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Solution of two-dimensional optimal control problem
using Legendre Block-Pulse polynomial basis
S. M. Hosseini, F. Soltanian, and K. Mamehrashi

Abstract: In this paper, a numerical method is presented for solv-
ing a class of two-dimensional optimal control problems using the
Ritz method and orthogonal Legendre block-pulse functions.

The most important reason for using the Ritz method is its high
flexibility in boundary and initial conditions. First, the state and
control vectors are approximated as a series of hybrid orthogonal
Legendre Block-Pulse functions with unknown coefficients. Then,
by substituting these approximations into cost functional, we de-
rive an unconstrained optimization problem. By applying optimal-
ity conditions for this problem, a system of algebraic equations is
obtained. Solving this system, the unknown coefficients and con-
sequently the state and control functions are obtained. At last the
convergence of the proposed method is discussed and the accuracy
and efficiency of the proposed method is demonstrated in compar-
ison with other methods by providing several examples.
Keywords: Two-dimensional optimal control, Ritz method, Leg-
endre block-pulse, numerical method.

1. Introduction

Optimal control problems, are very important category of optimization prob-
lems. A control problem is usually expressed by two types of variables, namely
control and state variables. In optimal control problems, both control and
state variables are unknown. The purpose of such problems is to determine
the control signals as well as the corresponding path, in such a way that it
applies to the existing physical constraints while maximizing or minimizing
the desired cost functional. Because the structure of most optimal control
problems is complex, no exact solution can be obtained for them, so numeri-
cal methods play an important role in solving these problems. In recent years,
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researchers have used different methods to obtain approximate solutions to
such problems, which will be mentioned herein.

Orthogonal functions have received special attention of researchers for
the analysis of optimal control problems [1, 2, 3, 4]. In [5], Marzban has also
proposed a method for analyzing and solving optimal control systems using or-
thogonal hybrid functions. The authors of [6], proposed a method for solving a
class of Volterra Fredholm integral equations using the Bernstein operational
matrix. In [7], Ebadian investigated the applications of block pulse functions
for solving the Volterra integral equations using functional matrices. In na-
ture, many quantities are functions of two independent variables and two-
dimensional systems and signals are used to model phenomena that have two
independent variables. Accordingly, the importance and necessity of examin-
ing two-dimensional optimal control systems is Comprehensible. Many con-
trol systems are described by continuous-temporal dynamic equations. Due to
the lack of analytical solutions to the two-dimensional optimal control prob-
lems of continuous-temporal systems, numerical and semi-analytical methods
are suggested to solve a number of such problems. Numerical computational
methods which are currently used in science and engineering are very diverse
and a specific solution can be provided for each specific problem or special
conditions. Since it is very difficult and in some cases impossible to obtain
the solution to the analysis of these types of problems, semi-analytical and
numerical methods are used for solving them. In the following, some studies
in these systems are presented.

Two-dimensional systems were first introduced as part of image pro-
cessing, and, their spatial models had been proposed by Roesser [8]. In [9],
Mamehrashi proposed a method for solving a range of two-dimensional control
problems using the Ritz-Galerkin method. Tsai transformed the Roesser type
continuous-temporal optimal control problem with a quadratic cost function
into a discrete two-dimensional control problem in [10]. In recent years, or-
thogonal block-pulse functions have been used to solve many optimal control
problems, examples of which can be seen in the articles [11, 12, 13, 14, 15]. In
[16, 17], Nemati used the Ritz method to solve a series of one-dimensional and
two-dimensional control problems, respectively. The two-dimensional frac-
tional optimal control problems have been investigated by Ordokhani in [18].

In this paper, we present a numerical method for solving a class of two-
dimensional optimal control problems (2DOCP).

