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Error estimate for the approximate solution to
multivariate feedback particle filter
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∗
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Abstract: In this paper, based on the assumption that the gain
function K has been optimally obtained in the multivariate feed-
back particle filter (FPF), we focus on the error estimate for the
approximate solutions to the particle’s density evolution equation,
which is actually the forward Kolmogorov equation (FKE) satis-
fied by the “particle population”. The approximation is essentially
the unnormalized density of the states conditioning on the discrete
observations with the given time discretization. Mainly owing to
the representation of Brownian bridges for the Brownian motion,
and the assumption on the coercivity condition, we prove that the
mean square error of the approximate solution is of order equal to
the square root of the time interval.
Keywords: Feedback particle filter, forward Kolmogorov equa-
tion, error estimate, Brownian bridges.

1. Introduction

This paper is concerned with the systems of diffusion processes which are
modeled as the following stochastic differential equations (SDEs):

(1)
{
dxt = f(xt, t)dt + g(xt, t)dvt,
dzt = �(xt, t)dt + dwt,

where t ∈ [0, T ], xt ∈ Rd is the state at time t, the initial condition x0 has
a given probability density p∗0, zt ∈ Rm is the observation, and {vt}, {wt}
are two mutually independent standard Wiener processes taking values in
Rd and Rm, respectively. The mappings f(·, ·) : Rd × [0, T ] → Rd, �(·, ·) :
Rd × [0, T ] → Rm, g(·, ·) : Rd × [0, T ] → Rd×d have continuous bounded
derivatives of all orders up to 4.
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The diffusion processes xt and zt are considered on a complete probability
space (Ω,F ,P). Let Zt := σ {zs : 0 ≤ s ≤ t} denote the P-completed σ-field
generated by the observations up to time t and Z = {Zt} for the associated
filtration, t ∈ [0, T ]. The goal of the nonlinear filtering (NLF) problem is
to approximate the posterior distribution of the state given the history of
observations Zt. It is a well-known fact in filtering theory [LS] that if φ ∈
C2

b (Rd), then the conditional probability measure p∗t := p∗(·, t), t ≥ 0, admits
the following stochastic partial differential equation:

(2) dp∗t [φ] = −p∗t [L∗φ]dt + (p∗t [��φ] − p∗t [φ]p∗t [��])(dzt − p∗t [�]dt),

where

L∗φ =
d∑

i,j=1

∂

∂xi

(
aij

∂φ

∂xj

)
+

d∑
i=1

ai
∂φ

∂xi
,

with aij = 1
2[gg�]ij , ai = fi −

d∑
j=1

∂aij
∂xj

,

and p∗t [�] =
∫
Rd �(x)p∗t (x)dx. If the measure p∗t is absolutely continuous with

respect to the Lebesgue measure, i.e., p∗t (dx)=E[1{Xt∈dx}|Zt], then it is clear
to know that the smooth density, also denoted as p∗t , satisfies the Kushner
equation [Kushner, LS, Rozovskii]:

(3) dp∗t + L∗p∗tdt = (h− p∗t [�])�p∗t (dzt − p∗t [�]dt),

with the initial density p∗0 ∈ L2(Rd).
It is known that if f , �, and g are linear functions, the solution is given by

the finite-dimensional Kalman-Bucy filter. Generally speaking, we cannot get
the analytic solution for the NLF problems and just obtain the approximate
nonlinear filters by numerical methods [BCL] in most cases. Under suitable
change of measures, the Kushner equation can be reduced into the following
so-called Duncan-Mortensen-Zakai (DMZ) equation:

(4) dσt = L0σtdt + σt�
�dyt, σ0(x) = p∗0(x),

where

L0(◦) :=
d∑

i,j=1

∂2

∂xi∂xj
[aij◦] −

d∑
i=1

∂(fi◦)
∂xi

.
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The equation (4) satisfied by the unnormalized conditional density function
of the states, was derived by Duncan [Duncan], Mortensen [Mortensen] and
Zakai [Zakai] independently in 1960s.

Once the Kushner or DMZ equation has been derived, several methods
such as the splitting-up algorithm [BGR, GK, Ito, Nagase], the S3 method
[LMR] were proposed to solve them. We refer the interested readers to the
survey paper [Gyongy] and references therein. Nevertheless, none of these al-
gorithms are implementable for solving the Kushner or DMZ equation. The
splitting-up method like the Trotter product formula from semigroup theory,
was proposed to solve the DMZ equation [BGR]. This method is simply not
implementable. Theoretically it is also hardly useful since it requires bound-
edness assumptions on f and �. This means that the method cannot even be
applied to the linear filtering problems. There is no implementable scheme
for solving the DMZ equation until Yau and Yau in 2008 [YY] published a
pioneering work on the first feasible algorithm, which is so-called Yau-Yau
filtering algorithm to the “pathwise-robust” DMZ equation.

The Yau-Yau filtering algorithm [YY] is a major breakthrough in the NLF
problems. The beauty of Yau-Yau filtering algorithm is that it is applicable
to all practical engineering problems. The ingenious idea of Yau-Yau filtering
algorithm is that the solution of the DMZ equation can be decomposed into
the on-line and off-line parts. Historically, this is the first real time solution
to NLF problems. Thus, the Yau-Yau filtering algorithm can solve the DMZ
equation not only in the real-time manner but also in memoryless manner.
Later, Luo and Yau in [LY] extended the Yau-Yau filtering algorithm to the
most general settings of NLF problems, where f , � and g could depend on both
time and states, and the variance of the noises {vt}, {wt} are time dependent.
Luo and Yau in [LY2] numerically verified the real time performance by the
Yau-Yau filtering algorithm for the scalar NLF problems. In [YLY, DLY], the
authors have investigated the numerical schemes based on the DMZ equation
for the high-dimensional NLF problems, such as the finite-difference scheme
[YLY], and Legendre Galerkin spectral method [DLY]. When solving the high-
dimensional NLF problems, the highly computational demanding is required.
Much attention has been paid to alleviating the so-called “curse of dimen-
sionality” when the states of the NLF system encounter the high dimensions,
for example by the sparse grid algorithm [LY1], the proper decomposition
method [WLYZ], etc.

The particle filter (PF) [AMGC, GSS], as a simulation-based algorithm
to approximate the filtering task [CHQZ], has been successfully applied in
numerous fields, see [GSB, Gustaf] for some examples. The key step in the
PF is the construction of N stochastic processes {X i

t : 1 ≤ i ≤ N}. The value
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X i
t ∈ Rd is the i-th particle’s state at time t. For each time t, the empirical

distribution formed by the “particle population” is used to approximate the
posterior distribution. One challenge of the PF is the particle degeneracy,
namely only a few particles, or even one, have nonzero weight [DGA]. By
virtue of the particle degeneracy which leads to decreased performance, or
even filter divergence, a common approach to mitigate this in the PF is the
sequential importance sampling, where particles are generated by their im-
portance weights at every time step [CHQZ]. The resampling step makes PF
practically useful, it however leads to other negative effects, such as sampling
impoverishment and increased variance [GSS].

Recently, a feedback structure has been synchronized in the PF, namely
the FPF [LL, YMM], which is an alternative feedback control-based approach
to the construction of a PF for (1). Essentially, the particles evolve accord-
ing to a controlled stochastic system, where the control is designed by the
innovation method. The soundness of this filter has been demonstrated nu-
merically in many other works besides [YMM, Yang]. Berntorp compared
the efficiency of PF and FPF with different proposed gain-function approxi-
mate approaches in [Berntorp]. Radhakrishnan in [RM] proposed a novel gain
function approximation in FPF for a nonlinear multidimensional stochastic
system. Theoretically, the general error analysis of the FPF for general NLF
systems has much less research literature as far as we know. In [TM1, TM2],
they discussed the convergence analysis of FPF in the setting of the linear
Gaussian systems and heavily relied on the assumption that the posterior
density is Gaussian. Chen, Luo, Shi, and Yau in [CLSY] for the first time
studied the error bound between the empirical distribution and real posterior
distribution in the continuous-discrete FPF.

