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Abstract: In previous work we showed that the Hurwitz space of
W (E6)-covers of the projective line branched over 24 points domi-
nates via the Prym-Tyurin map the moduli space A6 of principally
polarized abelian 6-folds. Here we determine the 25 Hodge classes
on the Hurwitz space of W (E6)-covers corresponding to the 25 ir-
reducible representations of the Weyl group W (E6). This result
has direct implications to the intersection theory of the toroidal
compactification A6. In the final part of the paper, we present an
alternative, elementary proof of our uniformization result on A6
via Prym-Tyurin varieties of type W (E6).

1. Introduction

It is well known that the moduli space Ag of principally polarized abelian
varieties of dimension g ≤ 5 can be uniformized via Prym varieties associated
to unramified double covers of curves. This amounts to the fact that the Prym
map P : Rg+1 → Ag is dominant in this range. This explicit parametrization
of the moduli space has important applications, for instance it implies that
Ag is unirational for g ≤ 5, see [D1, MM, C, V1]. Note also that Ag is a
variety of general type for g ≥ 7, see [M, T]. Using advances in automorphic
forms, it has been recently proven [DSS] that the Kodaira dimension of A6 is
non-negative.

There is a well documented history going back at least to [D3] showing the
importance of the symmetries of the 27 lines on a cubic surface in the study
of the Galois group of the Prym map P : R6 → A5. Conversely, Clemens and
Griffiths [CG] famously associated to a smooth cubic threefold its intermedi-
ate Jacobian in order to study rationality questions. For recent developments
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in moduli theory or in hyperkähler geometry related to this circle of ideas we
refer to [CMGHL, LSV, V2].

In our previous paper [ADFIO] we found an explicit parametrization of
A6 by means of one-dimensional objects. Recalling that W (E6) is the group
of symmetries of the 27 lines on a smooth cubic surface, we proved that the
general ppav [A,Θ] ∈ A6 can be represented as the Prym-Tyurin variety of
exponent 6 associated to an W (E6)-cover π : C → P1 branched over 24 points.
Precisely, let Hur denote the Hurwitz space of covers

[π : C → P1, p1 + · · · + p24]

having monodromy group W (E6) ⊆ S27 and branched over the marked points
p1, . . . , p24 ∈ P1 such that the local monodromy of π at pi is given by a
reflection in a root of E6. For each such cover π : C → P1 we can identify the
points in a general fiber with the lines on a smooth cubic surface. The curve
C has genus 46 and is equipped with the Kanev incidence correspondence
D ⊆ C × C first considered in [K2]. The correspondence D gives rise to an
endomorphism D : JC → JC and to a Prym-Tyurin-Kanev map

PT : Hur → A6, [π : C → P1] �→ PT (C,D) := Im(D − 1) ⊆ JC.

Since (D − 1)(D + 5) = 0, one has PT (C,D) = Ker(D + 5)0. Our main
result from [ADFIO] is that the map PT is generically finite, in particular
dominant. This parametrization opens the way to a study of A6 via the
theory of curves and their correspondences. The main goal of this paper is to
understand the intersection theory associated to this uniformization of A6,
in particular to determine the 25 Hodge classes associated to the irreducible
representations of the group W (E6).

The moduli space Ag has a partial compactification A∗
g obtained by

adding rank 1 degenerations and contained in the toroidal compactification
Ag = Aperf

g for the fan of perfect forms, with the complement Ag \A∗
g having

codimension 2. The Hurwitz space Hur has a modular compactification Hur
by means of W (E6)-admissible covers. The Prym-Tyurin map PT extends to
a rational map

PT : Hur ��� A6

with indeterminacy locus of codimension at least 2. Although the Hurwitz
space Hur has an intricate divisor theory, with boundary divisors associated to
complicated discrete data, it is one of the important results of [ADFIO] that
only three explicitly described boundary divisors D0, Dazy, Dsyz of Hur are
not contracted under the map PT . Here Dazy and Dsyz denote the boundary
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divisors of azygetic (respectively syzygetic) W (E6)-admissible covers, having
as general element a cover

[π : C = C1 ∪ C2 → R1 ∪q R2, p1 + · · · + p24],

with π−1(Ri) = Ci for i = 1, 2, where R1 and R2 are smooth rational curves
meeting at the point q, precisely two branch points, say p23 and p24, lie on
R2 and the distinct roots r23, r24 ∈ E6 determining the local monodromy
at the corresponding points satisfy r23 · r24 	= 0 (respectively r23 · r24 = 0).
The divisor D0 corresponds to the situation when the roots r23 and r24 are
equal. In order to study A6, it suffices therefore to restrict our attention to
the partial compactification of the Hurwitz space

H̃ur := Hur ∪ D0 ∪ Dazy ∪ Dsyz ⊆ Hur.

The divisor D0 is mapped onto the the boundary divisor D6 := A6 \ A6,
whereas Dsyz and Dazy are mapped onto divisors of A6 not contained in the
boundary.

The Kanev correspondence D ⊆ C × C can be extended for any point
[π : C → R, p1 + · · · + p24] ∈ Hur. In particular, it induces a decomposition

H0(C, ωC) = H0(C, ωC)(+1) ⊕H0(C, ωC)(−5)(1A)

into (+1) and (−5) eigenspaces with respect to D and having dimensions 40
and 6 respectively. We denote by λ, λ(+1) and λ(−5) the Hodge eigenbundles
on Hur globalizing the decomposition (1A) over the entire moduli space. If
we denote by λ1 ∈ CH1(A6) the Hodge class, since PT ∗(λ1) = λ(−5) and
one also has KA6

= 7λ1 − [D6], where D6 is the boundary divisor of A6 of
rank 1 degenerations, determining the class λ(−5) is essential to any further
investigation of the birational geometry of A6. One of the main results of this
paper is that λ(−5) has a remarkably simple expression:

Theorem 1.1. The class of the (−5)-Hodge eigenbundle on H̃ur is given by
the following formula:

6λ(−5) = λ− 1
2[Dsyz].

Since it has been shown in [ADFIO, Theorem 6.17] that the Hodge class
λ on Hur can be expressed in terms of boundary divisors, Theorem 1.1 can
be rewritten using only D0, Dsyz and Dazy and one has the following identity
on H̃ur:

λ(−5) = 11
92[D0] −

1
46[Dsyz] + 7

276[Dazy].(1B)
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Our approach to proving Theorem 1.1 is representation-theoretic: The
Weyl group W (E6) has 25 irreducible representations ρ1, . . . , ρ25. Each of
these determines a variant Ei of the Hodge vector bundle over Hur. At a point
given by the 27-sheeted cover [π : C → R, p1 + · · · + p24] ∈ Hur with Galois
closure π̃ : C̃ → R, the fiber of Ei is defined to be HomW (E6)

(
ρi, H

0(C̃, ω
C̃
)
)
.

The Hodge classes in question are defined as λi := c1(Ei), for i = 1, . . . , 25.
The Prym-Hodge bundles λ(+1) and λ(−5) are two special cases of this con-
struction, obtained from the two non trivial representations of W (E6) that
occur in the standard 27-dimensional permutation representation of W (E6).
This gives the relation λ(+1) + λ(−5) = λ. Every representation ρi occurs in
some permutation representation and every permutation representation gives
rise to an associated cover, and the Hodge bundle arising from such a cover
decomposes into contributions coming from the various classes λi. We cal-
culate the Hodge bundles corresponding to a sufficiently large collection of
such permutation representations, and use representation theory to extract
from these formulas the formulas for the Hodge bundles λi corresponding to
all 25 irreducible representations of W (E6). The permutation representations
we use are quotients of the Galois cover C̃ by cyclic subgroups Wα generated
by representatives of the 25 conjugacy classes in W (E6). The list for the ex-
pression of the Hodge classes λ1, . . . , λ25 ∈ CH1(H̃ur) can be found in the
statement of Theorem 3.9.

