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Abstract: In this paper, we study an integral operator L0 ex-
tending tangent vector fields V along the unit circle S1 to tangent
vector fields L0(V ) defined on the closure of the open unit disk D.
We first show that L0 is conformally natural. Then we show: (1)
the cross-ratio distortion norm ‖V ‖cr of V on S1 is equivalent to
‖∂̄L0(V )‖∞; (2) ∂̄L0(V ) is uniformly vanishing near the boundary
of D if and only if V satisfies the little Zygmund bounded con-
dition; (3) for each 0 < α < 1, ∂̄L0(V )(z) = O((1 − |z|)α) if and
only if V is C1+α-smooth. As applications, the collection of V with
||V ||cr < ∞ (resp. being uniformly vanishing near the boundary)
recapitulates a known model of the tangent space of the universal
Teichmüller space T (D) (resp. the little Teichmüller space T0(D));
the collection of V with ||V ||cr < ∞ and satisfying a group compat-
ible condition characterizes the tangent space of the Teichmüller
space T (R) of a hyperbolic Riemann surface R; the collection of
the C1+α-smooth vector fields V provides a model for the tangent
space of the Teichmüller space Tα

0 (D) of the C1+α diffeomorphisms
of S1.
Keywords: Conformally natural extension, Zygmund norm, Teich-
müller space, little Teichmüller space, Hölder continuity.

1. Introduction

Let R be a hyperbolic Riemann surface. Using the open unit disk D as a
universal covering space of R, the collection G(R) of the deck/cover transfor-
mations of D over R is represented by a subgroup of Möb(D), where Möb(D)
is the group of all Möbius transformations preserving D. The Teichmüller
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space T (R) of R classifies the conformal structures on R and each point of
T (R) is represented by a quasiconformal map f from R to another Riemann
surface f(R) of the same topological type. Then f lifts to a quasiconfor-
mal map F from D to itself satisfying that for any g ∈ G(R), there exist
g′ ∈ G(f(R)) such that F ◦ g = g′ ◦ F ; that is, F ◦ g ◦ F−1 is a Möbius
transformation preserving D for any g ∈ G(R). When R has the limit set
of G(R) equal to S1, T (R) is embedded into the universal Teichmüller space
T (D). There are two models to describe T (D). One is defined by using the
equivalence classes of quasiconformal maps from D onto itself and the other
employs the quasisymmetric homeomorphisms of the unit circle S1 to itself.
Using the Beurling-Ahlfors extension ([5]), one can obtain the equivalence of
these two models for T (D) through replacing D by the upper half plane H.
Given a hyperbolic Riemann surface R with the limit set of G(R) equal to
S1 and a point of T (R) represented by a quasiconformal map f from R to
f(R), let h be the restriction of the lifting F of f to the boundary circle
S1. Then a natural model of using quasisymmetric homeomorphisms of S1 to
describe T (R) is to employ quasisymmstric homeomorphisms of S1 satisfying
the condition that for any g ∈ G(R), there exists g′ ∈ Möb(D) such that

(1.1) h ◦ g ◦ h−1|S1 = g′|S1 .

In order to prove this model to be an alternative description of T (R), one
needs to know if a quasisymmetric homeomorphism h satisfies the condition
(1.1), then it can be extended to a quasiconformal map of D extending the
condition (1.1) to D. The Douady-Earle extension DE(h) ([9]) of h achieves
this goal and such a property of DE(h) is called the conformal naturality
of the extension. In fact, the Douady-Earle extension is well defined for any
orientation preserving homeomorphism of S1 and the conformal naturality of
the extension holds more generally in the sense that for any homeomorphism
h of S1 and any two Möbius transformations g1 and g2 preserving D,

DE(g2 ◦ h ◦ g1) = g2 ◦DE(h) ◦ g1.

This extension has found many applications. For example, one can find an
application in the study of the rigidity of the groups of homeomorphisms of
S1 with uniformly bounded quasisymmetry ([29]), applications in characteriz-
ing various subspaces of the universal Teichmüller space in terms of different
kinds of quasisymmetric homeomorphisms of S1 or in the study of the con-
traction property of these subspaces ([7], [8], [11], [39], [31]), applications
in the study of the topological characterizations of Teichmüller spaces and



Conformally natural extensions of vector fields and applications 1149

asymptotic Teichmüller spaces in terms of Thurston’s earthquake measures
([34] and [13]) or in terms of shears ([37] and [12]).

Let h be an orientation preserving homeomorphism of S1 and let g1 and g2
be two Möbius transformations preserving D. Denote by ||h||cr the cross-ratio
distortion of h, K(DE(h)) the maximal dilatation of DE(h) on D, and μDE(h)
the Beltrami coefficient of DE(h), which are defined in the next section. Let
0 < α < 1. Relationships between regularities of h and DE(h) have been
studied in [9], [11], [20], [21], [22], [31], and many other papers. The relevant
results to this paper are summarized in the following first table.

Properties References
DE(g2 ◦ h ◦ g1) = g2 ◦DE(h) ◦ g1 [9]

DE(h) is quasiconformal if h admits [9]
a quasiconformal extension

DE(h) is quasiconformal iff h is quasisymmetric [9] & [5] or [20]
lnK(DE(h)) ≤ C||h||cr for a universal constant C [20]
DE(h) is asymptotically conformal if h admits [11]

an asymptotically conformal extension
DE(h) is asymptotically conformal iff h is symmetric [11] & [16] or [21]

μDE(h)(z) = O((1 − |z|)α) iff h is [31]
a C1+α diffeomorphism for each 0 < α < 1

In this paper, we investigate an infinitesimal version of the Douady-Earle
extension, namely a conformally natural extension of a continuous tangent
vector field along the unit circle S1. In the following, we first provide the
motivation to study such extensions.

Given a smooth curve γ in T (R) through the base point, γ is expressed
by a curve f t of quasiconformal maps depending smoothly on t and with
f0 = id. Denote by

(1.2) v = df t

dt
|t=0.

For each value of t, ft is a quasiconformal map from R onto ft(R) and hence
it lifts to a quasiconformal map from D onto itself, which we denote by F t.
Then the curve f t lifts to a smooth curve F t of quasiconformal maps of D
with F 0 = id and satisfying the condition that for any g ∈ G(R), there exists
a smooth curve gt of Möbius transformations preserving D with g0 = g such
that

(1.3) F t ◦ g = gt ◦ F t.
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Taking the derivative of both sides to the variable t, we obtain

(1.4) dF t

dt
◦ g = dgt

dt
(F t) + dgt

dz

dF t

dt
.

Denote by dF t

dt |t=0 = V and dgt
dt |t=0 = H. Note that H is holomorphic on

D, V satisfies the so-called bounded Zygmund condition, and both H and V
extend continuously to D. Evaluating the previous equation (1.4) at t = 0,
we obtain

(1.5) V (g(z)) = H(z) + g′(z)V (z)

for any z ∈ D. The equation (1.5) extends to D with the extensions of H and
V . Let w = g(z). Then g′(z) = 1

(g−1)′(w) and the equation (1.5) is written as

V (w) = H(g−1(w)) + V (g−1(w))
(g−1)′(w) .

Denote by g∗V = V ◦g−1

(g−1)′ , which is called the pushforward of V under g. Then
for any g ∈ G(R), g∗V (w) − V (w) = −H(g−1(w)) and hence

(1.6) g∗V −V is holomorphic and extends to a continuous vector field on D.

Let C0
T (S1) be the collection of continuous tangent vector fields along S1.

Contrast to the model of T (R) using a collection of quasisymmetric homeo-
morphisms of S1, a natural model to characterize the tangent space of T (R) at
the base point is the collection of the Zygmund bounded continuous tangent
fields V along S1 satisfying the condition that for each g ∈ G(R), g∗V − V
has a continuous extension H(V,g) to D that is holomorphic on D. To achieve
this goal, one needs to know if V can be extended to a continuous vector
field Ṽ on D such that ∂̄Ṽ is essentially bounded and for any g ∈ G(R),
g∗Ṽ − Ṽ = H(V,g). The first step to fulfill this goal is to find a linear operator
L0 from C0

T (S1) to C0
T (D) that is conformally natural in the following sense:

(i) If V ∈ C0
T (S1) has a continuous extension H to D that is holomorphic

in D, then L0(V ) = H.
(ii) For any Möbius transformation g preserving D and any V ∈ C0

T (S1),

(1.7) L0(g∗V ) = g∗(L0(V )).

The second step is to show that ∂̄L0(V ) is essentially bounded if V is
Zygmund bounded.
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In this paper, we first derive an integral formula for the operator L0. Then
we study the relationships between the regularities of V and L0(V ). Denote
by ||V ||cr the cross-ratio distortion norm of V and ||∂L0(V )||∞ the L∞-norm
of the ∂-derivative of L0(V ) on D. Properties of L0 and the work of this paper
on the relationship between regularities of V and L0(V ) are summarized in
the following second table.

Properties References
L0(g∗(V )) = g∗(L0(V )) Theorem 1

Uniqueness of the operator L0 [10]
||∂L0(V )||∞ is finite iff V is Zygmund bounded [35]

1
C ||V ||cr ≤ ||∂L0(V )||∞ ≤ C||V ||cr Theorem 2

for a universal constant C

∂L0(V ) is uniformly vanishing near boundary Theorem 3
iff V satisfies the little Zygmund bounded condition
∂L0(V )(z) = O((1 − |z|)α) iff V is C1+α-smooth Theorem 5

for each 0 < α < 1

The paper is organized as follows. In the next section, we introduce back-
ground and give the integral formula for L0(V ) and the precise statements of
the results. In the third section, we show how to derive the formula for L0(V )
and prove its conformal naturality. Then we prove the results in Sections 4,
5, 6 and 7.

