k/ϕ(k) � log log k. We
believe that the coefficient before (log log h)/ log h(= oh(1)) in formula (34)
can be as small as O(1), an absolute constant independent of k. Actually,
note that

1
X

X∑
n=1

∣∣∣∣∣
h∑

l=1
μ(n + lk)

∣∣∣∣∣
2

= 1
Xk

k∑
a=1

X∑
x=1

∣∣∣∣∣
x+hk∑
n=x

n≡a(mod k)

μ(n)
∣∣∣∣∣
2

+ O(1).

It is likely to believe that

(35) lim sup
X→∞

1
Xk

k∑
a=1

X∑
x=1

∣∣∣∣∣
x+hk∑
n=x

n≡a(mod k)

μ(n)
∣∣∣∣∣
2

= o(h2),

where the little “o” term is independent of k ≥ 1. This is implied by a positive
answer to the Chowla conjecture. For a general non-pretentious multiplicative
function f(n) with |f(n)| ≤ 1 for any n ∈ N, equation (35) in which μ(n) is
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replaced by f(n) would be implied by a positive answer to Elliott’s conjecture
(see [10, Conjecture II], [29]).

As an application of Proposition 6.1, we shall prove certain self correla-
tions of the Möbius function which is stated in Theorem 1.4. In this proof,
we need the following known result about the non-pretentious nature of
μ(n)1(n,k)=1 (see e.g., [29, Lemma C.1]).

Lemma 6.2. Let X be large enough with k ≤ logX. Let f(n) = μ(n)1(n,k)=1.
Then

inf
1≤d≤k

Mk(f ; d;X; 2X) ≥ (1/3 − ε) log logX + O(1),

where ε > 0 is sufficiently small.

Proof of Theorem 1.4. Given k ≥ 1 and h ≥ 2. For X large enough with
logX > h2k,

2X∑
n=X

|
h∑

l=1
μ(n + kl)|2 =

k∑
a=1

2X∑
n=X

n≡a(mod k)

|
h∑

l=1
μ(n + kl)|2

=
k∑

a=1

2X/k∑
m=X/k

|
h∑

l=1
μ(km + kl + a)|2 + O(h2k)

=
k∑

a=1

2X/k∑
m=X/k

|
(m+h+1)k∑
n=(m+1)k
n≡a(mod k)

μ(n)|2 + O(h2k)

=
k∑

a=1

2X∑
x=X
k|x

|
x+hk∑
n=x

n≡a(mod k)

μ(n)|2 + O(h2k)

= 1
k

k∑
a=1

2X∑
x=X

|
x+hk∑
n=x

n≡a(mod k)

μ(n)|2 + O(X)(36)

= 1
k

∑
d|k

k/d∑
a=1

(a,k/d)=1

2X∑
x=X

|
x/d+hk/d∑
n=x/d

n≡a(mod k/d)

μ(dn)|2 + O(X)

= 1
k

∑
d|k

d

k/d∑
a=1

(a,k/d)=1

2X/d∑
x=X/d

∣∣∣ x+hk/d∑
n=x

n≡a(mod k/d)

μ(n)1(n,k)=1(n)
∣∣∣2

+ O(X
k

∑
d|k

ϕ(k/d)) + O(X)



892 Fei Wei

= 1
k

∑
d|k

d

k/d∑
a=1

(a,k/d)=1

2X/d∑
x=X/d

∣∣∣ x+hk/d∑
n=x

n≡a(mod k/d)

μ(n)1(n,k)=1(n)
∣∣∣2 + O(X).

Summarize the above, we have

2X∑
n=X

|
h∑

l=1
μ(n + kl)|2(37)

=1
k

∑
d|k

d

k/d∑
a=1

(a,k/d)=1

2X/d∑
x=X/d

∣∣∣ x+hk/d∑
n=x

n≡a(mod k/d)

μ(n)1(n,k)=1(n)
∣∣∣2 + O(X).

Then for X large enough, by Proposition 6.1 and Lemma 6.2,

2X∑
n=X

|
h∑

l=1
μ(n + kl)|2

�1
k
(
∑
d|k

d)h2X/dϕ(k/d)
( k/d

ϕ(k/d)
log log h

log h + 1
(logX)1/400

)

=h2X(
∑
d|k

1
d
) log log h

log h + h2X

(logX)1/400

≤h2X
∏
p|k

(1 − 1/p)−1 log log h
log h + h2X

(logX)1/400

≤h2X
k

ϕ(k)
log log h

log h + h2X

(logX)1/400 .

Hence

(38) lim sup
N→∞

1
N

N∑
n=1

|
h∑

l=1
μ(n + kl)|2 � h2 k

ϕ(k)
log log h

log h ,

as claimed.

7. Proofs of Theorems 1.5, 1.8, and Proposition 1.7

As an application of Theorem 1.4, at the beginning of this section, we prove
that the Möbius function is disjoint from certain asymptotically periodic func-
tions (i.e., Theorem 1.5).
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Proof of Theorem 1.5. Assume on the contrary, there is an f ∈ l∞(N) with
conditions (4) and (5) such that limN→∞

1
N

∑N
n=1 μ(n)f(n) = 0, then there

is a constant c0 > 0 and a mean state E such that

(39) |〈f, μ〉E | ≥ c0

By conditions (4) and (5), there are correspondingly sequences {hj}∞j=0 and
{nj}∞j=0 of positive integers with

(40) lim
j→∞

log log hj

log hj

nj

ϕ(nj)
= 0

and

(41) lim
j→∞

1
hj

hj∑
l=1

E(|f − Alnjf |2) = 0.

Let δ = c0
2(‖f‖l∞+1) . By Theorem 1.4, formulas (40) and (41), there is a k0

such that
1
hk0

hk0∑
l=1

‖Alnk0f − f‖2
E < δ2

and

‖ 1
hk0

hk0∑
l=1

Alnk0μ‖2
E < δ2.

For any l ∈ N,

〈f, μ〉E = 〈Alnk0f,Alnk0μ〉E = 〈Alnk0f − f,Alnk0μ〉E + 〈f,Alnk0μ〉E .

Then

|〈f, μ〉E| =
∣∣∣ 1
hk0

hk0∑
l=1

〈Alnk0f − f,Alnk0μ〉E + 〈f, 1
hk0

hk0∑
l=1

Alnk0μ〉E
∣∣∣

≤ 1
hk0

hk0∑
l=1

‖Alnk0f − f‖E · ‖μ‖E + ‖ 1
hk0

hk0∑
l=1

Alnk0μ‖E · ‖f‖E

≤
( 1
hk0

hk0∑
l=1

‖Alnk0f − f‖2
E

) 1
2 + ‖ 1

hk0

hk0∑
l=1

Alnk0μ‖E · ‖f‖E

≤δ(‖f‖l∞ + 1) = c0/2.
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Here we applied the Cauchy-Schwarz inequality to the first and second in-
equalities in the above, and the fact that ‖μ‖E ≤ ‖μ‖l∞ = 1 and ‖f‖E ≤
‖f‖l∞ . This contradicts formula (39). Hence the claim in this theorem holds.

Now we prove Proposition 1.7.

Proof of Proposition 1.7. Assume on the contrary that Problem 1 does not
hold, that is, there is an asymptotically periodic function f(n) such that
limN→∞

1
N

∑N
n=1 μ(n)f(n) = 0. Then there is a c0 > 0, a mean state E and

a sequence {nj}∞j=1 of positive numbers such that

(42) |〈μ, f〉E | ≥ c0

and

(43) lim
j→∞

‖Anjf − f‖2
E = 0.

Let δ = c0
2(‖f‖l∞+1) . By formula (6), choose a sufficiently large l0 with

(44) ‖ 1
l0

l0∑
l=1

Alkμ‖E < δ,

for any k ≥ 1. By equation (43), there is an n0 such that

‖An0f − f‖E <
2δ

l0 + 1 .