Another important result of this paper concerns the class of the Weyl-
Petri divisor on Hur. For a smooth W (E6)-cover π : C → P1 the Weyl-Petri
map is the multiplication map

μ(L) : H0(C,L) ⊗H0(C, ωC ⊗ L∨) → H0(C, ωC),

where L = π∗OP1(1) ∈ W 1
27(C). By [ADFIO, Theorem 9.2], the map μ(L)

is injective for a general point of Hur. Furthermore, it factors through the
(+1)-eigenspace, that is, one has a map

μ(L) : H0(C,L) ⊗H0(C, ωC ⊗ L∨) → H0(C, ωC)(+1).(1C)

Therefore, since its source and target have the same rank, its degeneracy
locus is a divisor N on the space of admissible W (E6)-covers (see Section 4
for a more precise definition and a discussion of what happens when h0(C,L)
jumps). Our next result determines the class of N on H̃ur:

Theorem 1.2. The class of the Weyl-Petri divisor on H̃ur is given by the
following formula:

[N] = 59
42λ− 12

7 [D0] −
29
84[Dsyz].(1D)
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The proof of Theorem 1.2 involves passing to an alternative partial com-
pactification G̃E6 of Hur over which the multiplication map (1C) can be de-
fined globally, then reinterpreting the obtained result on H̃ur.

In [ADFIO, Theorem 0.4] we showed that if [π : C → P1] ∈ Hur does not
lie in the Weyl-Petri divisor N then it lies in the ramification locus of the
Prym-Tyurin map PT : Hur → A6 if and only if the Prym-Tyurin canonical
curve ϕ(−5)(C) ⊆ PH0(C, ωC)(−5) ∼= P5 induced by the sublinear system∣∣H0(C, ωC)(−5)∣∣ lies on a quadric, that is, the multiplication map

Sym2 H0(C, ωC)(−5) → H0(C, ω⊗2
C )

in not injective. We clarify the set-theoretic description of the ramification
divisor of PT :

Theorem 1.3. The ramification divisor of the map PT : Hur → A6 is con-
tained in the union of the Weyl-Petri divisor N and the effective divisor M

parametrising W (E6)-covers [π : C → P1] such that h0(C, π∗(OP1(1)
)
≥ 3.

The fact that the condition h0(C,L) ≥ 3 for L = π∗(OP1(1)) defines a
divisor M on Hur comes to us as a surprise, for general Brill-Noether theory
would predict that such curves depend on considerably fewer moduli. For the
precise definition of the divisor M, we refer to (4.3).

By analysing directly the differential of the map PT at a general point
of the boundary divisor D0, we give a second, more elementary proof of the
main result from [ADFIO].

Theorem 1.4. The Prym-Tyurin map PT is generically unramified along
the boundary divisor D0 of Hur. It follows once more that PT : Hur ��� A6
is generically finite.

We recall that the original proof of the dominance of PT amounted to the
tropicalization of the Prym-Tyurin map. Precisely, we studied the principal
term of the Prym-Tyurin map by expanding the monomial coordinates near
the neighborhood of a maximally degenerate cover and then used the theory of
degenerations of Prym-Tyurin varieties. This time, the proof, which we com-
plete in Section 6 is more direct. The element of D0 for which Theorem 1.4 is
verified is obtained by choosing judiciously 12 points q1, . . . , q12 ∈ P1 together
with roots r1, . . . , r12 ∈ E6, determining a degree 27 stable map π : C → P1,
where C is the curve obtained from the disjoint union of 27 copies of P1 la-
beled by the 27 lines on a smooth cubic surface and then gluing over each
point qi the components labeled by the double-six corresponding to the root
ri. The verification that the W (E6)-admissible cover associated to π verifies
all required properties is completed in Theorem 5.6.
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2. The Weyl group of E6 and the uniformization of A6

We give a summary of some group theoretic facts and the results established
in [ADFIO] that are used in this paper.

2.1. The group W (E6) and its representations

Let W (E6) be the Weyl group of the root lattice E6. It is the subgroup of
the orthogonal group O(E6) generated by reflections rα : x �→ x + (x, α)α
in a root α of E6. One has |W (E6)| = 51840 and W (E6) has 25 irreducible
representations. The dimensions of these representations are 1, 1, 6, 6, 10,
15, 15, 15, 15, 20, 20, 20, 24, 24, 30, 30, 60, 60, 64, 64, 80, 81, 81, 90. In
order to refer to the characters and conjugacy classes of W (E6) we use the
notation from the character table from the Atlas [CCNPW, p. 27] for the
group U4(2).2 = W (E6). It is obtained from the character table of U4(2) by
the splitting and fusion rules. It can be reproduced in GAP [GAP] by using
the command Display(CharacterTable("W(E6)")).

In addition to the numbers 1, . . . , 25 for the characters of W (E6), we use
convenient names, as in Table 2. They start with the dimension of the repre-
sentation and add attributes a, b, and so on, if there are several irreducible
representations of the same dimension. We also group characters in pairs χ
and χ = χ ⊗ 1 whenever these are different. Here, 1 is the 1-dimensional
character of W (E6) sending an element u ∈ W (E6) to (−1)n if u is a product
of n reflections.

Notation 2.1. We use repeatedly the geometric realization E6 ∼= K⊥
S ⊆

Pic(S), where S is a smooth cubic surface. We use the classical notation
a1, . . . , a6, b1, . . . , b6 and cij , for 1 ≤ i < j ≤ 6 for the 27 lines on S. A system
of fundamental roots of E6 is then given by ωi := ai − ai+1 for i = 1, . . . , 5
and ω6 := h− a1 − a2 − a3, where h := −KS is the hyperplane class.

Notation 2.2. We record three important conjugacy classes in the Weyl
group W (E6), namely the class 2c containing reflections w ∈ W (E6), the
class 2b containing products w1 ·w2 of two commuting (syzygetic) reflections
w1, w2 ∈ W (E6), and 3b containing products w1 · w2 of two non-commuting
(azygetic) reflections.

The character table of W (E6), playing a significant role in several of our
calculations is reproduced in the Appendix of this paper as Table 2. We fix
representatives wi of the 25 conjugacy classes in W (E6), labeled so that:
w1a = 1, w2c is a reflection, that is, a representative of the class 2c in the
notation of the character table of W (E6), then w2b is the product of two
syzygetic reflections and so on.
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Notation 2.3. For an element u ∈ W (E6), we denote by Zu its centralizer
in W (E6) and by cu its conjugacy class in W (E6).

Assume now that G is a subgroup of W (E6) of index d and let u ∈ W (E6)
be a fixed element. The assignment xG �→ uxG induces a bijection on the sets
W (E6)/G of left cosets and can thus be regarded as a permutation from Sd.
We shall need the following simple group-theoretic fact.