2. Background and statements of results

In this section, we introduce definitions and background and give the state-
ments of results.

Let C be the complex plane and R be the real line, and let S1 be the unit
circle on the complex plane centered at the origin. An orientation-preserving
homeomorphism h of S1 is said to be quasisymmetric if there exists a positive
constant C such that

(2.1) 1
C

≤ |h(e2πi(s+t)) − h(e2πis)|
|h(e2πis) − h(e2πi(s−t))| ≤ C

for any s ∈ R and 0 < t < 1
2 . Let QS(S1) be the collection of all quasisym-

metric homeomorphisms h of S1 and Möb(S1) be the Möbius transformation
preserving D. Two elements h1 and h2 of QS(S1) are equivalent if there exists
an element g ∈ Möb(S1) such that h2 = g ◦ h1. The universal Teichmüller
space T (D) is defined as the quotient space of QS(S1) under this equivalence
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relation. It is known that T (D) is an infinitely dimensional complex manifold
modelled on a Banach space. The tangent space Λ(S1) of T (D) at the base
point is characterized in [36] by the collection of the continuous tangent vec-
tor fields V along S1 vanishing at the three points −1, −i and 1 and satisfying
the following so-called Zygmund bounded condition ([41]); that is, there exists
a positive constant C such that

(2.2) |V (e2πi(s+t)) − 2V (e2πis) + V (e2πi(s−t))
t

| ≤ C

for all s ∈ R and 0 < t < 1
2 . For background on quasiconformal mappings

and Teichmüller spaces, we refer to the textbooks [3], [28], [27], and [15].
An element h of QS(S1) is said to be symmetric if the quotient of (2.1)

approaches 0 uniformly on s as t goes to 0. Let S(S1) be the collection of
all symmetric elements of QS(S1). Then the so-called little Teichmüller space
T0(D) is defined as the quotient space of S(S1) under the same equivalence
relation to define T (D). Gardiner and Sullivan proved in [16] that S(S1) is
a normal subgroup of QS(S1) under the composition, T0(D) is an infinitely
dimensional complex manifold modelled on a Banach space, and the coset
space T (D)/T0(D) is also a complex manifold. Furthermore, the tangent space
of T0 at the base point is characterized by the collection Λ0(S1) of the elements
of Λ(S1) satisfying that the left hand side of (2.2) approaches 0 uniformly on
s as t goes to 0. The elements of Λ0(S1) are said to be little Zygmund bounded
continuous tangent vector fields along S1 ([41]).

The space T (D) is often defined by using quasiconformal homeomorphisms
of D and the tangent space of T (D) at the base point is defined by the collec-
tion of continuous vector fields on D with essentially bounded ∂̄-derivatives.
To prove such definitions to be equivalent to the previous definitions, Berling-
Ahlfors extensions of quasisymmetric homeomorphisms h of R are developed
and applied ([5]). Correspondingly, the space T0(D) is often defined by using
the quasiconformal homeomorphisms of D that are uniformly asymptotically
conformal towards the boundary S1 and the tangent space of T0(D) at the
base point is defined by the collection of the continuous vector fields on D with
the ∂̄-derivatives essentially bounded and uniformly asymptotically vanishing
towards S1. Berling-Ahlfors extensions of symmetric homeomorphisms of R
and little Zygmund bounded continuous functions from R to R are studied
and used in [16] to prove these definitions of T0(D) and its tangent space at
the base point to be equivalent to the ones given in the previous paragraph.

Berling-Ahlfors extensions of quasisymmetric homeomorphisms of R or
Zygmund bounded continuous functions V defined on R are compatible with
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the affine maps preserving the upper half plane H, but not with all confor-
mal homeomorphisms of H. Therefore, one often needs to pay extra attention
(or put extra conditions) to these extensions near ∞, especially when used
to study the elements of T0(D) or the tangent space of T0(D) at the base
point. Douady-Earle (resp. infinitesimal Douady-Earle) extensions of homeo-
morphisms h of S1 (resp. continuous tangent vector fields V along S1) elimi-
nate such inconveniences. The main goal of this paper is two-fold. One is to
develop the corresponding results for infinitesimal Douady-Earle extensions
that are contrast to some known results for Douady-Earle extensions; the
other is to apply the infinitesimal Douady-Earle extensions to prove a model
that characterizes the tangent space of the Teichmüller space Tα

0 (D) of C1+α

diffeomorphisms of S1 for each 0 < α < 1.
In the following, we first introduce norms to quantize the quasisymmetry

of h and the Zygmund bound of V . The norm of h is invariant under pre- or
post-composition by any element of Möb(S1) and the norm of V is invariant
under the pushforward by any element of Möb(S1). These properties enable
one to show that the norm quantifying the quasiconformality of the Douady-
Earle extension of h is controlled by the norm quantifying the quasisymmetry
of h on S1. They also enable us to prove in this paper that the norm to
quantify the distortion of the infinitesimal Douady-Earle extension of V is
actually equivalent to the norm to quantify the Zygmund bound of V on S1.

Given a quadruple Q = {a, b, c, d} consisting of four points a, b, c and d
on the unit circle S1 arranged in counterclockwise order, we denote the cross
ratio cr(Q) of Q by

cr(Q) = (b− a)(d− c)
(c− b)(d− a) .

For an orientation-preserving homeomorphism h of S1, the cross-ratio distor-
tion norm of h is defined as

‖h‖cr = sup
cr(Q)=1

| ln cr(h(Q))|,

where h(Q) be the image quadruple {h(a), h(b), h(c), h(d)}. We say h is qua-
sisymmetric if ‖h‖cr is finite. This definition is equivalent to the definition
(2.1) using bounded ratio distortions of h on all symmetric triples on S1

([12]).
For any quadruple Q = {a, b, c, d} on S1, the minimal scale s(Q) is defined

as
s(Q) = min{|a− b|, |b− c|, |c− d|, |d− a|}.
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A sequence {Qn = {an, bn, cn, dn}}∞n=1 of quadruples is said to be degenerating
if cr(Qn) = 1 for each n and lim

n→+∞
s(Qn) = 0. It is given in [12] that a

quasisymmetric homeomorphism h of S1 is symmetric if and only if

sup
{Qn}

lim sup
n→∞

|cr(h(Qn))| = 0,

where the supremum is taken over all degenerating sequences {Qn}∞n=1 of
quadruples.

Let C0(S1,C) be the collection of the continuous functions from S1 to C

and V ∈ C0(S1,C). The cross-ratio distortion norm of V is defined as

‖V ‖cr = sup
cr(Q)=1

|V [Q]| < +∞,

where

V [Q] = V (b) − V (a)
b− a

− V (c) − V (b)
c− b

+ V (d) − V (c)
d− c

− V (a) − V (d)
a− d

.

It is given in [18] that V is Zygmund bounded if and only if ‖V ‖cr < +∞.
Furthermore, V ∈ Λ0(S1) if and only if

sup
{Qn}

lim sup
n→∞

|V [Qn])| = 0,

where the supremum is taken over all degenerating sequences {Qn}∞n=1 of
quadruples.

For any domain Ω on the complex plane C, let L∞(Ω) be the Banach space
of essentially bounded measurable complex-valued functions defined on Ω and
M(Ω) be the open unit ball in L∞(Ω) centered at the base point represented
by the 0-constant function. Given a quasiconformal map f from Ω to C, the
Beltrami coefficient μf is defined as

μf (z) = fz̄
fz

,

which is well-defined almost everywhere on Ω with respect to the Lebesgue
measure on Ω and μf ∈ M(Ω).

Now we give the definition for the Douady-Earle extension of a homeo-
morphism h of S1. Given a point z ∈ D, let ηz be the harmonic measure on
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S1 viewed from z and normalized to have the measure of S1 equal to 1; that
is, for any Borel set A ⊂ S1,

(2.3) ηz(A) = 1
2π

∫
A

1 − |z|2
|z − ξ|2 |dξ|.

Now let h∗(ηz) be the push-forward of the measure ηz by h; that is,

(2.4) h∗(ηz)(A) = ηz(h−1(A))

for any Borel set A ⊂ S1. In [9], the conformal barycenter of the measure
h∗(ηz), denoted by w = B(h∗(ηz)), is defined to be the unique point w ∈ D

such that

(2.5) 1
2π

∫
ζ − w

1 − w̄ζ
dh∗(ηz)(ζ) = 0.

Then the conformal barycentric extension Φ of h is defined as: Φ(z)=B(h∗(ηz))
for each z ∈ D and Φ(z) = h(z) for each z ∈ S1. We call Φ the Douady-Earle
extension of h and denote it by DE(h). This extension is conformally natural
in the sense that

1. for each element g ∈ Möb(S1), DE(g|S1) = g, and
2. for any two elements g1 and g2 ∈ Möb(S1),

DE(g2 ◦ h ◦ g1) = g2 ◦DE(h) ◦ g1.

Other properties of DE(h) are summarized in the table 1 in the introduction.
Remark 1. Conformally natural extensions can be introduced for circle maps
beyond homeomorphisms. The works in this direction can be found in [1], [2],
and [23]. Finally, conformally natural extensions are constructed for arbitrar-
ily continuous maps from S1 to itself in [24].