Then by the triangle inequality,

1
l0

l0∑
l=1

‖f − Aln0f‖E ≤ 1
l0

l0∑
l=1

l∑
j=1

‖A(j−1)n0f − Ajn0f‖E

= 1
l0

l0∑
l=1

l∑
j=1

‖f − An0f‖E < δ.

By the A-invariance of E and the Cauchy-Schwarz inequality,

〈f, μ〉E = 1
l0

l0∑
l=1

〈Aln0f − f,Aln0μ〉E + 〈f, 1
l0

l0∑
l=1

Aln0μ〉E
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≤ 1
l0

l0∑
l=1

‖f − Aln0f‖E · ‖μ‖l∞ + ‖ 1
l0

l0∑
l=1

Aln0μ‖E · ‖f‖l∞

< δ(1 + ‖f‖l∞) = c0/2.

This contradicts formula (42). Hence formula (6) implies Problem 1.

In the rest of this section, we shall prove Theorem 1.8, which states that
if SMDC holds, then μ is disjoint from all asymptotically periodic functions.
Before proving it, we need some preparations. We first provide a property of
asymptotically periodic functions.

Proposition 7.1. Let f be an asymptotically periodic function and ρ an
invariant state on Af . Then for the measure-preserving dynamical system
(Xf , ν, σA) with ν the probability measure induced by ρ on Xf , the measure-
theoretic entropy of σA is zero.

The above proposition follows immediately from Theorem 5.3 and [34,
Example 5.3.3]. The basic connection between topological entropy (denoted
by h(T )) and measure-theoretic entropy (denoted by hν(T )) is the variational
principle (see, e.g., [38, Theorem 8.6]). It states that for any topological dy-
namical system (X,T ), h(T ) = sup{hν(T ) : ν is a T -invariant Borel proba-
bility measure on X}. By this principle, it is easy to see that if h(T ) = 0,
then hν(T ) = 0 for any T -invariant probability measure ν.

Here is an interesting example about topological entropy and measure-
theoretic entropy. By Theorem 4.12, μ2 is an asymptotically periodic function.
So by Proposition 7.1, for any measure induced by a mean state ρ on Xμ2 ,
the measure-theoretic entropy of σA is zero. While Peckner proved in [32]
that there is a σA-invariant measure on Xμ2 such that the measure-theoretic
entropy of σA is equal to 6

π2 log 2, which equals the topological entropy of σA.
So the measure-theoretic entropy varies with respect to different measures.

The following lemma is a consequence of Proposition 7.1 and [9, Lemmas
4.28, 4.29], which are used to prove the equivalence between SMDC and the
Möbius disjointness of completely deterministic sequences.

Lemma 7.2. Let f be an asymptotically periodic function and Af be the
anqie generated by f . Suppose {Nm}∞m=1 is a strictly increasing sequence of
positive integers such that Nm|Nm+1. Further suppose the sequence {Nm}∞m=1
satisfies the condition that there is an A-invariant state ρ on Af , such that
for any h ∈ Af , ρ(h) = limm→∞

1
Nm

∑Nm
n=1 h(n). Then for any ε > 0, there

is an arithmetic function g with finite range, and a subsequence {Nm(l)}∞l=1
such that
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(i) for (Xg, σA) the anqie generated by g, the topological entropy of σA is
zero.

(ii) 1
Nm(l)

∑Nm(l)
n=1 |f(n) − g(n)| < ε.

Based on such connections between asymptotically periodic functions and
arithmetic functions with associated anqies having zero entropy, we are ready
to prove Theorem 1.8.

Proof of Theorem 1.8. Assume on the contrary that there is some asymptoti-
cally periodic function f such that limN→∞

1
N

∑N
n=1 μ(n)f(n) = 0, then there

is a constant c0 > 0 and an increasing sequence {Nm}∞m=1 of positive integers
with Nm|Nm+1 such that

(45) 1
Nm

∣∣∣∣∣
Nm∑
n=1

μ(n)f(n)
∣∣∣∣∣ ≥ c0.

For each Nm, define a state ρNm on Af by ρNm(h) = 1
Nm

∑Nm
n=1 h(n) for

any h ∈ Af . It follows from Proposition 2.1 that there is a subsequence
{ρNm(l)}∞l=1 and a state ρ on Af , such that ρ(h) = liml→∞

1
Nm(l)

∑Nm(l)
n=1 h(n)

for any h ∈ Af . Then ρ is A-invariant. By Lemma 7.2, there is a g(n) with
the topological entropy of (Xg, σA) zero, and a subsequence of {Nm(l)}∞l=1
(denoted by {Nm(l)}∞l=1 again), such that

(46) 1
Nm(l)

Nm(l)∑
n=1

|f(n) − g(n)| < c0
2 .

Applying Sarnak’s Möbius Disjointness Conjecture to (Xg, σA),

(47) lim
l→∞

1
Nm(l)

Nm(l)∑
n=1

μ(n)g̃(An(ι(0))) = lim
l→∞

1
Nm(l)

Nm(l)∑
n=1

μ(n)g(n) = 0,

where g̃(x) is the image of g(n) in C(Xg) under the Gelfand transform (see
equation (10)). By equations (46) and (47), we obtain a result which con-
tradicts formula (45). Then μ is disjoint from all asymptotically periodic
functions.

8. Disjointness of Möbius from rigid dynamical systems

In this section, we shall prove Theorem 1.11, Corollary 8.2 and Proposition
1.9.
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Proof of Theorem 1.11. Assume on the contrary, there is an f ∈ C(X) such
that

lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0) = 0,

then there is a constant c0 > 0 and an increasing sequence {Nm}∞m=1 of
positive integers such that

(48) 1
Nm

∣∣∣∣∣
Nm∑
n=1

μ(n)f(Tnx0)
∣∣∣∣∣ ≥ 2c0.

Since X is a compact metric space, C(X) is countably generated as an abelian
C*-algebra. By Proposition 2.1, there is a subsequence of {Nm}∞m=1 (denoted
by {Nm}∞m=1 again for convenience) and a T -invariant measure ν on X, such
that νNm = 1

Nm

∑Nm−1
n=0 δTnx0 weak* converges to ν as m → ∞, i.e., for any

f ∈ C(X),

lim
m→∞

∫
X
f(x)dνNm = lim

m→∞
1
Nm

Nm−1∑
n=0

f(T nx0) =
∫
X
f(x)dν.

By formula (48) and the condition stated in this theorem, there is a g ∈ C(X)
and sequences {hj}∞j=1 and {nj}∞j=1 of positive integers with

lim
j→∞

log log hj

log hj

nj

ϕ(nj)
= 0,

such that

(49) lim
j→∞

1
hj

hj−1∑
l=0

‖g ◦ T lnj − g‖2
L2(ν) = 0,

and

(50) 1
Nm

∣∣∣∣∣
Nm∑
n=1

μ(n)g(T nx0)
∣∣∣∣∣ ≥ c0.

Choose a free ultrafilter ω in the closure of {Nm : m = 1, 2, 3, . . .} in βN. Then
the mean state E on l∞(N) defined by E(h) = limNm→ω

1
Nm

∑Nm−1
n=0 h(n) for

any h ∈ l∞(N) is A-invariant. Recall the GNS construction in Section 4, we
use 〈 , 〉E and ‖ · ‖E to denote the inner product and norm induced by E on
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HE , respectively (see equations (13) and (14)). Let g̃(n) = g(T nx0). Then by
equation (50), we have

(51) |〈g̃, μ〉E| ≥ c0.

For any l = 1, 2, . . ., note that

‖g ◦ T lnj − g‖2
L2(ν) = lim

m→∞
1
Nm

Nm−1∑
n=0

|g(T lnj+nx0) − g(T nx0)|2.

So by equation (49),

(52) lim
j→∞

1
hj

hj−1∑
l=0

‖Alnj g̃ − g̃‖2
E = 0.

By an argument similar to the proof in Theorem 1.5, we have |〈g̃, μ〉E | ≤ c0/2.
This contradicts formula (51). Hence we obtain

(53) lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0) = 0.