In this paper, however, based on the assumption that the K has been
already optimally obtained in the FPF, we focus on the error estimate for the
approximate solutions to the particle’s density evolution equation. Actually,
the density of the “particle population” evolves according to the FKE, which
contains the observation process by virtue of the feedback structure of the
FPF, thus we call it a generalized FKE in the sequel. Based on the technique
of Brownian bridges for the Brownian motion, we propose an approximate
solution to the generalized FKE for the corresponding multidimensional NLF
systems. Essentially, approximations to the solution of the generalized FKE
are considered which depends on the values of the observation process only at
the times of a regular partition. The main contribution of this paper is that
we show that, under the coercivity condition, the mean square error of the
approximate solution to the generalized FKE is up to the order of the square
root of the time increment.
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The outline of the paper is as follows: we introduce some preliminary
results of the multivariate FPF in section 2. In section 3, we give an error
estimate of the approximate solutions to the generalized FKE in the FPF.
The conclusion has been drawn in the end.

2. Multivariate feedback particle filter

2.1. Notations

With δij , we mean the Dirac delta function, which is one when i = j and
zero otherwise. Assume all the vectors are column ones. The matrix A� rep-
resents the transpose of the matrix A. ∇φ is the gradient of the function
φ with respect to x. ∇ · F is the divergence of the vector-valued function
F = (F1, · · · , Fd)� with ∇ · F =

∑d
i=1

∂Fi

∂xi
. And further ∇ · A is the diver-

gence of the matrix-valued function A = [A]ij , i = 1, · · · , d, j = 1, · · · ,m,

and ∇� · A = (
∑d

i=1
∂Ai1

∂xi
, · · · ,∑d

i=1
∂Aim

∂xi
)�.

Let L2(Rd) mean the Hilbert space of square integrable functions at a
given time. The inner product between u = u(x) and v = v(x) is (u, v) :=∫
Rd u�vdx. And u ∈ L∞(Rd) means that

|u|∞ := ess sup
x∈Rd

|u(x)| := inf
|E|=0,E⊂Rd

(
sup
Rd\E

|u(x)|
)
.

For the vector-valued function F = (F1, · · · , Fm)� and matrix-valued func-
tion A = [Aij ], i = 1, · · · , d and j = 1, · · · ,m, if F,A ∈ L∞(Rd), we denote
|F |∞ := max1≤j≤m |Fj |∞ and |A|∞ := max1≤i≤d,1≤j≤m |Aij |∞, respectively.
The notation H1(Rd) means the function space where the function and its
first derivative are in L2(Rd). If u ∈ H1(Rd), the norm is defined by

‖u‖ :=
(
|u|2 +

d∑
i=1

| ∂u
∂xi

|2
)1/2

,

where |◦| is the L2(Rd) norm which is induced by the inner product in L2(Rd)
with | ◦ | =

(∫
Rd ◦2dx

)1/2. Recall H1(Rd) has dual H−1(Rd) and

H1(Rd) ⊂ L2(Rd) ⊂ H−1(Rd).

Further, denote 〈·, ·〉 for the duality between H1(Rd) and H−1(Rd). The
derivatives are interpreted in the weak sense in the sequel.
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2.2. Generalized forward Kolmogorov equation

The particles propagate according to a optimally controlled SDE with a gain
feedback form defined as follows:

(5) dxit = f(xit, t)dt + g(xit, t)dvit + dU i
t ,

the control input dU i
t = u(xit, t)dt + K(xit, t)dzt, for i = 1, · · · , N , where

xit ∈ Rd is the state for the ith particle at time t, the initial condition xi0 ∼ p∗0,
and {vit} are mutually independent standard Wiener Processes. Both vit and
xi0 are mutually independent and also independent of {xt, zt}.

Throughout the paper, we denote conditional distribution of a particle xit
given Zt by p(x, t), or pt(x). Additionally, certain admissibility requirements
are imposed on the control input U i

t in (5).

Definition 2.1 (Admissible input). The control input U i
t is admissible if the

random variables u(x, t) and K(x, t) are Zt measurable for each t. Moreover,
at each fixed time t,

E
[
|u(xit, t)|

]
:= E

[
d∑

l=1
|ul(xit, t)|

]
< ∞,(6)

E
[
|K(xit, t)|2

]
:= E

⎡
⎣ d∑
l=1

m∑
j=1

|Klj(xit, t)|2
⎤
⎦ < ∞,

and

lim
|x|→∞

u(x, t)p(x, t) = 0,(7)

lim
|x|→∞

K(x, t)p(x, t) = 0,(8)

with probability one.

The optimal control (u,K) is the minimizer of an optimization problem.
Its Euler-Lagrange boundary value problem (E-L BVP) is obtained via the
analysis of first variation. Specifically, the gain function K : Rd×R+ → Rd×m

is the solution to

(9) ∇ · (ptK) = −(�− pt[�])�pt,
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with the boundary conditions lim|x|→∞ pt(x)K(x, t) = 0, and the function
u : Rd × R+ → Rd is obtained as

(10) u = −1
2K(� + pt[�]) + Ω(x, t),

and Ω = (Ω1, · · · ,Ωd)� is the Wong-Zakai correction term

(11) Ωl := 1
2

d∑
k=1

m∑
s=1

Kks(x, t)
∂Kls

∂xk
(x, t),

for l = 1, · · · , d.
Moreover, if we consider the process xit that evolves according to the

particle filter model (5), the evolution of the density pt, i.e., the conditional
probability density of xit given the filtration Zt. pt satisfies the generalized
FKE, which has been derived in Proposition 3.2.1 [Yang], as follows

(12) dpt = L∗ptdt−∇·(ptK)dzt−∇·(ptu)dt+ 1
2

d∑
l,k=1

∂2

∂xl∂xk
(pt[KK�]lk)dt.

Denote Kj = (K1j , · · · , Kdj)� for the j-th column of K, j = 1, · · · ,m,
∇·(ptK) = (∇·(ptK1), · · · ,∇·(ptKm)). And Bj defines the operator mapping

H1(R) into L2(Rd) given by Bjφ := ∇ · (φKj) =
∑d

i=1
∂(φKij)
∂xi

= K�
j ∇φ +

∇ ·Kjφ, for j = 1, · · · ,m. Thus, we can rewrite (12) as

(13) dpt = L+ptdt−∇ · (ptK)dzt,

where

L+φ :=
d∑

i,j=1

∂

∂xi

(
γij

∂φ

∂xj

)
−

d∑
i=1

∂(γ̄iφ)
∂xi

,

with γij := aij + 1
2[KK�]ij , and γ̄i := fi + ui −

∑d
j=1

∂γij
∂xj

. Actually, the (13)

is equivalent to

(14) pt(x) = p0(x) +
∫ t

0
L+ps(x)ds−

m∑
j=1

∫ t

0
Bj(s)ps(x)dzjs ,

with zt = (z1
t , · · · , zmt )�, t ∈ [0, T ].
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3. Error estimate for the approximation

3.1. Premilinaries

For p > 1 and r ∈ R, denote Lp,r(Rd) the space of real valued Lebesgue
measurable functions on Rd with finite norm

(15) ‖φ‖p,r =
(∫

Rd
(1 + ‖x‖2)r/2|f(x)|pdx

)1/p
.

Wm,p,r(Rd) is then the subset of Lp,r(Rd) consisting of functions whose gener-
alized derivatives up to order m belong to Lp,r(Rd). The norm in Wm,p,r(Rd)
is defined by

(16) ‖φ‖m,p,r =

⎛
⎝ ∑

|γ|≤m

|γ|!
γ1! · · · γd! ·

∫
Rd

(1 + ‖x‖2)r/2|Dγf(x)|pdx

⎞
⎠

1/p

,

where γ = (γ1, · · · , γd) is a multi-index of non-negative integers, Dγ =
∂γ1

∂xγ
1

1
· · · ∂γd

∂xγ
d

d

.