Lemma 2.4. Let u ∈ W (E6) be an element of prime order p. Then its cycle
type in Sd is pa1b, where

b = |G ∩ cu| · |Zu|
|G| , a = d− b

p
.(2A)

Proof. We consider the bijection W (E6)/G → W (E6)/G on the set of G-
cosets induced by multiplication with u. Since u ∈ W (E6) has prime order
p, there are only two possibilities for a coset xG. It is either fixed, or its
orbit consists of exactly p cosets. We first count the number of elements
x ∈ W (E6) such that uxG = xG. In this case x−1ux =: u′ ∈ G ∩ cu. We
consider the surjective map χu : W (E6) → cu given by χu(x) := x−1ux. Each
fibre of χu consists of |Zu| elements, thus the number of elements x with
uxG = xG ∈ W (E6)/G equals |G ∩ cu| · |Zu|. In order to obtain the number
of u-fixed G-cosets we have to divide this number by |G|, which gives the
stated formula for b. Then a is computed from the equality pa + b = d.

The quantities a and b computed in Lemma 2.4 clearly depend only on
the conjugacy class cu of u. In particular, when the subgroup G is fixed, we
obtain a vector of positive integers

(
a2c, b2c, a2b, b2b, a3b, b3b

)
.(2B)

Since the order of the representatives w2c and w2b is equal to 2, whereas
ord(w3b) = 3, one has

2a2c + b2c = 2a2b + b2b = 3a3b + b2b = [W (E6) : G] = d.

2.2. Maximal subgroups of W (E6)

Up to conjugation, the group W (E6) has five maximal subgroups; see [Do,
Theorem 9.2.2].
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• A subgroup G27 ⊆ W (E6) of index 27, which can be viewed as the stabi-
lizer of a line of the cubic surface S under the identification E6 ∼= K⊥

S .
One has G27 ∼= W (D5). In this paper, we have constantly made the
choice G27 := StabW (E6)(a6) = 〈ω1, ω2, ω3, ω4, ω6〉.

• A subgroup G36 ⊆ W (E6) of index 36, viewed as the stabilizer of a
double six on S.

• A subgroup G45 ⊆ W (E6) of index 45, regarded as the stabilizer of a
tritangent plane of S. Note that G45 ∼= W (F4).

• Two subgroups G40 and G′
40 of index 40.

For instance, for the subgroup G27 the vector described in (2B) is equal
to (

a2c, b2c, a2b, b2b, a3b, b3b
)

= (6, 15, 10, 7, 6, 9).

2.3. Three versions of compactified Hurwitz spaces of
W (E6)-covers

We denote by H the Hurwitz space of smooth W (E6)-covers

[π : C → P1, p1, . . . , p24]

together with a labeling of its branch points. The map π is of degree 27. The
global monodromy of π equals W (E6) and the local monodromy around each
branch point pi ∈ P1 is a reflection in a root of E6, that is, an element in the
conjugacy class 2c in the notation of the character table of W (E6). The curve
C is smooth of genus 46 and the cover π : C → P1 is not Galois.

Let H be the compactification of H by admissible W (E6)-covers. This can
be regarded as the stack of balanced twisted stable maps into the classifying
stack BW (E6) of W (E6), that is,

H := M0,24
(
BW (E6)

)
.

The map b : H → M0,24 forgetting the monodromy data is finite, so
dim(H) = 21. The symmetric group S24 acts on both M0,24 and H by permut-
ing the marked (respectively branch) points, and we denote the corresponding
quotients by

Hur := H/S24 and M̃0,24 := M0,24/S24.

Let q : H → Hur denote the quotient map. The space Hur is the main object
of study both in [ADFIO] and in the present paper, on which most of the
intersection-theoretic formulas are written.
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We have regular maps

br : Hur → M̃0,24 and ϕ̃ : Hur → M46

associating to an admissible cover [π : C → R, p1+· · ·+p24] ∈ Hur the branch
locus [R, p1+· · ·+p24] and the stable model of its source curve C respectively.

The third version of a compactified space of W (E6)-covers is the one
that admits a universal W (E6)-line bundle of degree 27, which is something
both H and Hur lack. Following Section 9 of [ADFIO] we denote by G̃E6 the
(normalization of the) moduli space parametrizing finite maps [π : C → R]
with monodromy W (E6), where C is an irreducible stable curve of genus 46
and R is a smooth rational curve. For such a map, L := π∗OR(1) is a base
point free line bundle of degree 27 on C with h0(C,L) ≥ 2. The spaces Hur
and G̃E6 share the open subspace Hur on which the source curve C is smooth.
We denote by

f̃ : C̃E6 → G̃E6

the universal genus 46 curve. The fibres of f̃ are irreducible curves of genus
46.

Following [ADFIO, 9.5], we denote by β̃ : Hur ��� G̃E6 the map assigning
to a cover [π : C → P1, p1 + · · ·+p24] ∈ Hur the map [π : C → R] ∈ G̃E6 . Since
Hur is normal, β̃ can be extended to a regular map outside a subvariety of
codimension at least 2 in Hur.

2.4. The dominance of the Prym-Tyurin map

A fiber of the cover π : C → P1 corresponding to an element of H has the
combinatorial structure of the 27 lines on a cubic surface, and the W (E6)-
action on each of its fibres preserves the incidence relation. The correspon-
dence sending a line 
 to the 10 lines incident to it can be thus regarded as
a correspondence on C and it induces an endomorphism D on the Jacobian
JC := Pic0(C), satisfying the quadratic relation (D − 1)(D + 5) = 0. By
Kanev [K1, K2] the (−5)-eigenspace of this endomorphism

PT (C,D) := Ker(D + 5)0 = Im(D − 1) ⊆ JC

is a principally polarized abelian variety of dimension 6 and exponent 6,
which we call the Prym-Tyurin variety of the pair [C,D]. This assignment
defines the map PTH : H → A6 which factors through the Prym-Tyurin map
PT : Hur → A6. By [ADFIO, Theorem 0.1] these maps are dominant and
generically finite.
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2.5. Boundary divisors on the Hurwitz space

The boundary divisors on the moduli space M0,24 of stable 24-pointed ra-
tional curves are of the form Δ0:I , with I ⊆ {1, . . . , 24} being a subset such
that |I| ≥ 2 and |Ic| ≥ 2. A general point of Δ0:I corresponds to a 24-pointed
stable rational curve [R, p1, . . . , p24] consisting of two smooth components R1
and R2 meeting at a single point, with the marked points {pi}i∈I (respec-
tively {pj}j∈Ic) lying on R1 (respectively on R2). For i = 2, . . . , 12, we have
the S24-invariant boundary divisor

Bi :=
∑
|I|=i

Δ0:I .

The boundary divisors of H correspond to the components of the pull-
back b∗(Bi) under the map

b : H → M0,24.(2C)

In order to keep track of these divisors, we need further combinatorial
data. In addition to the partition I�Ic = {1, . . . , 24}, we also have the data of
reflections {wi}i∈I and {wj}j∈Ic in W (E6) such that

∏
i∈I wi = u,

∏
j∈Ic wj =

u−1. The products are taken in order, and the sequence w1, . . . , w24 is defined
up to conjugation by the same element g ∈ W (E6).