This completes the proof of the first part of this theorem.
In the rest, we show the second part of the claim in this theorem, which

states the above disjointness holds over short intervals in average, that is

lim
h→∞

lim sup
N→∞

1
Nh

N∑
n=1

∣∣∣ h∑
l=1

μ(n + l)f(Tn+lx0)
∣∣∣ = 0.

It is not hard to check that the above is equivalent to for any increasing
sequence {Nj}∞j=0 of natural numbers with N0 = 0 and limj→∞(Nj+1−Nj) =
∞,

lim
m→∞

1
Nm

m−1∑
j=0

∣∣∣∣∣ ∑
Nj≤n<Nj+1

μ(n)f(Tnx0)
∣∣∣∣∣ = 0,

(see e.g., [19, Lemma 5.2]). Take {θj}∞j=0 such that

∑
Nj≤n<Nj+1

μ(n)f(Tnx0)e(θj) =
∣∣∣∣∣ ∑
Nj≤n<Nj+1

μ(n)f(Tnx0)
∣∣∣∣∣.
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Define s(n) = e(θj) when Nj ≤ n < Nj+1, j = 0, 1, . . .. According to the
above analysis, it suffices to prove that

(54) lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0)s(n) = 0.

Then s(n) is an e-periodic function with e-period 1. Namely, for any mean
state E and l ∈ N,

E(|s(n + l) − s(n)|2) = 0.
Let (Xs, σA) be the anqie generated by s(n) and s̃(x) be the image of s(n)
in C(Xs) under the Gelfand transform. Let G be the algebra generated by
{1, s̃ ◦ (σA)n(x) : n = 0, 1, . . .}. Then G is dense in C(Xs). By Theorem
5.3, for any mean sate E, it induces a measure κ in the weak* closure of
{ 1
N

∑N−1
n=0 δ(σA)nι(0) : N = 1, 2, . . .} in the space of Borel probability measures

on Xs satisfying

E(|s(n + l) − s(n)|2) =
∫
Xs

|s̃ ◦ (σA)l(x) − s̃(x)|2dκ = 0

for any l ∈ N. By the above equation and the triangle inequality, it is not hard
to check that conditions (8) and (9) in Theorem 1.11 hold for (X ×Xs, T ×
σA, (x0, ι(0)) with F × G a dense set in C(X × Xs). By a similar argument
to prove (53), we have

lim
N→∞

1
N

N∑
n=1

μ(n)f(Tnx0)s̃((σA)nι(0)) = 0.

Note that s̃((σA)nι(0)) = s(n). We obtain equation (54). Now we complete
the proof of this theorem.

Remark 8.1. Both BPV rigidity and PR rigidity in Theorem 1.10 are in-
cluded in conditions (8), (9) in Theorem 1.11. Firstly, nj

ϕ(nj) =
∏

p|nj

p
p−1 =∏

p|nj
(1 − 1

p)
−1 � exp(

∑
p|nj

1
p) = O(1) by the BPV rigidity, so (8) holds

for any sequence {hj}∞j=1 with limj→∞ hj = ∞. By BPV rigidity, there is a
subsequence of {nj}∞j=1 (denoted by {nj}∞j=1 again for convenience) such that
‖g ◦ T nj − g‖L2(ν) ≤ 1

2j . Choose hj = j. Then by the triangle inequality and
T -invariance of ν, ‖g ◦ T lnj − g‖L2(ν) ≤ l‖g ◦ T nj − g‖L2(ν). So

1
hj

hj∑
l=1

‖g ◦ T lnj − g‖2
L2(ν) ≤

j2

4j → 0, as j → ∞,
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as claimed in formula (9). Secondly, we explain that PR rigidity is a special
case of (8) and (9). Let hj = nδ

j . Then limj→∞
log log hj

log hj

nj

ϕ(nj) = 0 since nj

ϕ(nj) �
log log nj .

Next, we give an example that satisfies conditions (8), (9), but not BPV
rigidity and PR rigidity. Let η = (μ2(0), μ2(1), . . .) and B the Bernoulli shift
on {0, 1}N. Let Xη be the closure of {Bnη : n = 0, 1, . . .} in {0, 1}N. We call
(Xη, B) the square-free flow. The study of dynamical properties of the square-
free flow have received much attention (see, e.g., [5, 32, 35]). In [35], Sarnak
proved that (Xη, B) is proximal (i.e., for any x, y ∈ Xη, infn≥1 d(T nx, T ny) =
0) and it is topologically ergodic having topological entropy 6

π2 log 2. As a
result of Theorem 1.11, we obtain the following Möbius disjointness for the
square-free flow2.

Corollary 8.2. Let (Xη, B) be the square-free flow. Then for any f ∈ C(Xη),

lim
N→∞

1
N

N∑
n=1

μ(n)f(Bnη) = 0.

Proof. For i = 0, 1, . . ., let πi : Xη → {0, 1} be the projection map from
Xη onto its i-th coordinate. Let F be the *-subalgebra of C(Xη) generated
by {π0, π1, . . .}. By the Stone-Weierstrass theorem (see, e.g., [22, Theorem
3.4.14]), F is dense in C(Xη). By [35], there is a B-invariant measure ν such
that 1

N

∑N−1
n=0 δBnη weak* converges to ν as N → ∞. Let pl be the l-th prime

and nj = p2
1p

2
2 · · · p2

j . By an argument similar to the proof in Theorem 4.12,
for i = 0, 1, . . .,

‖πi ◦Blnj − πi‖2
L2(ν) = lim

N→∞

1
N

N−1∑
n=0

|πi(Blnj+nη) − πi(Bnη)|2

= lim
N→∞

1
N

N−1∑
n=0

|μ2(i + lnj + n) − μ2(i + n)|2

= lim
N→∞

1
N

N−1∑
n=0

|μ2(lnj + n) − μ2(n)|2

≤ 12
π2 (1 −

∏
p>pj

(1 + 1
p2 − 2)−1).

2There are some other methods to prove Corollary 8.2. Our primary interest
here is to provide an example that distinguish Theorem 1.11 we obtained from [23,
Theorem 2.1] (presented in Theorem 1.10 in this paper).
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Then, for any increasing sequence {hj}∞j=1 of positive integers,

lim
j→∞

1
hj

hj−1∑
l=0

‖πi◦Blnj−πi‖2
L2(ν) ≤ lim

j→∞

1
hj

hj−1∑
l=0

12
π2 (1−

∏
p>pj

(1+ 1
p2 − 2)−1) = 0.

It is not hard to check that for any g ∈ F ,

lim
j→∞

1
hj

hj−1∑
l=0

‖g ◦Blnj − g‖2
L2(ν) = 0.

Hence by Theorem 1.11, we obtain the claim in this corollary.

Remark 8.3. In the following, we explain that for any πi, i = 0, 1, . . ., in the
above dense set F of C(X), there is no sequence {nj}∞j=1 satisfying BPV and
PR rigidity in Theorem 1.10.

On one hand, by the argument in Corollary 8.2,

‖πi ◦Bnj − πi‖2
L2(ν) = 12

π2

(
1 −

∏
p2�nj

(1 + 1
p2 − 2)−1

)
.

If limj→∞ ‖πi ◦ Bnj − πi‖2
L2(ν) = 0, it is not hard to check that there is a

subsequence {njs}∞s=1 with p2
1 · · · p2

s|njs , where ps is the s-th prime. Then∑
p|njs

1
p ≥ ∑

l≤s
1
pl

→ ∞ as s → ∞ by Mertens’ Theorem (see e.g., [21]). So
{nj}∞j=1 does not satisfy BPR rigidity in Theorem 1.10.

