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Iterated collapsing phenomenon on G2-manifolds
Yang Li

Abstract: We propose a new collapsing mechanism for G2-metrics,
with the generic region admitting a circle bundle structure over a
K3 fibration over a Riemann surface. The adiabatic description in-
volves a weighted version of the maximal submanifold equation.
In a local smooth setting we prove the existence of formal power
series solutions, and the problem of compactification is discussed
at a heuristic level.

1. Introduction

The purpose of this paper is to introduce a formal differential geometric mech-
anism for the degeneration of G2-metrics, which we hope will evantually lead
to the construction of new G2-metrics. In the generic region the manifold is
approximately a circle fibration over a 6-dimensional manifold/orbifold which
itself admits a K3 fibration over a Riemann surface S (with boundary), where
the sizes of the circle and the K3 fibres are shrinking at a fine tuned rate.
This collapsing mechanism exhibits a plethora of phenomena:

• It can be viewed as a degenerate case of circle collapsing over a Calabi-
Yau 3-fold studied by Foscolo-Haskins-Nordström [12]. However, unlike
in [12], by tuning the collapsing rate of the circle and K3 fibres, our
setup maintains some nonlinearity of the Apostolov-Salamon equation,
namely the S1-reduction of the G2-holonomy condition.

• It has close analogy with Donaldson’s proposal of adiabatic Kovalev-
Lefschetz fibration over a 3-dimensional base [8]. Unlike in [8], the new
feature is that K3 collapsing can happen without being the fibres of a
coassociative fibration.

• It generalizes in G2 geometry some aspects of the ‘small complex struc-
ture limit’ of Calabi-Yau metrics studied by Sun and Zhang [27]. In par-
ticular, the Gibbons-Hawking ansatz and the Ooguri-Vafa type metrics
in [27] play a crucial role here in describing wall crossing behaviour.
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• It involves fibrations of small ALF gravitational instantons along some
3-dimensional locus which itself admits a fibration over S1 with small
Riemann surface fibres. The picture has close analogy with ALE fibra-
tions discussed in the physics literature, and the gluing construction of
Joyce and Karigiannis [18].

Our central philosophy, much like in Donaldson’s proposal [8], is to encode
the degenerating G2-structures into certain adiabatic data. Roughly speaking,
the topology is encoded into a local system over the Riemann surface S with
fibres isomorphic to H2(K3), and the G2-structure is encoded by a section
of this local system satisfying a number of linear algebraic constraints com-
ing from the topology of the S1-fibration. The G2-holonomy condition then
requires this section to be the critical point of a weighted area functional,
analogous to the maximal submanifold equation proposed in [8]. This local
picture is put on solid foundation, as we demonstrate

Theorem 1.1. (Vague form, cf. section 3 for the precise meaning) Given a
solution of the weighted maximal submanifold equation (10) over a local 2-
dimensional domain (which encodes the leading order cohomological aspect of
the problem), there exists a formal power solution in the collapsing parameter
ε, which formally gives rise to an S1-symmetric torsion free G2-structure.

This is accomplished by a quite intricate induction scheme, after taking
into account several gauge fixing issues.

Global questions will be discussed at a heuristic level, such as Lefschetz
fibration, wall crossing phenomena, boundary behaviour of the Riemann sur-
face, ALF fibrations, etc. The walls indicate certain jumping discontinuities,
and the positions of the walls are not known a priori, but should instead be
solved along with the PDE, so the proposed global weighted maximal sub-
manifold equation will have the nature of a free boundary problem.

The following problems still need to be resolved to turn our proposal into
actual constructions of G2-metrics on compact manifolds:

• Find the topological data over the Riemann surface S, using the global
Torelli theorem for K3 surfaces and lattice theory. This problem is sim-
ilar to the ‘matching problem’ in the Kovalev twisted sum construction
[19, 7].

• Solve the free boundary problem to obtain the adiabatic data, prove
the regularity of solutions, and check certain genericity assumptions.

• Perform the gluing construction. This will require substantial work, and
our more limited goal here is to discuss some likely geometric ingredi-
ents.
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The ansatz in the G2-setting also has a natural Spin(7) analogue: a small
circle bundle over a 7-manifold with a closed G2-structure admitting a collaps-
ing K3 fibration. It turns out to be encoded into a 3-dimensional version of the
weighted maximal submanifold equation. This provides a unifying viewpoint
for circle collapsing of Spin(7) manifolds, and the adiabatic coassociative K3
fibration proposed by Donaldson [8]. In particular, the Spin(7) version of our
ansatz generalizes the Donaldson ansatz.

2. Local differential geometry

2.1. Circle collapsing and Apostolov-Salamon equations

We briefly review the construction in [12]. A G2-structure (M,φ) with a
free S1-symmetry action can be described in terms of an SU(3)-structure
(ω,Ω, gM/S1) on M/S1, together with a function h : M/S1 → R+ encoding
the length of the Killing vector field, and an S1-connection 1-form ϑ on the
principal circle bundle M → M/S1. Explicitly the SU(3)-structure is specified
by a non-degenerate real 2-form ω and a complex volume form Ω satisfying

ω3 = 3
2Re Ω ∧ Im Ω, ω ∧ Ω = 0.

and the G2-structure is

φ = ϑ∧ω+h3/4Re Ω, ∗φφ=−h1/4ϑ∧Im Ω+1
2hω

2, gφ=h1/2gM/S1+h−1ϑ2.

The torsion free condition for the G2-structure is equivalent to the Apostolov-
Salamon equation

{
dω = 0, d(h3/4Re Ω) = −dϑ ∧ ω,

d(h1/4Im Ω) = 0, 1
2dh ∧ ω2 = h1/4dϑ ∧ Im Ω.

In particular [dϑ]∧ [ω] = 0 ∈ H4(M), where 1
2π [dϑ] represents the first Chern

class of the principal circle bundle.
While this is in general a highly nonlinear coupled system, the key ob-

servation of Foscolo-Haskins-Nordström [12] is that it formally linearizes in
the adiabatic limit where the S1-fibres are much smaller compared to the size
of M/S1. They consider a family of S1-invariant torsion free G2-structures,
written in a rescaled convention

(1) φε = εϑ ∧ ω + h3/4Re Ω, gφε = h1/2gM/S1 + ε2h−1ϑ2,
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where the data (ω,Ω, h, ϑ) depend on ε. The torsion free condition then reads
(2){
dω = 0, 1

2dh ∧ ω2 = εh1/4dϑ ∧ Im Ω,

dRe Ω = −3
4h

−1dh ∧ Re Ω − εh−3/4dϑ ∧ ω, dIm Ω = −1
4h

−1dh ∧ Im Ω.

Combining with the SU(3)-structure condition, we see

dϑ ∧ ω2 = −ε−1d(h3/4Re Ω ∧ ω) = 0.

Assuming (ω,Ω, h, ϑ) all have smooth limits as ε → 0, we find that h is
constant to leading order, which we can normalize to be one. Then to leading
order

ω = ωCY + O(ε), Ω = ΩCY + O(ε), dωCY = 0, dΩCY = 0,

namely the SU(3)-structure is approximately Calabi-Yau. Writing

h = 1 + εh + O(ε2), ϑ = ϑ0 + O(ε),

we obtain the linear limiting equations

(3) dϑ0 ∧ ω2
CY = 0, 1

2dh ∧ ω2
CY = dϑ0 ∧ Im ΩCY .

Equivalently (h, ϑ0) satisfies the Calabi-Yau monopole equation

dϑ0 ∧ ω2
CY = 0, dh = ∗(dϑ0 ∧ Re ΩCY ).

In particular d∗dh = 0. In the special case h = 0, this reduces to the Hermitian
Yang-Mills condition on the U(1)-connection ϑ0. Plugging the solution to the
Calabi-Yau monopole equation back into (2) has the effect of deforming the
SU(3)-structure to being only approximately Calabi-Yau. Assuming there
are no singular fibres, and under the cohomological condition [dϑ] ∧ [ω] =
0, then one can solve (2) iteratively to obtain a convergent expansion in
ε, and thereby produce infinitely many families of collapsing G2-metrics on
noncompact manifolds [12].

On compact manifolds there are no nontrivial examples of G2-manifolds
with S1-symmetry, because any Killing vector field on a compact Ricci flat
manifold is parallel. A folklore construction strategy, which is not fully carried
out in the literature, is to incorporate distributional effects into the Calabi-
Yau monopole equation:

d(dϑ0) = 2π
∑
i

kiLi
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where Li represent the currents defined by disjoint 3-dimensional subman-
ifolds, and ki ∈ Z. Compatibility with the Calabi-Yau monopole condition
requires Li to be special Lagrangians, namely

ωCY |Li = 0, Im ΩCY |Li = 0.

The cohomological condition
∑

ki[Li] = 0 is known as charge conservation.
Solving the Calabi-Yau monopole equation, d∗dh is equal to the signed mea-
sure v �→ −2π

∑
ki

∫
Li
vRe ΩCY supported on the 3-cycles, so h ∼ ki

2dist(Li,·)
near Li. The curvature form dϑ integrates to 2πki on the suitably oriented
2-spheres linking Li. A flat model capturing the leading order singularity is:

⎧⎨
⎩
ω =

∑
j dxj ∧ dyj , Ω =

∧3
1(dxj +

√
−1dyj),

h = ki
2
√

y2
1+y2

2+y2
3
, dϑ = − ki

2(y2
1+y2

2+y2
3)3/2

∑
cyc y1dy2 ∧ dy3.

As an important variant, we allow for Calabi-Yau orbifolds with Z2 quo-
tient singularities locally modelled on the fixed point set of an antiholomor-
phic involution, so the orbifold singular sets Li are special Lagrangians. In
such cases the modification is that h ∼ 2ki

2dist(Li,·) .
Geometrically, the asymptotes of (h, ϑ0) near Li means that the G2-

structure φε transverse to Li matches approximately with the asymptotes
for ALF gravitational instantons, of Aki−1-type for ki ≥ 0 in the manifold
locus case, and respectively of Dki+2-type for ki ≥ −2 in the orbifold locus
case. The strategy is then to desingularize the neighbourhood of Li by gluing
in a suitable fibration of ALF instantons over Li. The meaning of some special
values of ki are as follows:

• The A−1-type ALF instanton is the flat product S1 × R
3. In this case

ki = 0, so the singularity does not actually exist.
• The A0-type ALF instanton is the Taub-NUT metric, which has no

deformation once we fix the asymptotic circle length. One expects the
ALF fibration to be essentially uniquely determined by the asymptotic
matching requirement. Similarly with the D−2-type ALF instanton, also
known as the Atiyah-Hitchin metric.

• In other cases, the ALF instantons have nontrivial moduli, so one ex-
pects internal degrees of freedoms to arise in the ALF fibration, similar
to the harmonic one-forms appearing in the work of Joyce and Kari-
giannis [18].

Notice charge conservation necessitates the appearance of some Li with
ki < 0. The corresponding dihedral type ALF gravitational instantons then
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break the S1-symmetry of the G2-structure, thus making the compact exam-
ples possible.

2.2. Iterated collapse I: fast circle collapsing

We consider now the degenerate situation where the Calabi-Yau 3-fold M/S1

itself admits a holomorphic K3 fibration over a Riemann surface S, whose
fibres shrink down as we vary the Calabi-Yau structure. It is natural to expect
that if the circle collapsing happens at a much faster rate than the shrinking
of the K3 fibres, then the Foscolo-Haskins-Nordström picture of S1-invariant
collapsing G2-metrics should still be valid. We shall make a formal analysis
over a local region of S where all K3 fibres are smooth, for the range of
parameters

diam(S) ∼ 1, diam(K3) ∼ t 
 1, diam(S1) ∼ ε 
 t2.

The notation ∼ here means ‘of the same order of magnitude’.
The leading order behaviour of the Calabi-Yau metric on M/S1 is, ac-

cording to the work of Tosatti et al. [13],

ω ≈ ωS + t2ωy, Ω ≈ t2dy ∧ Ωy,

where y is a local holomorphic coordinate of S, and ωy,Ωy are a family of
Kähler metrics and holomorphic 2-forms on the K3 fibres parametrized by y.
We are also implicitly using the horizontal distribition defined by the orthog-
onal complements of the tangent space of the K3 fibres with respect to the
Calabi-Yau metric, which induces a horizontal-vertical type decomposition on
differential forms over M/S1. In the t → 0 limit ωy is the Calabi-Yau metric
on the K3 fibres in the class t−2[ω] ∈ H2(K3), so ωy,Ωy define a hyperkähler
structure. Without loss of generality t−4 ∫

K3[ω]2 = 1.
Assuming that dϑ has a smooth limit dϑ0 as t → 0, the condition dϑ∧ω2 =

0 becomes in the limit
dϑ0 ∧ ωy = 0

on all K3 fibres, and in particular [dϑ]∧ [ω] = 0 ∈ H4(K3). We then analyze
the condition 1

2dh ∧ ω2 = εh1/4dϑ ∧ Im Ω by decomposition into horizontal-
vertical types:

• The vertical derivative of h along the K3 surfaces is of order O(ε). This
allows us to treat h as if it only depends on y ∈ S. We can write
y = y1 +

√
−1y2, and Ωy = ω2 +

√
−1ω1, so t−2Im Ω = ω1dy1 + ω2dy2.
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• On the K3 surfaces,

1
2
∂h

∂yi
ω2
y ≈ εt−2hdϑ0 ∧ ωi, i = 1, 2.

We see that the key assumption h ≈ 1 in [12] is only valid if ε 
 t2. When
ε 
 t2, then

dh ≈ 2εt−2 ∑ dyi

∫
K3

[dϑ] ∧ ωi,

and the restriction of dϑ0 to any K3 fibre is the unique harmonic 2-form in
the fixed class [dϑ], because the self dual part is prescribed above, and in
particular is closed.

We now seek special Lagrangians in the adiabatic setting. For simplicity
consider a 3-manifold L inside M/S1 fibred over a curve l in S, whose fibres
are 2-spheres Ly representing a (−2)-class σ ∈ H2(K3). We require

ωy|Ly = 0, Im Ω|L = 0,

so along l,

(4) [ω] · σ = 0, σ ·
∑
i

[ωi]dyi = 0 when restricted to l,

meaning σ is of type (1, 1) for a particular choice of complex structure on each
K3 surface. Setting Ly as the (−2)-curve in the class σ, we obtain L = ∪y∈lLy.

2.3. Iterated collapse II: fine tuned circle collapsing

We now turn to the fine tuned scaling ε = t2, which is the main setting of
this paper (the case of ε/t2 = const can be reduced to this by redefining h).
The basic distance scales are

diam(S) ∼ 1, diam(K3) ∼ t 
 1, diam(S1) ∼ ε = t2.

Our goal is to find an ansatz solving the Apostolov-Salamon equation (2)
approximately, and encode it by adiabatic data. This procedure has strong
analogy with Donaldson’s proposal about coassociative K3 fibrations [8]. In
this section the base S is local. Unlike the previous case, the surface S is not
a priori assigned with a complex structure, but the complex structure needs
to be determined a posteriori from the rest of the ansatz.

In analogy with the ε 
 t2 case, we wish to maintain the following features
in the adiabatic limit:
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• The 6-fold M/S1 with SU(3)-structure (ω,Ω) is fibred by K3 surfaces
over a surface S, and the tangent spaces of the K3 fibres are preserved
by the almost complex structure. We write y1, y2 for the local real co-
ordinates on S, and

{
t−2Im Ω = ω1dy1 + ω2dy2,

ω = t2ωy + ωS ,

using the horizontal distribution induced by the Riemannian metric
from the SU(3)-structure. We impose the cohomological normalisation∫
K3[ω]2 = t4, namely [ωy]2 = 1.

• The positive valued function h depends only on y1, y2 to leading order,
and the vertical derivative along K3 fibres are negligible.

We will derive the ansatz by formal calculations using (2):

• By dIm Ω = −1
4h

−1dh ∧ Im Ω, the 2-forms ω1, ω2 restricted to the K3
fibres are closed, and

∂

∂y2
(h1/4[ω1]) = ∂

∂y1
(h1/4[ω2]).

Over the local base, we find a function H : S → H2(K3), with

(5) ∂H

∂yi
= h1/4[ωi], i = 1, 2.

The SU(3)-condition implies ωy ∧ωi = 0 on K3 surfaces, so ∂H
∂yi

∧ [ω] =
0 ∈ H4(K3), and up to choosing an additive constant H ∧ [ω] = 0.

• By d(h3/4Re Ω) = −εdϑ ∧ ω, writing t−2Re Ω = Θ1dy1 + Θ2dy2, we
deduce to leading order on the K3 fibres,

dΘ1 = 0, dΘ2 = 0.