In this paper, we pay attention to so-called infinitesimal conformally nat-
ural extensions of continuous tangent vector fields V along S1. In this section,
we first give the integral formal for this extension. In the next section, we first
show how this integral expression is derived from the conformal naturality
condition and then prove it is conformally natural in general.

Given an element V ∈ C0(S1,C) and any z ∈ D, L0(V )(z) is defined as:

(2.6) L0(V )(z) = (1 − |z|2)3
2πi

∫
S1

V (ζ)
(1 − z̄ζ)3(ζ − z)dζ.

In this paper, we prove the following theorems.
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Theorem 1. The operator L0 is conformally natural in the following sense:

1. If V ∈ C0(S1,C) has a continuous extension H to D that is holomorphic
in D, then L0(V ) = H.

2. For any element g in Möb(S1) and any V ∈ C0(S1,C),

(2.7) L0(g∗V ) = g∗(L0(V )).

Remark 2. Any linear operator from C0(S1,C) to C0(D,C) satisfying the
above condition (2) is equal to L0 up to multiplication by a constant ([10]). If
such a linear operator is further required to either satisfy the above condition
(1) or extend the elements of C0(S1,C) to the elements of C0(D,C) with
given boundary maps, then it is equal to L0. The extension operator L0 in
higher dimensional cases is systematically studied by McMullen in Appendix
B of [33], where L0(V ) is called the visual extension of a vector field V .
Remark 3. Let ht be a smooth curve of diffeomorphisms of S1 with

(2.8) ht(ζ) = ζ + tV (ζ) + o(t),

where ζ ∈ S1, t is a real parameter, and V is a smooth tangent vector field
along S1. It is proved in Theorem 2 of [10] that

(2.9) dDE(ht)
dt

|t=0 = L0(V ).

This means that acting on the smooth tangent vector fields V along S1, the
operator L0 is the derivative of the Douady-Earle extension operator at the
identity map. Therefore, L0 is called the infinitesimal version of the Douady-
Earle extension operator. Here an interested question arises. Suppose V is a
continuous tangent vector field along S1 and a smooth curve ht of homeomor-
phisms of S1 satisfies (2.8). What regularities (weaker than smoothness) on
V are sufficient for the equality (2.9) to hold?

Proposition 1. For any V ∈ C0(S1,C),

‖∂̄L0(V )‖∞ ≤ 3‖V ‖cr.

Let Λ(S1,C) be the collection of the continuous functions V from S1 to C

with ||V ||cr < +∞, and let Λ(S1) be the collection of all Zygmund bounded
continuous tangent vector fields along S1. Assume V ∈ C0(S1,C). Clearly,
V ∈ Λ(S1) if and only if V ∈ Λ(S1,C) and satisfies the following tangency
condition

(2.10) Re ζ̄V (ζ) = 0 for any ζ ∈ S1.
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Proposition 2. There exists a constant C > 0 such that for any V ∈ Λ(S1),

(2.11) ‖∂̄L0(V )‖∞ ≥ C‖V ‖cr.

From Propositions 1 and 2, we reach the following result.

Theorem 2. There exists a universal constant C > 0 such that for any
V ∈ Λ(S1),

1
C
||V ||cr ≤ ||∂̄L0(V )||∞ ≤ C||V ||cr.

Theorem 3. Let V ∈ Λ(S1). Then V ∈ Λ0(S1) if and only if

lim
|z|→1

|∂̄L0(V )(z)| = 0.

Clearly, Theorem 2 implies the following Theorem A, and it also provides
an alternative proof to Theorem B which was obtained in [36] by using the
upper half plane and the Berling-Ahlfors extension of V . Theorem 3 gives a
different method to show Theorem C, which was reached in [16] by further
investigating the Berling-Ahlfors extension of V .
Theorem A ([35]) Let Let V ∈ Λ(S1). Then ||∂̄L0(V )||∞ is finite if and only
if V is Zygmund bounded.
Theorem B ([36]) The tangent space of T (D) at the base point is character-
ized by the collection of all elements V ∈ Λ(S1) vanishing at three points 1, i
and −1; that is,

(2.12) V (1) = V (−1) = V (i) = 0.

Theorem C ([16]) The tangent space of T0(D) at the base point is charac-
terized by the collection of all elements V ∈ Λ0(S1) satisfying the vanishing
condition (2.12).

With the conformal naturality of L0(V ) (Theorem 1) and Theorem 2, we
obtain the following theorem.

Theorem 4. Let R be a hyperbolic Riemann surface and G(R) be the group
of the deck/cover transformations of D over R. If the limit set of G(R) is S1,
then the tangent space of T (R) at the base point is characterized by the col-
lection of the elements of V ∈ Λ(S1) satisfying the group compatible condition

(2.13) g∗V = V for any g ∈ G(R).
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The other main goal of this paper is to introduce a characterization of
the tangent space of the Teichmüller space of circle diffeomorphisms.

Let 0 < α < 1. A diffeomorphism h of S1 belongs to Diff1+α(S1) if its
derivative h′ is α-Hölder continuous. The space Tα

0 (D) = Diff1+α(S1)/Möb(S1)
is introduced and studied by Matsuzaki in [30], [31] and [32]. Let ρD be the
hyperbolic density on D, it is shown in [31] that ‖μDE(h)(z)ραD(z)‖∞ < +∞
if and only if h ∈ Diff1+α(S1). A complex structure on Tα

0 (D) is introduced
in [32].

Let V ∈ Λ(S1). By V ∈ C1+α we mean that V is differentiable and V ′ is
α-Hölder continuous. In this paper, we show that V ∈ C1+α if and only if

‖∂̄L0(V )(z)ραD(z)‖∞ < +∞.

We achieve this result by introducing an equivalent condition for V ∈ C1+α

and proving the three conditions to be equivalent.
Let Λα

0 (S1) be the collection of the elements V of Λ(S1) satisfying

(2.14) ‖V ‖αcr = sup
cr(Q)=1,S(Q)≥

√
2
|V [Q]( 1

s(Q))
α| < +∞,

where the maximum scale S(Q) is defined as

S(Q) = max{|a− b|, |b− c|, |c− d|, |d− a|}.

We show the following theorem.

Theorem 5. Let V ∈ Λ(S1). The following three conditions are equivalent:

1. V ∈ Λα
0 (S1).

2. V ∈ C1+α.
3. ‖∂̄L0(V )(z)ραD(z)‖∞ < +∞.

Using Theorem 5, we characterize the tangent space to Tα
0 (D) at the base

point as follows.

Theorem 6. The tangent space of Tα
0 (D) at the base point is characterized

by the collection of all elements of Λα
0 (S1) satisfying the vanishing condition

(2.12).

The remaining sections are arranged as follows. We prove Theorem 1 in
Section 3, Propositions 1 and 2 in Section 4, Theorem 3 in Section 5, Theorem
5 in Section 6. In Section 7, we provide alternative proofs of Theorems B and
C and show Theorems 4 and 6.
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3. The conformal naturality of L0(V )

In this section, we first derive the integral formula for L0(V ). Then we prove
the conformal naturality of L0(V ).

Given an element V ∈ C0(S1,C), an extension L0(V ) of V to D is defined
as follows. We define

(3.1) L0(V )(0) = 1
2π

∫ 2π

0
V (eiθ)dθ = 1

2πi

∫
S1
V (ζ)dζ

ζ
.

For each a ∈ D, let w = ga(ζ) = ζ−a
1−āζ . Then we apply the condition (1.7) to

define L0(V )(a), which goes as follows:

L0(V )(a) = L0(V )(g−1
a (0)) = L0(V )(g−1

a (0))
(g−1

a )′(0) (g−1
a )′(0)

= ((ga)∗L0(V ))(0)(g−1
a )′(0) = L0((ga)∗V )(0) 1

g′a(a)

= 1
g′a(a)

1
2πi

∫
S1

V (g−1
a (w))

(g−1
a )′(w)

dw

w

= 1
g′a(a)2πi

∫
S1
V (ζ)(g′a(ζ))2

dζ

ga(ζ)

= (1 − |a|2)3
2πi

∫
S1

V (ζ)
(1 − āζ)3(ζ − a)dζ.

This means L0(V )(a) is defined by

(3.2) L0(V )(a) = 1
g′a(a)2πi

∫
S1
V (ζ)(g′a(ζ))2

dζ

ga(ζ)
,

or more explicitly by the integral operator

(3.3) L0(V )(a) = (1 − |a|2)3
2πi

∫
S1

V (ζ)
(1 − āζ)3(ζ − a)dζ.

Clearly, the expression (3.3) of L0(V )(a) recovers the definition of L0(V )(0)
by substituting a by 0. It is also clear that L0(V ) is a linear operator from
C0(S1,C) to C0(D,C).

Now we prove Theorem 1.