On the other hand, for a given δ > 0 and (nj)
δ
2 ≤ l ≤ hj = nδ

j with
j sufficiently large, note that the number of distinct prime factors of lnj is
Oδ(log nj), we have

‖πi ◦Blnj − πi‖2
L2(ν)

=12
π2

(
1 −

∏
p2�lnj

(1 + 1
p2 − 2)−1

)
≥12
π2

(
1 −

∏
p

(1 + 1
p2 − 2)−1 ∏

p2≤hj

(1 + 1
p2 − 2)

∏
p2|lnj

p2>hj

(1 + 1
p2 − 2)

)

=12
π2

(
1 −

∏
p2>hj

(1 + 1
p2 − 2)−1(1 + Oδ(

log nj

hj
)
))

� 1√
hj log hj

.

Hence, limj→∞
∑hj

l=1 ‖πi ◦ Blnj − πi‖2
L2(ν) = 0. So the sequence {nj}∞j=1 does

not satisfy PR rigidity in Theorem 1.10.
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Remark 8.4. For the square-free flow (Xη, B), let ν be the B-invariant mea-
sure such that η is generic for ν. Then ν has discrete spectrum by [5]. From
Corollary 8.2 and Remark 8.3, we know that (Xη, B, ν) satisfies conditions
(8), (9) in Theorem 1.11, but not BPV rigidity and PR rigidity in Theorem
1.10.

By a similar argument to the proof of Corollary 8.2, the conclusion also
holds for η replaced by (

∏w
i=1 μr(mi),

∏w
i=1 μr(mi+1), ···,∏w

i=1 μr(mi+n), ···),
where r ≥ 2, w ≥ 1 and m1, . . . ,mw ∈ N are given, μr(n) = 1 if n is r-th
power-free and zero otherwise.

At the end, let us prove Proposition 1.9.

Proof of Proposition 1.9. We first show that Problem 1 implies Problem 2.
Let f ∈ C(X). Then for any ν in the weak* closure of { 1

N

∑N−1
n=0 δTnx0 :

N = 0, 1, 2, . . .} in the space of Borel probability measures on X, there is a
sequence {nj}∞j=1 (may depend on ν) of positive integers satisfying

(55) lim
j→∞

‖f ◦ T nj − f‖2
L2(ν) = 0.

Let g(n) = f(T nx0). In the following, we want to show that g(n) is an asymp-
totically periodic function. Let Ag be the anqie generated by g(n) and E be a
mean state. Then there is a sequence {Nm}∞m=1 of positive integers such that
for any h ∈ Ag, E(h) = limm→∞

1
Nm

∑Nm−1
n=0 h(n). By Theorem 5.1, there is

a probability measure ν1 on Xf , such that

(56) E(h) = lim
m→∞

1
Nm

Nm−1∑
n=0

h(n) =
∫
Xf

h(x)dν1(x),

where h(x) is the image of h(n) under the Gelfand transform in C(Xf ). This
implies that 1

Nm

∑Nm−1
n=0 δTnx weak* converges to ν1 in the space of Borel

probability measures on Xf . Choose a ν in the weak* closure of the sequence
{ 1
Nm

∑Nm−1
n=0 δTnx0}∞m=1 in the space of Borel probability measures on X. When

restricted to Xf , ν is identified as ν1 by Proposition 3.8. Then by equation
(55), there is a sequence {nj}∞j=1 of positive integers such that

lim
j→∞

∫
X
|f ◦ T nj (x) − f(x)|2dν(x) = 0.

Note that the image of Anjg(n) under the Gelfand transform is f ◦ T nj (x) in
C(Xf ). Then by equation (56),

lim
j→∞

E(|Anjg − g|2) = 0.
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So g is an asymptotically periodic function. Assume that Problem 1 holds,
then

lim
N→∞

1
N

N−1∑
n=0

μ(n)g(n) = lim
N→∞

1
N

N−1∑
n=0

μ(n)f(Tnx0) = 0.

In the remaining part, we prove that Problem 2 implies the disjoint-
ness of μ from all asymptotically periodic function. Suppose that h(n) is an
asymptotically periodic function, i.e., for any mean state E, there is a se-
quence {nj}∞j=1 of positive integers such that limj→∞ ‖h − Anjh‖E = 0. Let
(Xh, σA) (or Ah) be the anqie generated by h. Let x0 = ι(0) (corresponding
to (h(0), h(1), . . .))∈ Xh. Suppose that 1

Nm

∑Nm−1
n=0 δ(σA)nx0 weak* converges

to a Borel probability measure ν as m → ∞. Choose a free ultrafilter ω in
the weak* closure of {Nm : m = 1, 2, 3, . . .} in βN. Then applying Theorems
5.1 to the mean state E depending on ω, we obtain for any f̃(n) ∈ Ah,

E(f̃) = lim
m→∞

1
Nm

Nm−1∑
n=0

f̃(n) =
∫
Xf

f̃(x)dν(x),

where f̃(x) is the image of f̃(n) under the Gelfand transform (see equation
(10)). Then for any f̃(x) ∈ C(Xh), limj→∞ ‖f̃ ◦ (σA)nj (x) − f̃(x)‖L2(ν) = 0.
So (Xh, σA, x0) satisfies the condition in Problem 2. Hence

lim
N→∞

1
N

N−1∑
n=0

μ(n)h((σA)nx0) = lim
N→∞

1
N

N−1∑
n=0

μ(n)h(n) = 0.

Appendix A. Mean and large values theorems

In this section, we list some lemmas that are used in the proof of Lemma
C.1. They are hybrid versions of the corresponding results in [28]. We refers
readers to [24, Section 3] or [31, Theorems 6.4; 8.3] for detailed proofs about
Lemmas A.1, A.2, and A.4.

Lemma A.1. Let T,N, k ≥ 1 and {an}∞n=1 be a sequence of complex numbers.
Then

∑
χ(mod k)

∫ T

0
|
∑
n≤N

anχ(n)nit|2dt � (ϕ(k)T + ϕ(k)
k

N)
∑
n≤N

(n,k)=1

|an|2
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Lemma A.2. Let T,N, k ≥ 1 and {an} be any complex numbers. Let E
be a subset of {χ(mod k)} × [−T, T ] satisfying that |t − u| ≥ 1 whenever
(χ, t), (χ, u) ∈ E with t = u. Then

∑
(χ,t)∈E

|
∑
n≤N

anχ(n)nit|2 �
(
ϕ(k)T + ϕ(k)

k
N
)

log(3k)
∑
n≤N

(n,k)=1

|an|2.

Applying the above lemma with an argument similar to the proof of [28,
Lemma 8], we have the following.

Lemma A.3. Let P, T ≥ 2, k ≥ 1 and V > 0. Write

Pχ(s) =
∑

P≤p≤2P

apχ(p)
ps

with |ap| ≤ 1 for p ≤ 2P . Let R(T , V ) be a subset of {(χ, t) ∈ {χ(mod k)} ×
[−T, T ] : Pχ(1 + it) ≥ V −1} satisfying |t − u| ≥ 1 whenever (χ, t), (χ, u) ∈
R(T , V ) with t = u. Then

#R(T , V ) � (kT )2
logV
logP V 2 exp

(
2log(kT )

logP log log(kT )
)
.

The following is a hybrid version of “Halász inequality for integers” stated
in [28, Lemma 9].

Lemma A.4. With the same assumptions as Lemma A.2. We have

∑
(χ,t)∈E

|
∑
n≤N

anχ(n)nit|2 �
(ϕ(k)

k
N + |E|(kT )

1
2 log(2kT )

) ∑
n≤N

(n,k)=1

|an|2.

When an is supported on the set of primes, we have the following hybrid
version of “Halász inequality for primes” stated in [28, Lemma 11].

Lemma A.5. Let P, T ≥ 2 and k < (logP ) 4
3−ε. Let E be a subset of

{χ(mod k)} × [−T, T ] satisfying that |t − u| ≥ 1 whenever (χ, t), (χ, u) ∈ E
with t = u. Then∑

(χ,t)∈E
|

∑
P≤p≤2P

apχ(p)pit|2

�
(
ϕ(k)P + |E|P exp(− logP

(log(P + T )) 2
3+ε

)(log(P + T ))5
) ∑

P≤p≤2P

|ap|2
logP ,
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where ε is a sufficiently small positive number.