From the SU(3)-structure condition ωy ∧Θi = 0, and Θi are closed self
dual 2-forms on the K3 fibres, the self duality being an easy consequence
of the SU(3) linear algebra and the assumption that the K3 fibres are
preserved by the almost complex structure. Since ω1, ω2 are also closed
self dual 2-forms orthogonal to ωy, it follows that Θ1,Θ2 are R-linear
combinations of ω1, ω2. The linear coefficients can be determined by a
cohomological calculation. Denote

gij =
∫
K3

ωi ∧ ωj , i, j = 1, 2, det g = det(gij),
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then the SU(3)-structure requirement implies

(6) t−2Re Ω =
√

det g{dy1(g12ω1 + g22ω2) − dy2(g11ω1 + g21ω2)}.

As a simple check, if y1, y2 are isothermal coordinates so that gij ∝ δij ,
then

(7) t−2Re Ω = dy1ω2−dy2ω1, t−2Ω = (ω2 +
√
−1ω1)(dy1 +

√
−1dy2)

as expected. In particular, the K3 fibres are endowed with a hyperkäh-
ler structure, whose Kähler form and holomorphic volume form are
respectively (ωy, ω2 +

√
−1ω1).1 Since ω3 = 3

2Re Ω ∧ Im Ω, to leading
order

3t4ωS ∧ ω2
y = 3

2Re Ω ∧ Im Ω = 3t4
√

det gdy1 ∧ dy2 ∧ ω2
y ,

hence ωS ≈
√

det gdy1 ∧ dy2.
• By 1

2dh ∧ ω2 = εh1/4dϑ ∧ Im Ω, we see on the K3 fibres

∂h

∂yi
ω2
y = 2h1/4dϑ ∧ ωi, i = 1, 2.

Taking the cohomology classes,

∂h

∂yi
= 2h1/4

∫
K3

[dϑ] ∧ [ωi] = 2
∫
K3

∂H

∂yi
∧ [dϑ],

so by a choice of additive constant for H,

(8) h =
{

2[dϑ] ·H, [dϑ] �= 0,
const > 0, [dϑ] = 0.

This additive choice is compatible with H · [ω] = 0 because [dϑ] · [ω] = 0.
We require h > 0.

• By dϑ ∧ ω2 = 0, to leading order dϑ ∧ ωy = 0 on the K3 fibres. As a
consequence of the prescription of the self dual part of dϑ on the K3
fibres, dϑ is the unique harmonic 2-form in its class with respect to
the hyperkähler structure on the K3 fibre.

1The role of gij = δij is that ωy, ω2, ω1 will satisfy the orthonormality condition.
Without this normalization, they would only define a hyperkähler triple up to linear
combinations. Of course, the normalization can always be satisfied on any particular
fixed K3 fibre, which simplifies computations.
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• The function H maps to the polarized subspace [ω]⊥ ⊂ H2(K3), which
is of signature (2, 19). Now the metric induced on S by the immersion
H is

(9) g̃ = ∂H

∂yi
· ∂H
∂yj

dyidyj = h1/2gijdyidyj ,

which is positive definite. Thus we call H a polarized positive sec-
tion, in close analogy with Donaldson’s proposal [8].

• Since in this local discussion we assume there is no singular fibre, co-
homologically we require there is no (−2)-class σ with

∂H

∂yi
∧ σ = 0, i = 1, 2, [ωy] ∧ σ = 0

at any point on our local base. We say the polarized positive section H
avoids excess (−2)-classes.

• We take a closer look at d(h3/4Re Ω) = −εdϑ ∧ ω. Our previous re-
quirements imply ε−1d(h3/4Re Ω) has horizontal-vertical type (2, 2), so
it defines an H2(K3)-valued 2-form on S,

{ ∂

∂y2
(h3/4[Θ1]) −

∂

∂y1
(h3/4[Θ2])}dy2 ∧ dy1

= ∂

∂yj
(h1/2gij

√
det g∂H

∂yi
)dy2 ∧ dy1.

Now dϑ ∧ ω is to leading order dθ ∧ ωS , so defines the H2(K3)-valued
2-form

[dϑ]ωS = [dϑ]
√

det gdy1 ∧ dy2.

Comparing the two expressions,

(10) ∂

∂yj
(h1/2gij

√
det g∂H

∂yi
) = [dϑ]

√
det g.

This is a PDE on the polarized positive section H, and we call it
the weighted maximal submanifold equation in view of its close
analogy with the maximal submanifold equation in [8]. In fact, when
[dϑ] = 0, then h is a positive constant, and this is the 2-dimensional
version of the usual maximal submanifold equation, namely the image
of H has mean curvature zero.
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We now discuss the reconstruction problem. Informally, this means
given a number of cohomological data satisfying the necessary constraints
described above, how can we reverse engineer the data (ω,Ω, h, ϑ) in the
adiabatic limit?

Theorem 2.1. We are given a class [ω0] ∈ H2(K3) with [ω0]2 > 0 (which will
agree with the y-independent class [ωy]), an integral class 1

2π [dϑ] ∈ H2(K3,Z)
prescribing the first Chern class of the S1-bundle, a local polarized positive
section H : S → H2(K3) avoiding excess (−2)-classes. These are assumed to
satisfy that g̃ = ∂H

∂yi
· ∂H
∂yj

dyidyj is Riemannian, and

H · [ω0] = 0, [ω0] · [dϑ] = 0, h =
{

2H · [dϑ] > 0, if [dϑ] �= 0,
const > 0, if [dϑ] = 0,

together with the weighted maximal submanifold equation (10). Then we can
construct the SU(3)-structure (ω,Ω) along with the S1-connection ϑ, whose
associated cohomological data is H in the sense described above, and these
data satisfy the Apostolov-Salamon equation to leading order approximation
in the sense that will become clearer progressively in the algorithm below.

We will describe such a procedure that is nearly canonical. It may be help-
ful for the reader to imagine the following as an extended computer program,
in which the data are successively updated. It is also good to keep in mind
that the relative importance of the equations depend on the Leray filtration
on the differential forms, and the vertical components of the forms have a
tendency to be more singular, and need to be fixed first.

• Since we are working over a local base S, topologically the K3 fibration
is just the trivial fibration. The S1-bundle is topologically determined
by its Chern class 1

2π [dϑ].
• Suppose we are given the polarized positive section H : S → H2(K3).

As a first step, we use the global Torelli theorem on K3 surfaces to
construct the hyperkähler structure (ωy, ω1, ω2) on the K3 surfaces,2
such that

[ωy] = [ω0], [ω1] = h−1/4 ∂H

∂y1
, [ω2] = h−1/4 ∂H

∂y2
.

This makes sense because the 3-subspace spanned by [ωy], [ω1], [ω2] is
a positive 3-subspace inside H2(K3), by the polarized positive section

2The orthonormality condition on the HK triple would only hold in preferred
normalizations gij = δij .
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condition. The resulting hyperkähler structures vary smoothly with the
K3 fibres. We have [ωi]·[ωj ] = gij = h−1/2g̃ij . This allows us to construct
Θ1,Θ2 as linear combinations of ω1, ω2 via (6).

• Now to regard ωy, ω1, ω2 as forms on the 6-fold M/S1 requires us to
specify a horizontal distribution. The difference between two hori-
zontal distributions is given by a 1-form on S with values in the space
of vector fields on the fibre K3 surfaces, which modifies ωy, ωi (modulo
terms which involve dy1 ∧ dy2) by

{
ωy → ωy + (ιv1ωy)dy1 + (ιv2ωy)dy2,

ωi → ωi + (ιv1ωi)dy1 + (ιv2ωi)dy2, i = 1, 2.

We start with an arbitrary horizontal distribution, to get a preliminary
choice of ωy, Im Ω,Re Ω. (Recall from (7) that Ω can be written in
terms of ω1, ω2). Using the above modification, we can make dωy = 0
modulo terms involving dy1 ∧ dy2. This reduces the ambiguity of the
horizontal distribution to

ιviωy = dai, i = 1, 2,

for real valued functions a1, a2 on the K3 surfaces. We claim we can
spend this freedom to make d(h1/4Im Ω) = 0.
Notice first that by construction d(h1/4Im Ω) is a 2-form on S valued
in the space of exact 2-forms on the K3 fibres; there is no horizontal-
vertical type (1, 3)-piece because ω1, ω2 are closed on the K3, and the
2-form on the K3 fibres are exact instead of closed because

∂

∂y2
(h1/4[ω1]) = ∂

∂y1
(h1/4[ω2]).

Morever, since ωy ∧ Im Ω = 0, we get

ωy ∧ d(h1/4Im Ω) = d(ωy ∧ h1/4Im Ω) = 0,

so the exact 2-forms are fibrewise orthogonal to ωy. It then suffices to
show that by adjusting the horizontal distribution, we can impose the
extra conditions

d(h1/4Im Ω) ∧ ωi = 0, i = 1, 2.

This would force d(h1/4Im Ω) = 0 because an exact anti-self-dual 2-form
is zero.
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To see this new claim, notice under the modification of the horizontal
distribution

Im Ω → Im Ω + (ιv1ω2 − ιv2ω1)dy1 ∧ dy2.

We need to choose a1, a2 so that with ιviωy = dai, the exact 4-forms on
the K3 fibres appearing in d(h1/4Im Ω) ∧ ωi are cancelled by

d(ιv1ω2 − ιv2ω1) ∧ ωi, i = 1, 2.

This problem is easiest to analyze in isothermal coordinates using the
hyperkähler structure on the K3 surfaces, where we have the propor-
tionality

d(ιv1ω2 − ιv2ω1) ∧ ωi ∝ d ∗ dai,
3which can indeed realize any pair of exact 4-forms by a suitable choice
of a1, a2. We have precisely fixed all the ambiguity of the horizontal
distribution.

• We can write t−2d(h3/4Re Ω) = dy2 ∧ dy1 ∧ Θ3 since the horizontal-
vertical type (1,3) component vanishes. The 2-form Θ3 is closed on
each K3 fibre, and lies in the cohomology class ∂

∂yj
(h1/2gij

√
det g ∂H

∂yi
).

We claim that on each fibre it is the unique harmonic 2-form in this
class.
We start with the fact that on a 6-manifold, if Re Ω and Im Ω are
related as the real and imaginary parts of a complex 3-form, then for
any vector field w,

ιwdIm Ω ∧ Re Ω = ιwIm Ω ∧ dRe Ω.

(See Lemma 3.10 for a summary of the most useful identities about
SU(3)-structures for our purpose). Applying this to h1/4Re Ω and h1/4

Im Ω, and taking w as the horizontal lifts of ∂
∂yi

, we see from d(h1/4Im
Ω) = 0 that d(h1/4Re Ω) ∧ ωi = 0. Thus

d(h3/4Re Ω) ∧ ωi = 1
2h

−1/4dh ∧ (Re Ω ∧ ωi)

= t2

2 h−1/4 ∂h

∂yi

√
det gdy2 ∧ dy1 ∧ ω2

y ,

3For i = 1, computing in orthonormal coordinates, this is because d(ιv1ω2)∧ω1 =
d(ιv1ω2 ∧ ω1) ∝ d(∗da1) and d(ιv2ω1)∧ ω1 = d(ιv2ω1 ∧ ω1) = ±(da2 ∧ ωy) = 0. The
i = 2 case is similar.
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or equivalently Θ3 ∧ ωi = 1
2h

−1/4 ∂h
∂yi

√
det gω2

y on each K3 fibre.
Another relation comes from Re Ω ∧ ωy = 0, and gives upon differen-
tiation that Θ3 ∧ ωy = 0 on each K3 fibre. These relations completely
prescribe the self dual part of Θ3, implying it is the harmonic form as
before.

• We have already ensured dωy is a 2-form on S valued in the space of
closed 1-forms on the K3 fibres. Since H1(K3) = 0, the 1-forms are
exact, so up to adjusting ωy by a function times dy1∧dy2, we can make
ωy closed on M/S1. Unlike all previous constructions, this step is not
fully canonically determined by the topological data and the polarized
positive section H. The ambiguity in ωy is a 2-form pulled back from
S.

• Let ωS =
√

det gdy1 ∧ dy2, and set ω = t2ωy + ωS . Then dω = 0 on
M/S1, and (ω,Ω) satisfy all other requirements of the SU(3)-structure
precisely, except for the normalisation condition which is only approxi-
mate:

ω3 = 3
2(1 + O(ε))Re Ω ∧ Im Ω.

Notice the construction of Ω is completely canonical, and ω is canonical
up to ε times a 2-form pulled back from S; we can fix the ambiguity by
making the O(ε) term have zero fibrewise integral.

• We now require the restrictions of dϑ to the K3 fibres to be the harmonic
2-forms in the class [dϑ]. By the choice of dϑ, when restricted to the K3
fibres

dϑ ∧ ωy = 0, 2h1/4dϑ ∧ ωi = ∂h

∂yi
ω2
y .

This determines ϑ up to f1dy1 + f2dy2 for some arbitrary smooth func-
tions f1, f2, and gauge equivalence.

• Notice the quantity

1
2dh ∧ ω2 − εh1/4dϑ ∧ Im Ω = ε2

2 dh ∧ ω2
y − ε2h1/4dϑ ∧ (ω1dy1 + ω2dy2)

can be written as ε2dy1∧dy2∧Θ4 where Θ4 defines fibrewise 3-forms on
K3 surfaces, because by the choice of dϑ the horizontal-vertical (1,4)-
type component vanishes. Since

dω = 0, d(h1/4Im Ω) = 0,
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we see dΘ4 = 0 on the K3 fibres, and by H3(K3) = 0 the Θ4 is exact.
Any such Θ4 on a hyperkähler K3 can be written as

Θ4 = df1 ∧ ω1 + df2 ∧ ω2 + df3 ∧ ωy.

Spending the freedom in dϑ, we can cancel out the f1, f2 terms, and
demand Θ4 = df3 ∧ ωy for some function f3.
Thus

1
2dh ∧ ω2 − εh1/4dϑ ∧ Im Ω = ε2dy1 ∧ dy2 ∧ ωy ∧ df3,

which is suppressed by the factor ε2. With respect to the metric defined
by the G2-structure φ (cf. (1)) this quantity has small magnitude of
order O(t). This measures the failure of the coclosed condition of the
G2-structure.

• Now suppose the polarized positive section H satisfies the weighted
maximal submanifold equation (10) that equates the cohomology classes
of the fibrewise restrictions of Θ3 and dϑ ∧

√
det gdy2 ∧ dy1. By con-

struction,

d(h3/4Re Ω) = εΘ3 ∧ dy2 ∧ dy1 = εdϑ ∧
√

det gdy2 ∧ dy1 = −εdϑ ∧ ωS .

Then the quantity

d(h3/4Re Ω) + εdϑ ∧ ω = ε2dϑ ∧ ωy

is of type (1, 3) + (2, 2), and its magnitude with respect to the metric
defined by the G2-structure φ is small of order O(t). This measures the
failure of the closed condition of the G2-structure. We emphasize that
only in this last step do we bring in the weighted maximal submanifold
equation: it is not needed in the construction of the Apostolov-Salamon
data, but needed for the approximate solution of (1).

In conclusion, we produced an S1-invariant ansatz G2-structure φ from
the data of a polarized positive section satisfying the weighted maximal sub-
manifold equation, which is approximately closed and coclosed.

Remark 2.2. The adiabatic special Lagrangian condition (4) reads in this
ε = t2 context

[ω0] · σ = 0, σ ·H = const along the curve l.
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It makes sense even though M/S1 loses the interpretation as a Calabi-Yau
3-fold.

Remark 2.3. The geometrical significance of our ansatz is that it is a plau-
sible approximation for collapsing G2-manifolds in the generic region. When
we deform the cohomology class of the G2-structure, so that the circle col-
lapsing happens at an even slower rate ε � t2 compared to the K3 collapsing,
then plausibly the S1-symmetry reduction hypothesis will be invalidated, and
higher Fourier modes in the S1-direction start to be significant.

2.4. Variational formulation

We now explain how to see the weighted maximal submanifold equation as
an Euler Lagrange equation. As usual, we fix the two orthogonal classes
[ω0], [dθ] ∈ H2(K3). Given a polarized positive section H : S → H2(K3),
we define the weighted area functional as

Aw(H) =
∫
S
h1/2√det g̃dy1 ∧ dy2, h = 2[dϑ] ·H, g̃ij = ∂H

∂yi
· ∂H
∂yj

.

We calculate the first variation. Given a variation δH = f , then

δh = 2[dϑ] · f, δg̃ij = ∂H

∂yi
· ∂f
∂yj

+ ∂H

∂yj
· ∂f
∂yi

,

δ
√

det(g̃) = 1
2

√
det(g̃)g̃ijδg̃ij =

√
det(g̃)g̃ij ∂H

∂yi
· ∂f
∂yj

,

Hence the first variation formula

δAw =
∫

h1/2δ
√

det(g̃)dy1dy2 +
∫ 1

2h
−1/2δh

√
det(g̃)dy1dy2

=
∫

h1/2√det ggij ∂H
∂yi

· ∂f
∂yj

dy1dy2 +
∫

[dϑ] · f
√

det gdy1dy2

=
∫
{[dϑ]

√
det g − ∂

∂yj
(h1/2√det ggij ∂H

∂yi
)} · fdy1dy2.