Proof of Theorem 1. From the Riemann integral formula, one can see that
if V has a continuous extension H to D that is holomorphic on D, then
L0(V ) = H.
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Now we verify that L0(V ) satisfies the condition (1.7), which is called the
conformal naturality of the extension. Using the expression (3.2) of L0(V )(a),
we can see that the value of L0(V )(a) is not changed if we replace ga by eiθga
for any θ. Let B be a Möbius transformation preserving D. Then B∗(L0(V ))
(B(z)) = B′(z)L(V )(z). Thus, it suffices to show that for any z ∈ D, L0(B∗V )
(B(z)) = B′(z)L(V )(z) as well. This can be proved effectively by using the
expression (3.2). Clearly,

L0(B∗V )(B(z)) = 1
g′B(z)(B(z))2πi

∫
S1

(B∗V )(ζ)(g′B(z)(ζ))2
dζ

gB(z)(ζ)

= 1
g′B(z)(B(z))2πi

∫
S1

V (B−1(ζ))
(B−1)′(ζ) (g′B(z)(ζ))2

dζ

gB(z)(ζ)
.

Let η = B−1(ζ). Then

L0(B∗V )(B(z)) = B′(z)
g′B(z)◦B(z)2πi

∫
S1
V (η)[(gB(z) ◦B)′(η)]2 dη

(gB(z) ◦B)(η) .

Since (gB(z) ◦B)(z) = 0, it follows that

L0(B∗V )(B(z)) = B′(z)L0(V )(z).

4. Conformally natural extensions of the elements in Λ(S1)

In this section, we prove Propositions 1 and 2. We first give a few lemmas.
Let Λ(R,C) be the collection of all complex-valued continuous functions

V defined on the real line R satisfying

(4.1) |V (x + t) − 2V (x) + V (x− t)| ≤ C|t|

for all x, t ∈ R and a positive constant C. Furthermore, denote by ‖V ‖Z be
the infimum of the constant C in (4.1). The elements of Λ(R,C) are called
Zygmund bounded complex-valued functions.

We first generalize a lemma of [6] from Zygmund bounded real-valued
functions to complex-valued functions. The proof is the same.

Lemma 1 ([6]). Suppose V ∈ Λ(R,C) and V (0) = V (1) = 0. Then

M = max{|V (x)| : 0 ≤ x ≤ 1} ≤ 1
3‖V ‖Z .
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Lemma 2 ([19]). Let B be a Möbius transformation preserving D and Ṽ =
B∗V . Then for any quadruple Q on S1,

V [Q] = Ṽ [B(Q)].

It follows that ||B∗V ||cr = ||V ||cr.
By taking the z̄-derivative of the integrand of (2.6), the z̄-derivative of

L0(V ) is obtained in [35] as

(4.2) ∂̄L0(V )(z) = 3(1 − |z|2)2
2πi

∫
S1

V (ζ)
(1 − z̄ζ)4 dζ.

Lemma 3. Given a point z0 ∈ D, let B ∈ Möb(S1) with B(z0) = 0. Then

(4.3) ∂̄(L0(V ))(z0) = ∂̄(L0(Ṽ ))(0),

where Ṽ = B∗V .

Proof. Denote by ζ = B(z) = z−z0
1−z0z

. Then B′(z) = 1−|z0|2
(1−z0z)2 . Using (4.2), we

obtain

∂̄(L0(Ṽ ))(0) = 3
2πi

∫
S1
Ṽ (ζ)dζ = 3

2πi

∫
S1

V (B−1(ζ))
(B−1)′(ζ) dζ

= 3
2πi

∫
S1
B′(B−1(ζ))V (B−1(ζ))dζ

= 3
2πi

∫
S1

(B′(z))2V (z)dz = ∂̄(L0(V ))(z0).

Given any two points a and b on S1, denote by â, b the arc on S1 that
connects a to b in the counterclockwise direction.

Lemma 4. Assume that V ∈ Λ(S1,C) satisfies the vanishing normalization
(2.12). Then

max
z∈S1

|V (z)| ≤ 4
3‖V ‖cr.

More precisely,

max
z∈−̂1,1

|V (z)| ≤ 4
3‖V ‖cr and max

z∈1̂,−1
|V (z)| ≤ 2

3‖V ‖cr.

Proof. We divide the proof into two steps.
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Step 1: We show

(4.4) max
z∈−̂1,1

|V (z)| ≤ 4
3‖V ‖cr.

Let B be the Möbius transformation from D to the upper half plane H that
maps −1, 1 and i to 0, 1 and ∞ respectively. Then B(z) = 1−i

2
z+1
z−i . Let Ṽ =

B∗V . Then Ṽ (x) = V (B−1(x))
(B−1)′(x) , Ṽ (0) = V (−1) = 0, and Ṽ (1) = V (1) = 0. For

any quadruple Q = (x− t, x, x + t,∞) ⊂ R, Lemma 2 implies

| Ṽ (x− t) − 2Ṽ (x + t) + Ṽ (x + t)
t

| = Ṽ [Q] = V [B−1(Q)] ≤ ‖V ‖cr.

Using Lemma 1, we obtain

max
0≤x≤1

|Ṽ (x)| ≤ 1
3‖Ṽ ‖Z ≤ 1

3‖V ‖cr.

Since Ṽ (x) = V (B−1(x))
(B−1)′(x) and B(−̂1, 1) = [0, 1], it follows that

max
z∈−̂1,1

|V (z)| = max
z∈−̂1,1

|Ṽ (B(z))(B−1)′(B(z))|(4.5)

= max
0≤x≤1

|Ṽ (x)(B−1)′(x)|

≤ 1
3‖V ‖cr · max

0≤x≤1
|(B−1)′(x)|

= 1
3‖V ‖cr · max

z∈−̂1,1
| 1
B′(z) |.

Clearly, B′(z) = −1
(z−i)2 . Thus,

(4.6) max
z∈−̂1,1

| 1
B′(z) | ≤ 4.

Then the inequality (4.4) follows from (4.5) and (4.6).
Step 2: We show

(4.7) max
z∈1̂,i

|V (z)| ≤ 2
3‖V ‖cr and max

z∈î,−1
|V (z)| ≤ 2

3‖V ‖cr.
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Without loss of generality, we show

max
z∈1̂,i

|V (z)| ≤ 2
3‖V ‖cr.

Let B be the Möbius transformation from D to H that maps 1, i and −1 to
0, 1 and ∞ respectively. Then B(z) = −i z−1

z+1 . Let Ṽ = B∗V . From the same
argument in Step 1, it follows that for any quadruple Q = (x−t, x, x+t,∞) ⊂
R,

| Ṽ (x− t) − 2Ṽ (x + t) + Ṽ (x + t)
t

| = Ṽ [Q] = V [B−1(Q)] ≤ ‖V ‖cr.

Clearly, B′(z) = −i 2
(z+1)2 . Then

(4.8) max
z∈1̂,i

| 1
B′(z) | ≤ 2.

Using the inequalities (4.5) and (4.8), we obtain

(4.9) max
z∈1̂,i

|V (z)| ≤ 1
3‖V ‖cr · max

z∈1̂,i
| 1
B′(z) | ≤

2
3‖V ‖cr.

Proof of Proposition 1. Let P (x) be a quadratic polynomial. Note that for
any quadruple Q ∈ S1, P [Q] = 0. Thus, for any V ∈ C0(S1,C),

(4.10) ‖V ‖cr = ‖V + P‖cr.

Note also that it suffices to prove the conclusion for V ∈ C0(S1,C) with
||V ||cr < +∞.

Given a point z0 ∈ D, we choose B(z) ∈ Möb(S1) with B(z0) = 0 and
denote by Ṽ = B∗V . Applying Lemma 2, we obtain

(4.11) ‖V ‖cr = ‖Ṽ ‖cr.

Now we choose a quadratic polynomial P such that (Ṽ +P )(1) = (Ṽ +P )(i) =
(Ṽ + P )(−1) = 0. Denote by ˜̃

V = Ṽ + P . Then

(4.12) ‖ ˜̃V ‖cr = ‖Ṽ ‖cr = ‖V ‖cr.
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Since
∫
S1 P (z)dz = 0, it follows from Lemma 3, (4.2) and Lemma 4 that

|∂̄(L0(V ))(z0)| = |∂̄(L0(Ṽ ))(0)| = | 3
2πi

∫
S1
Ṽ (z)dz|

= | 3
2πi

∫
S1

˜̃
V (z)dz| ≤ 3

2π

∫
S1
| ˜̃V (z)||dz|

= 3
2π (

∫
−̂1,1

| ˜̃V ||dz| +
∫

1̂,−1
| ˜̃V (z)||dz|)

≤ 3
2π (π · 4

3‖
˜̃
V ‖cr + π · 2

3‖
˜̃
V ‖cr)

= 3‖V ‖cr.

This completes the proof.

In the next, we prove Proposition 2.
We first recall the holomorphic dependence of the solution of the Beltrami

differential equation proved by Ahlfors and Bers [4]. For any μ(z) ∈ L∞(C),
there is a curve of quasiconformal homeomorphisms f tμ of the extended com-
plex plane Ĉ defined for |t| < 1/‖μ‖∞ such that

1) f tμ is the identity map when t = 0,
2) if it is normalized to fix three given points in Ĉ, f tμ is the uniquely

quasiconformal mapping with Beltrami coefficient tμ,
3) f tμ is holomorphic as a function of t and

(4.13) f tμ(z) = z + tF (z) + O(t2),

where O(t2) is uniform for z on any compact set. If a, b and c are fixed,
then
(4.14)

F (z) = −(z − a)(z − b)(z − c)
π

∫∫
C

μ(ζ)dξdη
(ζ − a)(ζ − b)(ζ − c)(ζ − z) .