Assumption A1: We shall suppose p0 ∈ W 4,4,1, so that

(17) E[supt∈[0,T ]‖pt‖4,4,1] < ∞.

It is a consequence of the Theorem 2.2 in [KR] that if pt is the solution of
the DMZ equation (4), then E[supt∈[0,T ]‖pt‖m,p,r] ≤ CE[‖p0‖pm,p,r], for some
constant C.

On the condition that the gain function K has been already optimally
obtained in (9), where K and u have certain smooth properties fairly well
as we need, then we shall suppose that the following coercivity condition is
satisfied:

Assumption A2: There exist α > 0 and λ ∈ R such that for all
v ∈ H1(Rd) with compact support and for almost all t ∈ [0, T ],

(18) α‖v‖2 +
m∑
j=1

|Bjv|2 + 2〈L+v, v〉 ≤ λ|v|2.

Remark 3.1. The coercivity condition (18) can be reached under some ad-
ditional restrictions on the control input K and u.
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(C.1) With γ̃ := gg� + KK�, there exists α0 > 0, such that ξ�γ̃ξ ≥ α0ξ
�ξ,

for all ξ ∈ Rd.
(C.2) With γ̄ := (γ̄1, · · · , γ̄d)�, we assume that γ̄ and its derivatives are in

L∞(Rd).
(C.3) With Kj, j = 1, · · · ,m, we need to assume that Kj ∈ L∞(Rd) and

∇Kj ∈ L∞(Rd), respectively. In addition, we assume that

α0 −
m∑
j=1

d3|Kj |∞ (1 + |∇Kj |∞ + |Kj |∞) > 0.

From the definitions of L+ and Bj, j = 1, · · · ,m, and the additional
assumptions (C.1)–(C.3) shown above, they implies that

−〈L+v, v〉 = −
d∑

i,j=1

∫
Rd

∂

∂xi

(
γij

∂v

∂xj

)
v(x)dx +

d∑
i=1

∫
Rd

∂(γ̄iv)
∂xi

v(x)dx

(19)

=
d∑

i,j=1

∫
Rd

γij
∂v

∂xi

∂v

∂xj
dx+

d∑
i=1

∫
Rd

∂γ̄i
∂xi

v2(x)dx+
d∑

i=1

∫
Rd

γ̄i
∂v

∂xi
v(x)dx

=
d∑

i,j=1

∫
Rd

γij
∂v

∂xi

∂v

∂xj
dx+

d∑
i=1

∫
Rd

∂γ̄i
∂xi

v2(x)dx+ 1
2

d∑
i=1

∫
Rd

γ̄i
∂(v2)
∂xi

dx

=
d∑

i,j=1

∫
Rd

γij
∂v

∂xi

∂v

∂xj
dx + 1

2

d∑
i=1

∫
Rd

∂γ̄i
∂xi

v2(x)dx

≥1
2α0

∫
Rd

[
d∑

i=1

(
∂v

∂xi

)2
]
dx + 1

2

d∑
i=1

∫
Rd

∂γ̄i
∂xi

v2(x)dx

≥1
2α0

∫
Rd

[
d∑

i=1

(
∂v

∂xi

)2
+ v2(x)

]
dx− 1

2α0

∫
Rd

v2(x)dx

− d

2 |∇γ̄|∞
∫
Rd

v2(x)dx

=1
2α0‖v‖ −

1
2(α0 + d|∇γ̄|∞)|v|,

(Bjv, v) =
∫
Rd

d∑
i=1

∂(vKij)
∂xi

v(x)dx

(20)

=
d∑

i=1

∫
Rd

Kij
∂v

∂xi
v(x)dx +

d∑
i=1

∫
Rd

∂Kij

∂xi
v2(x)dx
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=1
2

d∑
i=1

∫
Rd

Kij
∂(v2)
∂xi

dx +
d∑

i=1

∫
Rd

∂Kij

∂xi
v2(x)dx

=1
2

d∑
i=1

∫
Rd

∂Kij

∂xi
v2(x)dx

≤d

2 |∇Kj |∞|v|.

and

|Bjv|2 =
∫
Rd

[
d∑

i=1

∂(vKij)
∂xi

] [
d∑

l=1

∂(vKlj)
∂xl

]
dx

(21)

=
d∑

i,l=1

∫
Rd

KijKlj
∂v

∂xi

∂v

∂xl
dx + 2

d∑
i,l=1

∫
Rd

Kij
∂Klj

∂xl

∂v

∂xi
v(x)dx

+
d∑

i,l=1

∫
Rd

∂Kij

∂xi

∂Klj

∂xl
v2dx

≤d2|Kj |∞
d∑

i,l=1

∫
Rd

∣∣∣∣ ∂v∂xi
∂v

∂xl

∣∣∣∣ dx + 2d2|Kj |∞|∇Kj |∞
d∑

i,l=1

∫
Rd

∣∣∣∣ ∂v∂xi v
∣∣∣∣ dx

+ d2|Kj |2∞
∫
Rd

v2dx

≤d3|Kj |∞
∫
Rd

d∑
i=1

∣∣∣∣ ∂v∂xi
∣∣∣∣
2
dx + d4|Kj |∞|∇Kj |∞‖v‖2 + d3|Kj |2∞‖v‖2

≤d3|Kj |∞ (1 + d|∇Kj |∞ + |Kj |∞) ‖v‖2,

thus by taking

α := α0 −
m∑
j=1

d3|Kj |∞ (1 + |∇Kj |∞ + |Kj |∞) ,

and
λ := α0 + d|∇γ̄|∞,

in (18), the coercivity condition can be obtained.

Assumption A3: Assume that the observation process zt in (14) is an
Brownian motion.
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We wish to consider approximation to the function pt which depends on
the values of the observation process as only a finite number of times under
the assumptions A1–A3. For Nt ∈ Z+, denote

(22) h = T/Nt,

and Zk := σ{zh, z2h, · · · , zkh}, k = 0, · · · , Nt. The following related results
hold under the assumption A3 that the observation zt is a Brownian motion.

Lemma 3.1. If (k − 1)h < t ≤ kh, then E[pt | ZNt ] = E[pt | Zk].

We give a brief proof of Lemma 3.1 in Appendix A.1.

Remark 3.2. Denote Δzjk := zjkh−zj(k−1)h, it is well known that for (k−1)h ≤
t ≤ kh,

(23) E[zjt − zj(k−1)h | Zk] = (t− (k − 1)h)Δzjk
h

,

and thus

(24) E[zjkh − zjt | Zk] = (kh− t)Δzjk
h

,

which are all by virtue of the assumption that zt are Gaussian.

Lemma 3.2. For (k − 1)h ≤ t ≤ kh, we have

(25) E[(zjt −zj(k−1)h)
2 | Zk] = (t−(k−1)h)2

(
Δzjk
h

)2

+(t−(k−1)h)kh− t

h
.

The proof of Lemma 3.2 is extremely standard and it is based on the
semimartingale decomposition of zjt [JY], thus we omit the proof here and
include it in Appendix A.2 for the readers’ convenience.

Remark 3.3. The conditional variance of (zjt − zj(k−1)h) given Zk is de-

terministic and equal to (t− (k − 1)h)(kh− t)
h

, i.e., var[zjt − zj(k−1)h] :=

E[((zjt − zj(k−1)h) − E[(zjt − zj(k−1)h) | Zk])2 | Zk] = (t− (k − 1)h)(kh− t)
h

.