(11)

The critical points exactly reproduce the weighted maximal submanifold
equation.

Remark 2.4. The terminology ‘weighted area’ is of course based on the area
functional

A(H) =
∫
S

√
det g̃dy1 ∧ dy2, g̃ij = ∂H

∂yi
· ∂H
∂yj

,
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whose critical points are called maximal submanifolds, because these are local
maxima of the area functional due to the signature of the setup [8, 21]. Such
objects (over a 3-manifold) are central to Donaldson’s proposal to adiabatic
coassociative K3 fibrations [8]. In fact, when [dϑ] = 0, then in the discussion
above we should use h = const > 0, and then Aw is just up to a multiplicative
constant the area functional.

Remark 2.5. In the ansatz φ of section 2.3, the volume form is approximately

dvolφ ∼ 1
2ε

3h1/2√det g̃ϑ ∧ dy1 ∧ dy2 ∧ ω2
y ,

so the volume is approximately Vol ∼ πε3Aw(H). The variational formulation
can be then expected from Hitchin’s characterisation of the torsion free G2-
structures in terms of the critical points of the volume functional.

We now look at the second variation L of the weighted area functional at
some critical point H, namely

Aw(H + sf) = Aw(H) + s2

2

∫
S
fLf + O(s3), s → 0.

Here Lf takes value in H2(K3)-valued 2-forms, orthogonal to [ω0]. This is
naturally expected to be important in the deformation theory of our collapsing
G2-manifolds. Since Aw is diffeomorphism invariant on S, we know that only
the normal component of f is relevant for the second variation, and Lf is in
particular normal.

Lemma 2.6. Let S be a 2-manifold with boundary. Then
∫
S fLf is nega-

tive definite as a symmetric form on normal vector fields f vanishing on the
boundary.

Proof. Consider the images of a family of maps H + sN for N some normal
vector field to the image of H, inducing the metrics g̃(s) from the immersion
into H2(K3). Standard calculation from submanifold theory gives

∂

∂s
|s=0

√
det g̃dy1 ∧ dy2 = −〈m, N〉

√
det g̃dy1 ∧ dy2

where m = (
∑

i∇eiei)⊥ is the mean curvature, and ei stands for an orthonor-
mal frame, and ⊥ means the normal projection. The second derivative is
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∂2

∂s2 |s=0

√
det g̃(s)dy1 ∧ dy2

= (−Tr(II2
N ) +

∑
i

〈(∇eiN)⊥, (∇eiN)⊥〉 + 〈m, N〉2)
√

det g̃dy1 ∧ dy2

where IIT (ei, ej) = 〈N,∇eiej〉 is the N -component of the second fundamental
form. Morever,

∂

∂s
|s=0h(s)1/2 = h−1/2〈N, [dϑ]〉,

∂2

∂s2 |s=0h(s)1/2 = −h−3/2〈N, [dϑ]〉2.

Since the first variation of h1/2√det g̃ is zero at H, we have

−h1/2〈m, N〉 + h−1/2〈N, [dϑ]〉 = 0.

Thus by the Leibniz rule

∂2

∂s2 |s=0(h(s)1/2
√

det g̃(s)dy1 ∧ dy2)

=h1/2(−Tr(II2
N ) +

∑
i

〈(∇eiN)⊥, (∇eiN)⊥〉 − 2〈m, N〉2)
√

det g̃dy1 ∧ dy2.

The second variation formula is then
∫
S
NLN

=
∫
S
(−Tr(II2

N ) +
∑
i

〈(∇eiN)⊥, (∇eiN)⊥〉 − 2〈m, N〉2)h1/2√det g̃dy1 ∧ dy2.

(12)

Crucially, in the normal direction, the ambient metric is negative definite, so
all the 3 terms are negative. The equality requires IIN = 0 and (∇eiN)⊥ = 0,
so ∇eiN = 0, and N is parallel along S. The zero boundary condition then
forces N to be zero.

In particular, the boundary value problem of the weighted maximal sub-
manifold equation will have unobstructed deformation under the change of
boundary data.
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2.5. Instrinsic geometry of the weighted maximal submanifold

As ε → 0, the family of (approximate) G2-metrics collapse down to the base S
in the Gromov-Hausdorff sense, whose natural structure is a metric measure
space. Since gφ ≈ h1/2gM/S1 + ε2h−1ϑ2, the limiting metric is

g̃ = h1/2g = ∂H

∂yi
· ∂H
∂yj

dyi ⊗ dyj ,

namely the induced metric from the immersion H : S → H2(K3). The natural
measure is the one corresponding to the weighted area functional, namely
h1/2√det g̃dy1 ∧ dy2. Notice this is different from the metric area form by a
factor h1/2. This is natural from the perspective of low energy effective action:
when ε → 0, the low energy modes of

1
2

∫
|du|2gφdvolgφ

correspond to u being the pullback of a function on S, in which case the
action is approximately

πε3

2

∫
S
|du|2g̃h1/2√det g̃dy1 ∧ dy2,

proportional to
1
2

∫
S
|du|2g̃h1/2√det g̃dy1 ∧ dy2.

For a general metric measure space with Riemannian metric g and a
measure form e−fdvolg, there is a notion called the Bakry-Émery Ricci
curvature [2]:

Ricf = Ricg + Hess(f).
We briefly explain the motivations. First, the f -Laplacian is defined as

Δf = Δ −∇f · ∇,

which satisfies the integration by part formula∫
〈∇u,∇v〉e−fdvolg =

∫
uΔfve

−fdvolg.

The Bakry-Émery Ricci curvature naturally appears in the Bochner formula

1
2Δf |∇u|2 = |Hess(u)|2 + 〈∇u,∇Δfu〉 + Ricf (∇u,∇u).
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Lemma 2.7. On the metric measure space S with (g̃, h1/2√det g̃dy1dy2), the
Bakry-Émery Ricci curvature is positive semi-definite.

Proof. The usual Ricci curvature of g̃ can be expressed by the second funda-
mental form via the Gauss equation:

Ricg̃(ei, ej) = 〈II(ei, ej),m〉 −
∑
k

〈II(ek, ej), II(ei, ek)〉,

where m =
∑

(∇ekek)⊥, and II(ei, ej) = (∇eiej)⊥. From the weighted maxi-
mal submanifold equation, by the proof of Lemma 2.6,

m = h−1[dϑ]⊥.

Next we compute the Hessian of log h. We have

∇eih = 2〈[dϑ], ei〉,

so ∇h = 2([dϑ] − [dϑ]⊥). The Hessian matrix is

〈∇ei∇h, ej〉 = 2〈II(ei, ej), [dϑ]⊥〉.

Then ∇ log h = h−1∇h, and

〈∇ei∇ log h, ej〉 = −h−2∇eih · ∇ejh + h−1〈∇ei∇h, ej〉
= − 4h−2〈[dϑ], ei〉〈[dϑ], ej〉 + 2h−1〈II(ei, ej), [dϑ]⊥〉
= − 4h−2〈[dϑ], ei〉〈[dϑ], ej〉 + 2〈II(ei, ej),m〉.

The Bakry-Émery Ricci curvature is RicBE = Ricg̃ − 1
2∇2 log h. Combining

the above, the mean curvature term cancels, and

RicBE(ei, ej) = −
∑
k

〈II(ek, ej), II(ei, ek)〉 + 2h−2〈[dϑ], ei〉〈[dϑ], ej〉,

or equivalently for any tangent vector V ,

(13) RicBE(V, V ) = −
∑
k

〈II(ek, V ), II(ek, V )〉 + 2h−2〈[dϑ], V 〉2.

Crucially the ambient metric in the normal direction is negative definite, so
both terms are nonnegative, as required.

Remark 2.8. When [dϑ] = 0, so h = const > 0, the above reduces to the
non-negativity of the usual Ricci curvature on maximal submanifolds. This
has been observed in [8].
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2.6. Dimensional reduction to Calabi-Yau case

There is a different way the Apostolov-Salamon framework relates to Calabi-
Yau 3-folds: we can start with a (non-compact) Calabi-Yau 3-fold X with
S1-symmetry, and take the product with R. Notice here the Calabi-Yau does
not appear as M/S1, and such examples are nontrivial in the sense that the
S1-bundle is not flat.

We first briefly review the basic setup of Calabi-Yau metrics with holomor-
phic and Hamiltonian S1-actions [27, chapter 2]. We have the S1-connection
ϑ and the moment coordinate μ, which parametrizes a family of Kähler quo-
tients D = X//S1, carrying a family of induced Kähler forms ω̃(μ) and a
fixed holomorphic volume form ΩD on D. In our later case of interest X will
be a Calabi-Yau 3-fold, and D will be a K3 surface. We can write the Kähler
structure on X as {

ω′ = ϑ ∧ dμ + ω̃,

Ω′ = (hdμ−
√
−1ϑ) ∧ ΩD.

Here h−1 is the norm squared of the Killing vector field. (In our convention ϑ
corresponds to −Θ in [27].) The Kähler condition in this formalism leads to

dϑ = −∂μω̃ − dcDh ∧ dμ,

where dD is the exterior derivative along D, and dcDf = JdDf on D. This
requires an integrability condition

∂2
μω̃ + dDd

c
Dh = 0 on D.

In fact, when the S1-action is allowed to have fixed points, then one should
also incorporate distributional terms supported on the discriminant locus, to
be discussed later. Finally, the Calabi-Yau condition reads

ω̃n−1

(n− 1)! =
√
−1(n−1)2

2n−1 hΩD ∧ ΩD.

In the 3-fold case this specializes to

ω̃2 = 1
2hΩD ∧ ΩD.

After eliminating variables, we arrive at a key equation in [27]

∂2
μω̃ + dDd

c
D

2ω̃2

ΩD ∧ ΩD

= 0 on D.
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Example 2.9. The prototype example is the case of complex dimension two,
where this discussion specializes to the standard Gibbons-Hawking ansatz:⎧⎪⎪⎨

⎪⎪⎩
ω′ = ϑ ∧ dμ + h

√
−1
2 dζ ∧ dζ̄,

Ω′ = (hdμ−
√
−1ϑ) ∧ dζ,

dϑ = −∂μh
√
−1
2 dζ ∧ dζ̄ − dcDh ∧ dμ,

where ζ is an S1-invariant holomorphic coordinate, and h satisfies the Laplace
equation except on some isolated points:

(∂2
μ + 4∂ζ∂ζ̄)h = 0.

For instance,

h = A + 1
2r , r2 = |μ|2 + |ζ|2, A = const > 0

corresponds to the Taub-NUT metric. The formula

h = A + k + 1
2r , r2 = |μ|2 + |ζ|2, A = const > 0, k = −1, 0, 1, . . .

describes the asymptote at infinity of Ak type ALF gravitational instantons.
A small variant of the construction is to take the Z2-quotient under

(μ, ζ) → (−μ,−ζ). The Gibbons-Hawking ansatz with

h = A + 2m− 4
2r , r2 = |μ|2 + |ζ|2, A = const > 0, m = 0, 1, 2, . . .

describes the asymptote at infinity of type Dm ALF gravitational instantons.
The special case m = 0 is known as the Atiyah-Hitchin metric, and m = 1 is
known as the Dancer metrics. The crucial difference with the Ak case is that
the S1-symmetry is not global but only asymptotic in the Dm case. A good
survey for the Gibbons-Hawking ansatz and gravitational instantons is [10,
section 3].

Example 2.10. Now move to complex dimension 3. Let ωD,CY be a Calabi-
Yau metric on D with ω2

D,CY = 1
2ΩD ∧ ΩD. The special solution

⎧⎪⎪⎨
⎪⎪⎩
ω̃ = cμωD,CY ,

h = c2μ2,

dϑ = −cωD,CY

corresponds to the Calabi ansatz. See section 4.5 for another perspective.
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The explicit conversion from the Calabi-Yau case to the Apostolov-Salamon
setting is as follows. The data of h, ϑ are of course the same in both settings.
We add the flat 7-th dimension parametrized by the coordinate τ . Let the
SU(3)-structure be

{
ω = dμ ∧ dτ + Im ΩD,

h1/4Ω = (h−1/2dτ −
√
−1dμ)(ω̃ +

√
−1h1/2Re ΩD),

so the G2-structure is
{
φ = ω′dτ + Re Ω′,

∗φφ = −dτ ∧ Im Ω′ + 1
2ω

′ 2,

satisfying the Apostolov-Salamon equation before the rescaling.
To make a more direct comparison with the collapsing setup we also record

the rescaled version: write the Calabi-Yau structure as{
ω′ = εϑ ∧ dμ + εω̃,

Ω′ = ε(hdμ−
√
−1εϑ) ∧ ΩD.

The family of Kähler metrics satisfy⎧⎪⎪⎨
⎪⎪⎩
∂2
μω̃ + ε−1dDd

c
Dh = 0 on D,

dϑ = −∂μω̃ − ε−1dcDh ∧ dμ,

ω̃2 = 1
2hΩD ∧ ΩD.

To convert this to the SU(3)-structure on M/S1, write

(14)
{
ω = dμ ∧ dτ + εIm ΩD,

h1/4Ω = ε(h−1/2dτ −
√
−1dμ)(ω̃ +

√
−1h1/2Re ΩD),

so upon substituting
{
φ = εϑ ∧ ω + h3/4Re Ω,

∗φφ = −εh1/4ϑ ∧ Im Ω + 1
2hω

2,

compatibly with the rescaled convention (1), then
{
φ = ω′dτ + Re Ω′,

∗φφ = −dτ ∧ Im Ω′ + 1
2ω

′ 2.
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Thus the Calabi-Yau condition will lead to the rescaled Apostolov-Salamon
equation (2). In particular, the complex 3-dimensional case of the degenerate
Calabi-Yau metrics studied in [27] can be viewed as a dimensionally reduced
example of our proposal.

It is instructive to reexamine the polarized positive section H in this
dimensionally reduced setting. We have

∂H

∂τ
= [Re ΩD] = const,

∂H

∂μ
= −[ω̃], [ωy] = [Im ΩD].

Combined with [dϑ] = −∂μ[ω̃], we see H can only be affine linear in τ and
quadratic in μ. A special instance is the Calabi ansatz in example 2.10, where

H = [Re ΩD]τ + 1
2[dϑ]μ2.

The fact that such examples are so restrictive suggests that the landscape of
7-dimensional examples is not well captured by the dimensional reduction.
Rather the merit of the Calabi-Yau case is to guide our speculations about
how to compactify the collapsing G2-manifolds.

3. Formal power series solution

The goal of this section is to show that over a given local base S without singu-
lar fibres, the approximate solution introduced in section 2.3 can be perturbed
into a formal power series solution to the Apostolov-Salamon equation (2):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

hε = h + εh(1) + ε2h(2) + . . . ,

ϑε = ϑ + εθ(2) + ε2θ(3) + . . . ,

ωε = ωS + εωy + ε2ω(1) + ε3ω(2) + . . . ,

h
1/4
ε Im Ωε = εh1/4(ω1dy1 + ω2dy2) + ε2ρ(1) + ε3ρ(2) + . . . ,

Hε = H + εH(1) + ε2H(2) + . . . .

Here the data Hε controls the cohomological aspect of the solution.

Remark 3.1. Here H, h, ϑ, ωS , ωy, ω1, ω2 together with the horizontal distri-
bution are constructed in section 2.3. The superscripts suggest the number
of iterations in an inductive construction. The θ(k) terms are 1-forms instead
of connections. The term h1/4Im Ω is viewed as an independent variable, in
favour of Im Ω, because we wish to keep this term d-closed. The power series
solution is only formal because the inductive steps involve higher derivatives
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in the horizontal directions, coupled to higher powers of ε. However, this
whole discussion presumes all K3 fibres are smooth, so all functions involved
are C∞.

The key feature of the Apostolov-Salamon system is that it contains
the Calabi-Yau monopole system which (almost) decouples from the rest of
the equations (cf. section 3.3). Then given the solution to the Calabi-Yau
monopole system, one tries to solve for ωε, h

1/4
ε Im Ωε as an overdetermined

system, where the existence of a solution crucially relies on the Calabi-Yau
monopole system as an integrability condition.

3.1. Gauge fixing issues

While in the formal limit the K3 surfaces are ‘complex submanifolds’ in
the sense that Ω|K3 = 0 (equivalently Im Ω|K3 = 0), this can not be ex-
pected to hold in the finite ε setting. To explain this heuristically, given that
d(h1/4

ε Im Ωε) = 0, we wish to deform the K3 fibres such that h1/4
ε Im Ωε|K3 =

0. The closedness condition enables us to write fibrewise

h1/4
ε Im Ωε|K3 = df1 ∧ ω1 + df2 ∧ ω2 + df3 ∧ ωy,

and deformation of the fibre along a vector field v gives a first order correction

Lv(h1/4
ε Im Ωε) = d(ιv(h1/4

ε Im Ωε)) ≈ d(aω1 + bω2)

for suitable functions a, b corresponding to the components of v. This can be
used to cancel the df1, df2 terms in h

1/4
ε Im Ωε|K3, but insufficient to remove

the df3 term. From this discussion, we see it is reasonable to impose

(15) h1/4
ε Im Ωε|K3 = df ∧ ωy

for some function f , as a compatibility condition between the K3 fibration
structure and the Apostolov-Salamon equation, which is a conceptual substi-
tute for the calibration condition. Its chief effect is to rigidify the fibration.