Let μ := (μ1, . . . , μ�) be the cycle type of the element u ∈ W (E6) consid-
ered as a permutation in S27. Set

1
μ

:= 1
μ1

+ · · · + 1
μ�

and lcm(μ) := lcm(μ1, . . . , μ�).(2D)

We denote by Pi the set of partitions μ of 27 appearing as products of
i reflections in W (E6). The possibilities for μ ∈ Pi are listed in [ADFIO,
Table 1]. For μ ∈ Pi, let Ei:μ denote the sum of all the divisors of H whose
general point corresponds to an W (E6)-cover

t :=
[
π : C → R, p1, . . . , p24

]
∈ H,

where [R = R1 ∪q R2, p1, . . . , p24] ∈ Bi ⊆ M0,24 is a pointed union of two
smooth rational curves R1 and R2 meeting at the point q. Over q ∈ Rsing, the
map π is ramified according to u, that is, the points in π−1(q) correspond to
cycles in the permutation μ associated to the element u ∈ W (E6).
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Next, we focus on three special divisors on H; see also [ADFIO, 6.8, 6.9]:

1. E0 := E2:(127)
2. The syzygetic divisor Esyz := E2:(210,17).
3. The azygetic divisor Eazy := E2:(36,19).

These three divisors correspond to the boundary divisors where there are
exactly two branch points lying on the first irreducible component R1 and
having local monodromy w1, w2 ∈ W (E6). For E0 the reflections w1 and w2
are equal, thus the partition associated to w1·w2 equals μ = (127). For Esyz the
local monodromies w1 and w2 are different and commuting and the associated
partition is μ = (210, 17), whereas for Eazy the reflections w1 and w2 do not
commute, in which case the partition describing the cycle type of w1 · w2 is
(36, 19). As explained in [ADFIO, 6.6], we have the following relation:

b∗(Bi) =
∑
μ∈Pi

lcm(μ)Ei:μ.(2E)

On the space Hur we define the reduced divisors Di:μ which are the set-
theoretic images of Ei:μ. In particular, we have the three key divisors D0,
Dsyz, Dazy. By [ADFIO, 6.13] the pullbacks of the key divisors under the
quotient map q : H → Hur are

E0 = q∗
(1
2D0

)
, Esyz = q∗(Dsyz), Eazy = q∗

(1
2Dazy

)
.(2F)

Furthermore, q∗(Di:μ) = Ei:μ, for i = 3, . . . , 12 and μ ∈ Pi.
At the level of the partial compactification G̃E6 [ADFIO, 9.5] the pullbacks

under β̃ : Hur G̃E6 are

β̃∗(DE6) = D0, β̃∗(Dsyz) = Dsyz, β̃∗(Dazy) = Dazy.(2G)

For further details regarding the local description of the morphism β̃ we
refer to Section 4.1. When carrying out divisor class calculations we will not
distinguish between the spaces

H̃ur := Hur ∪ D0 ∪ Dsyz ∪ Dazy ⊆ Hur

and G̃E6 and we will accordingly identify the divisors D0, Dsyz and Dazy on
the two spaces.
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2.6. Properties of the rational map PT

The Prym-Tyurin map PT : Hur → A6 extends to a map PT : Hur A6 for
which we use the same symbol. We denote by UHur the domain of definition
of this rational map. Since Hur is normal, the complement Hur \ UHur has
codimension at least 2.

In Section 5.2. of [ADFIO] we assigned to [π : C → R, p1, . . . , p24] ∈
H a group Prym-Tyurin variety PT (C,D) = Im(D − 1) for the induced
endomorphism D of JC = Pic0(C). It is a semiabelian variety of dimension
6, that is, an extension

0 −→ T −→ PT (C,D) −→ A −→ 0

of an abelian variety A by a torus T .
The toric rank tor.rk := dimT of the semiabelian variety PT (C,D) is an

upper semicontinuous function on Hur. By [ADFIO, Thm. 5.9], the domain
of definition UHur contains the open set {tor.rk ≤ 1}.

Lemma 2.5. The rational map PT : Hur A6 does not create new divisors.
In other words, for any resolution of singularities

X

Hur A6

f
g

PT

and for any closed subset Z ⊆ Hur of codimension at least 2, one also has
that codim g(f−1(Z)) ≥ 2.

Proof. We have to show that, for every irreducible subset Z ⊆ Hur \ UHur,
one has codim g(f−1(Z)) ≥ 2. By the previous paragraph, we know that
Z ⊆ {tor.rk ≥ 2}.

By the Borel theorem [B, Thm. A] applied to a smooth cover of Hur,
the map PT : Hur → A6 extends to a regular map to the Satake-Baily-Borel
compactification Hur → Asat

6 = A6 � A5 � . . . � A0. Thus, g(f−1(Z)) is
contained in the preimage of A4 � . . .�A0 under the map A6 → Asat

6 . It has
codimension at least 2 in A6.

Corollary 2.6. The divisorial pushforward map PT∗ : Div(Hur) → Div(A6)
is well defined.

By [ADFIO, Thm. 7.17], the divisors D0, Dsyz, Dazy are the only boundary
divisors not contracted by the morphism PT : UHur → A6. The divisor D0
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maps to the boundary D6 of A6 \A6, while Dsyz and Dazy map onto divisors
not supported on the boundary.

We have a bijection between divisors on Hur and the divisors on the
domain of definition UHur of PT . Thus, for a divisor D on A6 we have the
rational pullback divisor PT ∗(D) on Hur which is the closure of the corre-
sponding regular pullback divisor on UHur.

Definition 2.7. Denote by (�) the subgroup of Pic(Hur) ⊗ Q generated by
the boundary divisors on Hur different from D0, Dsyz, Dazy.

2.7. The Hodge classes λ, λ(−5), λ(+1)

A point of Hur represents a cover t := [π : C → R, p1 + · · ·+p24] with W (E6)-
monodromy. The Kanev correspondence D on C induces an eigenspace de-
composition

H0(C, ωC) = H0(C, ωC)(−5) ⊕H0(C, ωC)(+1)

into subspaces of dimension 6 and 40 respectively. We denote by E the Hodge
bundle over Hur with fiber H0(C, ωC) over a point t ∈ Hur and by E(−5)

and E(+1) the Hodge eigenbundles globalizing the decomposition (2.7), that
is, having fibres H0(C, ωC)(−5) and H0(C, ωC)(+1) over t. We denote by

λ(−5) = c1(E(−5)) and λ(+1) := c1(E(+1))(2H)

the corresponding Hodge eigenclasses. Since λ(−5) = PT ∗(λ1), determining
λ(−5) explicitly is essential for any application concerning the birational ge-
ometry of A6.

Theorem 6.17 and Remark 6.18 of [ADFIO] establish the following im-
portant formula for the Hodge class on Hur:

λ = 33
46D0 + 17

46Dsyz + 7
46Dazy mod (�)(2I)

3. Twenty five fundamental Hodge bundles on Hur

In this section we determine the Hodge classes λ1, . . . , λ25 ∈ CH1(H̃ur) as-
sociated to the irreducible representations of W (E6). In particular, we shall
compute the class of the (−5)-Hodge eigenbundle λ(−5) and thus prove The-
orem 1.1. We first describe our strategy. Theorem 6.17 of [ADFIO] has been
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used to compute the Hodge class λ ∈ CH1(Hur) for the universal fam-
ily of degree 27 covers, corresponding to the lines on a fixed cubic sur-
face. In that case, λ = λ(−5) + λ(+1), and the summands of H0(C, ωC) =
H0(C, ωC)(−5) ⊕ H0(C, ωC)(+1) are associated with irreducible representa-
tions of the Weyl group W (E6). Namely, the 27-dimensional representation
of W (E6) ↪→ S27 has character 1 + 6 + 20b, whose dimensions add up to 27.
The Hodge eigenbundles E1, E6 = E(−5), and E20b = E(+1) associated with
these characters have ranks 0 + 6 + 40 = 46 = g(C).