Definition 3.1 ([Oksendal] Brownian bridge). For fixed a, b ∈ R, the process
Yt is called the Brownian bridge from a to b, if there exists an Brownian
motion Bt such that

dYt = b− Yt

1 − t
dt + dBt; 0 ≤ t < 1, Y0 = a,
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or equivalently,

Yt = a(1 − t) + bt + (1 − t)
∫ t

0

dBs

1 − s
; 0 ≤ t < 1,

and limt→1 Yt = b.

The representation of Brownian bridge for Brownian motion can also be
referred as to the book [JY]. We clarify it in the following lemma for our use.

Lemma 3.3 ([JY]). For (k−1)h ≤ t ≤ kh, we consider the enlarged filtration
{Ẑt} := Zt ∨ σ{zkh}. Then, there exists a {Ẑt}-Brownian motion ηj,kt , which
is independent of ZNt , such that the {Ẑt}-semimartingale decomposition of
zjt

(26) zjt = zj(k−1)h + ηj,kt +
∫ t

(k−1)h

zjkh − zju
kh− u

du

holds. As pointed out in [JY], the final integral in (26) is absolutely convergent.

From (14), for (k − 1)h ≤ t ≤ kh,

(27) pt = p(k−1)h +
∫ t

(k−1)h
L+psds−

m∑
j=1

∫ t

(k−1)h
Bj(s)psdzjs .

By the Itô formula, we have

|pt|2 =|p(k−1)h|2 + 2
∫ t

(k−1)h
〈L+

s ps, ps〉ds− 2
m∑
j=1

∫ t

(k−1)h
(Bj(s)ps, ps)dzjs(28)

+
m∑
j=1

∫ t

(k−1)h
|Bj(s)ps|2ds.

Taking expectation on both sides of (28), we obtain that
(29)

E[|pt|2] = E[|p(k−1)h|2]+2
∫ t

(k−1)h
E[〈L+

s ps, ps〉]ds+
m∑
j=1

∫ t

(k−1)h
E[|Bj(s)ps|2]ds.

Using the Ẑt-semimartingale decomposition of the components of zt, we
have

pt =p(k−1)h +
∫ t

(k−1)h
L+psds−

m∑
j=1

∫ t

(k−1)h
Bj(s)psdηj,ks(30)
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−
m∑
j=1

∫ t

(k−1)h
Bj(s)ps

zjkh − zjs
kh− s

ds

For a random variable, denote ψ̂ := E[ψ | ZNt ]. Using Fubini’s theorem,
Lemma 3.1, and noting that the ηj,k are independent of ZNt , we have

(31) p̂t = p̂(k−1)h +
∫ t

(k−1)h
L+p̂sds−

m∑
j=1

∫ t

(k−1)h
Bj(s)

̂ps(zjkh − zjs)
kh− s

ds.

Thus,

(p̂t)2 =(p̂(k−1)h)2 + 2
∫ t

(k−1)h
〈L+p̂s, p̂s〉ds(32)

− 2
m∑
j=1

∫ t

(k−1)h

⎛
⎝Bj(s)

̂ps(zjkh − zjs)
kh− s

, p̂s

⎞
⎠ ds.

3.2. The error estimate

Before we give out the error estimate between pt and p̂t, we firstly obtain the
following result in Theorem 3.1.

Theorem 3.1. Define Δpt = pt − p̂t, for (k − 1)h ≤ t ≤ kh, we have

E[|Δpt|2] =

(33)

E[|p̂(k−1)h|2] + 2
∫ t

(k−1)h
E[〈L+

s Δps,Δps〉]ds +
m∑
j=1

∫ t

(k−1)h
E[|Bj(s)Δps|2]ds

+
m∑
j=1

∫ t

(k−1)h
E[|Bj(s)p̂s|2]ds− 2

m∑
j=1

∫ t

(k−1)h
E

⎡
⎣
⎛
⎝Bj(s)

̂ps(zjkh − zjs)
kh− s

, p̂s

⎞
⎠
⎤
⎦ ds.

Proof. By applying the Fubini’s theorem, we have

E

[∫ t

(k−1)h
〈L+

s (ps − p̂s), ps − p̂s〉ds | Zk

]
(34)

=E

[∫ t

(k−1)h

(
〈L+

s ps, ps〉 − 〈L+
s ps, p̂s〉 − 〈L+

s p̂s, ps〉
)
ds | Zk

]
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+ E

[∫ t

(k−1)h
〈L+

s p̂s, p̂s〉ds | Zk

]

=E

[∫ t

(k−1)h
〈L+

s ps, ps〉ds | Zk

]
−

∫ t

(k−1)h
〈L+

s p̂s, p̂s〉ds,

and

E

[∫ t

(k−1)h
|Bj(s)(ps − p̂s)|2ds | Zk

]
(35)

=E

[∫ t

(k−1)h
|Bj(s)ps|2ds | Zk

]
−

∫ t

(k−1)h
|Bj(s)p̂s|2ds

Since

E[|Δpt|2] = E[(pt − p̂t, pt − p̂t)] = E[(pt, pt) − 2(pt, p̂t) + (p̂t, p̂t)](36)
= E[|pt|2] − |p̂t|2,

and substituting (29) and (32) in (36), we obtain that

E[|Δpt|2] =

(37)

E[|Δp(k−1)h|2] + 2
∫ t

(k−1)h
E[〈L+

s ps, ps〉 − 〈L+p̂s, p̂s〉]ds

+
m∑
j=1

∫ t

(k−1)h
E[|Bj(s)ps|2]ds− 2

m∑
j=1

∫ t

(k−1)h
E

⎡
⎣
⎛
⎝Bj(s)

̂ps(zjkh − zjs)
kh− s

, p̂s

⎞
⎠
⎤
⎦ ds.

The result can be reached by using E[〈L+
s ps, ps〉−〈L+p̂s, p̂s〉]=E[〈L+

s Δps,Δps〉]
in (37) and substituting the term

∑m
j=1

∫ t
(k−1)h E[|Bj(s)ps|2]ds in (37) by the

(35).

Remark 3.4. Derivatives of pt (or p̂t) in the x variables satisfy the equation
obtained from that of pt (or p̂t) obtained by differentiating, i.e.,

(38) d

(
∂p

∂xi

)
=

(
∂

∂xi
L+p

)
dt−

m∑
j=1

(
∂

∂xi
Bjp

)
dzjt ,

and similarly for higher derivatives. Furthermore, if for example a(t, x) is
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certain coefficient function, for (k − 1)h ≤ t ≤ kh, we have

a(t, x) ∂p
∂xi

(t) =a((k − 1)h, x) ∂p
∂xi

((k − 1)h) +
∫ t

(k−1)h
a(s, x)∂L

+

∂xi
p(s)ds

(39)

+
∫ t

(k−1)h

∂a(s, x)
∂s

· ∂p(s)
∂xi

ds−
m∑
j=1

∫ t

(k−1)h
a(s, x)∂Bj

∂xi
p(s)dzjs .

Theorem 3.2. There is a constant C0, which is independent of t, j, and k,
such that for (k − 1)h ≤ t ≤ kh, 1 ≤ j ≤ m,

∣∣∣∣∣∣
∫ t

(k−1)h
E|Bj(s)p̂s|2ds− 2

∫ t

(k−1)h
E

⎛
⎝p̂s, Bj(s)

̂ps(zjkh − zjs)
kh− s

⎞
⎠ ds

∣∣∣∣∣∣ ≤ C0h
2.