Proof. By the duality principle applied to (χ(p)pit)P≤p≤2P,(χ,t)∈E , it is enough
to prove that for any complex numbers ηχ,t,∑

P≤p≤2P
log p

∣∣ ∑
(χ,t)∈E

ηχ,tχ(p)pit
∣∣2

�
(
|E|P exp(− logP

(log(P + T )) 2
3+ε

)(log(P + T ))5
)

+ ϕ(k)P
) ∑

(χ,t)∈E
|ηχ,t|2.

Let f(x) be a smooth compactly supported function on [1/2, 5/2] such that
f(x) = 1 for 1 ≤ x ≤ 2 and f decays to zero outside of the interval [1, 2]. Let
f̃ denote the Mellin transform of f . Then f̃(x+ iy) �A (1+ |y|−2) uniformly
in |x| ≤ A. Then

∑
P≤p≤2P

log p
∣∣ ∑
(χ,t)∈E

ηχ,tχ(p)pit
∣∣2 ≤

∑
pl

log p
∣∣ ∑
(χ,t)∈E

ηχ,tχ(pl)pilt
∣∣2f(p

l

P
)

≤
∑

(χ,t),(χ,t1)∈E
|ηχ,tηχ,t1 |

∑
pl

(log p)pil(t−t1)χ0(pl)f(p
l

P
)|

+
∑

(χ,t),(χ1,t1)∈E
χ1 �=χ

|ηχ,tηχ1,t1 |
∑
pl

(log p)pil(t−t1)χ(pl)χ1(pl)f(p
l

P
)|.

When χ is not a principal character modulo k, Perron’s formula with the
zero-free region for L(s, χ) gives for |α| ≤ T ,

∑
P<p<2P

piαχ(p) � P exp(− logP
(log(P + T )) 2

3+ε
)(log(P + T ))4.

Combining with ab ≤ a2+b2

2 , we have

∑
(χ,t),(χ1,t1)∈E

χ1 �=χ

|ηχ,tηχ1,t1 |
∑
pl

(log p)pil(t−t1)χ(pl)χ1(pl)f(p
l

P
)|

�
∑

(χ,t),(χ1,t1)∈E
χ1 �=χ

(|ηχ,t|2 + |ηχ1,t1 |2)P exp(− logP
(log(P + T )) 2

3+ε
)(log(P + T ))5

� |E|P exp(− logP
(log(P + T )) 2

3+ε
)(log(P + T ))5

∑
(χ,t)∈E

|ηχ,t|2.
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It follows from a similar argument to the proof of Lemma 11 in [28] that

∑
(χ,t),(χ,t1)∈E

|ηχ,tηχ,t1 |
∣∣∣∑

pl

(log p)pil(t−t1)χ0(pl)f(p
l

P
)
∣∣∣

�
∑

(χ,t),(χ,t1)∈E
(|ηχ,t|2 + |ηχ,t1 |2)

(∣∣∣∑
pl

(log p)pil(t−t1)f(p
l

P
)
∣∣∣ + logP log k

)
� (ϕ(k)P + |E|P exp(− logP

(log T ) 2
3+ε

)(log T )2 + |E| log k logP )
∑

(χ,t)∈E
|ηχ,t|2.

The proofs of the next two lemmas are almost the same as the proofs
of Lemmas 12, 13 in [28] with the following small differences: instead of the
standard mean value theorem for Dirichlet polynomials, we apply Lemma
A.1; one obtains the extra factor ϕ(k)/k due to the coefficients are supported
on the integers (n, k) = 1.

Lemma A.6. Let X,H ≥ 1 and Q > P ≥ 2. Suppose that amp = bmcp,
p � m,P ≤ p ≤ Q, where the sequences {am}m, {bm}m, {cp}p are bounded. Let
k ≥ 1 and M be a collection of Dirichlet characters modulo k. Let

Qv,H(χ, s) =
∑

P≤p≤Q

e
v
H ≤p≤e

v+1
H

cpχ(p)
ps

and

Rv,H(χ, s) =
∑

Xe−
v
H ≤2Xe−

v
H

bmχ(m)
ms

1
#{P ≤ q ≤ Q : q|m, q is a prime} + 1 .

Let Tχ ⊆ [−T, T ], and I = {j ∈ N : �H logP � ≤ j ≤ H logQ}. Then

∑
χ∈M

∫
Tχ

|
∑

X≤m≤2X

amχ(m)
m1+it

|2dt

� H log(Q
P

) ×
∑
χ∈M

∑
j∈I

∫
Tχ

|Qj,H(χ, 1 + it)Rj,H(χ, 1 + it)|2dt

+ϕ(k)
k

ϕ(k)T + (ϕ(k)/k)X
X

( 1
H

+ 1
P

)
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+ϕ(k)T + (ϕ(k)/k)X
X

∑
X≤m≤2X

(m,k
∏

P≤p≤Q
p)=1

|am|2
m

.

Lemma A.7. Let k, T ≥ 1, Y2 ≥ Y1 ≥ 2 and l = � log Y2
log Y1

�. Let {am}m and
{cp}p be bounded sequences. Suppose that X is sufficiently large. Let

Q(χ, s) =
∑

Y1≤p≤2Y1

cpχ(p)
ps

and

R(χ, s) =
∑

X/Y2≤m≤2X/Y2

amχ(m)
ms

.

Then

∑
χ(mod k)

∫ T

−T
|Q(χ, 1+ it)lR(χ, 1+ it)|2dt � ϕ(k)

k
(ϕ(k) T

X
+ ϕ(k)

k
2lY1)(l+1)!2.

The following Parseval bound follows exactly in the same way as [28,
Lemma 14] with no need to consider the difference of two averages as the
integral function.

Lemma A.8. Suppose that {am}∞m=1 be a bounded sequence. Assume that
X ≥ 2 and 1 ≤ h ≤ X. Write

A(s) :=
∑

X≤m≤4X

am
ms

.

Then

1
X

∫ 2X

X
|1
h

∑
x≤n≤x+h

an|2dx(57)

�
∫ 1+iX/h

1
|A(s)|2|ds| + max

T≥X/h

X/h

T

∫ 1+2iT

1+iT
|A(s)|2|ds|.

Appendix B. Lemmas on multiplicative functions

In this section, we give some lemmas on the pointwise bounds of Dirichlet
polynomials with coefficients supported on integers coprime to a fixed number.
We start from the following lemma which has almost identical proof to that
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of [1, Corollary 2.2] with the small modification: one applies the refinement
of the Halász-Montgometry-Tenenbaum result ([16, Corollary 1]), rather than
the Halász inequality. This leads to that the bound O( 1√

T
) is improved by

O( 1
T ).

Lemma B.1. Let x ≥ 3, 1 ≤ k ≤ x and 1 ≤ T ≤ (log x) 1
4 . Let f(n) be a

multiplicative function with |f(n)| ≤ 1 for all n ∈ N. Then

1
x

∑
n≤x

(n,k)=1

f(n) � ϕ(k)
k

(
(Mk(f ;x;T ) + 1) exp(−Mk(f ;x;T )) + 1

T

)
.

While for large T in the above lemma, it follows directly from [24, Lemma
2.2] that

Lemma B.2. Let x ≥ 3, 1 ≤ k ≤ x and (log x) 1
4 < T ≤ x. Let f(n) be a

multiplicative function with |f(n)| ≤ 1 for all n ∈ N. Then

1
x

∑
n≤x

(n,k)=1

f(n) � ϕ(k)
k

(
(Mk(f ;x;T ) + 1) exp(−Mk(f ;x;T )) + (log x)−

5
64

)
.

Combining with Lemmas B.1 and B.2, we have the following Halász-type
inequality for the mean values of multiplicative functions.