The function F (z) is uniquely determined by the following two condi-
tions:

a) F (a) = F (b) = F (c) = 0, and F (z) has a growth of |z|2 as z → ∞,
and

b) ∂F (z) = μ(z) in the generalized sense.

Now we apply the representation (4.14) of F to prove Proposition 2.
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Proof of Proposition 2. We divide the proof into two steps.
Step 1: Find a representation of V in terms of ∂̄L0(V )(z).
Given an element V ∈ Λ(S1), let H1(z) = L0(V )(z) in D and μ1(z) =

∂̄H1(z). By Proposition 1, μ1 ∈ L∞(D). When |z|>1, let H2(z)=−z2H1(z̄−1)
and μ2(z) = ∂̄H2(z). Then

(4.15) |μ2(z)| = |μ1(z̄−1)|.

With the normalization (2.10), we know H1(z) = H2(z) when |z| = 1. Then

H(z) =
{

H1(z), |z| ≤ 1
H2(z), |z| > 1

is an extension of V to the complex plane C with H(z) = O(z2) as z → ∞.
Let μ(z) = ∂̄H(z). Then

(4.16) μ(z) =
{

μ1(z), |z| ≤ 1,
μ2(z), |z| > 1.

From the unique representation formula (4.14), if follows that when z ∈ S1,

(4.17) V (z) = −(z − 1)(z − i)(z + 1)
π

∫∫
C

μ(ζ)dξdη
(ζ − 1)(ζ − i)(ζ + 1)(ζ − z) .

Step 2: Estimate ‖V ‖cr in terms of ‖∂̄L0(V )‖∞.
Given a quadruple Q = {a, b, c, d} on S1 with cr(Q) = 1, let B ∈ Möb(S1)

mapping a, b, c and d to 1, i,−1 and −i respectively and let Ṽ = B∗V . Now
we add a quadratic polynomial P to Ṽ such that (Ṽ +P )(1) = (Ṽ +P )(i) =
(Ṽ + P )(−1) = 0. Then for z ∈ S1,
(4.18)

(Ṽ + P )(z) = −(z − 1)(z − i)(z + 1)
π

∫∫
C

μ̃(ζ)dξdη
(ζ − 1)(ζ − i)(ζ + 1)(ζ − z) ,

where μ̃(ζ) = μ(B−1(ζ)) (B−1)′(z)
(B−1)′(z) . Note that

(4.19) |μ̃(ζ)| = |μ(B−1(ζ))|.

Let Q0 = {1, i,−1,−i}. Then V [Q] = Ṽ [Q] = (Ṽ + P )[Q0] = (Ṽ + P )(−i).
Thus,

(4.20) V [Q] = (Ṽ + P )(−i) = 4i
π

∫∫
C

μ̃(ζ)dξdη
(ζ − 1)(ζ − i)(ζ + 1)(ζ + i) .
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By using (4.19), (4.16), (4.15) and setting

1
C

= 4
π

∫∫
C

| 1
(ζ − 1)(ζ − i)(ζ + 1)(ζ + i) |dξdη < +∞,

we obtain
C|V [Q]| ≤ ‖∂̄(L0(V ))‖∞.

It follows that

||V ||cr ≤
1
C
‖∂̄(L0(V ))‖∞.

We complete the proof of Proposition 2.

5. Conformally natural extensions of the elements in Λ0(S1)

In this section, we prove Theorem 3. We first introduce the Farey tessellation
of the unit disk. Let 
0 be the ideal hyperbolic geodesic triangle in D with
vertices 1, i and −1 and let Γ be the group generated by the hyperbolic
reflections to the sides of 
0. The Farey tessellation F is the collection of
the geodesics on the Γ-orbits of the edges of 
0. It is easy to see that the set
P of the endpoints of the geodesics in F is dense on S1. For applications of
the Farey tessellation in the study of the universal Teichmüller space and the
asymptotic Teichmuüller space of the unit disk, we refer to [37] and [12].

Proof of Theorem 3. We divide the proof into two steps.
Step 1: Prove that if V ∈ Λ0(S1), then

lim
|z|→1

|∂̄(L0(V )(z)| = 0.

Suppose that the conclusion doesn’t hold. Then there exist ε0 > 0 and a
sequence {zn}∞n=1 of points in D such that |zn| → 1 and

(5.1) |∂̄(L0(V ))(zn)| > ε0 all n.

For each zn, let Bn(z) = z−zn
1−znz

and Vn(x) = V (B−1
n (x))

(B−1
n )′(x) . For each Vn, we

choose a quadratic polynomial Pn such that (Vn + Pn)(1) = (Vn + Pn)(i) =
(Vn + Pn)(−1) = 0. Denote by Ṽn = Vn + Pn. Then

(5.2) |∂̄L0(V )(zn)| = |∂̄L0(Vn)(0)| = |
∫
S1
Vn(ξ)dξ| = |

∫
S1
Ṽn(ξ)dξ|.
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Let P be the collection of the endpoints of the geodesics forming the Farey
tessellation F on D. We claim that

lim
n→∞

Ṽn(p) = 0 for each p ∈ P .

Before proving this claim, we first show how this claim implies a contradiction.
Since ‖Ṽn‖cr = ‖Vn‖cr = ‖V ‖ < ∞, Ṽn is α-Hölder continuous for any
0 < α < 1 and the α-Hölder constant only depends on ||Ṽn||cr (Lemma 5 in
[25]). It follows that {Ṽn}∞n=1 is a sequence of uniformly α-Hölder continuous
vector fields. By Arzela-Ascoli Theorem, lim

n→∞
Ṽn(x) = 0 uniformly for x ∈ S1.

Using the integral formula in (5.2), we obtain lim
n→∞

|∂̄L0(V )(zn)| = 0. This is
a contradiction to the assumption (5.1). Therefore, the assumption doesn’t
hold; that is,

lim
|z|→1

|∂̄(L0(V )(z)| = 0.

Now we show the claim. We first show that for any quadruple Q =
{a, b, c, d} of four points on S1 in the counterclockwise order with cr(Q) = 1,

lim
n→∞

s(Bn(Q)) = 0.

Let β be the common perpendicular geodesic segment between the two
geodesics connecting a to b and c to d respectively. Let D0 be the hyper-
bolic disk centered at 0 and of radius 1 (in the hyperbolic metric). Since the
hyperbolic distance between the middle point of β and the hyperbolic cen-
ter of D0 is preserved under Bn and the Euclidean distance from Bn(0) to
S1 approaches 0 as n → ∞, it follows that both the Euclidean diameter of
Bn(D0) and the Euclidean length of Bn(β) approaches 0 as n → ∞. Thus,
limn→∞ s(Bn(Q)) = 0.

Given two points a, b ∈ S1, denote by γa,b the hyperbolic geodesic on D

joining a and b. Clearly, −i is the reflection of i with respect to γ−1,1. Then
−i ∈ P. Denote by Q1 = {1, i,−1,−i}. Clearly, cr(Q1) = 1 and

(5.3) Ṽn[Q1] = Ṽn(−i)
1 − i

+ Ṽn(−i)
1 + i

.

Using the definitions of Ṽn and Vn, Lemma 2 and limn→∞ s(Bn(Q1)) = 0, we
obtain

(5.4) lim
n→∞

Ṽn[Q1] = lim
n→∞

Vn[Q1] = lim
n→∞

V [Bn(Q1)] = 0.
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It follows from (5.3) and (5.4) that

(5.5) lim
n→∞

Ṽn(−i) = 0.

Let a1 be the reflection of −1 with respect to γ−i,1. Then a1 ∈ P. Denote by
Q2 = {1,−1,−i, a1}. By the same argument to show (5.5), we obtain

lim
n→∞

Ṽn(a1) = 0.

Repeating this progress, we conclude that for any p ∈ P,

lim
n→∞

Ṽn(p) = 0.

Step 2: Prove that lim
|z|→1

|∂̄(L0(V )(z)| = 0 implies V ∈ Λ0(S1).

Given a quadruple Q = {a, b, c, d} of four points arranged on S1 in the
counterclockwise direction, let B ∈ Möb(S1) mapping a, b, c, d to 1, i,−1,−i

respectively. Denote by Q0 = {1, i,−1,−i}.
We apply the same work and the same notation in the proof of Proposition

2 until the expression (4.20), that is,

(5.6) V [Q] = (Ṽ + P )(−i) = 4i
π

∫∫
C

μ̃(ζ)dξdη
(ζ − 1)(ζ − i)(ζ + 1)(ζ + i) .

Given any ε > 0, choose r ∈ (0, 1) such that

(5.7)
∫∫

D
r, 1r

| dξdη

(ζ − 1)(ζ − i)(ζ + 1)(ζ + i) | < ε,

where Dr, 1
r

= {z ∈ C : |z| ∈ (r, 1
r )}. Note that

|B−1(ζ)| −→ 1 uniformly for ζ ∈ Dr = {z ∈ C : |z| < r} as s(Q) → 0.
(5.8)

Using the notation introduced in the proof of Proposition 2, we know

μ̃(ζ) = ∂̄L0(V )(B−1(ζ))(B−1)′(ζ)
(B−1)′(ζ) for ζ ∈ Dr
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and |μ̃(ζ)| = |μ̃(1
ζ̄
)| for ζ ∈ D 1

r
. Thus, lim

|z|→1
|∂̄(L0(V )(z)| = 0 implies

(5.9) lim
s(Q)→0

|
∫∫

C\D
r, 1r

μ̃(ζ)dξdη
(ζ − 1)(ζ − i)(ζ + 1)(ζ + i) | = 0.