The S1-bundle causes a gauge ambiguity for ϑε, but this can be largely
ignored because only the curvature dϑε enters into the Apostolov-Salamon
equation, and gauge equivalent choices give isomorphic constructions.

Next, we seek an optimal way to represent the Apostolov-Salamon solu-
tion with respect to the diffeomorphism action preserving the fibration struc-
ture. Given the K3 fibration structure, and the condition dωε = 0, with fixed
class ε−1[ωε], the standard Moser’s trick allows us to assume that ε−1ωε|K3 is
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fixed to be ωy. This reduces the fibrewise diffeomorphism group to the fibre-
wise symplectic group; to remove this, we can impose further that fibrewise

(16) (ω1dy1 + ω2dy2) ∧ h1/4
ε Im Ωε = const(y, ε)ω2

y ∧ ωS .

Remark 3.2. As a moral explanation for this gauge fixing condition, consider
a Hamiltonian function f on a K3 fibre with associated vector field V , recall
h is constant to leading order on the K3 fibre, and work with the orthonormal
choice of ω1, ω2 as usual. Then

(ω1dy1 + ω2dy2) ∧ (LV ω1dy1 + LV ω2dy2) = (ω1 ∧ LV ω2 − ω2 ∧ LV ω1)dy1dy2,

ω1 ∧ LV ω2 − ω2 ∧ LV ω1 = ω1 ∧ d(ιV ω2) − ω2 ∧ d(ιV ω1)
=d(ω1 ∧ ιV ω2 − ω2 ∧ ιV ω1) = 2d(ω1 ∧ ιV ω2) = ±4d(∗4df) = ±2(Δf)ω2

y ,

where ∗4 is the Hodge star on the hyperkähler K3 surface. Thus to leading
order and up to constant factors, the symplectomorphism adjusts the gauge
fixing quantity by a Laplacian term times ω2

y ∧ ωS , so this quantity can be
made into ω2

y ∧ωS times a fibrewise constant. This gauge fixing condition will
reappear in section 3.5.

We have thus removed the fibrewise diffeomorphism group. The remain-
ing gauge freedom is the fibration preserving diffeomorphisms moving the
fibres around, alternatively thought as the diffeomorphisms of S, which are
symmetries of the weighted maximal submanifold equation. We first natu-
rally associate a polarized positive section Hε to a solution of the Apostolov-
Salamon system. Notice that modulo d(fωy), the closed form h

1/4
ε Im Ωε van-

ishes on K3 fibres, so defines a closed H2(K3)-valued 1-form on S. If we
impose H1(S) = 0, or if we demand all ρ(k) to be exact (as we will later do),
then this is exact, so can be written as dHε for some Hε : S → H2(K3).
Now if f is chosen appropriately, then Hε can be made orthogonal to [ωy]
pointwise on S. Morever, since Hε is well approximated by H, it is also a
positive section. Our gauge fixing condition is that Hε differs from H by a
normal vector field to the image of H. This makes Hε canonically defined.
This does not lose any generality, because

Lemma 3.3. Given any formal power series Hε : S → H2(K3), pointwise
orthogonal to [ωy], such that Hε = H on ∂S and Hε = H modulo O(ε) on
S, then up to formal power series diffeomorphisms Id + O(ε) of S fixing the
boundary, there is a unique representative of Hε such that Hε−H is a normal
vector field to the image of H.
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Remark 3.4. The gauge fixing is convenient for our induction scheme, but
the condition (15) seems less fundamental compared to the coassociative K3
fibration analgoue. The iterated fibration picture relies on the S1-symmetry
reduction assumption, which cannot persist on nontrivial compact examples.
Instead, it is expected to be a good effective description up to exponentially
suppressed error, in the generic region of compact examples near the adiabatic
limit.

3.2. Iterative scheme setup

We write⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h[k] = h + εh(1) + ε2h(2) + . . . + εkh(k),

ϑ[k] = ϑ + εθ(2) + ε2θ(3) + . . . + εk−1θ(k),

ω[k] = ωS + εωy + ε2ω(1) + ε3ω(2) + . . . + ε(k+1)ω(k),

(h1/4Im Ω)[k] = εh1/4(ω1dy1 + ω2dy2) + ε2ρ(1) + ε3ρ(2) + . . . + ε(k+1)ρ(k),

H [k] = H + εH(1) + ε2H(2) + . . . + εkH(k).

These are best thought as representatives of formal power series modulo
higher powers of ε. They are required to satisfy the approximate Apostolov-
Salamon equation

(17)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dω[k] = 0,
1
2dh

[k] ∧ (ω[k])2 = εdϑ[k] ∧ (h1/4Im Ω)[k] + O(εk+2),
d(h3/4Re Ω)[k] = −εdϑ[k] ∧ ω[k] + O(εk+2),
d(h1/4Im Ω)[k] = 0,

and the approximate SU(3)-structure constraints

(18)
{
ω[k] ∧ Im Ω[k] = O(εk+3),
(ω[k])3 = 3

2Re Ω[k] ∧ Im Ω[k](1 + O(εk+1))

Here Im Ω[k] is determined from the independent variables h[k] and (h1/4Im
Ω)[k], and Re Ω[k] is canonically determined by Im Ω[k] so that Ω[k] is a com-
plex volume form. Notice we require at the onset that ω[k] and (h1/4Im Ω)[k]

remain closed. The role of H [k] is to encode some cohomological data associ-
ated to the ρ(1), . . . , ρ(k) as described in section 3.1, but H [k] does not need to
satisfy the weighted maximal submanifold equation, unlike its leading order
H.
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The following version of the gauge fixing condition will be used:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε−1ω[k]|K3 = ωy,

(h1/4Im Ω)[k]|K3 = ε2d(function) ∧ ωy,

(ω1dy1 + ω2dy2) ∧ (h1/4Im Ω)[k] = ε2(function of y, ε + O(εk))ω2
y ∧ ωS ,

H [k] −H ⊥ [ω1], [ω2], [ωy].

We shall also make use of a number of normalisation conditions during
the induction below. For instance, we will require

• The correction terms ω(k) and ρ(k) are exact for all k.
• The boundary value of H [k] on ∂S is fixed to be H.
• The total volume

∫
(h[k])1/2(ω[k])3 = 3ε2

∫
S h

1/2ωS(1 + O(εk+1)).

Another more technical auxiliary condition will appear in the inductive hy-
pothesis in section 3.3.

Remark 3.5. By the O(εk) notation, we mean εk times a formal power
series in ε of smooth forms. In particular, if a quantity is O(εk), then so are
its derivatives in this convention.

Theorem 3.6. Given a solution of the weighted maximal submanifold equa-
tion H on a surface S with boundary, avoiding excess (−2)-classes. Then
there exists a unique formal power series solution (hε, ϑε, ωε,Ωε) solving the
Apostolov-Salamon equation, the SU(3)-structure condition, the gauge fixing
conditions, and the various normalisation conditions. The leading order be-
haviour agrees with section 2.3.

In the sequel we will concentrate on the existence part; the uniqueness
is more or less a byproduct. We shall assume the conditions are satisfied
up to k − 1, and the induction step is roughly to solve the equations in
step k. The actual order in which the equations are solved is a little more
intricate, due to the fact that the hierarchy of equations is not only organized
in order of ε but also according to the filtration. That is, when we solve for
h(k), ϑ(k), ω(k), ρ(k), H(k), we assume h[k−1] etc to be fixed by induction, except
that ρ(k−1) can still be modified by ωS ∧ d(function), and ω(k−1) can still be
modified by the pullback of a 2-form from S. We shall describe how to solve
the system from an algorithmic viewpoint, namely we repeatedly update the
choices to satisfy more and more conditions, thus making the error functions
take increasingly special forms, often keeping the same notation.
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3.3. Calabi-Yau monopole system

The Calabi-Yau monopole system refers to the integrability conditions

(19)
{
dϑ[k] ∧ (ω[k−1])2 = O(εk+1),
1
2dh

[k] ∧ (ω[k−1])2 = εdϑ[k] ∧ (h1/4Im Ω)[k−1] + O(εk+2).

The word ‘Calabi-Yau’ comes from the analogy with [12], even though in our
setting the 6-manifold needs not be Calabi-Yau. Rewriting the equations in
terms of the unknown functions θ(k), h(k),⎧⎪⎪⎨
⎪⎪⎩

2dθ(k) ∧ ωy ∧ ωS = −ε−kdϑ[k−1] ∧ (ω[k−1])2 + O(ε) = α(k) + O(ε)
dh(k) ∧ ωy ∧ ωS − dθ(k) ∧ (ω1dy1 + ω2dy2)
=ε−k−1(1

2dh
[k−1]∧(ω[k−1])2−εdϑ[k−1]∧(h1/4ImΩ)[k−1])+O(ε)=β(k)+O(ε).

From the induction hypothesis, the α(k), β(k) are closed forms of order O(1),
and furthermore we assume the following cohomological requirement by in-
duction

• α(k) = ωS∧(exact 4-form on K3 fibres),
• β(k) = dy1∧(exact 4-form on K3 fibres)+dy2∧(exact 4-form on K3 fi-

bres) modulo dy1 ∧ dy2.

We determine the restriction of dθ(k) to K3 fibres by prescribing dθ(k) ∧
ω1, dθ

(k) ∧ ω2, and dθ(k) ∧ ωy, which amounts to prescribing the self dual
part of an exact 2-form on the hyperkähler K3, and can be done precisely
by the cohomological condition on α(k), β(k). Notice that the ambiguity in
ρ(k−1), ω(k−1) so far plays no role.

After this step we have reduced to α(k) = 0 and β(k) = dy1dy2∧(closed
3-form on K3 fibres). The modification of ρ(k−1) takes place immediately after
this, using the rest of the Apostolov-Salamon system, see section 3.4 below.
Granted that ρ(k−1) is fixed, we proceed with the rest of the Calabi-Yau
monopole system. Writing the closed 3-forms as

df1 ∧ ω1 + df2 ∧ ω2 + df3 ∧ ωy,

we see that the df1, df2 terms can be cancelled by modifying θ(k) by ady1+bdy2
depending linearly on f1, f2, and df3 can be cancelled by adjusting h(k). We
have thus satisfied (19), and the remaining ambiguity is

• h(k) is determined up to a fibrewise constant,
• dθ(k) is determined up to the pullback of a 2-form on S.
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We shall see that these are fixed by cohomological requirements, up to a global
constant on h(k). Notice the ambiguity of ω(k−1) has not played any role.

Notice that because of the smallness of the correction induced by the yet
unknown ω(k), ρ(k), (19) is equivalent to

{
dϑ[k] ∧ (ω[k])2 = O(εk+1),
1
2dh

[k] ∧ (ω[k])2 = εdϑ[k] ∧ (h1/4Im Ω)[k] + O(εk+2).

This is of course the statement that α(k+1), β(k+1) are of order O(1). It is
not sensitive to the ambiguity of ω(k−1) caused by the pullback of a 2-form
on S. The inductive construction of ω[k], (h1/4Im Ω)[k] guarantees that ω[k] is
closed, and (h1/4Im Ω)[k] is exact, so β(k+1) is exact. Our induction relies on
the cohomological requirement that

• α(k+1) = ωS∧(exact 4-form on K3 fibres),
• β(k+1) = dy1∧(exact 4-form on K3 fibres)+dy2(exact 4-form on K3

fibres) modulo dy1 ∧ dy2.

These exactness conditions amount to conditions on fibrewise integrals. This
requirement on α(k+1) can be achieved precisely by adjusting dθ(k) by a 2-
form pulled back from S. As for β(k+1), by its exactness it defines an exact
H4(K3)-valued 1-form on S. Now adjusting h(k) by a function of y we can
cancel this exact 1-form, thus achieving the cohomological requirement. Later
in our construction, this cohomological condition is not sensitive to corrections
caused by ω(k), but ρ(k) will damage it in a very specific way. We shall later
return to this issue and correct h(k) by a further function depending only on
y ∈ S (cf. section 3.7).

The above only concerns dh(k), rather than h(k) itself. The global constant
for h(k) is specified by the total volume normalisation

∫
h[k](ω[k−1])3 = 3ε2

∫
S
hωS(1 + O(εk+1)).

This condition is not sensitive to ω(k). The place to take care of this global
constant is in section 3.5.

Remark 3.7. The above discussion is uniform for k ≥ 2. For k = 1 this
story is basically the same as the determination of ϑ we saw in section 2.3,
the small difference being that ϑ is a connection while the higher corrections
are 1-forms, and the role of the cohomological requirement for k = 1 is instead
played by the prescription of the first Chern class 1

2π [dϑ].



Iterated collapsing phenomenon on G2-manifolds 1001

Remark 3.8. Once the algorithm fixes ω(k−1) evantually, we can keep h[k]

fixed and make an adjustment to θ(k) with a further ε power in front. By one
more iteration of some steps above, we can thus ensure a better condition

dϑ[k] ∧ (ω[k−1])2 = O(εk+2),

while keeping all others. Notice that independent of the unknown ω(k), we
will still have

dϑ[k] ∧ (ω[k])2 = O(εk+2),

using that ω(k) is required to lie in the filtration with at least one dyi term.

3.4. Deformation of the SU(3)-structure I: first filtration

The rest of the Apostolov-Salamon system that remains to be solved involves

d(h3/4Re Ω)[k] = −εdϑ[k] ∧ ω[k] + O(εk+2),

together with the SU(3)-structure requirements, and the gauge fixing condi-
tions. Essentially the degrees of freedom at our disposal is to vary ω[k] keeping
the closedness condition and the prescribed restriction to K3 fibres, and to
vary (h1/4Im Ω)[k] keeping the closedness condition. We shall see the problem
is rather overdetermined. Our strategy involves solving the equation accord-
ing to the Leray filtration determined by the K3 fibration structure. In this
section we discuss the first filtred piece of the equations, which is tied up with
the issue of modifying ρ(k−1). This step takes place after we have specified
θ(k)|K3, before we solve the rest of the Calabi-Yau monopole system.

Remark 3.9. In the discussion below ρ(k) plays a much more major role
than ω(k), which does not affect most equations. The reader can also keep in
mind that the increment εk+1ω(k) will not be added until almost the end of
the algorithm.

We write

ε−k−1(d(h3/4Re Ω)[k] + εdϑ[k] ∧ ω[k]) = h1/2d(h1/4Re Ω)(k) + γk + O(ε)

where εk+1(h1/4Re Ω)(k) denotes the small increment to (h1/4Re Ω)[k] induced
by the small increment εk+1ρ(k) for (h1/4Im Ω)[k], and

γk = ε−k−1(d(h3/4Re Ω)[k−1] + εdϑ[k] ∧ ω[k−1]).
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Clearly γk is closed. Morever, restricted to the K3 fibres,

[γk] = ε−k[dϑ] ∧ [ωy] = 0 ∈ H4(K3).

Notice the restriction of γk to K3 fibres depends only on θ(k) restricted to the
K3 fibres, not the full solution to the Calabi-Yau monopole system. We are
allowed to modify ρ(k) by a term proportional to d(fωy) compatible with the
gauge condition (15) and the closedness of (h1/4Im Ω)[k], where f is a function
to be determined. Modulo higher order in ε and restricted to K3 fibres, the
corresponding change to (h1/4Re Ω)(k) is −Jdf ∧ ωy, where J is the complex
structure on the K3 fibres. We recognize the fibrewise equation

d(Jdf ∧ ωy) = γk|K3

is just the Laplace equation, so by the cohomological condition can be solved
fibrewise up to fibrewise constants. After this step, we can assume γk|K3 = 0.
To fix f as a function of y, we notice ω[k−1] ∧ (h1/4Im Ω)[k−1] is an exact 5-
form so defines an exact H4(K3)-valued 1-form, hence can be made to vanish
precisely by utilizing f as a function of y. This determines f up to a global
constant, which does not affect ρ(k).

The subtle issue is that while by induction

ω[k−1] ∧ (h1/4Im Ω)[k−1] = O(εk+2),

the term df ∧ωy in ρ(k) contributes to ω[k]∧ (h1/4Im Ω)[k] by εk+1df ∧ωy∧ωS .
This needs to be compensated by modifying ρ(k−1) by −d(fωS). This fixes
the little ambiguity of ρ(k−1). In the algorithm, we return to the Calabi-Yau
monopole system and solve for h(k), θ(k). In the remaining discussions, we
shall take h[k], ϑ[k] as fixed except when announced otherwise, and we have

ω[k] ∧ Im Ω[k] = O(εk+2),

which we seek to improve.