(40)

Proof. Since p̂s is Ẑs-adapted, and recalling the Ẑs semimartingale decompo-

sition of zs as introduced in Lemma 3.3, i.e., dzjs = dηj,ks + zjkh − zjs
kh− s

ds, with
ηj,ks is a Brownian motion independent of Zk, we have

E

[
E

[∫ t

(k−1)h
(p̂s, Bj(s)ps)dzjs | Zk

]]
(41)

=E

[
E

[∫ t

(k−1)h
(p̂s, Bj(s)ps)dηj,ks | Zk

]]

+ E

[
E

[∫ t

(k−1)h
(p̂s, Bj(s)ps)

zjkh − zjs
kh− s

ds | Zk

]]

=E

[
E

[∫ t

(k−1)h
(p̂s, Bj(s)ps)

zjkh − zjs
kh− s

ds | Zk

]]

=
∫ t

(k−1)h
E

⎛
⎝p̂s, Bj(s)

̂ps(zjkh − zjs)
kh− s

⎞
⎠ ds,

with the fact that η is a Brownian motion independent of Zk and the integral
with respect to η is 0.

Thus, we will consider the term E
[
E
[∫ t

(k−1)h(p̂s, Bj(s)ps)dzjs | Zk
]]

in-

stead of the
∫ t
(k−1)h E(p̂s, Bj(s)

̂ps(zjkh − zjs)
kh− s

)ds in the statement of the theo-



1128 Wenhui Dong and Xingbao Gao

rem (40). Based on the introduce in Remark 3.4, for Bj(t) = K�
j (t)∇ + ∇ ·

Kj(t), we have

(42) B
′
j(t) = ∂Bj

∂t
=

∂K�
j

∂t
(t)∇ + ∇ · ∂Kj

∂t
(t),

and for

(43) L+
t := L+(t) =

d∑
i,j=1

∂2

∂xi∂xj
γij(t) −

d∑
i=1

∂

∂xi
(fi(t) + ui(t)),

we have

(44) L+′(t) = ∂L+

∂t
=

d∑
i,j=1

∂2

∂xi∂xj
γij(t) −

d∑
i=1

∂

∂xi

(
∂fi
∂t

(t) + ∂ui
∂t

(t)
)
.

Thus, we obtain that

Bj(s)p̂s =Bj((k − 1)h)p̂(k−1)h +
∫ s

(k−1)h
Bj(u)L+

u p̂udu

(45)

−
m∑
l=1

∫ s

(k−1)h
Bj(u)Bl(u)

̂pu(zlkh − zlu)
kh− u

du +
∫ s

(k−1)h
B

′
j(u)p̂udu,

and by Itô formula, we have

|Bj(s)p̂s|2(46)

=|Bj((k − 1)h)p̂(k−1)h|2 + 2
∫ s

(k−1)h
〈Bj(u)L+

u p̂u + B
′
j(u)p̂u, Bj(u)p̂u〉du

− 2
m∑
l=1

∫ s

(k−1)h

⎛
⎝Bj(u)p̂u, Bj(u)Bl(u)

̂pu(zlkh − zlu)
kh− u

⎞
⎠ du.

Denote φu := Bj(u)L+(u) + B
′
j(u)pu, and similarly as (45), we have

(47)

Bj(s)ps = Bj((k − 1)h)p(k−1)h +
∫ s

(k−1)h
φudu−

m∑
l=1

∫ s

(k−1)h
Bj(u)Bl(u)pudzlu.
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Recalling that

(48) p̂s = p̂(k−1)h +
∫ s

(k−1)h
L+
u p̂udu−

m∑
i=1

E

[∫ s

(k−1)h
Bi(u)pudziu | Zk

]
,

we next consider the (p̂s, Bj(s)ps) in turn, which is the sum of the inner
products of the terms in (48) and (47). Define Ã, B̃, C̃i, i = 1, · · · ,m, for the
terms on the right hand side of (48), and X̃, Ỹ , Z̃l, l = 1, · · · ,m for the terms
on the right of (47). We can see the discussion in turn shown in the following
step 1-3.

Step 1: We shall consider (Ã, X̃ + Ỹ − Z̃) with Z̃ =
∑m

l=1 Z̃l.

E

[∫ t

(k−1)h
(p̂(k−1)h, Bj(s)ps)dzjs

]
(49)

=E

[
E

[∫ t

(k−1)h
(p̂(k−1)h, Bj(s)ps)dzjs | Zk−1

]]

=E

[(
p̂(k−1)h,E

[∫ t

(k−1)h
Bj(s)psdzjs | Zk−1

)]]

=0,

with p̂(k−1)h is Zk−1 ⊂ Z(k−1)h measurable, zt is in fact a Brownian motion,
and by using the Fubini’s theorem.

Step 2: Consider (B̃, X̃ + Ỹ − Z̃).
In B̃ =

∫ s
(k−1)h L+

u p̂udu, by Itô formula, we can expand L+
u p̂u as follows:

L+
u p̂u =L+

(k−1)hp̂(k−1)h +
∫ u

(k−1)h

(
(L+

r )2p̂r + L+′
r p̂r

)
dr(50)

−
m∑
l=1

E

[∫ u

(k−1)h
L+
r Bl(r)prdzlr | Zk

]
,

thus, we rewrite B̃ := B̃1 + B̃2 −
∑m

l=1 B̃3l.
Taking care of the (B̃1, X̃+ Ỹ − Z̃) term firstly. In

∫ s
(k−1)h L+

u p̂udu, substi-
tuting the constant term gives L+

(k−1)hp̂(k−1)h(s− (k−1)h). And again taking
expectation, we have

(51) E

[∫ t

(k−1)h

(
L+

(k−1)hp̂(k−1)h, Bj(s)ps
)

(s− (k − 1)h)dzjs

]
= 0.
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For l = 1, · · · ,m, denote the next lower order terms in (50) as

(52) Il(u) := E

[∫ u

(k−1)h
L+
r Bl(r)prdzlr | Zk

]
:= ψ(x, u, ω).

Recalling the norm used is that in L2(Rd) and by using Jensen’s inequality,
we see that

(53) |Il(u)|2 =
∫
Rd

ψ(x, s, ω)2dx ≤ E

⎡
⎣
∣∣∣∣∣
∫ u

(k−1)h
L+
r Bl(r)prdzlr

∣∣∣∣∣
2

| Zk

⎤
⎦ ,

thus,

(54) E[|Il(u)|2] ≤
∫ u

(k−1)h
E|L+

r Bl(r)pr|2dr ≤ C1(u− (k − 1)h),

where the last inequality is due to (1.6) of Pardoux [Pardoux].
Now

∣∣∣∣∣E
[∫ t

(k−1)h

(∫ s

(k−1)h
Il(u)du,Bj(s)ps

)
dzjs

]∣∣∣∣∣
(55)

≤
∫ t

(k−1)h
E

∣∣∣∣∣
(∫ s

(k−1)h
Il(u)du,Bj(s)ps

(zjkh − zjs)
kh− s

)∣∣∣∣∣ ds

≤
∫ t

(k−1)h

⎛
⎝E

∣∣∣∣∣
∫ s

(k−1)h
Il(u)du

∣∣∣∣∣
2
⎞
⎠

1/2

·
(
E
∣∣∣Bj(s)ps(zjkh − zjs)

∣∣∣2)1/2 1
kh− s

ds

(54)
≤ C2

∫ t

(k−1)h

(
(s− (k − 1)h)

∫ s

(k−1)h
(u− (k − 1)h)du

)1/2

(kh− s)−1/2ds

≤C2

∫ t

(k−1)h
(s− (k − 1)h)3/2(kh− s)−1/2ds

≤C2h
3/2

∫ t

(k−1)h
(kh− s)−1/2ds ≤ 2C2h

2,

thus, by substituting the Il(u) in (55),

∣∣∣∣∣E
[∫ t

(k−1)h

(∫ s

(k−1)h
E

[∫ u

(k−1)h
L+
r Bl(r)prdzlr | Zk

]
du,Bj(s)ps

)
dzjs

]∣∣∣∣∣≤C3h
2,

(56)
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for some constant C3. Actually, this is a bound for the (B̃3l, X̃+Ỹ −Z̃) terms.
Finally, let us consider the (B̃2, X̃ + Ỹ − Z̃) term as

∣∣∣∣∣E
[∫ t

(k−1)h

(∫ s

(k−1)h

∫ u

(k−1)h
((L+

r )2p̂r + L+′
r p̂r)drdu,Bj(s)ps

)
dzjs

]∣∣∣∣∣≤C4h
5/2,

(57)

and thus, ∣∣∣∣∣E
[∫ t

(k−1)h

(∫ s

(k−1)h
L+
u p̂udu,Bj(s)ps

)
dzjs

]∣∣∣∣∣ ≤ C5h
2.(58)

Step 3: To discuss the (C̃i, X̃ + Ỹ − Z̃) term, we consider now the i-th
term of the sum in (48), i.e.,

(59) E

[∫ s

(k−1)h
Bi(u)pudziu | Zk

]
.