Combining (5.6), (5.7) and (5.9), we obtain

lim
s(Q)→0

V [Q] = 0.

We complete the proof.

6. Conformal natural extensions of the elements in Λα
0 (S1)

In this section, we prove Theorem 5. Relationships between different types of
circle diffeomorphisms and vanishing cross-ratio distortions are explored in
[14], [17], [18], [25] and [40]. Our Theorem 5 gives a characterization of C1+α

tangent vector fields along S1 in terms of cross-ratio distortion. We decompose
the proof of this theorem into proving the following three propositions.

Proposition 3. If V ∈ Λα
0 (S1), then V is C1+α.

Proposition 4. If V ∈ Λ(S1) is C1+α, then

‖∂̄L0(V )(z)ραD(z)‖∞ < +∞.

Proposition 5. If V ∈ Λ(S1) satisfies

‖∂̄L0(V )(z)ραD(z)‖∞ < +∞,

then V ∈ Λα
0 (S1).

Let v be a continuous function from the real line R to itself. For each
0 < α < 1, define

||v||αr = sup
x∈R,t>0

|v(x+t)−v(x)
t − v(x)−v(x−t)

t |
|t|α .

Clearly, this norm is not changed by adding an affine map to v. Therefore,
we may assume that v(0) = 0.
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Lemma 5. If M = ||v||αr < ∞, then v is differentiable and v′ is α-Hölder
continuous. Furthermore, there exists a positive constant C ′′ only depending
on M and α such that for any two y1, y2 ∈ R,

|v′(y2) − v′(y1)| ≤ C ′′|y2 − y1|α.

Proof. By subtracting a constant, we may assume that v(0) = 0. In the
following, we first show that v is differentiable at 0. Note that the method to
show the differentiability of v at 0 applies to obtain the same property for v
at any other point. We divide the proof into two steps.

Step 1: We show that there exists C (depending on v) and C1 > 0 (only
depending on M and α) such that

lim
k→∞

v( 1
2k ) − v(0)

1
2k

= C = lim
k→∞

v(− 1
2k ) − v(0)
− 1

2k
,

and for each positive integer k,

|v(± 1
2k ) − C(± 1

2k )| ≤ C1(
1
2k )1+α.

For each positive integer k, let mr
k = v( 1

2k−1 )−v( 1
2k

)
1
2k

and ml
k = v( 1

2k
)−v(0)
1
2k

.
Clearly,

mr
k+1 + ml

k+1
2 = ml

k.

Then

ml
k+1 −ml

k = −1
2(mr

k+1 −ml
k+1).

Using the definition of ||v||αr , we obtain

|ml
k+1 −ml

k| ≤
1
2M( 1

2k+1 )α.

Thus, for each positive integer n,

|ml
k+n −ml

k| ≤
n∑

j=1
|ml

k+j −ml
k+j−1| ≤

M

2

n∑
j=1

( 1
2k+j

)α ≤ M ′( 1
2k+1 )α,

where M ′ = M
2

1
1−( 1

2 )α . Therefore, {ml
k}∞k=1 is a Cauchy sequence and we
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denote its limit by C; that is,

lim
k→∞

v( 1
2k ) − v(0)

1
2k

= C.

Furthermore, for any positive integer k,

|v(
1
2k ) − v(0)

1
2k

− C| ≤ M ′( 1
2k+1 )α.

Let C1 = M ′

2α . Then for any positive integer k,

|v( 1
2k ) − C

2k | ≤ C1(
1
2k )1+α.

Similarly, we can show that limk→∞
v(− 1

2k
)−v(0)

− 1
2k

exists, denoted by C ′, and

|v(− 1
2k ) − C ′(− 1

2k )| ≤ C1(
1
2k )1+α.

Applying the condition ||v||αr to the symmetric triples − 1
2k , 0 and 1

2k , we
conclude that C ′ = C.

Step 2: We show for any 0 < |x| < 1,

|v(x) − v(0) − Cx| = O(|x|1+α).

It suffices to obtain this estimate for any 0 < x < 1.
Given any 0 < x < 1, let k be the positive integer such that 1

2k+1 ≤ x < 1
2k .

Let us first introduce some notation. Given an interval I on the real line, let
l(I) and r(I) be the left and right endpoints of I respectively, and let |I| be
the length of I. Furthermore, we use mv(I) to denote the difference quotient
v(r(I))−v(l(I))

r(I)−l(I) .
Now we denote the interval [ 1

2k+1 ,
1
2k ] by I0

1 . Divide the interval I0
1 into

two pieces of equal length and denote them by I1
1 and I1

2 . Then divide each
of I1

1 and I1
2 into two pieces of equal length and denote them by I2

1 , I2
2 , I2

3
and I2

4 from the left to the right. Inductively, we bisect I0
1 into 2n pieces of

equal length and denote them by In1 , I
n
2 , I

n
3 , · · · , In2n , where n = 0, 1, 2, 3, · · · .

For each j ≥ 0 and each bisection Ijm = Ij+1
m1 ∪ Ij+1

m2 from level j to level j+1,
we obtain

mv(Ij+1
m1 ) + mv(Ij+1

m2 )
2 = mv(Ijm).
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It follows the definition of ||v||αr that

|mv(Ij+1
m1 ) −mv(Ij+1

m2 )| ≤ M(|Ij+1
m1 |α) = M(|I

j
m

2 |α).

Using the same techniques in Step 1, we first obtain

|mv(Ij+1
m1 ) −mv(Ijm)| ≤ M

2 (|I
j
m

2 |α) and |mv(Ij+1
m2 ) −mv(Ijm)| ≤ M

2 (|I
j
m

2 |α).

Then we obtain for each j ≥ 0 and each interval Ijm′ at level j,

|mv(Ij+1
m′ ) −mv(I0

0 )| ≤ M ′(|I
0
0
2 |α),

where M ′ is the same constant given in Step 1. From the definition of ||v||αr ,

|mv(I0
0 ) −mv([0,

1
2k+1 ])| ≤ M( 1

2k+1 )α.

From Step 1,

|mv([0,
1

2k+1 ]) − C| ≤ C1(
1

2k+1 )α.

By the previous three inequalities and the triangle inequality, we obtain for
each j ≥ 0 and each interval Ij+1

m′ at level j + 1,

|mv(Ij+1
m′ ) − C| ≤ (M ′ + M + C1)(

1
2k+1 )α = C ′

1(
1

2k+1 )α,

where C ′
1 = M ′ + M + C1. It follows that

|v(r(Ij+1
m′ )) − v(l(Ij+1

m′ )) − C|Ij+1
m′ )|| ≤ C ′

1(
1

2k+1 )α|Ij+1
m′ )|.

Since x ∈ [ 1
2k+1 ,

1
2k ), there exists a sequence 0 ≤ j1 < j2 < j3 < · · · < n

(n is possibly ∞) and a sequence of interval {Ijsms
}ns=1 with pairwise disjoint

interiors such that
[ 1
2k+1 , x) = ∪n

s=1I
js
ms

.

Then
n∑

s=1
[v(r(Ijsms

)) − v(l(Ijsms
)) − C|Ijsms

|] = v(r(Ijnmn
)) − v( 1

2k+1 ) − C| ∪n
s=1 I

js
ms

|,
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where if n is ∞, then we choose n as a finite number and then let n ap-
proach ∞. Using the triangle inequality and the previous inequality (if n is
∞, replacing n by a finite integer and letting it approach ∞ and furthermore
applying the continuity of v at x), we obtain

|v(x) − v( 1
2k+1 ) − C(x− 1

2k+1 )| ≤ C ′
1(

1
2k+1 )α|x− 1

2k+1 | ≤ C ′
1(

1
2k+1 )1+α,

where 1
2k+1 ≤ x < 1

2k . From Step 1,

|v( 1
2k+1 ) − v(0) − C( 1

2k+1 − 0)| ≤ C1(
1

2k+1 )1+α.

Thus,

|v(x) − v(0) − Cx| ≤ (C1 + C ′
1)(

1
2k+1 )1+α ≤ (C1 + C ′

1)x1+α = o(x).

It follows that v is differentiable at 0, v′(0) = C, and for any |x| ≤ 1,

|v(x) − v(0) − v′(0)x| ≤ C ′′
1

2 |x|α,

where C ′′
1 = 2(C1 + C ′

1).
Similarly, we can prove that v is differentiable at any other point y and

for any |x| ≤ 1,

|v(y + x) − v(y) − v′(y)x| ≤ C ′′
1

2 |x|1+α.

Now given any two points y1 and y2 with y1 < y2 and y2 − y1 < 1,

|v(y2) − v(y1) − v′(y1)(y2 − y1)| ≤
C ′′

1
2 (y2 − y1)1+α

and

|v(y1) − v(y2) − v′(y2)(y1 − y2)| ≤
C ′′

1
2 (y2 − y1)1+α.

It follows from the triangle inequality that

|v′(y2) − v′(y1)| ≤ C ′′
1 (y2 − y1)α.

Thus, v′ is α-Hölder continuous. We complete the proof.
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In fact, the previous lemma has the following local version. Let v be a
continuous function from the real line R to itself and let (a, b) be an open
interval on R. For each 0 < α < 1, define

||v|(a,b)||αr = sup
x−t,x,x+t∈(a,b)

|v(x+t)−v(x)
t − v(x)−v(x−t)

t |
|t|α .