3.1.

The 27:1 cover π : C → P1 whose fibres correspond to lines on a cubic surface
is merely one of many. Let π̃ : C̃ → P1 be the Galois closure of π. Then
C = C̃/G27, where the maximal index 27 subgroup G27 has been introduced
in 2.2. We have further covers associated to subgroups of W (E6):

1. A maximal subgroup of index 36. The cover C36 := C̃/G36 → P1 is
associated with the permutation representation W (E6) ↪→ S36 with
character 1 + 15b + 20b. The points of the fibers of C36 → P1 corre-
spond to the pairs of roots ±r of the W (E6) root lattice; equivalently, to
the double sixers of lines on a cubic surface. The ranks of the respective
vector bundles Ei are 0 + 45 + 40 = 85 = g(C36).

2. A maximal subgroup of index 45. The cover C45 := C̃/G45 → P1 is
associated with the permutation representation W (E6) ↪→ S45 with
character 1 + 24 + 20b. The points of the fibers of C45 → P1 correspond
to the triangles {
1, 
2, 
3} of lines on a cubic surface. The ranks of the
respective vector bundles Ei are 0 + 96 + 40 = 136 = g(C45).

3. More generally, for each fixed representative wα of one of the 25 con-
jugacy classes in W (E6), labeled as described in 2.2, recalling that
Zα := Zwα is the centralizer of wα, we have the curve Aα := C̃/Zα.

4. Similarly, let Wα = 〈wα〉 be the cyclic subgroup generated by wα. This
gives rise to 25 curves Bα := C̃/Wα.

Each of these families gives a map to a certain moduli space of curves
and has a Hodge bundle whose first Chern class we can compute as a linear
combination of D0, Dsyz, Dazy modulo the other boundary divisors (�). Each
Hodge bundle is a direct sum of isotypical components for the 25 irreducible
representations of W (E6), that is, a direct sum of the same basic 25 Hodge
bundles (with appropriate multiplicities). The multiplicities of these isotypi-
cal components are easily computable. Thus, given 25 “linearly independent”
families, we can compute the semi-ample Chern classes λi = c1(Ei) of the 25
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bundles Ei labeled by the characters of W (E6). It turns out that the rela-
tions obtained by considering universal versions of the curves Bα are linearly
independent, so they work for this purpose.

In particular, this gives us a formula for λ6 = λ(−5), that is, the first
Chern class of the vector bundle we denoted E(−5) in Section 2.7. We now
put this program to practice.

3.2. Hur as a moduli space of Galois admissible covers

In what follows we choose to view H as the moduli space of W (E6)-Galois
admissible covers

[π̃ : C̃ → R, p1, . . . , p24].

This means that [R, p1, . . . , p24] ∈ M0,24, as usual, π̃−1(Rsing) = C̃sing and
that there is a W (E6)-action on C̃ compatible with π̃ such that the restriction

π̃ : π̃−1(Rreg \ {p1, . . . , p24}
)
→ Rreg \ {p1, . . . , p24}

is a principal W (E6)-bundle. At each node q ∈ Csing, the action of the sta-
bilizer Stabq

(
W (E6)

)
⊆ W (E6) is balanced, that is, the eigenvalues of the

actions on the tangent spaces on the two branches of the tangent spaces of C̃
at q are multiplicative inverses to one another.

To recover the description of H given in (2.3), we fix the subgroup G27 =
StabW (E6)(a6) ⊆ W (E6) and note that if π̃ : C̃ → R is a W (E6)-Galois cover,
then π := πG27 : C̃/G27 → R is a degree 27 cover with monodromy group
equal to W (E6). The inverse operation is obtained by taking the Galois closure
of each degree 27 cover π : C → R with W (E6)-monodromy. Both of these
operations can be carried out in families.

Notation 3.1. For a Galois W (E6)-cover π̃ : C̃ → R and for a subgroup
G ⊆ W (E6), we denote CG := C̃/G and πG : CG → R the induced cover of
degree d = [W (E6) : G]. We further set gG := pa(CG).

Lemma 3.2. The arithmetic genus gG of the curve CG is

gG = 12a2c − d + 1(3A)

where d = [W (E6) : G] and a2c is given by Equation (2A) for u in the
conjugacy class 2c containing the reflections of W (E6).
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Proof. The sheets of the cover πG : CG → P1 over a general point from P1

are in bijection with the set of cosets W (E6)/G. The monodromy action by
an element u ∈ W (E6) is given by multiplication xG �→ uxG on the set of
cosets. If [πG : CG → P1, p1, . . . , p24] corresponds to a general element from H,
then πG is ramified over each of the 24 points pi according to the ramification
profile 2a2c1a2c , where a2c and b2c have been defined in (2B). Applying the
Hurwitz formula to πG, we thus have 2gG− 2 = d(−2)+24a2c, which finishes
the proof.

3.3. Computation of Hodge classes on H

Once we have fixed a subgroup G ⊆ W (E6) of index d, the assignment
[π̃ : C̃ → P1, p1, . . . , p24] �→ [CG] induces a regular map

H → MgG

and accordingly a Hodge bundle EG on H of rank gG obtained by pulling
back the Hodge bundle from MgG . We compute its determinant λG := c1(EG)
on H. To that end we need some preparation:

The universal stable curve over M0,24 is denoted by π25 : M0,25 → M0,24
and forgets the marked point labeled by 25. We recall the following standard
formulas; see, for instance, [FG].

c1(ωπ25) = ψ25 −
24∑
i=1

δ0:i,25 ∈ CH1(M0,25).(3B)

24∑
i=1

ψi =
12∑
i=2

i(24 − i)
23 [Bi] ∈ CH1(M0,24); κ1 =

12∑
i=2

(i− 1)(23 − i)
23 [Bi]

(3C)

Here ψi are the cotangent tautological classes corresponding to the marked
points, whereas κ1 is the usual κ-class.

Theorem 3.3. Let G be a subgroup of W (E6) as before. Assume the ram-
ification profile of the degree d cover CG → P1 corresponding to a general
element [C̃ → P1, p1, . . . , p24] ∈ H over each of the 24 branch points pi is of
the type 2a1b, where 2a + b = d. Then the Hodge class λG on H is given by

λG =
12∑
i=2

∑
μ∈Pi

1
12 lcm(μ)

(3a
2
i(24 − i)

23 − d + 1
μ

)
[Ei:μ] ∈ CH1(H).
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Proof. The proof follows the lines of that of [ADFIO, Theorem 6.17], with
appropriate changes we indicate below. Over the Hurwitz space H we consider
the universal W (E6)-admissible cover f : CG → P of degree d, where

P := H×M0,24
M0,25

is the universal degree d orbicurve of genus zero over H. We fix a general
point

t = [πG : CG → R, p1, . . . , p24]
of a boundary divisor Ei:μ, where μ = (μ1, . . . , μ�) ∈ Pi. In particular, R is
the union of two smooth rational curves R1 and R2 meeting at a point q. The
local ring of the space of Harris-Mumford admissible covers has the following
local description at t:

C[[t1, . . . , t21, s1, . . . , s�]]/sμ1
1 = · · · = sμ�

� = t1,(3D)

where t1 is the local parameter on M0,24 corresponding to smoothing the node
q ∈ R. The space P has a singularity of type Alcm(μ)−1, and accordingly CG
has singularities of type Alcm(μ)/μi−1 at the 
 points corresponding to the
inverse image of Rsing. Indeed, to determine the local ring of H at the point t,
one normalizes the ring (3D). To that end, we introduce a further parameter
τ and choose primitive μj-th roots of unity ζj for j = 1, . . . , 
. These choices
correspond to specifying the stack structure of the cover CG → R at the
points of CG lying over the point q ∈ Rsing. Thus

Ô[t,ζ1,...,ζ�], H = C[[t1, . . . , t21, τ ]]

and sj = ζjτ
lcm(μ)

μj , for j = 1, . . . , 
. Accordingly, the map b : H → M0,24 is
branched with order lcm(μ) at each such point [t, ζ1, . . . , ζ�]. When the stack
data (ζ1, . . . , ζ�) is clear from the context, we drop it and we write as before
t = [t, ζ1, . . . , ζ�] ∈ H when referring to a point of H.