As shown in the (47), we substitute the

Bi(u)pu = Bi((k − 1)h)p(k−1)h +
∫ u

(k−1)h
φrdr −

m∑
l=1

∫ u

(k−1)h
Bi(r)Bl(r)prdzlr

in the (59), and denote

C̃i1 := E

[∫ s

(k−1)h
Bi((k − 1)h)p(k−1)hdz

i
u | Zk

]
(60)

=E

[
Bi((k − 1)h)p(k−1)h

∫ s

(k−1)h
dziu | Zk

]

=E
[
Bi((k − 1)h)p(k−1)h(zis − zi(k−1)h) | Zk

]
=E

[
E
[
Bi((k − 1)h)p(k−1)h(zis − zi(k−1)h) | Ẑ(k−1)h

]
| Zk

]
=E

[
Bi((k − 1)h)p(k−1)hE

[
(zis − zi(k−1)h) | Ẑ(k−1)h

]
| Zk

]
=E

[
Bi((k − 1)h)p(k−1)hΔzik(s− (k − 1)h)/h | Zk

]
=Bi((k − 1)h)p̂(k−1)hΔzik(s− (k − 1)h)/h,

(61) C̃i2 := E

[∫ s

(k−1)h

(∫ u

(k−1)h
φrdr

)
dziu | Zk

]
,
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(62) C̃i3l := E

[∫ s

(k−1)h

(∫ u

(k−1)h
Bi(r)Bl(r)prdzlr

)
dziu | Zk

]
,

with l = 1, · · · ,m. Then, we need to consider

E

[∫ t

(k−1)h

(
C̃i1 + C̃i2 −

m∑
l=1

C̃i3l, Bj(s)ps

)
dyjs

]
,(63)

with the expansion (47) is substituted for Bj(s)ps.
Thus, we must obtain the bounds for the expected values of all inner

product terms arising from these expansions shown in (63). Consider first
(C̃i1, X̃).

2E
[∫ t

(k−1)h

(
C̃i1, X̃

)
dzis

]
(64)

=E

[
2
∫ t

(k−1)h

(
Bi((k − 1)h)p̂(k−1)h, Bi((k − 1)h)p(k−1)h

)

×(s− (k − 1)h)Δzik
h

(zjkh − zjs)
kh− s

ds

]
,

where this is 0 if i �= j because the components of z are independent. If i = j,
we take expectation conditioned on Ẑ(k−1)h first and obtain

E

[
2
∫ t

(k−1)h

∣∣∣Bi((k − 1)h)p̂(k−1)h

∣∣∣2 (s− (k − 1)h)ds(Δzik)2

h2

]
(65)

=(t− (k − 1)h)2

h
E
∣∣∣Bi((k − 1)h)p̂(k−1)h

∣∣∣2
≤(t− (k − 1)h)E

∣∣∣Bi((k − 1)h)p̂(k−1)h

∣∣∣2 .
This term is O(h), but we shall see below that it cancels, with the observation

that this term (t− (k − 1)h)2

h
E
∣∣∣Bi((k − 1)h)p̂(k−1)h

∣∣∣2 ≥ 0.
Next consider a term of the form (C̃i1, Z̃l).

E

[∫ t

(k−1)h

(
C̃i1,

∫ s

(k−1)h
Bj(u)Bl(u)pudzlu

)
dzls

]
(66)

=E

[∫ t

(k−1)h

(
Bi((k − 1)h)p̂(k−1)h

Δzik
h

(s− (k − 1)h),
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∫ s

(k−1)h
Bj(u)Bl(u)pudzlu

)
dzls

]

=E

[∫ t

(k−1)h

(
Bi((k − 1)h)p̂(k−1)h

Δzik
h

(s− (k − 1)h),

∫ s

(k−1)h
Bj(u)Bl(u)pudzlu

)
zjkh − zjs
kh− s

ds

]
,

=δij
h
E

[∫ t

(k−1)h
(s− (k − 1)h)

(
Bi((k − 1)h)p̂(k−1)h,

∫ s

(k−1)h
Bj(u)Bl(u)pudzlu

)
ds

]

=0,

where the last second equality holds by taking expectation conditioned on
Ẑ(k−1)h first, and the last equality follows that the components of z are inde-
pendent in all cases.

For the term (C̃i1, Ỹ ), we have

∣∣∣∣∣E
[∫ t

(k−1)h
(C̃i1, Ỹ )dzjs

]∣∣∣∣∣
(67)

=
∣∣∣∣∣E

[∫ t

(k−1)h

(
Bi((k − 1)h)p̂(k−1)h

Δzik
h

(s− (k − 1)h),
∫ s

(k−1)h
φudu

)
dzjs

]∣∣∣∣∣
=δij

∣∣∣∣∣E
[(

1
h
Bi((k − 1)h)p̂(k−1)h,

∫ t

(k−1)h
(s− (k − 1)h)

∫ s

(k−1)h
φududs

)]∣∣∣∣∣
≤C6h

2.

Before taking account of the term (C̃i2, X̃ + Ỹ − Z̃), we know the term∫ u
(k−1)h φrdr gives rise to integral as

E|Ĉi2|2 =E

∣∣∣∣∣E
[∫ s

(k−1)h

(∫ u

(k−1)h
φrdr

)
dziu | Zk

]∣∣∣∣∣
2

(68)

≤E

⎡
⎣E

⎡
⎣
∣∣∣∣∣
∫ s

(k−1)h

(∫ u

(k−1)h
φrdr

)
dziu

∣∣∣∣∣
2

| Zk

⎤
⎦
⎤
⎦
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≤
∫ s

(k−1)h
E

∣∣∣∣∣
∫ u

(k−1)h
φrdr

∣∣∣∣∣
2

du ≤ C7(s− (k − 1)h)3.

As shown before we obtain that
∣∣∣∣∣E

[∫ t

(k−1)h
(C̃i2, Bj(s)ps)dzjs

]∣∣∣∣∣(69)

=
∣∣∣∣∣E

[∫ t

(k−1)h
(C̃i2, Bj(s)ps)

(zjkh − zjs)
kh− s

ds

]∣∣∣∣∣
≤

∫ t

(k−1)h
E

∣∣∣∣∣
(
C̃i2, Bj(s)ps

(zjkh − zjs)
kh− s

)∣∣∣∣∣ ds
≤

∫ t

(k−1)h

(
E|C̃i2|2

)1/2 (
E|Bj(s)ps(zjkh − zjs)|2

)1/2 ds

kh− s

(68)
≤ C7

∫ t

(k−1)h
(s− (k − 1)h)3/2(kh− s)−1/2ds

≤C7h
3/2

∫ t

(k−1)h
(kh− s)−1/2ds ≤ C7h

2.

For the term (C̃i3l, X̃), we must consider the following expression

E

[∫ t

(k−1)h
(C̃i3l, B

j
(k−1)hp(k−1)h)dzjs

]
.(70)

This appears to be only O(h3/2); however, we can take expansion on Bi(r)Bl(r)
which is in C̃i3l as follows:

Bi(r)Bl(r)pr = Bi((k − 1)h)Bl((k − 1)h)p(k−1)h +
∫ r

(k−1)h

d(Bi(v)Bl(v)pv)
dv

dv.