Lemma B.3. Let x ≥ 3 and 1 ≤ k, T ≤ x. Let f(n) be a multiplicative
function with |f(n)| ≤ 1 for all n ∈ N. Then

1
x

∑
n≤x

(n,k)=1

f(n) � ϕ(k)
k

(
(Mk(f ;x;T )+1) exp(−Mk(f ;x;T ))+ 1

T
+(log x)−

5
64

)
.

The following lemma follows immediately from Lemma B.3 and partial
summation.

Lemma B.4. Let x ≥ 3 and 1 ≤ k, T0 ≤ x. Suppose that χ is a Dirichlet
character modulo k. Let f(n) be a multiplicative function with |f(n)| ≤ 1,
and let

F (χ, s) =
∑

x≤n≤2x

f(n)χ(n)
ns

.

Let

(58) L(fχ;x;T0) = inf
|t0|≤T0

Dk(fχ, n �→ nit+it0 ;x)2.
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Then

|F (χ, σ + it)|

�x1−σϕ(k)
k

(
(L(fχ;x;T0) + 1) exp(−L(fχ;x;T0)) + 1

T0
+ (log x)−

5
64

)
.

Actually, in the proof of Theorem C.1, we also need to apply the Halász-
type inequality to a Dirichlet polynomial of the form Fv,H(χ, s) in Lemma
A.6 with the coefficients not quite multiplicative. Using Lemma B.4, a similar
argument to the proof of Lemma 3 in [28] gives the following result.

Proposition B.5. Let X ≥ Q > P ≥ 2. Let 1 ≤ k, T0 ≤ X and χ be
a Dirichlet character modulo k. Let f(n) be a multiplicative function with
|f(n)| ≤ 1 and

R(χ, s) =
∑

X≤n≤2X

f(n)χ(n)
ns

1
#{P ≤ q ≤ Q : q|m, q is a prime} + 1 .

Suppose that δ(n) is the characteristic function supported on the set of all
integers between 1 and 2X which is coprime to

∏
P≤p≤Q p. Then for any t,

|R(χ, 1 + it)|

� logQ
logP

ϕ(k)
k

(
(L(δfχ;X;T0) + 1) exp(−L(δfχ;X;T0)) + 1

T0
+ (log x)−

5
64

)
+ (logX) exp(− logX

3 logQ log logX
logQ ),

where L(δfχ;X;T0) is defined as equation (58).

Appendix C. Proof of Proposition 6.1

In this section we shall first prove Proposition 6.1, which states that the
average of a 1-bounded multiplicative function is small for almost all short
arithmetic progressions when it it not χ(p)pit pretentious. The proof of this
result can be reduced to proving the following lemma.

Lemma C.1. Let X be large enough such that 1 ≤ k ≤ (logX)1/32. Suppose
that 2 ≤ h ≤ X/k. Let f(n) be a multiplicative function with |f(n)| ≤ 1 for
all n ≥ 1, and let

F (χ, s) =
∑

X≤n≤2X

f(n)χ(n)
ns

.
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Then, for any T ≥ 1,

∑
χ(mod k)

∫ T

0
|F (χ, 1 + it)|2dt

�ϕ(k)
k

(ϕ(k)T
X/h

+ ϕ(k)
k

)
( k

ϕ(k)
log log h

log h + 1
(logX)1/300

)
+ ϕ2(k)

k2

(
Mk(f ; k;X; 2X) + 1) exp(−Mk(f ; k;X; 2X)

)
.

Some results used below are given in Appendices A and B. We first show
that the above lemma implies Proposition 6.1.

Proof of Proposition 6.1 (Assume that Lemma C.1 holds). By the Parseval
bound stated in formula (57) and Lemma C.1,

1
k2h2X

∑
χ(mod k)

∫ 2X

X

∣∣∣ x+hk∑
n=x

f(n)χ(n)
∣∣∣2dx

�
∑

χ(mod k)

∫ 1+i X
kh

1

∣∣∣ ∑
X≤m≤4X

f(m)χ(m)
ms

∣∣∣2|ds|
+ max

T≥ X
kh

X/kh

T

∑
χ(mod k)

∫ 1+2iT

1+iT

∣∣∣ ∑
X≤m≤4X

f(m)χ(m)
ms

∣∣∣2|ds|
�ϕ2(k)

k2

( k

ϕ(k)
log log h

log h + 1
(logX)1/300

)
+ ϕ2(k)

k2
Mk(f ; k;X; 2X) + 1
exp(Mk(f ; k;X; 2X)) .

Hence

k∑
a=1

(a,k)=1

2X∑
x=X

∣∣∣ x+hk∑
n=x

n≡a(mod k)

f(n)
∣∣∣2

= 1
ϕ2(k)

k∑
a=1

(a,k)=1

2X∑
x=X

∣∣∣ ∑
χ(mod k)

χ(a)
x+hk∑
n=x

f(n)χ(n)
∣∣∣2 = 1

ϕ2(k)

2X∑
x=X

∑
χ1,χ2(mod k)

( k∑
a=1

(a,k)=1

χ1(a)χ2(a)
)( x+hk∑

n=x

f(n)χ1(n)
)( x+hk∑

n=x

f(n)χ2(n)
)

= 1
ϕ(k)

2X∑
x=X

∑
χ(mod k)

∣∣∣ x+hk∑
n=x

f(n)χ(n)
∣∣∣2
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= 1
ϕ(k)

∑
χ(mod k)

∫ 2X

X

∣∣∣ x+hk∑
n=x

f(n)χ(n)
∣∣∣2dx

�h2Xϕ(k)
( k

ϕ(k)
log log h

log h + 1
(logX)1/300 + Mk(f ; k;X; 2X) + 1

exp(Mk(f ; k;X; 2X))
)
.

Now we start to prove Lemma C.1.

Proof of Lemma C.1. Since the hybrid mean value theorem (see Lemma A.1)
gives the bound O

(
ϕ(k)
k (ϕ(k)T

X + ϕ(k)
k )

)
, we can assume that T ≤ X. Let χ1 be

the character modulo k minimizing the distance inf |t|≤2X Dk(fχ, n �→ nit;X).
Let t1 be the real number minimizing Dk(fχ1, n �→ nit;X). Then for any
χ(mod k) and |t| ≤ 2X, Dk(fχ, n �→ nit;X) ≥ Dk(fχ1, n �→ nit1 ;X). Next
we claim that for χ = χ1 and any t with |t| ≤ 2X,

(59) 2Dk(fχ, n �→ nit;X) ≥ ( 1√
3
− ε)

√
log logX + O(1)

and for χ = χ1 and |t− t1| ≥ 1,

(60) 2Dk(fχ1, n �→ nit;X) ≥ ( 1√
3
− ε)

√
log logX + O(1),

where ε > 0 is sufficiently small. In fact, suppose first that f is unimodular,
i.e., |f(n)| = 1 for all n ≥ 1. By the triangle inequality of Dk (see, e.g., [17,
Lemma 3.1]),

2Dk(fχ, n �→ nit;X) ≥ Dk(fχ, n �→ nit;X) + Dk(fχ1, n �→ nit1 ;X)
= Dk(f ;n �→ χ(n)n−it;X) + Dk(f, n �→ χ1(n)nit1 ;X)
≥ Dk(ff, n �→ χ1χ(n)ni(t1−t);X)
= Dk(1, n �→ χ1χ(n)ni(t1−t);X).

If f is not unimodular, by means of the method used in [24, Lemma 2.2], we
can model f by a stochastic multiplicative function f such that {f(n)}n being
a sequence of unimodular random variables defined on certain probability
space, and for each prime p the expectation Ef(p) = f(p). By linearity of the
expectation, we thus have

Dk(fχ, n �→ nit;X)2 =
∑
p≤x
p�k

1 − Re(p−itχ(p)Ef(p))
p

= E
(
Dk(fχ, n �→ nit;X)2

)
.
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Since f is unimodular, 2Dk(fχ, n �→ nit;X) ≥ Dk(1, n �→ χ1χ(n)ni(t1−t);X).
Hence formulas (59) and (60) hold.