Let φ : P → H and q : P → M0,25 be the two projections and put v :=
φ ◦ f : CG → H respectively f := q ◦ f : CG → M0,25. Note that v respectively
f are viewed as the universal curve of genus gG over H and M0,25 respectively.
The ramification divisor of f decomposes as

Ram(f) = R1 + · · · + R24 ⊆ CG,

where a general point of Ri is of the form [π : CG → R, p1, . . . , p24, x], with R
being a nodal rational curve and x ∈ C being one of the a ramification points
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lying over the branch point pi. Since over each branch point lie a ramification
points, we have f∗([Ri]) = a[Bi], where Bi ⊆ P is the corresponding branch
divisor.

We apply the Riemann-Hurwitz formula to the finite map f : CG → P.
Accordingly, we can write c1(ωv) = f∗q∗c1(ωπ25) + [Ram(f)], where we recall
that π25 : M0,25 → M0,24 is the morphism forgetting the last marked point.
We square this identity and then push it forward via v to obtain a relation
in CH1(H). We have that

v∗c
2
1(ωv) = v∗

(
f
∗
c21(ωπ25) + 2f∗

c1(ωπ25) · [Ram(f)] + [Ram(f)]2
)
.

We evaluate each term, starting with the second one. We write

v∗
(
f
∗
c1(ωπ25) · [Ram(f)]

)
=

=
24∑
i=1

φ∗
(
q∗c1 (ωπ25) · a[Bi]

)
= a

24∑
i=1

φ∗q
∗
(
c1(ωπ25) · [Δ0:i,25]

)
= a b∗

( 24∑
i=1

ψi

)
.

Furthermore, we write f∗(Bi) = 2Ri + Ai, where the residual divisor Ai

defined by the previous equality maps b : 1 onto Bi. Note that Ai and Ri are
disjoint, hence f∗([Bi]) ·Ri = 2R2

i . Therefore

v∗([Ri]2) = a

2φ∗([B2
i ]) = a

2φ∗(q∗
(
δ2
0:i,25)

)
= −a

2b
∗(ψi).

Using Equation (3C), we compute that

v∗
(
[Ram(f)]2

)
= v∗

( 24∑
i=1

[Ri]2
)

= −a

2b
∗
( 24∑
i=1

ψi

)
= −a

2

12∑
i=2

i(24 − i)
23 b∗([Bi]).

We use Equation (3B), and the relation π∗(δ2
0:i,25) = −ψi for i = 1, . . . , 24, to

write:

v∗f
∗
c21(ωπ25) = φ∗

(
d q∗c21(ωπ25)

)
= d b∗π∗

(
ψ25 −

24∑
i=1

δ0:i,25
)2

=

= d b∗
(
κ1 −

24∑
i=1

ψi

)
= −d b∗

( 12∑
i=2

[Bi]
)
,

where the last equation is again a consequence of (3C).
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We find the following expression for the pull-back of the Mumford κ class
to H:

v∗c
2
1(ωv)≡

12∑
i=2

(3a
2
i(24 − i)

23 −d
)
b∗(Bi)≡

12∑
i=2

∑
μ∈Pi

lcm(μ)
(3a

2
i(24 − i)

23 −d
)
Ei:μ.

(3E)

Via a Grothendieck-Riemann-Roch calculation in the case of the universal
genus gG curve v : CG → H, coupled with the local analysis of the fibers of
the branch map b, we find

12λG = v∗c
2
1(ωv) +

12∑
i=2

∑
μ∈Pi

lcm(μ) · 1
μ

[Ei:μ].

Substituting in (3E), we finish the proof.

We now make Theorem 3.3 more precise involving the monodromy vectors
defined in (2B).

Corollary 3.4. Let G be a subgroup of W (E6) of index d and let W (E6) ↪→ Sd

be the monodromy action for a generic cover [π : CG → P1, p1, . . . , p24] in
this family. Suppose that the cycle types of the elements α ∈ W (E6) in the
conjugacy classes 2c, 2b, 3b are 2a2c1b2c , 2a2b1b2b and 3a3b1b3b respectively.
Then the Hodge class λG on Hur is:

λG= 11a2c

92 [D0]+
1
6
(66a2c

23 − 3a2b

2
)
[Dsyz]+

1
8
(66a2c

23 − 8a3b

3
)
[Dazy] mod (�).

(3F)

Proof. For the divisors E0, Esyz, Eazy one has i = 2. The classes 2c, 2b, 3b
are the conjugacy classes respectively of a reflection w, a product of two
commuting reflections w1 · w2 and two non commuting reflections w1 · w2.
Over D0, respectively Dsyz, Dazy, we compute d− 1

μ to be respectively 0, 3a2b
2 ,

8a3b
3 , and lcm(μ) to be 1, 2, 3. Finally, we use the relation between E’s and

D’s from Equation (2F).

Example 3.5. For the maximal subgroup G27 ⊆ W (E6), using the fact
that (a2c, a2b, a3c) = (6, 10, 6) we recover the formula for λG27 = λ given in
Theorem [ADFIO, Theorem 6.17].
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3.4. Prym-Tyurin varieties via Galois covers

We now discuss a different representation-theoretic interpretation of the
Prym-Tyurin variety PT (C,D) associated to a W (E6)-cover π : C → P1. Re-
call that in 2.2 we fixed the maximal index 27 subgroup G27 = StabW (E6)(a6)
of W (E6). For a W (E6)-Galois cover [π̃ : C̃ → R, p1 + · · ·+p24], we denote by
π : C = C̃/G27 → R the associated degree 27 cover with monodromy group
W (E6). Let (E6)C := E6 ⊗C. Notice that (E6)C is also generated by the ele-
ments of the orbit of a6 (all weights of E6). Following [D2, 5.1], we define the
Prym variety associated to the lattice E6 as the abelian variety parametrizing
equivariant maps to JC̃, that is,

PrymE6(JC̃) := HomW (E6)
(
(E6)C, JC̃

)
.

The evaluation at the element a6 induces an injective morphism of abelian
varieties ([LP, Lemma 5.4.] and [LP, Proposition 5.2.])

evala6 : HomW (E6)
(
E6, JC̃

)
↪→ JC̃, [υ : E6 → JC̃] �→ υ(a6).

In this way PrymE6(JC̃) is endowed with a polarization. The image of the
map evala6 above lands inside JC =

(
JC̃
)G27 . We now summarize results

from [D2, Section 12]; see also [LP, Section 5]:

Theorem 3.6. The evaluation induces an isomorphism of 6-dimensional
ppav PrymE6(JC̃) ∼= PT (C,D).