(71)

The constant term of the C̃i3l then gives

E[Bi((k − 1)h)Bl((k − 1)h)p(k−1)h

∫ s

(k−1)h
(zlu − zl(k−1)h)dziu | Zk] := C̃i3l.

(72)
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If l �= i in (72), we have

C̃i3l =ΔzlkΔzik
h2 Bi((k − 1)h)Bl((k − 1)h)p̂(k−1)h

∫ s

(k−1)h
(u− (k − 1)h)du

(73)

=ΔzlkΔzik
h2 Bi((k − 1)h)Bl((k − 1)h)p̂(k−1)h

(s− (k − 1)h)2

2 ,

substituting (73) in (70), the expectation is zero.
If l = i in (72), we have

C̃i3l =B2
i ((k − 1)h)p̂(k−1)hE

[∫ s

(k−1)h
(ziu − zi(k−1)h)dziu | Zk

](74)

=B2
i ((k − 1)h)p̂(k−1)hE

[
(zis − zi(k−1)h)2 − (s− (k − 1)h) | Zk

]

=B2
i ((k − 1)h)p̂(k−1)h ·

[
1
2

(Δzik)2

h2 (s− (k − 1)h)2

+(s− (k − 1)h)(kh− s)
2h − (s− (k − 1)h)

2

]

=B2
i ((k − 1)h)p̂(k−1)h ·

[
1
2

(Δzik)2

h2 (s− (k − 1)h)2 − (s− (k − 1)h)2

2h

]
,

the last second equality follows Lemma 3.2. Substituting (74) which is the con-

stant term of C̃i3l in (70), we obtain that the term involving (s− (k − 1)h)2

2h
has expectation 0, and the other term gives

1
2h3E

[
(Δzik)2

∫ t

(k−1)h

(
B2

i ((h− 1)h)p̂(k−1)h,(75)

Bj((h− 1)h)p(k−1)h

)
(s− (k − 1)h)2(Δzjk)

]
,

where both when i = j and i �= j the expectation is 0.
Arguments similar to those above can show the remaining terms in (70)

are less than C8h
2, for some constant C8.

Take a turning to consider (C̃i3l, Ỹ ), we have

|E
∫ t

(k−1)h
(C̃i3l, Ỹ )dzjs |(76)
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=
∣∣∣∣∣E

[∫ t

(k−1)h

(
E

[∫ s

(k−1)h

∫ u

(k−1)h
Bi(r)Bl(r)prdzlrdziu | Zk

]
,

∫ s

(k−1)h
φudu

)
dzjs

]∣∣∣∣∣
≤C9

∫ t

(k−1)h

(∫ s

(k−1)h

∫ u

(k−1)h
drdu

)1/2

(s− (k − 1)h)1/2 (kh− s)1/2

kh− s
ds

≤C9h
5/2.

Finally, we are left with terms in (C̃i3l, Z̃α), for α = 1, · · · ,m. Let us
consider

∣∣∣∣∣E
[∫ t

(k−1)h
(C̃i3l, Z̃α)dzjs

]∣∣∣∣∣(77)

=
∣∣∣∣∣E

[∫ t

(k−1)h

(
E

[∫ s

(k−1)h

∫ u

(k−1)h
Bi(r)Bl(r)prdzlrdziu | Zk

]
,

∫ s

(k−1)h
Bj(u)Bα(u)pudzαu

)
zjkh − zjs
kh− s

ds

]∣∣∣∣∣
≤

∫ t

(k−1)h

⎛
⎝E

∣∣∣∣∣
∫ s

(k−1)h

∫ u

(k−1)h
Bi(r)Bl(r)prdzlrdziu

∣∣∣∣∣
2
⎞
⎠

1/2

·

⎛
⎝E

∣∣∣∣∣
∫ s

(k−1)h
Bj(u)Bα(u)pudzαu (zjkh − zjs)

∣∣∣∣∣
2
⎞
⎠

1/2
ds

kh− s

≤h3/2
∫ t

(k−1)h

ds

(kh− s)1/2
≤ C10h

2.

From the above estimates on Step 1-3, therefore, we have

∣∣∣∣∣∣2
∫ t

(k−1)h
E

⎛
⎝p̂s, Bj(s)

̂ps(zjkh − zjs)
kh− s

⎞
⎠ ds(78)

−(t− (k − 1)h)E|Bj((k − 1)h)p̂(k−1)h|2
∣∣∣

≤M1h
2,

where M1 = C2 + · · ·C10.



Error estimate for the approximate solution 1137

Consider now the term

(79)
∫ t

(k−1)h
E |Bj(s)p̂s|2 ds

in the statement of the theorem (40).
Recalling the product formula of |Bj(s)p̂s|2 in (46), i.e.,

|Bj(s)p̂s|2 =|Bj((k − 1)h)p̂(k−1)h|2(80)

+ 2
∫ s

(k−1)h
〈Bj(u)L+

u p̂u + B
′
j(u)p̂u, Bj(u)p̂u〉du

− 2
m∑
l=1

∫ s

(k−1)h

⎛
⎝Bj(u)p̂u, Bj(u)Bl(u)

̂pu(zlkh − zlu)
kh− u

⎞
⎠ du,

and substituting it in (79), we need to consider the following expression
∫ t

(k−1)h
E|Bj((k − 1)h)p̂(k−1)h|2ds(81)

+2
∫ t

(k−1)h
E

[∫ s

(k−1)h
〈Bj(u)L+

u p̂u + B
′
j(u)p̂u, Bj(u)p̂u〉du

]
ds

−2
m∑
l=1

∫ t

(k−1)h
E

⎡
⎣∫ s

(k−1)h

⎛
⎝Bj(u)p̂u, Bj(u)Bl(u)

̂pu(zlkh − zlu)
kh− u

⎞
⎠ du

⎤
⎦ ds.

We have first a term in the expression (81)

(82) (t− (k − 1)h)E|Bj((k − 1)h)p̂(k−1)h|2,

which is going to be canceled with (65).
The second integral in (81) is bounded by C11h

2, shown as

2
∫ t

(k−1)h
E

[∫ s

(k−1)h
〈Bj(u)L+

u p̂u + B
′
j(u)p̂u, Bj(u)p̂u〉du

]
ds(83)

≤C11

∫ t

(k−1)h

∫ s

(k−1)h
duds ≤ C11h

2

for some C11.
Consider now a term of the form

(84)
∫ s

(k−1)h

⎛
⎝Bj(u)Bl(u)

̂pu(zlkh − zlu)
kh− u

,Bj(u)p̂u

⎞
⎠ du,



1138 Wenhui Dong and Xingbao Gao

which is equivalent to

(85) E

[∫ s

(k−1)h
(Bj(u)Bl(u)pu, Bj(u)p̂u) dzlu | Zk

]
.

Using the Itô formula which is the similar argument to Bj(u)
p̂u and Bj(u)Bl(u)pu, respectively, the term in the norm of L2(Rd) can be
written as

(Bj(u)Bl(u)pu, Bj(u)p̂u)(86)
=(Bj((k − 1)h)Bl((k − 1)h)p(k−1)h, Bj((k − 1)h)p̂(k−1)h) + O(

√
h).

By the fact that p̂(k−1)h is Zk−1 ⊂ Z(k−1)h measurable, we obtain that

(87)
E

[
E

[∫ s

(k−1)h

(
Bj((k − 1)h)Bl((k − 1)h)p(k−1)h,

Bj((k − 1)h)p̂(k−1)h

)
dzlu | Zk

]]
= 0,

and thus,

E

⎡
⎣∫ s

(k−1)h

⎛
⎝Bj(u)Bl(u)

̂pu(zlkh − zlu)
kh− u

,Bj(u)p̂u

⎞
⎠ du

⎤
⎦(88)

=E

[
E

[∫ s

(k−1)h
(Bj(u)Bl(u)pu, Bj(u)p̂u)dzlu | Zk

]]

=E

[∫ s

(k−1)h
E
[
O(

√
h)dzlu | Zk

]]
= 0.