Write [0, T ] = L1 ∪ L2, where

L1 = {0 ≤ t ≤ T : |t− t1| < (logX)
5
64 },

L2 = {0 ≤ t ≤ T : |t− t1| ≥ (logX)
5
64 }.

We now first estimate
∑

χ(mod k)
∫
L2

|F (χ, 1 + it)|2dt. By means of similar
ideas in the proof of [28, Proposition 1], we first split the integral over L2
into several parts according to the typical factorization when n is restricted
to a dense subset S ⊆ [X, 2X]. Recall that S in [28] is defined to be the set
of all integers X ≤ n ≤ 2X having at least one prime factor in each interval
[Pj , Qj ] for j ≤ J , where J is chosen to be the largest index j such that
Qj ≤ exp((logX) 1

2 ). The choice of Pj , Qj needs to satisfy some requirements
as in [28]. Now we set the same parameters αj := 1

4 − η(1 + 1
2j ), η := 1/150,

Hj := j2P
1
6−η
1 /(logQ1)

1
3 , Ij := [v ∈ N : �Hj logPj� ≤ v ≤ Hj logQj ] as in

[28]. Define for v ∈ Ij ,

Rv,Hj (χ, 1 + it) :=
∑

Xe−v/Hj≤m≤2Xe−v/Hj

f(m)χ(m)
ms

1
�{Pj ≤ p ≤ Qj : p|m} + 1

and

Qv,Hj (χ, s) :=
∑

Pj≤q≤Qj

ev/Hj≤q≤e(v+1)/Hj

f(q)χ(q)
qs

.

Let Tj denote the set of all (χ, t) ∈ {χ(mod k)} × L2 with j the smallest
index such that for all v ∈ Ij , |Qv,Hj (χ, 1 + it)| ≤ e−αjv/Hj . Let U be the
complement of union of Tj . We may also write that for some sets Tj,χ, Uχ ⊆ L2,
Tj =

⋃
χ(mod k){χ} × Tj,χ and U =

⋃
χ(mod k){χ} × Uχ. Then

∑
χ(mod k)

∫
L2

|F (χ, 1 + it)|2dt =
J∑

j=1

∑
χ(mod k)

∫
Tj,χ

|F (χ, 1 + it)|2dt(61)

+
∑

χ(mod k)

∫
Uχ

|F (χ, 1 + it)|2dt.
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By the the fundamental lemma of the sieve,

∑
X≤m≤2X

(m,k
∏

Pj≤p≤Qj
p)=1

1 � X
ϕ(k)
k

logPj

logQj

∏
Pj≤p≤Qj

p|k

(1 − 1
p
)−1 ≤ X

ϕ(k)
k

logPj

logQj

k

ϕ(k) .

Using Lemma A.6 with H = Hj , P = Pj , Q = Qj and am = bm = f(m)χ(m),
cp = f(p)χ(p) and the above inequality, we obtain

∑
χ(mod k)

∫
Tj,χ

|F (χ, 1 + it)|2dt

� Hj log(Qj

Pj
)

∑
χ(mod k)

∑
v∈Ij

∫
Tj,χ

|Qv,H(χ, 1 + it)Rv,H(χ, 1 + it)|2dt

+ ϕ(k)
k

ϕ(k)T + (ϕ(k)/k)X
X

( 1
Hj

+ 1
Pj

+ k

ϕ(k)
logPj

logQj

)
.

Here the second term contributes totally to the right-hand side of formula
(61),

ϕ(k)
k

ϕ(k)T + (ϕ(k)/k)X
X

J∑
j=1

( 1
Hj

+ 1
Pj

+ k

ϕ(k)
logPj

logQj

)

�ϕ(k)
k

ϕ(k)T + (ϕ(k)/k)X
X

((logQ1)
1
3

P
1
6−η
1

+
J∑

j=1

1
P j2

1
+ k

ϕ(k)
logP1

logQ1

)

�ϕ(k)
k

ϕ(k)T + (ϕ(k)/k)X
X

((logQ1)
1
3

P
1
6−η
1

+ k

ϕ(k)
logP1

logQ1

)
.

(62)

In the above, we use the relation that Hj = j2P
1
6−η
1 /(logQ1)

1
3 and logPj ≥

8j2/η logQj−1 + 16j2/η log j.
Now for 1 ≤ j ≤ J , we focus on bounding

Ej := Hj logQj

∑
χ(mod k)

∑
v∈Ij

∫
Tj,χ

|Qv,Hj (χ, 1 + it)Rv,Hj (χ, 1 + it)|2dt.

Estimate of E1. We repeat the argument in [28, Section 8.1] with the dif-
ference that the standard mean-value theorem is replaced by the “hybrid
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mean-value theorem” (Lemma A.1),

(63) E1 � (ϕ(k)T
X/Q1

+ ϕ(k)
k

)(logQ1)
1
3

P
1
6−η
1

ϕ(k)
k

.

Estimate of Ej for 2 ≤ j ≤ J. Let T r
j,χ = {t ∈ Tj,χ, |Qr,Hj−1(χ, 1 +

it)| > e
− rαj−1

Hj−1 } for r ∈ Ij−1. Then Tj,χ =
⋃

r∈Ij−1 T r
j,χ. If T r

j,χ = ∅, we set∫
T r
j,χ

|Qr,Hj−1(χ, 1 + it)|2dt = 0. Then

Ej � Hj logQj

∑
v∈Ij

∑
r∈Ij−1

∑
χ(mod k)

e
−2

αjv

Hj

∫
T r
j,χ

|Rv,Hj (χ, 1 + it)|2dt.

By an argument similar to [28, Section 8.2] and Lemmas A.1, A.7, we obtain

(64) Ej �
ϕ(k)
k

(ϕ(k)T
X

+ ϕ(k)
k

) 1
j2P1

.

Estimate of
∑

χ(mod k)
∫
Uχ

|F (χ, 1 + it)|2dt. Let P = exp((logX) 63
64 ), Q =

exp( logX
log logX ), H = (logX) 1

64 . Set I = [�H logP �, H logQ]. For v ∈ I, write

Qv,H(χ, s) =
∑

P≤p≤Q
ev/H≤p≤e(v+1)/H

f(p)χ(p)
ps

,

and

Rv,H(χ, s) =
∑

Xe−v/H≤n≤2Xe−v/H

f(n)χ(n)
ns

1
�{p ∈ [P,Q] : p|n} + 1 .

Note that k < logX and then (k,
∏

P≤p≤Q p) = 1. Applying Lemma A.6 with
am = bm = f(m)χ(m), cp = f(p)χ(p), we have that for some v0 ∈ I,

∑
χ(mod k)

∫
Uχ

∣∣∣ ∑
X≤m≤2X

f(m)χ(m)
m1+it

∣∣∣2dt
�H2 log2(Q

P
)

∑
χ(mod k)

∫
Uχ

|Qv0,H(χ, 1 + it)Rv0,H(χ, 1 + it)|2dt

+ϕ(k)
k

ϕ(k)T + (ϕ(k)/k)X
X

( 1
H

+ 1
P

)
+ ϕ(k)T + (ϕ(k)/k)X

X

logP
logQ

ϕ(k)
k

.
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Recall that W ⊆ [0, T ] is called a set of well-spaced points if for any t1, t2 ∈ W,
we have |t1 − t2| ≥ 1. There is a well-spaced set Lχ ⊆ Uχ such that∫
Uχ

|Qv0,H(χ, 1+it)Rv0,H(χ, 1+it)|2dt �
∑
t∈Lχ

|Qv0,H(χ, 1+it)Rv0,H(χ, 1+it)|2.

Let
U ′ =

⋃
χ(mod k)

{χ} × Lχ.