Since the proof given in [D2, Section 12] is representation-theoretical it
works without modification in families. Passing to tangent spaces at the ori-
gin, Theorem 3.6 implies that one has a natural isomorphism of vector spaces

HomW (E6)
(
E6, H

0(C̃, ω
C̃
)
) ∼= H0(C, ωC)(−5).(3G)

3.5. Computing the 25 fundamental Hodge classes

We denote by ρ1, . . . , ρ25 the irreducible representations of W (E6). We also
fix a subgroup G ⊆ W (E6) of index d. For each W (E6)-Galois cover [π̃ : C̃ →
P1, p1, . . . , p24], the space of differentials H0(C̃, ω

C̃
) is a W (E6)-module and

accordingly we have the following decompositions into sums of irreducible
representations:

H0(C̃, ω
C̃
) =

25⊕
i=1

ρi ⊗ HomW (E6)

(
ρi, H

0(C̃, ω
C̃
)
)
,(3H)
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H0(CG, ωCG) =
25⊕
i=1

ρGi ⊗ HomW (E6)

(
ρi, H

0(C̃, ω
C̃
)
)
.(3I)

Notation 3.7. We denote by Ẽ the W (E6)-Hodge bundle on H, that is,
having fibre H0(C̃, ω

C̃
) over a point [π̃ : C̃ → R] ∈ Hur.

We now define Hodge bundles corresponding to each irreducible represen-
tation of W (E6).

Definition 3.8. For each i = 1, . . . , 25, let Ei := HomW (E6)
(
ρi, Ẽ

)
regarded

as a vector bundle on Hur. We let λi := c1(Ei) ∈ CH1(Hur).

We have therefore the following identity in the K-group of Hur:

Ẽ =
25⊕
i=1

ρi ⊗ Ei.(3J)

The dimensions of the invariant subspaces ρGi as usual are given by the
formula

dim(ρGi ) = 1
|G|

∑
g∈G

Trρi(g).(3K)

Here, for g ∈ W (E6) in the conjugacy class α, we have Trρi(g) = Trχi(α) in
the character table of W (E6); see Table 2.

We now come to the first main result of this paper, the explicit compu-
tation of all the classes λi. This implies Theorem 1.1.

Theorem 3.9. The ranks rk(Ei) and the 25 fundamental Hodge classes λi =
c1(Ei) on Hur in terms of the generators D0, Dsyz, Dazy mod (�) are given
as in Table 1.

Proof. We apply the above formulas to the 25 cyclic groups G = Wα = 〈wα〉
generated by 25 fixed representatives wα of the conjugacy classes of W (E6).
Precisely, we have the formulas

λG =
25∑
i=1

dim(ρGi )λi.

From (3K) we compute the 25 × 25 matrix of multiplicities

M =
(
dim(ρWα

i )
)
1≤i,α≤25

and find its determinant to be 400771988324352 	= 0, so it is invertible.
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Table 1: χi, rkEi, λi, and (a2c, a2b, a3b)(χi)
χ name rkEi D0 Dsyz Dazy a2c a2b a3b
1 1 0 0 0 0 0 0 0
2 1 11 11/92 11/23 33/92 1 0 0
3 10 50 55/92 32/23 127/276 5 4 4
4 6 6 11/92 −1/46 7/276 1 2 1
5 6 54 55/92 87/46 403/276 5 2 1
6 20a 100 55/46 41/23 73/46 10 12 6
7 15a 45 55/92 9/23 127/276 5 8 4
8 15a 105 55/46 64/23 311/138 10 8 4
9 15b 45 55/92 41/46 35/276 5 6 5

10 15b 105 55/46 151/46 265/138 10 6 5
11 20b 40 55/92 9/23 35/276 5 8 5
12 20b 160 165/92 119/23 1025/276 15 8 5
13 24 96 55/46 41/23 127/138 10 12 8
14 24 144 77/46 85/23 325/138 14 12 8
15 30 90 55/46 59/46 27/46 10 14 9
16 30 210 55/23 279/46 96/23 20 14 9
17 60a 300 165/46 169/23 473/138 30 28 22
18 80 400 110/23 210/23 346/69 40 40 28
19 90 450 495/92 219/23 565/92 45 48 30
20 60b 240 275/92 114/23 181/92 25 28 21
21 60b 360 385/92 224/23 511/92 35 28 21
22 64 224 66/23 80/23 134/69 24 32 20
23 64 416 110/23 256/23 530/69 40 32 20
24 81 351 99/23 309/46 90/23 36 42 27
25 81 459 495/92 507/46 657/92 45 42 27

We compute the vector of genera of the curves Bα = C̃/Wα by (3A).
Multiplying this vector by M−1 we find the ranks of Ei. Next, for each of the
curves Bα, we find the 6-tuple (a2c, b2c; a2b, b2b; a3c, b3c) by applying (2A) to
the elements u lying in the conjugacy classes 2c, 2b, 3b. Then, using Corol-
lary 3.4, we find the corresponding lambda class λWα on Hur. Finally, we
multiply the 3× 25 matrix of these lambda classes by M−1 to get the expres-
sions for λi in terms of D0, Dsyz, Dazy mod (�).

Remark 3.10. Since λ = λ(−5) + λ(+1), Equation (1B) and Theorem 1.1
are equivalent. There are similar identities to 1B for the universal covers of
degree 36 and 45 from 3.1(1,2).

Remark 3.11. From Corollary 3.4 we see that the Hodge class λG is a linear
function of the vector �a = (a2c, a2b, a3b) given by an invertible matrix. It
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follows that �a is a linear function of the vector λG. Associating to a cover
CG = C̃/G the element

∑
i(dim ρGi )χi in the character space of W (E6), we

see that

aα(CG) =
25∑
i=1

(dim ρGi )aα(χi) for α = 2c, 2b, 3b.

Then aα(χ) can be computed using the same linear algebra, from Equa-
tions 3K and 2A. We list them in the last three columns of Table 1.

The following is also easy to see, cf. (3A). For any character χ one has

g(χ) := rankE(χ) = 12a2c(χ) − χ(1a) + mult1(χ),(3L)

where χ(1a) = dimVχ is the dimension of the representation, and mult1(χ)
is the multiplicity of the trivial representation 1 in χ. For example g(C27) =
12 · 6 − 27 + 1 = 46, and rank(E6) = 12 · 1 − 6 = 6.

Remark 3.12. From Table 1 one can observe that for any character χ one
has

λ(χ⊗ 1) = λ(χ) + χ(2c)λ(1), �a(χ⊗ 1) = �a(χ) + χ(2c)(1, 0, 0).

4. The Weyl-Petri divisor and the ramification of the
Prym-Tyurin map

In the paper [ADFIO, Section 10], we showed that, if a smooth W (E6)-cover
[π : C → R, p1 + · · ·+ p24] ∈ Hur lies in the ramification locus of PT , the line
bundle L associated to π satisfies h0(C,L) = 2 and the Petri map

H0(C,L) ⊗H0(C, ωC ⊗ L−1) −→ H0(C, ωC)(+1)

is an isomorphism, then the Prym-Tyurin canonical image of C is contained
in a quadric. In this section we refine the above result by showing that the
ramification divisor of PT is contained in the union of two divisors M and N

which we shall describe. In this section, we work on an alternative compacti-
fication G̃E6 of Hur which we first discuss in some detail.