Then the previous Lemma 5 has the following corollary.

Corollary 1. If M = ||v|(a,b)||αr < ∞, then v is differentiable on (a, b) and v′

is α-Hölder continuous on (a, b). Furthermore, there exists a positive constant
C ′′ only depending on M and α such that for any two y1, y2 ∈ (a, b),

|v′(y2) − v′(y1)| ≤ C ′′|y2 − y1|α.

Proof of Proposition 3. Given an element V ∈ Λα
0 (S1), we may assume that

V (1) = 0 (by subtracting a constant). Let B be the Möbius transformation
from the unit disk D to the upper half plane H such that B(−i) = −1,
B(1) = 0 and B(i) = 1. Let v(x) = V (B−1(x))

(B−1)′(x) , where x ∈ R. Clearly, v(0) = 0
and V (z) = v(B(z))

B′(z) . Furthermore, V ∈ Λα
0 (S1) implies that ||v|(−1,1)||αr is

finite. Using Corollary 1, we know that v is differentiable on (−1, 1) and v′ is
α-Hölder continuous on (−1, 1). Let C ′′ be the constant in Corollary 1 such
that for any x1, x2 ∈ (−1, 1),

|v′(x2) − v′(x1)| ≤ C ′′|x2 − x1|α.

Now we consider V (z) = v(B(z))
B′(z) . Clearly, V is differentiable at any point

z on the right half circle on D and

(6.1) V ′(z) = v′(B(z)) − v(B(z)) B′′(z)
(B′(z))2 .

It remains to show that V ′ is α-Hölder continuous on the right half circle.
Clearly, B(z) = z−1

z+1 is univalent on the disk {z : |z − 1| < 2}. Using the
Koebe distortion theorem, there exists a universal constant M > 0 such that
for any z ∈ {z : |z − 1| <

√
2},

1
M

≤ |B
′(z)

B′(1) | ≤ M.
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It follows that |B′(z)| ≤ M |B′(1)| for any z ∈ {z : |z − 1| <
√

2}. Then for
any two points z1 and z2 on the right half circle of S1,

|V ′(B(z1)) − V ′(B(z2))| ≤ C ′′|B(z1) −B(z2)|α ≤ C ′′(M |B′(1)|)α|z1 − z2|α.
(6.2)

In the mean time, w(z) = v(B(z)) B′′(z)
(B′(z))2 is differentiable at any point z on

the right half circle of S1, and its derivative

(6.3) w′(z) = v′(B(z))B
′′(z)

B′(z) + v(B(z))[ B′′′(z)
(B′(z))2 − 2B′′(z)

(B′(z))3 ]

is bounded on the right half circle of S1 by a positive constant M ′ only
depending on C ′′, M , |B′(1)| and v′(0). From (6.1), V ′(1) = v′(0) since we
assume V (1) = 0 (hence v(0) = 0).

Therefore, using the mean value inequality we can find a positive constant
C ′′′, only depending on C ′′, M , |B′(1)| and |V ′(1)|, such that for any z1 and
z2 on the right half circle of S1,

(6.4) |w′(z2) − w′(z1)| ≤ C ′′′|z2 − z1|.

Combining the estimates in (6.2) and (6.4), we can see that V is C1+α on the
right half circle of S1. Similarly, we can prove that V is C1+α on the left half,
upper half or lower half circle of S1 respectively. These four half circles form
a finite open cover of S1. Hence, V is C1+α on S1. We complete the proof.

Now we start to prove Proposition 4. Let us first show one lemma.

Lemma 6. There exists a positive constant C2 such that for any 1
2 ≤ t < 1

and for any ξ = eiθ with 1 − t ≤ |θ| ≤ π,

|ξ − 1|1+α

|ξ − t|4 ≤ C2|θ|−3+α.

Proof. Clearly,
|ξ − 1| = |eiθ − ei0| ≤ |θ|.

Secondly,

|ξ − 1| =
√
| cos θ + i sin θ − 1| =

√
(cos θ − 1)2 + sin2 θ

=
√

2 − 2 cos θ = 2| sin θ

2 |.
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Let β = θ
2 . Clearly, 0 ≤ |β| ≤ π

2 . Then

|ξ − 1|
|θ| = |2 sin θ

2
θ

| = |sin β

β
| = sin β

β
.

Let C0 = minβ∈[0,π2 ]
sinβ
β . One can easily check that C0 > 0. Therefore, we

first obtain that for any 0 ≤ |θ| ≤ π,

(6.5) C0θ ≤ |ξ − 1| ≤ |θ|.

Now let ε = 1 − t. Then ε > 0, t = 1 − ε, and

|ξ − t| = | cos θ + i sin θ − t| =
√

(cos θ − t)2 + sin2 θ

=
√

1 − 2t cos θ + t2 =
√

1 − 2(1 − ε) cos θ + (1 − ε)2

=
√

2 − 2 cos θ + 2ε cos θ − 2ε + ε2 =

√
4 sin2 θ

2 − 4ε sin2 θ

2 + ε2√
(1 − ε)4 sin2 θ

2 + ε2 ≥
√

(1 − ε)4 sin2 θ

2 =
√

(1 − ε)(2| sin θ

2 |).

Thus,
|ξ − t|
|θ| ≥

√
1 − ε

sin β

β
.

Since 1 − ε = t ≥ 1
2 and 1 − t ≤ |θ| ≤ π, we obtain

|ξ − t|
|θ| =

√
t
sin β

β
≥ C0

√
t ≥ C0√

2
.

Then for any 1
2 ≤ t < 1 and 1 − t ≤ |θ| ≤ π,

(6.6) |ξ − t| ≥ C0√
2
|θ|.

Combining the inequalities (6.5) and (6.6), we obtain for any 1
2 ≤ t ≤ π

and any ξ = eiθ with 1 − t ≤ |θ| ≤ π,

|ξ − 1|1+α

|ξ − t|4 ≤ |θ|1+α

( C0√
2 |θ|)

4 = C2|θ|−3+α,

where C2 = 4
C4

0
. We reach the conclusion.
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Proof of Proposition 4. Given a point z ∈ D, we obtain from (4.2) that

(6.7) μ(z) = ∂(L0(V ))(z) = 3(1 − |z|2)2
2πi

∫
S1

V (ξ)
(ξ − z)4ξ4

dξ.

Through pre-composing μ and V by a rotation around the origin, we may
assume that z = t with 0 ≤ t < 1. To prove this proposition, it is sufficient
to handle the case when t is close to 1. By Proposition 1, we know that for
any constant tangent vector field V to S1, ∂̄L0(V )(z) = 0 all z ∈ D. It follows
that we may assume that V (1) = 0. In the following we explain why we may
assume that V ′(1) = 0. Let B be the Möbius transformation from the unit
disk D to the upper half plane H such that B(−i) = −1, B(1) = 0 and
B(i) = 1. Let v(x) = V (B−1(x))

(B−1)′(x) , where x ∈ R. Clearly, v(0) = 0 and v is
differentiable. Now let C = v′(0), ṽ(x) = v(x) − Cx, and Ṽ (z) = ṽ(B(z))

B′(z) .
Then ṽ(0) = 0 and ṽ′(0) = 0. Correspondingly, Ṽ (1) = 0 and Ṽ ′(1) = 0, and
Ṽ (z) = V (z) − C B(z)

B′(z) is also differentiable at any point z ∈ S1 \ {−1} and
C1+α on the right half circle of S1. Since B

B′ is a quadratic polynomial, we can
easily check that || BB′ ||cr = 0. From Proposition 1, we know ∂̄L0( B

B′ )(z) = 0
for any z ∈ D. Therefore, we may assume that z = t with 0 < t < 1 and
close to 1 and assume that V (0) = V ′(0) = 0 for z and V in the expression
of (6.7). Then we can complete the proof as follows.

Let ξ = eiθ. Then

μ(t) = 3(1 − t2)2

2πi

∫
S1

V (ξ)
(ξ − t)4

dξ

ξ4 .

Thus,

|μ(t)| ≤ 6
π

(1 − t)2
∫ π

−π

|V (ξ)|
|ξ − t|4 dθ

≤ 6
π

[(1 − t)2
∫ 1−t

−(1−t)

|V (ξ)|
|ξ − t|4 dθ + 6

π
(1 − t)2

∫
|θ|≥1−t

|V (ξ)|
|ξ − t|4 dθ]

= 6
π

(I1 + I2),

where I1 and I2 denote respectively the two summands in the bracket.
As explained in the above, V (0) = V ′(0) = 0 and V is C1+α on the right

half circle of S1. It follows that for any ξ on the right half circle of S1,

|V (ξ) = |V (ξ) − V (1)| ≤ C1|ξ − 1|1+α.
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Furthermore, if ξ = eiθ and |θ| ≤ 1 − t, then |ξ − 1| ≤ 1 − t. Therefore,

|V (ξ)| ≤ C1(1 − t)1+α

for any ξ = eiθ with |θ| ≤ 1− t. Clearly, |ξ− t| ≥ |1− t| for any ξ = eiθ. Then

I1 = (1 − t)2
∫ 1−t

−(1−t)

|V (ξ)|
|ξ − t|4 dθ ≤ (1 − t)2

∫ 1−t

−(1−t)

C1|1 − t|1+α

|1 − t|4 dθ

= 2C1(1 − t)2(1 − t)(1 − t)1+α

(1 − t)4 = 2C1(1 − t)α.