Consider the following controllable and observable two-dimensional sys-
tem

(1) �(x, t, u(x, t), z(x, t), zx(x, t), zt(x, t), zxx(x, t), zxt(x, t)) = 0,
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with boundary conditions z(0, t) = s1(t), z(x, 0) = s2(x).
The purpose of this paper is to determine the control vector u(x, t) and

the corresponding state vector z(x, t) such that the following cost functional
is minimized according to constraints (1)

J =
∫ tf

0

∫ xf

0
℘(x, t, u(x, t), z(x, t))dxdt.(2)

The proposed method is based on the approximation of state and control vari-
ables through a combination of Block-Pulse functions, Legendre polynomials
and the Ritz method. Due to the flexibility of the Ritz method in the face
of initial and boundary conditions, we used this approach in the proposed
method. In calculating the dual integral in the cost functional, we have used
the Gaussian quadrature rule. By substituting the approximated functions
into constraints of the problem and using the suggested method, the optimal
control problem is reduced to an unconstrained optimization problem that
can be easily solved. This article is organized as follows: Section 2 introduces
the Ritz method and the hybrid Legendre Block-Pulse functions. In Sections
3 and 4, we describe the proposed numerical method and discuss the conver-
gence of the method, respectively. In Section 5, the efficiency and accuracy
of the proposed method are examined by providing three examples. Also, a
conclusion is given in Section 6.

2. Preliminaries

In this section we briefly explain the Ritz method. Also, we recall the hybrid
functions of Block-Pulse and Legendre polynomials and some properties of
them.

2.1. Ritz method

The Ritz method is a simple and efficient way to approximate the solution
of an optimization problem. In this method, the solution of the functional
minimization problem

(3) min L[y(x)] =
∫ b

a
f(x, y, y′)dx,

with boundary conditions

y(a) = a0 , y(b) = b0,
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is considered as follows

(4) yn(x) ≈
n∑

i=1
ciϕi(x) + ϕ0(x).

We must select the basic functions ϕi(x) that satisfy the following conditions

ϕ0(a) = a0, ϕ0(b) = b0,

ϕi(a) = ϕi(b) = 0, i = 1, 2, ..., n.(5)

By substituting yn(x) into the problem (3) and solving it, the unknown coef-
ficients and consequently the solution yn(x) are obtained.

Now, suppose that ϕi(x) = k(x)pi(x), so Eq. (4) can be written as

(6) yn(x) ≈
n∑

i=1
k(x)cipi(x) + ϕ0(x),

where, k(x) satisfies the homogeneous conditions and pi(x), i = 1, 2, ..., n are
Legendre polynomials.

Using the Ritz method to approximate the function z(x, t), Eq. (6) is
written as

(7) zmn(x, t) =
m∑
i=0

n∑
j=0

k(x, t)cijpi(x)pj(t) + w(x, t),

where k(x, t) and w(x, t) satisfy the homogeneous and boundary conditions,
respectively [20].

2.2. Two-dimensional block-pulse functions

A set of two dimensional Block-Pulse functions (2DBPFs) Φi1,i2(x, t) for x ∈
[0, T1], t ∈ [0, T2] is defined as follows

Φi1,i2(x, t) =

⎧⎨
⎩ 1 x ∈

[(i1 − 1)T1

m1
,
i1T1

m1

)
, t ∈

[(i2 − 1)T2

m2
,
i2T2

m2

)
0 otherwise

2DBPFs are disjoined with each other

Φi1,i2(x, t)Φj1,j2(x, t) =
{

Φi1,i2(x, t) i1 = j1 and i2 = j2
0 otherwise
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and are orthogonal

∫ T1

0

∫ T2

0
Φi1,i2(x, t)Φj1,j2(x, t)dxdt =

{
h1h2 i1 = j1 and i2 = j2
0 otherwise

in the region x ∈ [0, T1) and t ∈ [0, T2), where

i1, j1 = 1, 2, ...,m1, i2, j2 = 1, 2, ...,m2, h1 = T1

m1
, h2 = T2

m2
.

Also 2DBPFs are complete when both m1 and m2 approach infinity [22].
Since each 2DBPF takes only one value in its subregion, the 2DBPFs can

be expressed as
Φi1,i2(x, t) = ϕi1(x)Ψi2(t),

where ϕi1(x) and Ψi2(t) are one-dimensional Block-Pulse functions related to
the variables x and t, respectively.