Since logPJ−1 ≥ 4j2
η log logQJ+1 ≥ 2

η log logX, PJ > (logX)
2
η . By definition

of U ′, for each (χ, t) ∈ U ′, there is a v ∈ IJ such that |Qv,HJ (χ, 1 + it)| >
e−αJv/HJ . By Lemma A.3,

|U ′| � |IJ |(kT )2αJ+o(1)(kT )ηXo(1) � T
1
2−ηXo(1).

We now also consider separately the cases

US := {(χ, t) ∈ U ′ : |Qv0,H(χ, 1 + it)| < (logX)−100},

UL := {(χ, t) ∈ U ′ : |Qv0,H(χ, 1 + it)| ≥ (logX)−100}.
For US , applying Lemma A.4,∑

(χ,t)∈US

|Qv0,H(χ, 1 + it)Rv0,H(χ, 1 + it)|2dt

� 1
(logX)200

∑
(χ,t)∈US

|Rv0,H(χ, 1 + it)|2

� 1
(logX)200 (Xe−v/H + |US |(kT )

1
2 )(log 2kT ) 1

Xe−v/H
� 1

(logX)199 .

Now it remains to estimate∑
(χ,t)∈UL

|Qv0,H(χ, 1 + it)Rv0,H(χ, 1 + it)|2.

By Lemma A.3, we obtain |UL| ≤ exp((logX)1/64+o(1)). We now give a point-
wise bound to Rv0,H(χ, 1 + it) for (χ, t) ∈ U ′ as follows.

(65) max
(χ,t)∈UL

|Rv0,H(χ, 1 + it)| � ϕ(k)
k

(logX)−
1
16+o(1) logQ

logP .
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We mainly use Proposition B.5 to prove the above inequality. Suppose δ(n) =
1(n,

∏
P≤p≤Q

p)=1(n). Then

Dk(fδχ, n �→ nit;X)2 =
∑
p≤x
p�k

1 − Re(p−itδ(p)χ(p)f(p))
p

≥Dk(fχ, n �→ nit;X)2 −
Q∑

p=P

1
p

>Dk(fχ, n �→ nit;X)2 − 1
64 log logX.

(66)

By bounds (59) and (60), for χ = χ1 and any t with |t| ≤ 2X,

(67) Dk(fδχ, n �→ nit;X)2 > (1/16) log logX

and for χ = χ1 and |t− t1| ≥ 1,

(68) Dk(fδχ1, n �→ nit;X)2 > (1/16) log logX.

Hence applying the above bounds and Proposition B.5 with T0 = 1
2(logX) 5

64 ,
we conclude

(69) max
χ(mod k)
χ�=χ1

max
|t|≤X

|Rv0,H(χ, 1 + it)| � ϕ(k)
k

(logX)−
1
16+o(1) logQ

logP .

and for χ = χ1,

(70) max
|t|≤X,|t−t1|≥(log x)

5
64

|Rv0,H(χ1, 1 + it)| � ϕ(k)
k

(logX)−
1
16+o(1) logQ

logP .

Note that UL ⊆ L2 = {t ∈ [0, T ] : |t − t1| ≥ (logX) 5
64 }. Hence we obtain

formula (65). Based on the Halász bound (65) and the condition that k ≤
(logX)1/32, it follows, from the similar process in [28, Section 8.3] with the
Halász inequality for primes replaced by a hybrid version of it (Lemma A.5),
that ∑

χ(mod k)

∫
Uχ

∣∣∣ ∑
X≤m≤2X

f(m)χ(m)
m1+it

∣∣∣2dt(71)

� ϕ(k)
k

(ϕ(k)T/X + (ϕ(k)/k))(logX)−
1
64+o(1).
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Combining bounds (62), (63), (64), (71) with formula (61), we obtain∑
χ(mod k)

∫
L2

|F (χ, 1 + it)|2dt(72)

� ϕ(k)
k

(ϕ(k)T
X/Q1

+ ϕ(k)
k

)
((logQ1)

1
3

P
1
6−η
1

+ k

ϕ(k)
logP1

logQ1
+ 1

(logX) 1
65

)
.

Thanks to equation (69), an argument similar to the proof of (72) leads to∑
χ(mod k)
χ�=χ1

∫
L1

|F (χ, 1 + it)|2dt(73)

� ϕ(k)
k

(ϕ(k)T
X/Q1

+ ϕ(k)
k

)
((logQ1)

1
3

P
1
6−η
1

+ k

ϕ(k)
logP1

logQ1
+ 1

(logX) 1
65

)
.

Now we are just left with estimating∫
L1

|F (χ1, 1 + it)|2dt.

We first assume that

(74) (Mk(fχ1;X; 2X) + 1) exp(−Mk(fχ1;X; 2X)) > (logX)−
5
64 .

Now we write L1 = L0,1 ∪ L0,2 as a disjoint union, where

L0,1 = {t ∈ L1 : |t− t1| < (Mk(fχ1;X; 2X) + 1)−1 exp(Mk(fχ1;X; 2X))},

and

L0,2 = {t ∈ L1 : (Mk(fχ1;X; 2X) + 1)−1 exp(Mk(fχ1;X; 2X))
≤ |t− t1| ≤ (logX)

5
64 }.

For t ∈ L0,1, by Lemma B.4 with T0 = (logX) 5
64 , we have for |t| ≤ T ≤ X,

F (χ1, 1 + it) � ϕ(k)
k

(Mk(fχ1;X; 2X) + 1) exp(−Mk(fχ1;X; 2X)).

For t ∈ L0,2, by Lemma B.4 with T0 = |t−t1|
2 , we have for |t| ≤ T ≤ X,

F (χ1, 1 + it) � ϕ(k)
k

1
|t− t1|

,
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this is because that (Mk(fχ1;X; 2X) + 1)−1 exp(Mk(fχ1;X; 2X)) ≥ 1 and
(L(fχ1;X;T0)+1) exp(−L(fχ1;X;T0)) � (logX)− 1

12+o(1) by equation (60).
Hence
(75)∫
L1

|F (χ1, 1 + it)|2dt � ϕ2(k)
k2 (Mk(fχ1;X; 2X) + 1) exp(−Mk(fχ1;X; 2X)).

Note that Mk(fχ1;X; 2X) = Mk(f ; k;X; 2X). Therefore, collecting equa-
tions (72), (73) and (75), we conclude that

∑
χ(mod k)

∫ T

0
|F (χ, 1 + it)|2dt

�ϕ(k)
k

(ϕ(k)T
X/Q1

+ ϕ(k)
k

)
((logQ1)

1
3

P
1
6−η
1

+ k

ϕ(k)
logP1

logQ1
+ 1

(logX) 1
65

)

+ ϕ2(k)
k2 (Mk(f ; k;X; 2X) + 1) exp(−Mk(f ; k;X; 2X)).

(76)

If condition (74) does not hold, then

Mk(fχ1;X; 2X) ≥ (5/64 − o(1)) log logX.

So equation (68) holds for any |t| ≤ 2X by equation (66). Further using (67)
and Proposition B.5 with T0 = (logX) 1

16 ,

max
χ(mod k)

max
|t|≤X

|Rv0,H(χ, 1 + it)| � ϕ(k)
k

(logX)−
1
16+o(1) logQ

logP .

By the above pointwise bound, an argument similar to the proof of equation
(72) leads to

∑
χ(mod q)

∫ T

0
|F (χ, 1 + it)|2dt � ϕ(k)

k
(ϕ(k)T
X/Q1

+ ϕ(k)
k

)
((logQ1)

1
3

P
1
6−η
1

+ k

ϕ(k)
logP1

logQ1
+ 1

(logX) 1
65

)
,

which implies formula (76).
Note that η = 1

150 . In case h ≤ exp((logX)1/2), we choose Q1 = h

and P1 = (log h)
40
η ; in case exp((logX) 1

2 ) ≤ h ≤ X, we choose Q1 =
exp((logX) 1

2 ), P1 = Q
(1/4)(log h)−1/100

1 . Hence from the formula (76), we ob-
tain the inequality in the statement of this lemma.
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