Now we apply the previous Lemma 6 to I2. One can see that if 1
2 < t < 1,

then

I2 ≤ (1 − t)2
∫
|θ|≥1−t

C2θ
−3+αdθ = (1 − t)2[C3 + C4(1 − t)−2+α]

= [C3(1 − t)2−α + C4](1 − t)α = O((1 − t)α),

where C3 and C4 are two positive constants depending on α only as soon as
1
2 ≤ t < 1 and 1 − t ≤ |θ| ≤ π.

Based on the previous estimates of I1 and I2, we obtain

|μ(t)| = O((1 − t)α)

as soon as 1
2 ≤ t < 1. This means that for any 1

2 ≤ t < 1, |∂̄(L0(V ))(t)ραD(t)| is
bounded by a constant. It follows that for any point z of D with 1

2 ≤ |z| < 1,
|∂̄(L0(V ))(z)ραD(z)| is bounded by the same constant. Therefore,

‖∂̄(L0(V ))(z)ραD(z)‖∞ < +∞.

In the remaining part of this section, we prove Proposition 5.
Note that if the three fixed points of the maps on the curve in (4.13) are

arranged at 0, 1 and ∞, then the function F in (4.14) is equal to

(6.8) F (z) = −z(z − 1)
π

∫∫
C

μ(ζ)dξdη
ζ(ζ − 1)(ζ − z) ,

which is rewritten as

(6.9) F (z) = − 1
2π

∫∫
C

( 1
ζ − z

+ z − 1
ζ

− z

ζ − 1)μ(ζ)dξdη.
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Then one can easily obtain

F (z + t) + F (z − t) − 2F (z)
t

(6.10)

= − 1
2tπ

∫∫
C

( 1
ζ − (z + t) + 1

ζ − (z − t) − 2
ζ − z

)μ(ζ)dξdη.

Thus,

F (z + t) + F (z − t) − 2F (z)
t

= − t

π

∫∫
C

μ(ζ)dξdη
(ζ − (z + t))(ζ − (z − t))(ζ − z) .

(6.11)

Using a substitution of ζ by z + tζ, we obtain

(6.12) F (z + t) + F (z − t) − 2F (z)
t

= − 1
π

∫∫
C

μ(z + tζ)dξdη
(ζ − 1))(ζ − 1)ζ .

Proof of Proposition 5. Let Q = {a, b, c, d} be a quadruple of four points
a, b, c, d on S1 in the counterclockwise order with cr(Q) = 1 and S(Q) ≥

√
2.

Without loss of generality, we may assume that s(Q) is quite small and we
may assume that the distance between b and d is greater than or equal to√

2 and the distance between a and b or b and c is the shortest. Now let
B(z) = −i z−b

z−d . Then B maps D to the upper half plane H, b to 0, and d to
∞. Let B(a) = −t. Then B(c) = t.

Now let V ∈ Λ(S1) with ‖∂̄L0(V )(z)ραD(z)‖∞ < +∞. By subtracting
a quadratic polynomial, we may assume that V (d) = 0, V (b) = 0 and
V (B−1(1) = 0. Let μ(z) = ∂̄L0(V )(z). Define

Ṽ (x) = V (B−1(x))
(B−1)′(x) and μ̃(ζ) = μ(B−1(ζ))(B−1)′(z)

(B−1)′(z) .

Let Q̃ = B(Q) = {−t, 0, t,∞}. Then V [Q] = Ṽ [Q̃]. Using the expression in
(6.12), we obtain

(6.13) Ṽ [Q̃] = − 1
π

∫∫
C

μ̃(tζ)dξdη
(ζ − 1)(ζ − 1)ζ .

Clearly, B−1 maps a thin horizontal strip with the real line as one side to a
region Ω between the unit circle and a holocycle circle Γ intersecting S1 at
the point d. Let

d(Γ,S1) = sup
z∈Γ

d(z,S1).
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Because of S(Q) ≥
√

2 and the Koebe distortion theorem, we know that
when the width of the horizontal strip is small enough, only depending on
S(Q) (and hence it is universal), its width λ is commeasurable with d(Γ,S1).
Clearly, the region Ω is contained in the round annulus between S1 and the
circle of radius 1 ± d(Γ,S1). Now for any tζ with |tη| small, we let the width
of the thin strip equal to |tη|. Then all previous reasons together imply

|μ̃(tζ)| = |μ(B−1(tζ))| = O((1 − |B−1(tζ)|)α) = O(d(Γ,S1)α) = O(|tη|α).

Since μ̃ is bounded on C, it follows that there exists a positive constant C
such that

|μ̃(tζ)| ≤ C|tη|α ≤ C|tζ|α.
From the expression (6.13), we know

|Ṽ [Q̃]| ≤ |t|α
π

∫∫
C

|ζ|αdξdη
|(ζ − 1)(ζ − 1)ζ| .

Because of 0 < α < 1, the integral
∫∫

C

|ζ|αdξdη
|(ζ−1)(ζ−1)ζ| is finite. Therefore,

|V [Q]| = |Ṽ [Q̃]| = O(|t|α) = O(s(Q)α).

This estimate holds for any quadruple Q with cr(Q) = 1, S(Q) ≥
√

2 and
s(Q) small. Therefore, V ∈ Λα

0 (S1). We complete the proof.

7. Tangent spaces of T (D), T0(D), T (R) and Tα
0 (D) at the

base point

In this section, we apply Theorems 2, 3, 1 and 5 to provide alternative proofs
of Theorems B and C and show Theorems 4 and 6 respectively.

An alternative proof of Theorem B. Assume that T (D) is modelled by the
collection of the quasisymmetric homeomorphisms of S1 fixing three points
±1 and i. Let ht (t ≥ 0) be a smooth curve emanating from the base point.
Then ht is a smooth curve of quasisymmetric homeomorphisms of S1 fixing
±1 and i, and

ht(z) = z + tV (z) + o(t), t −→ 0 uniformly for z ∈ S1.

Note that T (D) has a complex structure and a holomorphic split sub-
mersion from M(D) to T (D). We consider the real model for T (D) and the



Conformally natural extensions of vector fields and applications 1181

real model for the tangent space of T (D) at the base point. Since the Hilbert
transformation H(V ) of V preserves the set Λ(S1) (Section 16.7 of [15]),
V + iH(V ) characterizes a point in the complex model for the tangent space
of the complex model of T (D) at the base point.

It follows that there is a differentiable curve μt ∈ M(Ĉ) with μt(z) = μt( 1
z̄ )

for each z such that ht = fμt |S1 , where fμt is the quasiconformal homeomor-
phism of Ĉ with μfμt

= μt fixing ±1 and i, where Ĉ stands for the extended
complex plane. Furthermore, there exists μ ∈ M(Ĉ) with μ(z) = μ( 1

z̄ ) such
that

μt = tμ + o(t).

By the holomorphic dependence of the solution of the Beltrami differential
equation ([4]),

fμt(z) = z + tF (z) + o(t), t −→ 0,

where

(7.1) F (z) = −(z − 1)(z − i)(z + 1)
π

∫∫
C

μ(ζ)dξdη
(ζ − 1)(ζ − i)(ζ + 1)(ζ − z) .

Then for each z ∈ S1, F (z) = d
dtfμt(z)|t=0 = V (z). So F is an extension

of V to Ĉ with ∂̄F = μ(fμt)|t=0 = μ and satisfies the tangency condition
(2.10) and the normalization (2.12). Then the work of Step 2 in the proof of
Proposition 2 shows ||V ||cr ≤ 1

C ||μ||∞. Thus, V ∈ Λ(S1).
Conversely, given an element V ∈ Λ(S1) with the normalization (2.12),

from Proposition 1 we obtain an extension L0(V ) of V to D with μ =
∂̄L0(V ) < +∞. Extend μ to Ĉ by letting μ(z) = μ( 1

z̄ ) for each z outside
D. We continue to denote this extension by μ. Let μt = tu for t ≥ 0. When
0 ≤ t < 1

||μ||∞ , fμt is a differentiable curve of quasisymmetric homeomor-
phisms of S1 and

(7.2) fμt(z) = z + tF (z) + o(t),

where F (z) is given by (7.1).
Both F and L0(V ) satisfy the tangency condition (2.10) and the normal-

ization (2.12) and their ∂̄ derivatives are equal to μ. Thus, F = L0(V ) and
F |S1 = V . Then the restriction of the equation (7.2) shows that V represents
a vector in the tangent space of the real model of T (D) at the base point.

Note that the Hilbert transformation H(V ) of V preserves Λ0(S1) and
Λα

0 (S1) respectively, where 0 < α < 1 (Section 16.7 of [15]).
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Using the work of Step 2 in the proof of Theorem 3 and the conclusion of
this theorem, one can easily modify the proof of Theorem B to reach a proof
of Theorem C.

Using the result of [31] stated in the first table, Theorem 5 and the work
to prove Proposition 5, one can also modify the proof of Theorem B to reach
a proof of Theorem 6.

It is clear that by applying Theorem 1 into the proof of Theorem B, we
obtain a proof for Theorem 4.
Remark 4. The extension L0(V ) of V is used in [26] to characterize the tangent
space of the universal Weil-Petersson Teichmüller space and in [38] to describe
the tangent spaces of the BMO and VMOA Teichmüller spaces at the base
point in terms of different subspaces of Λ(S1).
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