2.3. Hybrid function of block-pulse and Legendre polynomials

The two-dimensional Legendre Block-Pulse function is defined as follows

Ψi1j1i2j2(x, t) =

(8)

⎧⎪⎨
⎪⎩
Lj1(2N1x

xf
− 2i1+1)Lj2(2N2t

tf
−2i2+1):(x, t)∈ [ i1−1

N1
xf ,

i1
N1

xf ] × [ i2−1
N2

tf ,
i2
N2

tf ]

0 otherwise

where, i1 = 1, 2, ..., N1, i2 = 1, 2, ..., N2 and j1, j2 = 0, 1, ...M − 1 are the
order of Block-Pulse functions and Legendre polynomials, respectively and
Lj1(x), Lj2(t) are the well known Legendre polynomials.

3. Proposed numerical method

In this section, we present a numerical method based on approximating the
state and control variables to solve a class of 2DOCPs.

Consider the following problem:

(9) Min J =
∫ tf

0

∫ xf

0
℘(x, t, u(x, t), z(x, t))dxdt,
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subject to the dynamical system,

(10) �(x, t, u(x, t), z(x, t), zx(x, t), zt(x, t), zxx(x, t), zxt(x, t)) = 0,

with the following boundary conditions z(0, t) = s1(t), z(x, 0) = s2(x).
Suppose that Q ⊂ PC2([0, xf ]× [0, tf ]) is a set of all continuous piecewise

functions that satisfy the boundary conditions. The cost functional J is a
function of z(x, t) and u(x, t), so problem (9)-(10), can be considered as a
problem of minimizing the value of J on Q. Suppose QN1N2(M−1)(M−1) ⊂ Q

is a set of the Legendre Block-Pulse hybird functions consisting of N1N2
polynomials and the degree of each polynomial is at most (M − 1)(M − 1).
The state variable is approximated using a finite number of the Legendre
Block-Pulse hybird functions as

(11) z(x, t) =
N1∑
i1=1

M−1∑
j1=0

N2∑
i2=1

M−1∑
j2=0

fi1,j1,i2,j2Ψi1,j1,i2j2(x, t).

Now by selecting N1, N2 as

(12) N1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xf
τ1

xf
τ1

is integer

[
xf
τ1

]
+ 1 otherwise

(13) N2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tf
τ2

tf
τ2

is integer

[
tf
τ2

]
+ 1 otherwise

the interval [0, xf ]× [0, tf ] is converted to the following N1 ×N2 sub intervals

[0, 1
N1

xf ]×[0, 1
N2

tf ], [0,
1
N1

xf ]×[ 1
N2

tf ,
2
N2

tf ]· · ·[
N1−1
N1

xf , xf ]×[N2 − 1
N2

tf , tf ].

As a result, the state variable (11) is written as
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(14)
ẑ(x, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑ11(x, t) =
M−1∑
j1=0

M−1∑
j2=0

f1,j1,1,j2ψ1,j1,1,j2 : (x, t) ∈ [0, 1
N1

xf ]×[0, 1
N2

tf ],

...

ẑN1N2(x, t) =
M−1∑
j1=0

M−1∑
j2=0

fN1,j1,N2,j2ψN1,j1,N2,j2 : (x, t) ∈ [N1−1
N1

xf , xf ]

× [N2−1
N2

tf , tf ],

Now, by substituting the values of z(x, t) in (10), the control variable u(x, t)
is extracted. Then, substituting the approximations of z(x, t) and u(x, t) into
the cost functional (9) an unconstrained optimization problem is obtained as

Min J(α)

where,
α = [f1,0,1,0, f1,0,1,1, . . . fN1,M−1,N2,M−1].

By applying the necessary optimality conditions, the following system of al-
gebraic equations is obtained:

∂J [α]
∂fi1j1i2j2

= 0, i1 = 1, 2, ..., N1, i2 = 1, 2, ..., N2, j1, j2 = 1, 2, ...,M − 1.

By solving the above algebraic system for α, the unknown coefficients fi1j1i2j2
are achieved and consequently we can find the approximate value of z(x, t)
and u(x, t) from (11) and (10), respectively.

4. Convergence analysis

In this section, we recall a theorem and present a lemma which ensure the con-
vergence analysis of suggested method. Here, the approximation convergence
of a function is derived with respect to the Legendre Block-Pulse bases.