3.5. Deformation of the SU(3)-structure II: second filtration

Next we consider the filtration with dy1 or dy2 terms. We are allowed to
modify ρ(k) by a term proportional to

dy1 ∧ d(1-form on K3) + dy2 ∧ d(1-form on K3).
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An efficient way to prescribe an exact 2-form on K3 fibres is to prescribe its
self dual part:

f11ω1 + f12ω2 + f13ωy, f21ω1 + f22ω2 + f23ωy

where
∫
K3 fijω

2
y = 0. We write the increment of ρ(k) modulo dy1 ∧ dy2 term

as

dy1 ∧ (f11ω1 + f12ω2 + f13ωy +ASD1)+dy2 ∧ (f21ω1 + f22ω2 + f23ωy +ASD2)

Working at a given fibre in the coodinates with gij = δij , the corresponding
change to (h1/4Re Ω)(k) modulo dy1dy2 term is

dy1(ASD2 + f23ωy + f11ω2 − f12ω1) + dy2(−ASD1 − f13ωy + f21ω2 − f22ω1).

Using dρ(k) = 0 to eliminate the ASD terms, the change to d(h1/4Re Ω)(k)

modulo dy1dy2 term is

d(f11 − f22) ∧ (ω2dy1 + ω1dy2) + d(f12 + f21) ∧ (ω2dy2 − ω1dy1).

Notice the answer depends only on two combinations of the 6 functions fij ,
an indication that integrability is at play.

The roles of the other 4 functions are as follows:

• The horizontal-vertical (1, 4) component of ω[k] ∧ Im Ω[k] is controlled
precisely by f13, f23. By adjusting f13, f23 we can make ω[k] ∧ (h1/4Im
Ω)[k] = O(εk+3) modulo dy1 ∧ dy2 term. Here notice that the yet un-
known ω(k) has no effect to O(εk+2) order due to our choice to fix ωy as
the restriction to K3 fibres. Notice also that the condition

∫
K3 fi3ω

2
y = 0

is precisely compatible with our previous cohomological normalisation
on ω[k−1] ∧ (h1/4Im Ω)[k−1].

• The volume normalisation on Re Ω[k]∧Im Ω[k] is controlled by f11+f22.
By possibly modifying ω(k−1) by the pullback of a 2-form on S, which
does not affect the inductive hypotheses, we can ensure that

(h[k])1/2(ω[k−1])3 = 3
2(1 + O(εk))(h1/4Re Ω)[k−1] ∧ (h1/4Im Ω)[k−1],

where the O(εk) function has fibrewise integral zero with respect to
ω2
y . By allowing h(k) to drift by a global constant, accompanied by a
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corresponding change in ω(k−1) so as to preserve the fibrewise integral
zero condition, we can enforce the total volume normalisation on

∫
h[k](ω[k−1])3

as promised in section 3.3.
Now the f11 +f12 term gives rise to a term proportional to Im Ω in ρ(k),
whose effect is to modify (h1/4Re Ω)[k] ∧ (h1/4Im Ω)[k], and we can use
this to cancel the O(εk) term. This ensures

(ω[k])3 = 3
2(1 + O(εk+1))Re Ω[k] ∧ Im Ω[k],

since ω(k) does not give rise to corrections to volume of relative order
O(εk). Notice again that we need the cohomological normalisation to
be compatible with

∫
K3 fijω

2
y = 0.

• The combination f12−f21 controls the gauge fixing condition on (h1/4Im
Ω)[k] ∧ (ω1dy1 + ω2dy2). It almost renders the expression zero modulo
O(εk+2), except that the integral normalisation

∫
K3 fijω

2
y = 0 means

that we cannot remove a fibrewise constant depending on y ∈ S.

To summarize, while keeping the closedness of (h1/4Im Ω)[k], there are six
free functions at our disposal, which we can use to achieve three constraints
in the SU(3)-structure condition, and one gauge fixing condition, and the
remaining two degrees of freedom can be used to adjust γk by

da ∧ (ω2dy1 + ω1dy2) + db ∧ (ω2dy2 − ω1dy1) mod dy1 ∧ dy2

for any two prescribed functions a, b on the fibres.

3.6. Deformation of the SU(3)-structure III: integrability

The crucial feature of the Apostolov-Salamon system is that while the equa-
tions governing the deformation of h1/4Im Ω are quite overdetermined, there
is additional integrability from the Calabi-Yau monopole system that comes
to the rescue. To explain the key ideas, we will present the argument without
keeping track of the power of ε error everywhere.

We begin with some basic linear algebra of SU(3)-structures:
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Lemma 3.10. Let (ω,Ω) be an SU(3)-structure, and v be a vector field. Then
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω2 ∧ ιvω = −Re Ω ∧ ιvIm Ω,

ιvRe Ω = ιJvIm Ω,

Im Ω ∧ ιJvω = ω ∧ ιvRe Ω,

ιvdIm Ω ∧ Re Ω = ιvIm Ω ∧ dRe Ω

Remark 3.11. Here the last identity is the infinitesimal manifestation of the
diffeomorphism invariance for the volume functional associated to Hitchin’s
stable 3-forms [16], and expresses the relation between the rank 6 components
in the type decomposition of the 4-forms dRe Ω, dIm Ω. Some exposition of
this viewpoint can be found in [9, Lem 1]. For the general yoga of SU(3)-
structures, a summary can be found in [10, section 2]

Proposition 3.12. Assume (ωε,Ωε) is an SU(3)-structure, hε a positive val-
ued function, and dϑε a closed 2-form, satisfying

{
εh

1/4
ε dϑε ∧ Im Ωε = 1

2dhε ∧ ω2
ε ,

d(h1/4
ε Im Ωε) = 0,

then for any vector field v,

(εdϑε ∧ ωε + d(Re Ωεh
3/4
ε )) ∧ ιvRe Ωε = 0,

equivalently the 6-dimensional component of the 4-form εdϑε ∧ ωε + d(Re Ωε

h
3/4
ε ) vanishes automatically.

Proof. We compute using the first equation

εdϑε ∧ ωε ∧ ιvRe Ωε = εdϑε ∧ Im Ωε ∧ ιJvω = 1
2h

−1/4
ε dhε ∧ ω2

ε ∧ ιJvωε.

By the second equation and Hitchin’s stable form identity applied to h
1/4
ε Im

Ωε,

0 = d(Im Ωεh
1/4
ε ) ∧ ιJvRe Ωε = −ιJvIm Ωε ∧ d(Re Ωεh

1/4
ε )

= −ιvRe Ωε ∧ d(Re Ωεh
1/4
ε ),

whence

d(Re Ωεh
3/4
ε ) ∧ ιvRe Ωε = 1

2h
−1/4
ε dhε ∧ Re Ωε ∧ ιvRe Ωε.
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The claim then follows from

ω2
ε ∧ ιJvωε = −Re Ωε ∧ ιJvIm Ωε = −Re Ωε ∧ ιvRe Ωε.

In our application, we use h[k], ϑ[k], satisfying the Calabi-Yau monopole
system (19). The (h1/4Im Ω)[k] term is always closed. The error to the SU(3)-
structure, after our initial stages of correction, is

⎧⎪⎪⎨
⎪⎪⎩

(ω[k])3 = 3
2(1 + O(εk+1))Re Ω[k] ∧ Im Ω[k],

ω[k] ∧ Im Ω[k] = O(εk+3) mod dy1 ∧ dy2,

ω[k] ∧ Im Ω[k] = O(εk+2)

Restoring the powers of ε into the above argument, we reach an important
conclusion: modulo O(ε), the error function γk satisfies

(20)
{
γk ∧ ιv(ω1dy1 + ω2dy2) = 0, for any vertical vector v,
γk ∧ ω1 = 0, γk ∧ ω2 = 0.

Now dγk = 0 by construction, and at this stage γk lies in the filtration with
at least one dyi term, so modulo dy1dy2 terms we can write

γk = (da11∧ω1+da12∧ω2+da13ωy)dy1+(da21∧ω1+da22∧ω2+da23∧ωy)dy2

for some functions aij with fibre average zero. At a given fibre we work in the
coordinate with gij = δij . From the first part of the integrability condition
(20),

(da11 ∧ ω1 + da12 ∧ ω2 + da13 ∧ ωy) = J(da21 ∧ ω1 + da22 ∧ ω2 + da23 ∧ ωy)

on the K3 fibre. Taking d on both sides gives a23 = 0, so by symmetry a13 = 0.
Now

da11 ∧ ω1 + da12 ∧ ω2 = J(da21 ∧ ω1 + da22 ∧ ω2) = da21 ∧ ω2 − da22 ∧ ω1,

so by uniqueness of such a decomposition a11 = −a22 and a12 = a21. Thus

γk = da11 ∧ (ω1dy1 − ω2dy2) + da12(ω2dy1 − ω1dy2) mod dy1dy2.

But this is precisely of the form we can cancel by adjusting ρ(k), as discussed
in section 3.5. The conclusion is that we can now assume γk is a multiple of
dy1 ∧ dy2.
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3.7. Weighted maximal submanifold system

At this stage
γk = dy1 ∧ dy2 ∧ (closed 2-forms on K3)

Thus γk defines an H2(K3)-valued 2-form on S, which we denote as [γk].
There is a natural decomposition of [γk] into fibrewise self dual and ASD
parts, or equivalently the tangential and normal component to the image of
H : S → H2(K3). Our next goal is to remove the ASD part of [γk].

To correct this error, we reflect on the degrees of freedom not yet used.
We have already adjusted ρ(k) by corrections of the form

dy1(exact 2-form on K3) + dy2(exact 2-form on K3) mod dy1 ∧ dy2.

However, the actual constraint is that ρ(k) should be exact, which leaves the
possibility of adjusting ρ(k) by σ1dy1 + σ2dy2 for some harmonic 2-forms σ1,
σ2 on the fibres in place of exact 2-forms, corresponding to the deformation of
H [k] (cf. the last part of section 3.1). Given a vector field H(k) : S → H2(K3)
normal to the weighted maximal submanifold defined by the image of H, we
can view ∂H(k)

∂yi
for i = 1, 2 as specifying the data σi for adjusting the families of

harmonic 2-forms. The normality condition can be thought as a gauge choice,
related to the diffeomorphism of S. The requirement that the two families of
harmonic forms come from the gradient of a single H(k), means that we can
arrange ρ(k) to be exact, instead of just being closed modulo dy1 ∧ dy2.

One can then calculate the response of (h1/4Re Ω)(k). By reexamining the
calculations about the exact forms in section 3.5, one sees that the change
in d(h1/4Re Ω)(k) lies in the filtration with dy1 ∧ dy2 terms, so defines an
H2(K3)-valued 2-form on S. However, we need to be careful not to ruin the
various conditions we already achieved. The fact that H(k) is orthogonal to
the constant class [ωy] implies that for the change in ρ(k) induced by H(k),

ρ(k) ∧ ωy = O(ε), mod dy1 ∧ dy2,

so we still have

ω[k] ∧ Im Ω[k] = O(εk+3) mod dy1 ∧ dy2.

A more subtle effect happens to the Calabi-Yau monopole system. In sec-
tion 3.3 we required the cohomological condition that the H4(K3)-valued
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1-form on S defined by β(k+1) vanishes. This forces us to adjust h(k) by a
function depending only on y, satisfying an equation on S

1
2dh

(k)[ωy]2 = [dϑ] ∧ dH(k).

We take h(k) = 2[dϑ] · H(k) compatible with (8); the ultimate reason for
this choice has to do with total volume normalisation, see below. Thus the
response of d(h3/4Re Ω)(k) is still in the dy1 ∧ dy2 filtration, and defines an
H2(K3)-valued 2-form on S. This can be identified as follows: consider the
map

H̃ �→ ∂

∂yj
(h̃1/2g̃ij

√
det g̃ ∂H̃

∂yi
)dy2 ∧ dy1, g̃ij = ∂H̃

∂yi
· ∂H̃
∂yj

, h̃ = 2[dϑ] · H̃,

and denotes its first variation at the map H as L1. Then the H2(K3)-valued
2-form induced by the variation H(k) is L1(H(k)). This can be seen by re-
examining the derivation of the weighted maximal submanifold equation in
section 2.3.

The next subtle effect happens to the volume normalisation condition
in the SU(3)-structure. To leading order, the increment of (h[k])1/2(ω[k])3
induced by adjusting h(k) is

3εk+2([dϑ] ·H(k))h−1/2ω2
y ∧ ωS ,

and the increment of (h1/4Re Ω)[k] ∧ (h1/4Im Ω)[k] induced by ρ(k) is after an
instructive exercise

2εk+2ωS ∧ ω2
y

(
gij

∂H

∂yi
· ∂H

(k)

∂yj

)
.

To preserve the volume normalisation

(h[k])1/2(ω[k])3 = 3
2(h1/4Re Ω)[k] ∧ (h1/4Im Ω)[k](1 + O(εk+1)),

we need to adjust ω(k−1) by the pullback of a 2-form on S

L2(H(k)) = ωS

(
g̃ij

∂H

∂yi
· ∂H

(k)

∂yj
− h−1[dϑ] ·H(k)

)
.
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This provides the mechanism that will ultimately fix the ambiguity of ω(k−1).
This operator L2 has the pleasant interpretation of being the first variation
at H of the mapping

H̃ �→ h̃−1/2
√

det(g̃ij)dy1 ∧ dy2, g̃ij = ∂H̃

∂yi
· ∂H̃
∂yj

, h̃ = 2[dϑ] · H̃.

Combining the above, the response to H(k) of the H2(K3)-valued 2-form [γk]
is

L1(H(k)) + [dϑ] ∧ L2(H(k)),
which by comparison with section 2.4 is identified as L(H(k)), where L is the
variation of the operator δAw, or equivalently the Hessian operator of the
weighted area functional. Our initial problem in this section is now rephrased
as solving for H(k) so that L(H(k)) cancels the ASD part of the initial error
[γk], which defines a normal vector field to the image of H : S → H2(K3).
But by Lemma 2.6 the Hessian operator L is negative definite on normal
vector fields with zero boundary data, so H(k) can always be solved uniquely.

We now reexamine the total volume normalisation on
∫
h[k](ω[k])3. In the

above procedure, the change in the total volume corresponds to the change in
the weighted area Aw, which is zero to leading order because H is a critical
point. This ensures the total volume normalisation is preserved.

Now that we have solved for H(k), so as to be able to gain the condition
[γk] = 0, we can tie up a few loose ends. Notice ω(k−1) is now fixed. Then we
can follow Remark 3.8 to modify θ(k) by a higher order in ε term to achieve

dϑ[k] ∧ (ω[k])2 = O(εk+2).

Also, while the steps taken in this section damage the gauge fixing condition
on (h1/4Im Ω)[k] ∧ (ω1dy1 + ω2dy2), we can repeat some parts in section 3.5
to restore the gauge condition. Since this only involve exact 2-forms, it has
no effect on the class [γk]. Repeating some steps in section 3.4 for one order
higher in ε, we can ensure γk lies in the filtration with at least one dyi term
modulo O(ε2).

3.8. Deformation of the SU(3)-structure IV: linear algebraic
constraints

We now start to modify ω[k] to improve the SU(3)-structure condition. Mod-
ulo O(εk+3), at this stage

ω[k−1] ∧ (h1/4Im Ω)[k] = εk+2dy1 ∧ dy2 ∧ closed 3-form on K3
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Write the closed 3-form as df1 ∧ ω1 + df2 ∧ ω2 + df3 ∧ ωy. The df3 term can
be removed by adjusting ρ(k) by d(f3ωS). Now the freedom to adjust ω(k) is
d(ady1 + bdy2). Choosing the functions a, b depending linearly on f1, f2, we
can also remove the df1, df2 terms. After this adjustment,

ω[k] ∧ Im Ω[k] = O(εk+3).

The H2(K3)-valued 2-form [γk] is not affected in this step.
Recall the integrability condition (20) gives ω1 ∧ γk = ω2 ∧ γk = 0. There

is one extra piece of integrability we have not used: recall (cf. Remark 3.8)

dϑ[k] ∧ (ω[k])2 = O(εk+2), dω[k] = 0,

hence

γk∧ωy = γk∧ε−1ω[k] = ε−k−2{εdϑ[k]∧(ω[k])2+d((h[k])3/4Re Ω[k]∧ω[k])} = O(ε)

Namely up to O(ε) error γk defines a family of ASD harmonic forms on the
K3 fibres. But the ASD component of [γk] has been removed in section 3.7,
so γk = 0, and we have completed the induction.

4. Global aspects

We now discuss the phenomena that arise when trying to compactify the it-
erated fibration structure. These involve both topological and metric aspects.
In particular, since any Killing vector field on a compact Ricci flat manifold
must be parallel, we need to display mechanisms to break the circle symmetry
in order to make nontrivial compact examples possible. The emphasis here is
on the geometric picture, without the more serious analytical work.