Therefore, we obtain that

∣∣∣∣∣
∫ t

(k−1)h
E |Bj(s)p̂s|2 ds− (t− (k − 1)h)E|Bj((k − 1)h)p̂(k−1)h|2

∣∣∣∣∣ ≤ M2h
2.

(89)

From (78) and (89), we have

∣∣∣∣∣∣
∫ t

(k−1)h
E
[
|Bj(s)p̂s|2

]
ds−2

∫ t

(k−1)h
E

⎡
⎣
⎛
⎝p̂s, Bj(s)

̂ps(zjkh − zjs)
kh− s

⎞
⎠
⎤
⎦ ds

∣∣∣∣∣∣≤C0h
2,

(90)
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where C0 = M1 + M2.

We can now get the main result of the error for the approximate solution
to the generalized FKE.

Theorem 3.3. Suppose C = mC0, then for (k − 1)h < t ≤ kh, we have

(91) E|Δpt|2 ≤ C(eλh + · · · ekλh) ≤ kCeμTh2,

where μ = λ ∨ 0. Furthermore, in particular we obtain E|ΔpT |2 ≤ CTeμTh.

Proof. We will get the result by induction. Firstly, we have the following
bounds by virtue of the (90).

∣∣∣∣∣∣
m∑
j=1

∫ t

(k−1)h
E|Bj(s)p̂s|2ds− 2

m∑
j=1

∫ t

(k−1)h
E

⎛
⎝p̂s, Bj(s)

̂ps(zjkh − zjs)
kh− s

⎞
⎠ ds

∣∣∣∣∣∣
(92)

≤mC0h
2 := Ch2.

By using the coercivity condition (18) in Assumption A2, (92), and the
statement in Theorem 3.2, we have for 0 ≤ t ≤ h,

(93) E|Δpt|2 ≤ Ch2 +
∫ t

0
λE|Δps|2ds,

with p̂0 = p0. Thus, by Gronwall’s inequality, we obtain that

(94) E|Δpt|2 ≤ Ch2eλt.

In particular,

(95) E|Δpt|2 ≤ Ch2eλh.

Suppose the result is proved for t ≤ (k − 1)h, i.e.,

(96) E|Δpt|2 ≤ C(eλh + · · · + e(k−1)λh)h2,

so that particularly,

(97) E|Δp(k−1)h|2 ≤ C(eλh + · · · + e(k−1)λh)h2.
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By using the coercivity condition in Theorem 3.1 again, and the bound
in (92), for (k − 1)h ≤ t ≤ kh, we have

E|Δpt|2 ≤C(eλh + · · · + e(k−1)λh)h2 + Ch2 +
∫ t

(k−1)h
λE|Δps|2ds.(98)

Therefore, again by using the Gronwall’s inequality, we have

E|Δpt|2 ≤ C(1 + eλh + · · · + e(k−1)λh)h2eλ(t−(k−1)h)(99)
≤ C(1 + eλh + · · · + e(k−1)λh)h2eλh

= C(eλh + · · · + ekλh)h2

≤ kCeμTh2,

with μ = λ ∨ 0, and further, E|ΔpT |2 ≤ NtCeμTh2 = CTeμTh.

4. Conclusion

In this paper, we firstly validated that the error estimate of the approximate
solution for the generalized FKE in the FPF has the order O(

√
h), where

the h is the time interval, in the sense of the mean square error. Moreover,
we will validate that the approximate solution can lead the multivariate FPF
to attaining a more efficient filtering manner by the numerical simulations,
which is one of our future research focuses.

Appendix

A.1. The proof of Lemma 3.1

Proof.

E[pt | ZNt ] = E[pt | zh, z2h, · · · , zNth](100)
=E[pt | zh, z2h, · · · , z(k−1)h, zkh, z(k+1)h − zkh, · · · , zNth − z(Nt−1)h]
=E[pt | zh, z2h, · · · , zkh],

where the last equality holds following the fact that σ{zt}∨σ{zh, z2h, · · · , zkh}
is independent of σ{z(k+1)h − zkh, · · · , zNth − z(Nt−1)h}.
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A.2. The proof of Lemma 3.2

Proof. For (k − 1)h ≤ t ≤ kh, we consider the enlarged filtration {Ẑt}, the
{Ẑt}-semimartingale decomposition of zjt is

zjt = zj(k−1)h + ηj,kt +
∫ t

(k−1)h

zjkh − zju
kh− u

du,(101)

where η in this decomposition is a {Ẑt}-Brownian motion which is indepen-
dent of ZNt . As pointed out in [JY], the final integral in (101) is absolutely
convergent. Now,

(zjt − zj(k−1)h)
2 = 2

∫ t

(k−1)h
(zju − zj(k−1)h)dz

j
u + (t− (k − 1)h),(102)

thus the {Ẑt} decomposition is

(zjt − zj(k−1)h)
2 =2

∫ t

(k−1)h
(zju − zj(k−1)h)dη

j,k
u(103)

+ 2
∫ t

(k−1)h
(zju − zj(k−1)h)

zjkh − zju
kh− u

du

+ (t− (k − 1)h).

Denoting t := E[(zjt − zj(k−1)h)
2 | Zk] and taking expectation at both sides

of (103) conditioned on Zk, we have

t =2E[
∫ t

(k−1)h
(zju − zj(k−1)h)dη

j,k
u | Zk](104)

+ 2E[
∫ t

(k−1)h
(zju − zj(k−1)h)

zjkh − zju
kh− u

du | Zk] + (t− (k − 1)h)

=2E[
∫ t

(k−1)h
(zju − zj(k−1)h)

zjkh − zju
kh− u

du | Zk] + (t− (k − 1)h),

where the last equality holds following that η is a {Ẑt}-Brownian motion and
independent of ZNt such that

E[
∫ t

(k−1)h
(zju − zj(k−1)h)dη

j,k
u | Zk](105)
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=E[E[
∫ t

(k−1)h
(zju − zj(k−1)h)dη

j,k
u | ZNt ] | Zk] = 0.

E[
∫ t

(k−1)h
(zju − zj(k−1)h)

zjkh − zju
kh− u

du | Zk](106)

=E[
∫ t

(k−1)h

(zju − zj(k−1)h)(z
j
kh − zj(k−1)h)

kh− u
du | Zk]

− E[
∫ t

(k−1)h

(zju − zj(k−1)h)2

kh− u
du | Zk]

=
∫ t

(k−1)h

E[(zju − zj(k−1)h) | Zk]E[(zjkh − zj(k−1)h) | Zk]
kh− u

du

−
∫ t

(k−1)h

u
kh− u

du

(23),(24)=
∫ t

(k−1)h

(Δzjk)2

h

u− (k − 1)h
kh− u

du−
∫ t

(k−1)h

u
kh− u

du.

Substituting (106) back in to (104), we obtain that
(107)

t = 2
∫ t

(k−1)h

(Δzjk)2

h

u− (k − 1)h
kh− u

du−
∫ t

(k−1)h

u
kh− u

du + (t− (k − 1)h).

If we write C = (Δzjk)2

h
, t will satisfy the equation as following

(108) (kh− u)du + 2udu = 2C(u− (k − 1)h)du + (kh− u)du.

Taking (kh− u)−3 as an integrating factor in (108), we have

(109) d

(
u

(kh− u)2
)

= (1 − 2C)
(kh− u)2 du + 2Ch

(kh− u)3 du.

Integrating both sides of the (109) from (k − 1)h to t, with t < kh, we
have

(110) t = (Δzjk)
2
(
s− (k − 1)h

h

)2
+ (kh− t) t− (k − 1)h

h

Clearly, the (110) also holds when t = kh.
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