Consider the restriction of the cost functional J to QN1N2(M−1)(M−1) ⊂ Q
as

(15) J [ẑ(x, t)] = J [
N1∑
i1=1

M−1∑
j1=0

N2∑
i2=1

M−1∑
j2=0

fi1,j1,i2,j2Ψi1,j1,i2j2(x, t)],
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which is a function of N1N2(M−1)(M−1) variables. The coefficients fi1j1i2j2
are chosen in such a way as to minimize (15). Let βN1N2(M−1)(M−1) indicate
the minimum value of J restricted to QN1N2(M−1)(M−1).

The following theorem is a remarkable result of the Weierstrass famous
theorem for two-dimensional space.

Theorem 4.1. For any ẑ(x, t) ∈ Q ⊂ PC2([0, xf ]× [0, tf ]), there exists a se-
quence of polynomials {Ψi1j1i2j2(x, t)}∞i1,j1,i2,j2=0 ∈ Q that converges uniformly
to ẑ(x, t).

Proof. See [21].

The convergence of the proposed method is provided by the following
Lemma. (4.1).

Lemma 4.1. If

βN1N2(M−1)(M−1) = inf
QN1N2(M−1)(M−1)

J, for N1, N2,M = 1, 2, 3, ..,

where QN1N2(M−1)(M−1) is a subset of Q including the Legendre Block-Pulse
hybird functions involving N1N2 polynomials of degree at most (M−1)(M−1),
then

lim
N1,N2,M→∞

βN1N2(M−1)(M−1) = inf
Q

J.

Proof. Let

βN1N2(M−1)(M−1) = min
αN1N2(M−1)(M−1)

J(αN1N2(M−1)(M−1)),

then,
βN1N2(M−1)(M−1) = J(α∗

N1N2(M−1)(M−1)),

where

α∗
N1N2(M−1)(M−1) ∈

Argmin{J(αN1N2(M−1)(M−1)) : αN1N2(M−1)(M−1) ∈ R2N1N2M}.

Now, let

(z∗N1N2(M−1)(M−1)(x, t), u∗N1N2(M−1)(x, t)) ∈
Argmin{J(z(x, t), u(x, t)) : (z(x, t), u(x, t)) ∈ QN1N2(M−1)(M−1)},
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then

J(z∗N1N2(M−1)(M−1)(x, t), u∗N1N2(M−1)(M−1)(x, t))
= min

(z(x,t),u(x,t))∈QN1N2(M−1)(M−1)
J(z(x, t), u(x, t)),

where QN1N2(M−1)(M−1) is a class of combinations of the continuous Legendre
Block-Pulse hybird functions involving N1N2 polynomials of degree at most
(M − 1)(M − 1), so

βN1N2(M−1)(M−1) = J(z∗N1N2(M−1)(M−1)(x, t), u∗N1N2(M−1)(M−1)(x, t)).

Furthermore, according to QN1N2(M−1)(M−1) ⊂ QN1N2MM , we have

min
(z(x,t),u(x,t))∈QN1N2MM

J(z(x, t), u(x, t))

≤ min
(z(x,t),u(x,t))∈QN1N2(M−1)(M−1)

J(z(x, t), u(x, t)).

Thus, βN1N2MM ≤ βN1N2(M−1)(M−1) is achieved which means βN1N2(M−1)(M−1)
is a non-increasing sequence. Also, this sequence is lower bounded, so its in-
fimum is the limit. Due to the continuity J and by taking the limit when
N1, N2,M → ∞, we can write,

lim
N1,N2,M→∞

βN1N2(M−1)(M−1) = min
(z(x,t),u(x,t))∈Q

J(z(x, t), u(x, t)).

which completes the proof.

5. Numerical examples

In this section for illustrating the efficiency of our proposed method, three
examples are considered.

Example 5.1. Consider the Darbox equation [7],

∂2g(x, t)
∂x∂t

= a1
∂g(x, t)

∂t
+ ∂g(x, t)

∂x
+ a0g(x, t) + bf(x, t).(16)

If considered

zh(x, t) = ∂g(x, t)
∂t

− a2g(x, t), zv(x, t) = g(x, t),(17)
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then Eq. (16) can be a continuous two-dimensional linear system in the
Roesser’s model as follows:⎡

⎢⎢⎣
∂zh(x, t)

∂x
∂zv(x, t)

∂t

⎤
⎥⎥⎦ =

[
a1 a1a2 + a0
1 a2

] [
zhc (x, t)
zvc (x, t)