4.1. Lefschetz fibration

Lefschetz fibration is a phenomenon which has relatively little to do with
the small circle in M , but instead happens to the 6-manifold M/S1. The
motivation is that in a global setting, excess (−2)-classes are quite inevitable.

Consider first the simpler problem: let X be a Calabi-Yau 3-fold with a
holomophic K3 fibration π : X → P

1, where all critical points of π have the
local complex analytic description as π = z2

1 + z2
2 + z2

3 in local coordinates,
known as Lefschetz fibrations. Given a Kähler class [ωX ] on X, and a Kähler
class [ωP1 ] on P

1, the problem is to describe the limiting behaviour of the
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Calabi-Yau metric ωCY,ε in the class [εωX +ωP1 ] as ε → 0. This can be viewed
as a special case, when M = X × S1 decouples the small circle factor.

This problem has been satisfactorily analyzed in [22, 23, 24]. There are
two general lessons:

• (Multiscaledness) The metrics exhibit different characteristic behaviours
at different length scales.

• (Universality) The microscopic behaviour of the metric depends essen-
tially only on the local geometry, not on the global information of the
Calabi-Yau 3-fold or the Lefschetz fibration.

Globally, the Calabi-Yau metrics converge in Gromov-Hausdorff sense to
a singular metric on P1 which can be explicitly written down via period
integrals. The characteristic length scale of the base is O(1). Around any
fixed smooth K3 fibre, the rescaled Calabi-Yau metrics ε−1ωCY,ε converge
smoothly to K3×C with the product metric, where the K3 factor carries the
unique Calabi-Yau metric in class [ωX ]. Around a singular K3 fibre (which
has C

2/Z2 orbifold singularity by the Lefschetz condition), the convergence
to K3 × C happens only in a Gromov-Hausdorff sense; here the K3 factor
carries the orbifold Calabi-Yau metric. The convergence cannot be smooth
because K3 × C has C

2/Z2 × C local singularity. The characteristic length
scale of the K3 fibre is O(ε1/2).

For our current purpose the most interesting aspect is what happens
around the critical points of the fibration. The answer involves an exotic
complete Calabi-Yau metric ωC3 on C

3, whose tangent cone at infinity is
C

2/Z2 ×C with the flat orbifold metric. In particular the volume of geodesic
balls in ωC3 is of order ∼ r6, known as maximal volume growth, but ωC3 is
not the flat Euclidean metric. This exotic metric is constructed by writing
down an approximate metric ansatz near the spatial infinity, and using a
noncompact version of the Calabi conjecture to perturb it into a Calabi-Yau
metric. It is proved in [24] that after suitable rescaling by a magnification fac-
tor O(ε−4/3), the collapsing Calabi-Yau metrics ε−4/3ωCY,ε around the critical
point converge to ωC3 as ε → 0. In particular, the characteristic length scale
of the bubble around the critical point is O(ε2/3), much smaller compared
to the characteristic length scale O(ε1/2) of the K3 fibres. The local metric
behaviour is captured by the canonical object ωC3 , independent of the source
of the global Calabi-Yau 3-fold.

Back to the 7-dimensional problem where M/S1 around a particular K3
fibre looks approximately like a Lefschetz K3 fibration, we discuss the heuris-
tic reason why the presence of the extra small cicle does not significantly
affect the geometry near the critical point, as long as [dϑ] is orthogonal to
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the (−2)-class of the vanishing sphere. The effect of this extra S1 comes from
its curvature dϑ. Around the singular K3 fibre, from our ansatz construc-
tion in section 2.3, the leading order behaviour of dϑ is the harmonic 2-form
on the singular K3 in the appropriate class. Since [dϑ] is orthogonal to the
(−2)-class, there is no cohomological incentive for the curvature to concen-
trate significantly near the critical point. The characteristic curvature scale
is O(1). Now when we apply our magnifying glass to see the geometry of the
exotic C

3, the curvature effect of dϑ is washed away by the scaling factor,
i.e. microscopically the circle bundle behaves as if it is flat. A further piece of
evidence is that h is to leading order constant on fibres. Thus we expect the
local geometry is approximately a product of the exotic metric on C

3 with
the small S1 factor. In particular, this does not provide a mechanism to break
the S1-symmetry.

The monodromy of the Lefschetz fibration is controlled by the Picard-
Lefschetz formula. This will require a slight modification to our local discus-
sion of polarized positive sections; instead of taking value in H2(K3), the
section H really takes value in an affine bundle with fibres isomorphic to
H2(K3) (cf. section 4.6 below).

4.2. Wall crossing

Wall crossing refers here to the following phenomenon. Let σ ∈ H2(K3)
be a fixed class orthogonal to [ωy]. We propose a mechanism for S to be
locally divided into two components by a curve l ⊂ S satisfying σ · H =
const, such that the first Chern class 1

2π [dϑ] jumps by σ when we cross l.
The mechanism involves allowing the S1-bundle to degenerate along a 3-
dimensional discriminant locus fibred over l.

Remark 4.1. Curiously, the condition σ · H = const encodes special La-
grangians in the fast circle collapsing setting (cf. section 2.2) where M/S1 is
approximately Calabi-Yau. In the fine tuned circle collapsing setting we are
studying M/S1 is not close to being Calabi-Yau, so such an interpretation is
not available, but the intuition is still useful.

Let τ be a coordinate along l. Our interest is in the behaviour of the G2-
structure transverse to l. Since the characteristic length scale of the transition
(which turns out to be O(ε)) is much smaller than the characteristic scale
of l which is O(1), it is reasonable to suppose that the geometry is locally
approximately independent of τ . A natural suggestion is that the transverse
behaviour is modelled on the dimensionally reduced case of Calabi-Yau 3-
folds with S1-symmetry, sketched in section 2.6. What we will now describe
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is essentially the same as [27, chapter 4], in a slightly different normalisation
convention, using the rescaled notation in section 2.6.

Since σ · dH = 0 along l and σ · [ωy] = 0, and noticing how the conversion
formula (14) mixes up the hyperkähler structure on K3 surface D, along l we
have

[Im ΩD] · σ = 0, [Re ΩD] · σ = 0.

We assume we can consistently find smooth holomorphic curves C in the class
σ ∈ H2(K3) with respect to the complex structure defined by ΩD; this can be
sometimes guaranteed by cohomological criterions, for example in the case of
(−2)-classes. From the 7-dimensional perspective, the discriminant locus of
the S1-fibration will be the union of these holomorphic curves along l. From
the dimensional reduction viewpoint, the τ variable will be dropped, and we
think of a Calabi-Yau 3-fold with S1-action, whose fixed points lie over C
inside D × {0} ⊂ D × Rμ.

The Calabi-Yau requirement leads to
⎧⎪⎪⎨
⎪⎪⎩
dϑ = −∂μω̃ − ε−1dcDh ∧ dμ,

(∂2
μω̃ + ε−1dDd

c
Dh) ∧ dμ = −d(dϑ) = −2πδC

ω̃2 = 1
2hΩD ∧ ΩD.

This is the same as in section 2.6 except for the codimension 3 distributional
current δC along C ⊂ D × Rμ, which arises from the requirement that the
integral of dϑ on a 2-sphere linking C in D×Rμ should have total integral 2π
to maintain the smoothness of the Calabi-Yau 3-fold. As μ increases to cross
0 ∈ R, the first Chern class 1

2π [dϑ] increases by σ ∈ H2(K3).
The system so far is highly nonlinear. Fortunately, since the S1-fibres are

near the collapsing limit, perturbation techniques are available. We impose
the ansatz {

h = h0 + εh, h0 = const,

ω̃ = ω̃D + εψ, ω̃2
D = h0

2 ΩD ∧ ΩD.

This means unless we are very close to the discriminant locus, then h should
be locally approximately constant, and ω̃ should approximately agree with the
Calabi-Yau metric on D, in line with the basic assumptions in section 2.3.
This motivates the linearization of the above system:

{
ω̃D ∧ ψ = 1

4hΩD ∧ ΩD, i.e. h = h0 Trω̃D ψ,

ε∂2
μψ + dDd

c
Dh = −2πδC ,
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hence the Laplace equation

(ε∂2
μ − h0dDd

∗
D)ψ = −2πδC .

The leading singularity along C is
⎧⎪⎪⎨
⎪⎪⎩
ψ ∼

√
−1
4r η ∧ η̄,

h ∼ 1
2r ,

r ∼
√
εh−1

0 distω̃D(·, C)2 + |μ|2,

where η denotes a (1, 0)-form on D normal to C, with Trω̃D

h0
√
−1

2 η ∧ η̄ = 1.
To give the geometric interpretation, first observe that the correction

effect is significant only when r � ε, corresponding to length scale O(ε), which
is comparable to the average length of S1-fibres and much smaller compared
to the length scale O(ε1/2) of the K3 surfaces.

The correction is dominant in the small neighbourhood around C, and
its effect is to make the geometry transverse to C look approximately like
Taub-NUT metrics. In fact, we have a metric asymptote near C

g′ ∼ εg̃D + ε2

2rη ⊗ η + (h0 + ε

2r )(dμ)2 + (h0 + ε

2r )ε2ϑ2,

and the component of the K3 metric g̃D normal to C is h0η⊗η by construction.
We recognize the metric component transverse to C

(h0 + ε

2r ){(dμ)2 + εη ⊗ η} + (h0 + ε

2r )ε2ϑ2

is up to scaling just Taub-NUT metric in disguise. In particular, while one
may a priori worry about the validity of linear approximations when the
correction is large, it turns out that after adding the linear correction, the
structure we obtain is close to being Calabi-Yau. This ansatz is used in [27]
to describe the neck region for certain degenerations of Calabi-Yau metrics.
Our proposal here is that the same picture occurs for iterated collapsing of
G2-manifolds.

In this mechanism, the S1-bundle becomes degenerate over some discrim-
inant locus, but the global S1-symmetry is still not broken; the singularity
just corresponds to the fixed points of the S1-action.

Remark 4.2. Under additional hypotheses, we can incorporate wall crossing
phenomenon with two transversely intersecting walls l1, l2. The intersection
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l1 ∩ l2 corresponds to a K3 fibre containing holomorphic curves C1, C2 in the
class σ1, σ2 respectively. One needs to be careful that the two complex struc-
tures on the K3 surface corresponding to l1, l2 are different. We now assume
that C1 and C2 do not intersect; this is in general stronger than the homolog-
ical condition [σ1] · [σ2] = 0. We can then expect that the wall crossing across
l1, l2 behave independently. The reason is that the characteristic length scale
of the wall crossing in O(ε), which is much less than the characteristic scale
of the K3 fibre O(ε1/2), so the linear correction induced by the distributional
terms supported on C1, C2 have negligible influence on each other.

If C1 and C2 are intersecting, then the local situation is supposedly mod-
elled on a collapsing G2-manifold with S1-fibration over Euclidean C

3 whose
discriminant locus is the union of two intersecting special Lagrangian 3-planes.
This conjectural metric model is a folklore prediction of Atiyah and Witten
[3] and its unsolved existence problem is a major difficulty in the Foscolo-
Haskins-Nordström picture [12].

4.3. ALF fibration

Instead of the Taub-NUT metric, we can modify the distributional equation
to

(∂2
μω̃ + ε−1dDd

c
Dh) ∧ dμ = −d(dϑ) = −2π(k + 1)δC ,

so the solution is modified into⎧⎪⎪⎨
⎪⎪⎩
ψ ∼

√
−1(k+1)

4r η ∧ η̄,

h ∼ k+1
2r ,

r ∼
√
εh−1

0 distω̃D(·, C)2 + |μ|2,

The transverse structure to C matches with the asymptote of the Ak type
ALF gravitational instantons. Since ALF gravitational instantons in general
have nontrivial moduli, one expects internal degrees of freedom supported on
the discriminant locus to arise when we attempt to glue in an ALF fibration,
similar to the harmonic 1-forms appearing in Joyce and Karigiannis [18]. We
will be brief on issues already discussed extensively for ALE fibrations in the
physics literature [26, 4, 5, 17].

The basic situation is that we are given a 3-manifold with a given Rie-
mannian metric, and we wish to construct an approximate G2-metric on a
fibration over the 3-manifold with fibres diffeomorphic to Ak-type ALF space,
whose asymptotic behaviour near the fibrewise infinity is prescribed, and the
metric restricted to each fibre is approximately isomorphic to some choice of
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Ak-type ALF space with characteristic length scale O(ε) much smaller com-
pared to the length scale of the 3-manifold. Morever, for simplicity we assume
that the asymptotic circle length of the ALF fibres is approximately constant
over the region of the 3-manifold under consideration, so that the variation
of the ALF structures can be captured completely by period integrals. In our
case of interest the 3-manifold is the discriminant locus fibred over l with fibre
C of length scale O(ε1/2), and the asymptotic circle length is indeed almost
constant within length O(ε1/2), although not necessarily so over length scale
O(1).

Taking an orthonormal frame e1, e2, e3 on the 3-manifold, we can write
the ansatz for the G2-structure as

φ ∼ ε2(ωALF
1 ∧ e∗1 + ωALF

2 ∧ e∗2 + ωALF
3 ∧ e∗3) − e∗1 ∧ e∗2 ∧ e∗3,

where ωALF
i are fibrewise hyperkähler triples of Ak-type ALF metrics with

prescribed asymptote at fibre infinity. (Strictly speaking, to make sense of
ωALF
i on the total space, we need the data of a horizontal distribution; its

determination is similar to Donaldson’s proposal of adiabatic K3 fibration
[8]).

Now working in geodesic coordinates around a given point, in the adia-
batic limit ε → 0, the requirement for dφ = 0 leads to that the H2(ALF )-
valued 1-form λ =

∑
i[ωi]e∗i is closed, and the requirement for d ∗φ φ = 0

leads to d ∗ λ = 0 on the 3-manifold. To summarize, as long as the adiabatic
approximation holds and the fibre asymptotic behaviour stays approximately
constant, then the fibration is governed by an H2(ALF )-valued harmonic
1-form locally on the 3-manifold.

Thinking more globally on the 3-manifold, H2(ALF ) becomes a local
system, alternatively viewed as a bundle with a flat connection, and λ is
a harmonic 1-form valued in this bundle. Physicists view such data as an
Abelian solution to the BPS equation [17, section 2.3], also related to spectral
covers [26, section 2.4]. In our case of interest, the 3-manifold is itself fibred
over l with very small fibres C, and to leading order we get bundle valued
harmonic 1-forms over the Riemann surfaces C.

Some sources of difficulty are:

• In elementary examples of the 3-manifolds, typically there are no non-
trivial harmonic 1-forms. It has been suggested that we should relax
the harmonic 1-form condition along some collection of knots inside
the 3-manifold, and build in nontrivial monodromy for the local system
around these knots. The geometric situation seems to correspond to the
Kovalev-Lefschetz fibrations discussed by Donaldson [8], adapted to the
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ALF setting. It is also suggested that we may consider branched cov-
ers over the 3-manifold, so the harmonic 1-forms may be multivalued
[4, section 9]. Geometrically, the small ALF instantons are arranged in
several sheets.

• On a generic 3-manifold, it is commonly expected that when the
H2(ALF )-valued 1-form evaluated on a (−2)-curve has a zero, the G2-
manifold should develop an isolated singularity modelled on the Bryant-
Salamon cone over CP

3, producing chiral matter in the physics litera-
ture, but the metric local model seems difficult to construct rigorously.
The fact that our 3-manifold is itself highly collapsed somewhat alters
this picture. Thinking in terms of the dimensional reduction to Calabi-
Yau 3-fold, we suggest the following picture may be relevant for the
simplest case, and is accessible within current technology. Complex ge-
ometrically, consider the quadric cone

{z2
1 + z2

2 + z2
3 + z2

4 = 0} ⊂ C
4,

admitting a fibration

{z2
1 + z2

2 + z2
3 + z2

4 = 0} z4−→ C,

with fibres being affine quadric surfaces. These agree with the underly-
ing space of A1-type ALF gravitational instantons, so we can hope to
construct an ansatz Kähler metric asymptotic to an ALF fibration near
infinity. One expects that by a noncompact version of the Calabi conjec-
ture, the ansatz metric can be corrected into a Calabi-Yau metric. The
result of Hein and Sun [13] then suggests that the Calabi-Yau metric
is asymptotic to the Stenzel cone at the origin. Thus this Calabi-Yau
metric will furnish the transition between the asymptotic ALF fibration
picture and the local Stenzel cone.

• We also wish to know the long range behaviour over l. One expects
that the variation of the asymptotic circle length, and the moduli of
Abelian solutions of the BPS equation to play a role. Morever, assuming
the above Calabi-Yau model metric can be constructed, then naïvely
we have a codimension 6 singularity along l transversely modelled on
the Stenzel cone. Gao Chen [6] has studied the deformation theory of
such singularities, and found an infinite dimensional obstruction. The
expectation is that the codimension 6 singularity breaks up into isolated
codimension 7 singularities modelled on the cone over S3 × S3.
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Of course, these rather formidable difficulties only arise if k ≥ 1. The
k = 0 case with the Taub-NUT metric does not have internal moduli, so does
not exhibit these difficult yet rich phenomena.