]
+

[
b
0

]
uc(x, t),(18)

with boundary conditions

zh(0, t) = dg2(t)
dt

− a2g2(t), zv(x, 0) = g1(x),

Let a0 = 0.2, a1 = −3, a2 = −1, b = 0.3, g1(x) = e−3x cos(2πx), g2(t) = e−2t

and the 2D quadratic cost function

J =
∫ 3

0

∫ 3

0
[zT0 (x, t)

[
1 0
0 1

]
z(x, t) + uT (x, t)u(x, t)]dxdt.(19)

After substituting the coefficients in (18) and considering the cost func-
tion (19), the problem is converted to

min J =
∫ 3

0

∫ 3

0

{
[zh(x, t)]2 + [zv(x, t)]2 + [u(x, t)]2

}
dxdt,

s.t

∂zh(x, t)
∂x

= −3zh(x, t) + 3.2zv(x, t) + 0.3u(x, t),

∂zv(x, t)
∂t

= zh(x, t) − zv(x, t),

zv(x, 0) = e−3x cos(2πx),
zh(0, t) = −e−2t.(20)

According to the above dynamical equations, we can write

zh(x, t) = ∂zv(x, t)
∂t

+ zv(x, t),

u(x, t) = 10
3

[
∂zh(x, t)

∂x
+ 3zh(x, t) − 3.2zv(x, t)

]
.(21)

Using the method introduced in section 3, we first approximate zv(x, t) based
on the Ritz method and using the two-dimensional Legendre Block-Pulse
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functions as follows

zv(x, t) =
N∑

i1=1

M−1∑
j1=0

N∑
i2=1

M−1∑
j2=0

tx(fi1,j1,i2,j2Ψi1,j1,i2,j2(x, t) + e−3x−2t cos(2πx),

(22)

where N is the number of blocks and M is the number of expressions used in
Legendre polynomials. zv(x, t) for (x, t) ∈

[
i1 − 1
N

,
i1
N

)
×

[
i2 − 1
N

,
i2
N

)
, can

be written as follow:

zv[i1, i2] =
M−1∑
j1=0

M−1∑
j2=0

Lj1(
2Nx

xf
− 2i1 + 1)Lj2(

2Nt

tf
− 2i2 + 1)fi1,j1,i2,j2 ,

where, i1, i2 = 1, . . . , N , j1, j2 = 0, . . . ,M − 1.
According to Eq. (18), zh[i1, i2] and u[i1, i2] can can be easily obtained,

in any corresponding sub-interval.
By substituting the value of zv[i1, i2] and the corresponding values ob-

tained from (18) in the cost functional J , problem (16) reduces to an uncon-
strained optimization problem that can be easily solved with existing opti-
mization methods.

The vertical, horizontal and control variables obtained for this example
are shown in Fig. 1, 2 and 3, respectively. The cost functional J by the
present method for different values of M and N and its comparison with the
result evaluated by other methods are shown in Tables 1, in which verifies
the superiority of the proposed method.

Example 5.2. Consider the 2-D optimal control problem [20]

min J = 1
2

∫ 1

0

∫ 1

0
x(z2(x, t) + u2(x, t))dxdt,

s.t

∂z(x, t)
∂t

= ∂2z(x, t)
∂x2 + 1

x

∂z(x, t)
∂t

+ u(x, t),

with the boundary conditions

z(x, 0) = 1 − x2, z(1, t) = 0.

We use our proposed method for solving this example. The approximated
state and control variables obtained for this example are shown in Fig. 4 and 5,
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Figure 1: Approximated vertical component of state function zv(x, t) for ex-
ample 1.

Figure 2: Approximated horizontal component of state function zh(x, t) for
example 1.

Figure 3: Approximated control function u(x, t) for example 1.



Solution of two-dimensional optimal control problem 1087

Table 1: Comparison of estimated value of J by different methods for exam-
ple 1

Methods J CPU Time
Method of Tsai et al. [9]
X = 0.1, T = 0.1 0.7348
X = 0.05, T = 0.05 0.5510
X = 0.03, T = 0.03 0.4760
Method of Mamehrashi and Yousefi [8]
m = 7, n = 8 0.6202 1.802
m = 8, n = 3 0.2792 1.560
m = 8, n = 8 0.2026 1.986
Method of Nemati and Yousefi [15]
n = 9,m = 5 0.1770
n = 10,m = 5 0.0951
n = 10,m = 6 0.0947
Method of Nemati [23]
m = 7, n = 6 0.3094
m = 9, n = 8 0.0951
m = 10, n = 8 0.0608
Present Method
N = 5,M = 3 0.7020 0.079
N = 5,M = 4 0.0665 0.191
N = 5,M = 5 0.0551 0.438
N = 7,M = 5 0.0437 0.983
N = 7,M = 7 0.0088 1.801

respectively. Also, the cost functional J for different values M and N and
its comparison with the obtained results via some other methods are shown
in Table 2. As the previous example, the results of this example confirm the
superiority of the proposed method.

Example 5.3. Consider the following optimal control problem [25]

min J [z, u]=
∫ 1

0

∫ π

0
((z(x, t) − e−t sin(x))2 + ex−t(u(x, t) + e−t sin(2x))2)dxdt,

s.t

∂z(x, t)
∂t

= ∂2z(x, t)
∂x2 + 2 cos(x)z(x, t) + u(x, t),
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Figure 4: Approximated state function z(x, t) for example 2.

Figure 5: Approximated control function u(x, t) for example 2.

with the boundary conditions

z(x, 0) = sin x, z(0, t) = 0.

The exact solutions are z(x, t) = e−t sin(x), u(x, t) = −e−t sin(2x) and its
minimum value is J∗ = 0.

We have solve this problem by applying the method presented in section
3 with different values of M and N . Using the proposed method, we first
approximate z(x, t) using the hybrid Legendre Block-Pulse functions, and
then use the given equations to approximate u(x, t), where by solving the
problem of unknown coefficient optimization, the approximations of the state
and control variables are obtained.
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Table 2: Comparison of estimated value of J for different methods for example
2

Methods J CPU Time
Method of Mamehrashi and Yousefi [18]
m = 1, n = 4 8.1044 0.141
m = 2, n = 4 2.8790 0.162
m = 2, n = 6 1.8283 0.563
m = 3, n = 9 1.0405 1.610
m = 3, n = 10 0.0075 1.902
Method of Hassani and Avazzadeh [24]
m1 = 2,m2 = 2, n1 = 2, n2 = 2 1.8525
m1 = 2,m2 = 3, n1 = 2, n2 = 2 7.9475
m1 = 2,m2 = 3, n1 = 3, n2 = 2 4.4856
m1 = 2,m2 = 3, n1 = 3, n2 = 3 5.5123
m1 = 3,m2 = 3, n1 = 3, n2 = 3 1.4743
Present Method
N = 2,M = 2 0.084615 0.004
N = 2,M = 3 0.029328 0.009
N = 3,M = 3 0.016930 0.018
N = 7,M = 7 0.000007 1.759

The approximated solutions obtained from solving the above example and
the absolute error functions for the state and control variables are shown in
Fig. 6 and 7, respectively. Also the values of J and CPU time for different
values of M and N are shown in Table 3.

6. Conclusion

This paper presents an efficient numerical method for solving a category of
2DOCPs. Using the Ritz method and the hybrid Legendre Block-Pulse func-
tions, an approximation of state and control variable is obtained. By applying
the proposed method, without using derivative and multiplicative functional
matrices, the 2D optimal control problem reduces to an unconstrained opti-
mization problem that can be easily solved. We described the proposed nu-
merical method and discussed the convergence of the method. The obtained
results showed that our method gives the satisfactory results with only a few
number of basis functions. Also, the simulations results in comparison with
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Figure 6: Graphs for the state variable for example 3.

Figure 7: Graphs for the control variable for example 3.

Table 3: Estimated values of J and CPU time for various values of N,M for
example 3

N,M J CPU Time
N = 3,M = 3 2.577832 × 10−4 0.016
N = 3,M = 5 5.488613 × 10−8 0.021
N = 5,M = 5 2.037223 × 10−9 0.752
N = 7,M = 7 1.296438 × 10−9 1.021

the exact solution and the results obtained by some other available methods,
confirm the effectiveness and accuracy of the current approach.
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