4.4. Orientifold and boundary behaviour

We now discuss an analogue of the wall crossing phenomenon in section 4.2
involving orbifold behaviour, which will give rise to boundaries in S.

Since the wall crossing phenomenon has characteristic length scale O(ε),
the variation of the hyperkähler structure on K3 fibres is negligible. We will
assume the existence of a Z2-symmetry acting as a non-symplectic invo-
lution on the K3 surface

ρ∗ω̃D = ω̃D, ρ∗ΩD = −ΩD.

There is a classification for K3 surfaces with non-symplectic involutions in
terms of K3 lattice theory (cf. [20, section 3] for a short survey for the work
of Nikulin [25]). In particular, the fixed locus of ρ is a disjoint union of smooth
holomorphic curves Ci in D. This ρ extends to an action

ρ∗ω̃D = ω̃D, ρ∗h = h, ρ∗ΩD = −ΩD, ρ∗ϑ = −ϑ, ρ∗τ = τ, ρ∗μ = −μ.

In terms of the Apostolov-Salamon SU(3)-structure,

ρ∗ω = −ω, ρ∗Ω = Ω.

This behaves like an antiholomorphic involution. Similar to section 4.3, we
modify the distributional equation of section 4.2 to

(∂2
μω̃ + ε−1dDd

c
Dh) ∧ dμ = −d(dϑ) = −2π

∑
i

(2mi − 4)δCi ,

so the linear correction term is modified into
⎧⎪⎪⎨
⎪⎪⎩
ψ ∼

√
−1(2mi−4)

4r η ∧ η̄,

h ∼ 2mi−4
2r ,

r ∼
√
εh−1

0 distω̃D(·, Ci)2 + |μ|2.

The Z2 symmetry constrains [dϑ]. To see this, notice wall crossing predicts
that as μ increases across zero, 1

2π [dϑ] increases by
∑

i(2mi−4)[Ci] ∈ H2(K3).
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Compatibility with ρ∗ϑ = −ϑ then implies

(21) 1
2π [dϑ] =

{∑
(2 −mi)[Ci], μ < 0,∑
(mi − 2)[Ci], μ > 0.

Morever, we have the cohomological constraints

(22) ρ∗[ωy] = −[ωy], ρ∗
∂H

∂τ
= −∂H

∂τ
, ρ∗

∂H

∂μ
= ∂H

∂μ
,

where ∂
∂τ is tangent to l and ∂

∂μ is normal to l with respect to the induced
metric g on S.

We now take the Z2 quotient of the construction. The structure transverse
to Ci now matches precisely with the asymptote at infinity of Dmi type ALF
gravitational instantons. This suggests that we should glue in a family of
Dmi-type ALF gravitational instantons fibred over Ci in the Calabi-Yau
case (or the 3-manifold swept out by Ci over l in the G2-case). For m =
0, the D0-type ALF gravitational instanton is the Atiyah-Hitchin manifold,
which has no deformation except for scaling, so we expect that the matching
condition essentially determines this ALF fibration up to small error. For
m > 0, the Dm instantons have internal moduli, so we expect extra data to be
necessary in specifying the ALF fibration, in the same spirit as in section 4.3.

Remark 4.3. We saw in section 4.3 that zeros of harmonic 1-forms typi-
cally lead to difficult singularity problems. There is one case where we can
hope the D-type is better behaved: the D1-type corresponds to deformations
of the double cover of the Atiyah-Hitchin manifold. In particular, the zero
harmonic 1-form corresponds to taking a fibration by the double cover of
Atiyah-Hitchin manifold over the 3-dimensional discriminant locus, without
creating any singularity.

An important conceptual point is that unlike the Ak-type gravitational
instantons, the Dm-type can break the global S1-symmetry, as must be
the case for nontrivial compact G2-manifolds.

Another conceptual feature is the effect of Z2-quotient. While the quotient
results in codimension 4 orbifold singularity, this is resolved when we glue in
the ALF fibration, so M is still smooth. (In some cases such as mi = 2, we can
also choose to not glue in the ALF fibration, which will result in codimension 4
orbifold singularity on M). Nevertheless, the Z2-quotient identifies μ with −μ,
so instead of two components of S separated by l, there is only one component
with boundary l. Even though we ultimately want to compactify M into



1020 Yang Li

a closed manifold, we should allow S to be a manifold with boundary
instead.

Remark 4.4. It may be asked what happens when two boundary curves l

intersect. One possible guess is to introduce corners to the Riemann surface
with boundary, but the G2-geometry seems unclear in general.

4.5. Tian-Yau region

There is yet another mechanism to break the global S1-symmetry, again com-
ing from the dimensional reduction to Calabi-Yau 3-folds. This plays a promi-
nent role in [27] to describe the end regions of certain degenerating Calabi-Yau
metrics. More background can be found in [15, section 3].

Let Y be an n-dimensional Fano manifold, D a smooth anticanonical
divisor in Y , and denote Z = Y \ D. By adjuntion D is itself a Calabi-Yau
manifold. Fix a defining section S of D, and view S−1 as a holomorphic n-
form ΩZ on Z with a simple pole along D, whose Poincaré residue defines a
holomorphic volume form ΩD on D. Under suitable normalisation

n!
2n

∫
D

√
−1(n−1)2ΩD ∧ ΩD = (2πc1(K−1

Y |D))n−1.

By Yau’s theorem, there is a unique Calabi-Yau metric ωD in the class
2πc1(K−1

Y |D). The form −
√
−1ωD is the curvature form of a Hermitian met-

ric ‖·‖ on K−1
Y |D; we fix a smooth extension of the Hermitian metric to Z,

preserving the positivity of the curvature.
The form

ωZ = n

n + 1
√
−1∂∂̄(− log ‖S‖2)

n+1
n

is Kähler on a neighbourhood of infinity of Z. By a noncompact version of the
Calabi conjecture [28], one finds the Tian-Yau metric ωTY = ωZ +

√
−1∂∂̄φ

on Z asymptotic to ωZ at infinity, satisfying the Calabi-Yau condition

ωn
TY = n!

2n
√
−1n

2

ΩZ ∧ ΩZ .

The asymptotic geometry is identified as the Calabi ansatz. Complex
geometrically, the neighbourhood of D inside Y is well approximated by the
normal bundle of D, namely the total space of K−1

Y |D → D. The holomor-
phic volume form ΩZ is approximately d log ξ ∧ ΩD, where ξ denotes a local
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holomorphic variable on the fibres of K−1
Y |D → D. The asymptotic metric ωZ

is approximated by

ωCalabi = n

n + 1
√
−1∂∂̄(− log ‖ξ‖2)

n+1
n

using the Hermitian metric on K−1
Y |D. This setup is invariant under the S1-

action on the fibres of the line bundle. The moment map is

μ = (− log ‖ξ‖2)1/n,

and the Calabi ansatz can be written in the framework of section 2.6 as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωCalabi = ϑ ∧ dμ + μωD,

ΩCalabi = d log ξ ∧ ΩD = −(n2 (− log ‖ξ‖)(n−1)/ndμ−
√
−1ϑ) ∧ ΩD,

dϑ = −ωD,

hCalabi = n
2 (− log ‖ξ‖)(n−1)/n = n

2μ
n−1.

For our purpose the case of interest is n = 3 and D = K3. Then the
above description agrees with Example 2.10, up to suitable scaling factors.
The significance is that at least in the dimensionally reduced setting, up to
rescaling the asymptote of the Tian-Yau metric matches the adiabatic ansatz
with

H = [Re ΩD]τ + 1
2[dϑ]μ2

(compare the end of section 2.6), so that by gluing in the Tian-Yau metric we
can desingularize the μ = 0 boundary locus of the adiabatic ansatz where h =
0. The characteristic length scale of the Tian-Yau bubble region is O(ε2/3).
Thus we can at least hope that the Tian-Yau regions contribute to another
type of boundary for S. More evidence is needed to test this gluing proposal,
since the weighted maximal submanifold equation may have poor regularity
near the h = 0 boundary, caused by the degeneracy of ellipticity.

4.6. Global topology

We now discuss some topology in order to set up a global version of the
weighted maximal submanifold equation. The base S will be a Riemann sur-
face with boundary, with isolated interior points Ssing over which the K3
fibres are supposed to develop Lefschetz singularities. The complement of
these points in S is denoted Ssm, where the K3 fibres will be smooth. The
interior of S can also contain a number of walls, which are unions of disjoint
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circles, not touching the boundary or Ssing. (These requirements are meant
to be tentative, presumably relaxable if we have better understanding of local
metric models.) The precise location of the walls should not be fixed a priori,
and behave instead as in a free boundary problem. The topological setup will
come directly from abstracting the cohomological/lattice theoretic aspects of
the Lefschetz fibration, wall crossing, and the orientifold boundary behaviour.
It is conceivable that other local mechanisms could be incorporated into this
formalism.

First we consider the smooth K3 fibration (M/S1)sm → Ssm ⊂ S, and
seek cohomological descriptions of the adiabatic solution to the Apostolov-
Salamon equation. The fibration induces an H2(K3,Z) local system Γ over
the smooth locus Ssm. The symplectic form ω defines a constant section [ωy]
of ΓR = Γ ⊗Z R.

On a local chart Uα, the information of h1/4Im Ω is encoded by a polarized
positive section Hα : Uα → H2(K3), determined up to constant. On the
overlaps of two charts Uα and Uβ, the difference Hα −Hβ is locally constant.
The collection {Hα −Hβ} defines a Cech cocycle in H1(Ssm, H

2(K3)). More
invariantly, the Leray spectral sequence gives

H3((M/S1)sm) � H1(Ssm,ΓR)

and the class of h1/4Im Ω is mapped to a class in H1(Ssm,ΓR). Via the cocycle,
we can regard the collection {Hα} as defining a section H of an affine bundle
Γ̃R, whose associated vector bundle is ΓR.

The class 1
2π [dϑ] is viewed as a discontinuous section of Γ with precise

jumping behaviours across the walls. The boundary value of [dϑ] is prescribed
in (21). More precisely, we equip each boundary circle of S with an involution
ρ∗ acting on the fibres of Γ|S1 , which is the cohomological version of non-
symplectic involutions. This ρ∗ determines the class of the components Ci

of the fixed point locus of the non-symplectic involution. With additional
choice of integers mi we prescribe [dϑ] according to the formula (21). On the
complement of the walls, the class [dϑ] is locally constant. Each (oriented)
wall is associated with a class σ ∈ Γ orthogonal to [ωy], and 1

2π [dϑ] jumps by
σ across the wall.

In each local chart Hα is a polarized positive section, namely

Hα · [ωy] = 0, h = 2Hα · [dϑ] + const(α) > 0,

g̃ = ∂Hα

∂yi
· ∂Hα

∂yj
dyidyj Riemannian.
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The constants here arise from the affine ambiguity of Hα. The gradient of
Hα should be continuous across the wall, and h should be independent of the
charts as it is related to the circle length. To be compatible, we must require
along the wall

Hα · σ = const(α).

The precise position of the walls are thus tied up with the unknown H, and
must be solved alongside H rather than prescribed a priori. Furthermore,
over Ssm there are no singular K3 fibres by assumption, so cohomologically
we require there is no excess (−2)-class for H over Ssm.

We now turn to the boundary of S. For simplicity we only consider ori-
entifold type boundary described in section 4.4. The boundary condition is
specified by (22), namely we constrain the tangential derivative of H to the
−1 eigenspace of ρ∗, and the normal derivative of H to the +1 eigenspace of
ρ∗, where the normal direction is with respect to the metric induced from im-
mersion in H2(K3). In particular, in some preferred local chart H restricted
to the boundary lands in the −1 eigenspace. These are a mixture of Dirichlet
and Neumann boundary conditions of complementary dimensions.

Next we deal with the singular K3 fibres. We shall assume that the K3
fibration is Lefschetz. To incorporate the Picard-Lefschetz monodromy, we
consider S as an orbifold locally modelled on C/Z2 = C/ι near p ∈ Ssing, and
require that Γ̃R is a flat orbifold affine bundle. The local sections of Γ̃R in an
open ball Uα = Ũα/ι around p are concretely written in some chart as maps
H̃α : Ũα → H2(K3) satisfying an equivariance condition

H̃α(ι(z)) = τα(H̃α(z)), τα(v) = v + (δ · v)δ, z ∈ Ũα,

where δ is the (−2)-class of the vanishing sphere, orthogonal to [ωy]. The
class [dϑ] is required to be monodromy invariant. To incorporate Lefschetz
fibrations into the notion of polarized positive sections, we require that around
p, up to the ambiguity of an affine constant,

H̃α(z) = v1Re (z2) + v2Im (z2) + Im (bz3)δ + O(z4),

where v1, v2 ∈ H2(K3) satisfy

vi ⊥ [ωy], vi ⊥ δ, (vi · vj) = λδij , λ > 0,

and b ∈ C is nonzero, corresponding to the nondegeneracy of the Lefschetz
singularity. The function h is required to be positive and at least C1.
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The problem to solve the global weighted maximal submanifold
equation means to find the configuration of the walls and boundaries, such
that the PDE (10) is satisfied on the complement of the walls and bound-
aries, the mixed boundary condition is satisfied on ∂S, the jumping behaviour
across the walls and the local behaviour near the Lefschetz singularities are
as prescribed, and there are no excess (−2)-classes so that no other singular
K3 fibres can appear.

The topological consistency of our setup has an interesting consequence
closely related to charge conservation (cf. section 2.2). Recall that the
walls carry Γ-valued sections σ prescribing the jumping of [dϑ], so define Γ-
valued 1-cycles. Similarly with the boundary components of S, carrying the
Γ-valued 1-cycles coming from (21). We claim the sum of all these Γ-valued 1-
cycles equals zero in homology. This is because [dϑ] is locally constant in each
domain Si bounded by walls and boundaries, and when we take the boundary
of

∑
i[dϑ]Si, the wall contributions cancel in pairs to yield the desired linear

relation.

4.7. Variational viewpoint

The local version of the weighted maximal submanifold equation has the
interpretation as the critical point condition of a weighted area functional.
We now fix all the global topological data, and compute formally the first
variation of the weighted area functional

Aw(H) =
∫
S
h1/2√det g̃dy1 ∧ dy2,

allowing for the deformation of the walls and boundaries subject to the various
boundary conditions. The local discussion in section 2.4 already shows that
the weighted maximal submanifold (10) holds for critical points, so the task
here is to examine boundary terms.

In each chamber Si bounded by some walls and boundaries, given an
arbitrary variation f = δH which is a local section of ΓR, and assuming (10),
the contribution to δAw is the boundary line integral

∫
∂Si

h1/2 ∂H

∂ν
· fdl,

where ∂H
∂ν denotes the normal derivative with respect to the induced metric,

and dl denotes the induced line element on ∂Si. Notice the affine ambiguity
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of H is eliminated in taking the derivative. The Lefschetz singularities occur
over isolated points, and give no contribution to these integrals.

The boundaries of Si can be the walls or the boundaries of S. Since f, h
and the gradient of H are required to be continuous across the walls, the wall
contributions cancel in pairs. As for the boundary of S, our mixed boundary
condition requires the normal derivative of H to be in the +1 eigenspace of the
cohomological involution ρ∗, and in some preferred chart the boundary value
of H lands in the −1 eigenspace. For the first variation to be compatible with
the Dirichlet part of the boundary conditions, the boundary value of f needs
to land in the −1 eigenspace. But the two eigenspaces of ρ∗ are orthogonal,
so f is orthogonal to ∂H

∂ν on the boundary of S, hence

∑∫
∂Si

h1/2 ∂H

∂ν
· fdl = 0.

This shows the boundary conditions are compatible with the critical point
interpretation.

4.8. Open questions

In the program to ultimately construct new compact examples of G2-manifolds,
there are 3 types of questions to be addressed:

• Find consistent topological data, involving the Riemann surface, the
topological configuration of walls, boundaries and singularities, the affine
bundle Γ̃R, the lattice theoretic data on the boundary and the walls, the
polarization class [ωy], and the first Chern class [dϑ] in each chamber.
These data should allow for the existence of a global polarized posi-
tive section H. This problem has a flavour analogous to K3 matching
problems involved in twisted connected sum constructions.

• Solve a free boundary type problem to find a solution H to the global
weighted maximal submanifold equation, along with the position of the
walls. There should be no excess (−2)-classes, so the only singular K3
fibres are those nodal fibres of the Lefschetz fibration. This step deals
with the nonlinearity of the Apostolov-Salamon equation, and the vari-
ational interpretation is likely useful. One also needs to develop a good
regularity theory for the weighted maximal submanifold equation; most
of this difficulty comes from the walls and boundaries, where the jump-
ing behaviour of [dϑ] indicates that H cannot be smooth.

• Perform a gluing construction to construct the G2-metric, taking into
account the various geometric ingredients. As discussed, this combines
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features of many known constructions, but there are still quite substan-
tial challenges. For instance, one needs to develop a good deformation
theory for the local G2-metrics on the ALF fibrations.

Some other natural questions include:

• Are these potential examples deformation equivalent to examples aris-
ing from the Foscolo-Haskins-Nordsröm style fast circle collapsing pic-
ture, by changing the cohomological class of the G2 3-form?

Remark 4.5. Most of our geometric ingredients have fast collapsing
analogues. For instance, the wall crossing is analogous to the adiabatic
special Lagrangians in section 2.2, and the orientifold locus is analogous
to the fixed locus of an antiholomorphic involution in the Calabi-Yau
3-fold base.

• How can one find new complete non-compact examples? We remark
that a large part of our formal picture carries over if we replace K3
surfaces by ALE spaces.

• How about the special submanifolds and gauge theory on these potential
examples?

• Can one incorporate more local mechanisms and thereby relax the ten-
tative topological hypotheses (such as the disjointness of the walls and
the boundary components, and the no excess (−2)-class condition)? As
they stand, these topological conditions are rather restrictive.

• On the other hand, is there any a priori restriction on the topological
complexity no matter how much one relaxes the topological hypotheses?
In particular, what is the topological significance of the positivity of the
Bakry-Émery Ricci curvature?

5. Spin(7) analogues

We now sketch a very analogous ansatz in the context of Spin(7) geometry.
This involves a small circle bundle over a 7-dimensional manifold with a closed
G2-structure, admitting a K3 fibration over a 3-fold base. This construction
dimensionally reduces to our G2 case, when the 8th dimension splits off. From
a different perspective, it is a generalization of Donaldson’s adiabatic coasso-
ciative K3 fibration proposal, which appears when the small circle bundle is
almost flat.
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5.1. Small circle limit of Spin(7) manifolds

The Foscolo-Haskins-Nordström picture has an analogue on Spin(7)-manifolds
[11]. The Spin(7) 4-form Φ with S1-symmetry can be described in terms of a
G2-structure φ̄ on the 7-fold base, together with the S1 connection ϑ, and a
positive function h measuring the inverse squared length of the Killing vector
field:

(23) Φ = εϑ ∧ φ̄ + ψ̄, ψ̄ = h2/3 ∗φ̄ φ̄, g = ε2h−1ϑ2 + h1/3gφ̄,

where ∗φφ̄ and gφ̄ are the 4-form and the metric associated to the G2-structure
φ̄ on the 7-fold. The torsion free condition is dΦ = 0, or equivalently

dφ̄ = 0, dψ̄ + εdϑ ∧ φ̄ = 0.

Without any fine tuning, the formal limit as ε → 0 is that φ̄ is a torsion
free G2-structure, and h ≈ const. To see the first order correction, we write
h = 1+εh. Since dφ̄ = 0, we know d∗φ̄ φ̄ lies in the 14-dimensional component
of Ω5, whence we deduce from dψ̄ + εdϑ ∧ φ̄ = 0 that to leading order

π7(dϑ ∧ φ̄ + 2
3dh ∧ ∗φ̄φ̄) = 0.

This is recognized as the G2-monopole equation. The analogue of Dirac pole
singularity along special Lagrangians inside the Calabi-Yau 3-fold base, is
coassociative manifolds inside the G2-manifold base.

5.2. Iterated fibration: fast circle collapsing

Now we consider the 7-fold with the closed G2-structure φ̄ as admitting a
collapsing coassociative K3 fibration in its own right, over a 3-dimensional
base B with coordinates y0, y1, y2. Writing out in the type decomposition of
forms,

(24)
{
φ̄ = t2(ω̄0dy0 + ω̄1dy1 + ω̄2dy2) + λ̄,

ψ̄ = h2/3(t4μ̄− t2(Θ̄0dy1dy2 + Θ̄1dy2dy0 + Θ̄2dy0dy1)).

Here modulo lower order terms, ω̄i and Θ̄i are horizontal-vertical type (0, 2)
forms, λ̄ = −λdy0dy1dy2 for λ > 0, and μ̄ has horizontal-vertical type (0, 4).
The parameter 0 < t 
 1 controls the K3 collapsing rate. The coassociative
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condition φ̄|K3 = 0 is encoded in the ansatz. The G2-structure imposes a
number of linear algebraic constraints:

(25)
{
μ̄ = λ−2/3 det1/3(1

2 ω̄a ∧ ω̄b),
ω̄i ∧ Θ̄j = 2λ1/3δij det1/3(1

2 ω̄a ∧ ω̄b) = 2λδijμ̄.

This setting dimensionally reduces to the G2-version of iterative collapsing
picture in section 2.2 when the R-variable y0 splits off. Explicitly, the relation
to the Apostolov-Salamon SU(3)-structure is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω̄0 = ωy, Θ̄0 = h1/3ωy,

ω̄1dy1 + ω̄2dy2 = −h1/4Im Ω,

λ̄ = −ωS ∧ dy0,

Θ̄2dy1 − Θ̄1dy2 = −h1/4Re Ω,

μ̄ = 1
2h

1/3ω2
y ,

so that⎧⎪⎪⎨
⎪⎪⎩

Φ = dy0 ∧ (εϑ ∧ ω + h3/4Re Ω) + (−εh1/4ϑ ∧ Im Ω + 1
2hω

2),
φ̄ = −ωdy0 − h1/4Im Ω,

ψ̄ = −h3/4Re Ω ∧ dy0 + 1
2hω

2.

Returning to the Spin(7) story, the fast circle collapsing case is ε 
 t2 

1 as before. To zeroth order, the circle bundle is invisible, and we only see the
geometry of the 7-manifold with an approximately torsion free G2-structure
admitting a collapsing coassociative K3 fibration, described as in Donaldson’s
proposal [8] by a maximal submanifold in H2(K3).

5.3. Iterative fibration: fine tuned collapsing

Now we consider the fine tuned collapsing ε = t2, and try to encode it into
adiabatic data.

• Since dφ̄ = 0, the ω̄i restricted to K3 fibres are closed, so defines a
‘hypersymplectic triple’. The function λ is to leading order constant on
fibres. Since we also have dψ̄ + εdϑ ∧ φ̄ = 0, by imposing to leading
order h is constant on K3 fibres, we get that Θ̄i are approximately
closed on fibres. Now Θ̄i and ω̄i are two bases for the anti-self-dual 2-
forms on the K3 fibres, so they must be fibrewise related to each other
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by linear transformations. This shows to leading order the K3 fibres are
hyperkähler, even though ω̄i are not orthonormal in general. We write

ḡij =
∫
K3

ω̄i ∧ ω̄j .

By (25), the linear transformations can be determined cohomologically
as

(26) Θ̄i = 2λḡikω̄k

∫
K3

μ̄.

• From dφ̄ = 0 mod dy0 ∧ dy1 ∧ dy2 terms, we have the integrability
condition

∂

∂yi
[ω̄j ] = ∂

∂yj
[ω̄i],

so over a local base there is a map H : B → H2(K3), such that
[ω̄i] = −∂H

∂yi
. Here the minus sign is for the compatibility with our

dim reduction to the G2-case in section 5.2. The map H is a positive
section in the sense that the induced metric on B is Riemannian.

• From dψ̄ + εdϑ ∧ φ̄ = 0 mod dyi ∧ dyj terms, we have

∂

∂yi
[h2/3μ̄] = −[dϑ] · [ω̄i] = ∂

∂yi
([dϑ] ·H) ∈ H4(K3).

Thus
h2/3[μ̄] = [dϑ] ·H + const

Up to adjusting H by an additive constant, we can arrange

(27) h2/3[μ̄] =
{

[dϑ] ·H, [dϑ] �= 0,
const, [dϑ] = 0.

• Since dφ̄ = 0, the 7-dimensional component of d ∗φ̄ φ̄ vanishes, i.e.

d(ψh−2/3) ∧ ιX φ̄ = 0, ∀X.

Using dψ = −εdϑ ∧ φ̄,

(εhdϑ ∧ φ̄ + 2
3 ψ̄ ∧ dh) ∧ ιX φ̄ = 0.



1030 Yang Li

Substituting X the horizontal lift of ∂
∂yi

, and the component formulae
(24) for the Spin(7) structure, and noticing ω̄i ∧ Θ̄i = 2λμ̄, we derive

(28) h1/3dϑ ∧ ωi = μ̄
∂h

∂yi
.

Now the formula μ̄ = det1/3(ω̄a ∧ ω̄b)λ−2/3 indicates that μ̄ is up to a
fibrewise constant the hyperkähler volume form on the K3, so the above
equation implies dϑ restricted to the K3 fibres are the harmonic 2-
forms in [dϑ] up to the leading order. Morever, taking the cohomology
classes of (28), and comparing with (27), we get

∂

∂yi
(h−1/3[μ̄]) = 0,

or equivalently
h−1/3[μ̄] = const.

The value of this constant can be prescribed, up to a global scaling of
the Spin(7) 4-form. The normalisation consistent with our G2 story is

(29)
∫
K3

μ̄ = 1
2h

1/3.

(In that dim reduction, this normalisation corresponds to
∫
K3[ωy]2 = 1.)

Substituting back into (27), we recover

(30) h =
{

2[dϑ] ·H, [dϑ] �= 0,
const, [dϑ] = 0.

Notice the positivity of h is an extra a priori requirement on H.
• From the hyperkähler K3 condition,

ω̄i ∧ ω̄j = Qijμ̄,

for some fibrewise constant matrix Qij to leading order. The coefficient
Qij is determined by integrating over the K3, so that

Qij = ḡij(
∫
K3

μ̄)−1.

Thus

det1/3( ω̄a ∧ ω̄b

2 ) = 1
2det1/3(Q)μ̄ = det1/3(ḡ)

2
∫
μ̄

μ̄.
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Comparing with μ̄ = det1/3( ω̄a∧ω̄b

2 )λ−2/3, we have

λ2/3 = det1/3(ḡ)
2
∫
μ̄

= det1/3(ḡ)
h1/3

hence

(31) λ = det1/2(ḡ)h−1/2.

Now our previous formula (26) simplifies to

(32) Θi = λh1/3ḡikω̄k = det1/2(ḡ)h−1/6ḡikω̄k.

By this stage we have successfully expressed all quantities to leading
order in terms of H.

• By looking at the horizontal-vertical (3,2) component of dψ̄+ εdϑ∧ φ̄ =
0, we obtain to leading order

∑
i

∂i(h2/3[Θ̄i]) + λ[dϑ] = 0.

Substituting in the formulae for Θ̄i and λ, we obtain

(33)
∑
i

∂i(h1/2det1/2(ḡ)ḡik∂kH) = det1/2(ḡ)h−1/2[dϑ],

where h is related to H by (30). This is the weighted maximal sub-
manifold equation we saw previously, except now over a 3-dimensional
manifold. For instance, the variational formulation in section 2.4 holds
verbatim in this 3-dimensional case.

Morever, given a solution of the weighted maximal submanifold equation
over a local base B, a procedure closely analogous to section 2.3 reconstructs
an approximately torsion free Φ, so that the above formulae hold to leading
order. In the special case [dϑ] = 0, this agrees with Donaldson’s proposal [8].

5.4. Global discussions

The local compactification mechanisms in the G2-case have natural analogues
in the Spin(7) case:
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• The analogue of the Lefschetz fibration is the Kovalev-Lefschetz singu-
larity discussed in detail in Donaldson’s proposal [8]. This is basically
a parametrized version of the Lefschetz singularity along a curve in
the 7-fold, projecting down to a knot inside the 3-dimensional base B.
The Picard-Lefschetz monodromy can be encoded into affine orbifold
bundles.

• The wall crossing phenomenon has the same transverse behaviour, the
difference being that the walls are now surfaces. The walls are still char-
acterized by H ·σ = const where σ ∈ H2(K3) is the jumping of the first
Chern class. This condition is intimately related to adiabatic coassocia-
tive submanifolds in collapsing G2-manifolds, just as our previous wall
crossing story relates to adiabatic special Lagrangians. In the simplest
case, the walls are disjoint, but the knots in B coming from the projec-
tion of the Lefschetz singular locus should be allowed to intersect the
walls in B. Inside the 7-fold, the curve of Lefschetz singularities generi-
cally stays disjoint from the 4-dimensional discriminant locus associated
with wall crossing, even if their projections in B intersect.

• Similarly, the boundary orientifold behaviour generalizes to the Spin(7)
case.

Thus the global formulation of the weighted maximal submanifold equa-
tion makes sense for the Spin(7) case, just like in the G2 case described in
section 4.6. In the special case of [dϑ] = 0 without any walls or boundaries, it
recovers Donaldson’s proposal. The topological situation is now much richer
than the 2-dimensional case. It involves a local system with singularities along
knots, over a 3-manifold possibly with boundary; the interplay between the
Spin(7)-geometry and the 3-manifold topology seems well worth exploring.

Appendix. A free boundary problem

To compactify the iterated fibration ansatz, we have encountered a free bound-
ary type problem of the weighted maximal equation. The purpose of this sec-
tion is to formulate a version of the free boundary problem which may be
of some PDE theoretic interest. The reader is warned that such an attempt
vastly oversimplifies the intricate geometric issues: we will ignore Lefschetz
fibrations, the Tian-Yau regions, the integral structure of the K3 lattice, the
excess (−2)-classes, the lattice theoretic questions for the existence of non-
symplectic involutions, the existence and the intersection conditions on the
holomorphic curves in the K3 surface, and the internal structure of ALF fi-
brations. Another major departure from geometry, is that the PDE makes
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sense in general dimensions, not just dimension two or three. On the other
hand, we will keep some aspects of wall crossing and the orientifold boundary
behaviour.

Let S be an n-manifold with boundary (and possibly with corners), and a
finite collection of codimension one C1-submanifolds called walls, which may
have intersections with each other or with the boundary in codimension at
least two. There is a vector bundle H over S with fibre R

n,m whose signature
is (n,m), and whose transition functions are locally constant, and an affine
bundle H whose associated vector bundle is H. Concretely, a section H of H
is represented by a collection of local sections Hα : Uα → H over local charts
Uα, such that Hα −Hβ is locally constant on overlaps, and the cocycle data
essentially specifies the affine bundle. Notice the derivatives of H naturally
take place in H.

Each open domain in S delineated by the walls and the boundaries is
equipped with a locally constant section γ of H. To a global C1 section H of
H we associate a function h : S → R, via

h = 2Hα · γ + const(α).

The constants must be compatible with the cocycles, so that h is well defined
independent of α, and we demand h is continuous across the walls. In particu-
lar, if γ, γ′ are the locally constant classes on the two sides of a wall, then the
wall itself must satisfy Hα · (γ−γ′) = const. As such, the position of the walls
are tied to the unknown H, and their determination is part of the problem,
not part of the prescription. As such these walls are ‘free boundaries’. The
section H of H is called a polarized positive section, if

h > 0, ḡ =
∑
i,j≤n

∂Hα

∂yi
· ∂Hα

∂yj
dyidyj is Riemannian.

Each boundary is equipped with a locally constant involution ρ acting
on the fibres of H, with eigenvalues ±1. For any open domain adjacent to
the boundary component, we require γ is in the (−1)-eigenspace of ρ. We
require a mixed Dirichlet-Neumann type boundary condition on ∂S: the tan-
gential derivative of H along ∂S lies in the (−1)-eigenspace, and the normal
derivatives with respect to the induced metric ḡ lies in the (+1)-eigenspace.

Now the free boundary problem is the following: find the topologi-
cal data as above, and a polarized positive section H of H with global C1-
regularity, and C∞-regular away from the walls and the boundaries, satisfying
the free boundary condition along the walls and the mixed Dirichlet-Neumann
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condition along ∂S, such that the weighted maximal submanifold equation
holds classically in the C∞-locus∑

i

∂i(h1/2det1/2(ḡ)ḡik∂kH) = det1/2(ḡ)h−1/2γ.

Remark A.1. The vector bundle H is the orthogonal complement of [ωy] in
ΓR from section 4.6. The signature of interest is (2, 19) in the G2 case, and
(3, 19) in the Spin(7) case. The affine bundle is the orthogonal complement
of [ωy] in Γ̃R. The γ here is the same as [dϑ], and its jump across walls is
related to the (−2)-curves. The ρ here corresponds to ρ∗ of a non-symplectic
involution in section 4.4. The intersection of the walls and the boundaries,
and possibly triple junctions of walls, seem natural from the PDE perspective,
but we do not understand well what it means in G2 or Spin(7) geometry. If
the regularity of H is too weak, for instance if it fails to be C1, it may
be geometrically nonsensical. For the variational viewpoint, see section 2.4
and 4.7.
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