4.1. The parameter space GE6

In [ADFIO, 9.4] we introduced the stack GE6 classifying SL(2)-equivalence
classes of finite maps [π : C → P1] with W (E6) monodromy, where C is an
irreducible curve of genus 46. To construct GE6 , we let XE6 denote the substack
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of the moduli stack M46(P1, 27) parametrizing finite stable maps π : C → P1,
from an irreducible nodal curve C of genus 46 and having monodromy group
Mπ contained in W (E6). Then we set

GE6 :=
[
XE6/SL(2)

]
,

where SL(2) acts on the base by linear transformations.
Let fE6 : CE6 → GE6 be the universal curve of genus 46. One has a bira-

tional map β : H̃ur ��� GE6 . We recall the effect of this map on the boundary
divisors D0, Dsyz and Dazy of H̃ur. We fix a point

t = [π : C = C1 ∪ C2 → R = R1 ∪q R2, p1 + · · · + p24] ∈ H̃ur,

where we assume that R1 and R2 are smooth rational curves meeting at q
and that p1, . . . , p22 ∈ R1 \ {q} whereas p23, p24 ∈ R2 \ {q}.

If t represents a general point of D0, then C1 is a smooth curve of genus 40.
The curve C2 consists of 21 components, of which 6 map with degree 2 onto R2
and meet C1 in two points, whereas the remaining 15 map isomorphically onto
R2 and meet C1 in one point. Then β(t) = [π : C → R1] ∈ GE6 , where C is the
6-nodal curve obtained from C1 by pairwise identifying the six pairs of points
lying on the components of C2 mapping 2-to-1 onto R2, and π is induced by
π. If ν : C1 → C is the normalization map, then L := π∗OR1(1) ∈ W 1

27(C) is
uniquely characterized by the property ν∗(L) = π∗

|R1
(OC1(1)) ∈ W 1

27(C1).
If t represents a general point of Dazy, then C1 is smooth of genus 46 and

π|C1 : C1 → R1 is a map of degree 27 with 6 ramification points of index 3
over the point q ∈ R1. Then

β(t) = [π|C1 : C1 → R1] ∈ GE6

and L1 := π∗
|C1

(OR1(1)) ∈ W 1
27(C1).

The case when t corresponds to a general point of Dsyz requires care. Then
C1 is a smooth curve of genus 45. The permutations in S27 corresponding to
the roots w23 and w24 describing the local monodromy around p23 and p24
share four elements. For instance, using the standard notation for the lines
on a cubic surface, we may assume w23 = αmax = 2h − a1 − · · · − a6 and
w24 = α12 = a1 − a2:

αmax =
( a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

)
and α12 =

( a1 b1 c13 c14 c15 c16
a2 b2 c23 c24 c25 c26

)
.

The curve C1 meets a smooth rational component of E of C2 at two points
p1 and p2 corresponding to the sheets labelled by the transpositions (a1, b2)
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and (b1, a2) corresponding to multiplying αmax and α12. The map π|E : E →
R2 is of degree 4 and π∗

|E(q) = 2p1 +2p2. We have β(t) = [π : C → R1], where
C is obtained from C1 by identifying the points p1 and p2 and π is induced by
π. Therefore, C is an irreducible 1-nodal curve of genus 46. The line bundle
L := π∗OR1(1) ∈ W 1

27(C) is characterized by the fact that if ν : C1 → C
is the normalization map, then ν∗(L) = L1 := π∗

|C1
(OR1(1)). Moreover, if

Csing = {z}, that is, ν−1(z) = {p1, p2}, then

h0(C1, L1(−2p1 − 2p2)
)
≥ 1.

Because the points p1 and p2 are ramification points of L1, it follows that
the local equations of GE6 around t ∈ Dsyz are

(u, v, t1, t2, . . . , t21), u2 = v2 = t1,

see [Va, Corollary 4.16] for a similar discussion. The parameters t1, . . . , t21
correspond to deforming the branch points of π and the divisor Dsyz ⊆ GE6 is
locally given by (t1 = 0). Therefore, GE6 is not normal along Dsyz.

Notation 4.1. We denote by G̃E6 → GE6 the normalization map. Let

f̃ : C̃E6 → G̃E6

be the universal curve over G̃E6 .
Finally, we denote by β̃ : H̃ur ��� G̃E6 the map induced from β by the

universal property of the normalization G̃E6 → GE6 . We still denote by D0,
Dsyz and Dazy the reduced boundary divisors on G̃E6 corresponding to the
same symbols under the map β̃, that is, β̃∗(D0) = D0, β̃∗(Dsyz) = Dsyz and
β̃∗(Dazy) = Dazy.

Along the divisor Dsyz, the space G̃E6 consists of two sheets having local
coordinates (s, t2, . . . , t21), such that the map G̃E6 → GE6 is given locally by

(u = s, v = s, t1 = s2) and (u = −s, v = s, t1 = s2)

respectively. The fibre product C′
E6

:= CE6 ×GE6
G̃E6 has A1-singularities along

the codimension 2 locus of nodes
(
[C → R], z ∈ Csing

)
over points in Dsyz .

Indeed, if xy = t1 is the local equation of CE6 in coordinates (x, y, t1, . . . , t21),
then the local equation of C′

E6
is xy = s2. Observe that C̃E6 is obtained from

C′
E6

by blowing-up the locus of nodes. Over a point [C → R] ∈ Dsyz , we have

f̃−1([C → R]
)

= C1 ∪{p1,p2} E,
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where E is a smooth rational curve meeting the smooth curve C1 at p1
and p2.

Notation 4.2. We denote by L a universal line bundle over C̃E6 . For a point
[C = C1 ∪ E,L] ∈ Dsyz as above, we have L|C1 = ν∗(L) ∈ W 1

27(C1) and
L|E = OE .

Theorem 4.3. At the level of G̃E6 one has the following formula:

λ = 33
46[D0] + 7

46[Dazy] + 17
46[Dsyz] ∈ CH1(G̃E6).

Proof. We study the map ϕ := β̃ ◦ q : H ��� G̃E6 . At the level of H we have
the formula [ADFIO, Theorem 6.17]:

λ = 7
23[Eazy] + 17

46[Esyz ] + 33
28[E0] + · · · ∈ CH1(H).

We claim that ϕ∗([D0]) = 2[E0], ϕ∗([Dazy ]) = 2[Eazy ] and ϕ∗([Dsyz ]) = [Esyz ]
which explains the result.

We start with a family of W (E6)-pencils
(
ft : Ct → P1)

t∈T and assume
that over a special point t0 ∈ T , two branch points coalesce. Depending on
the situation, the curve C0 is smooth (in the azygetic case), or nodal (in the
syzygetic, or the D0-case). In order to separate the branch points one makes
a base change of order 2 which justifies the multiplicity in front of both E0
and Eazy . This base change is not needed in the case Esyz for, when we passed
to the normalization, the two branches were separated.

Remark 4.4. Observe that a formula identical to Theorem 4.3 has been
established in [ADFIO, Remark 5.21] at the level of H̃ur. The stacks H̃ur
and G̃E6 are however not isomorphic over the divisors D0, Dazy and Dsyz . For
instance, over a general point in Dazy the non-normalized Harris-Mumford
space HME6 of admissible covers has local equations

s3
1 = · · · = s3

6 = t1,

in local coordinates (s1, . . . , s6, t1, . . . , t21), where Dazy is given by (t1 = 0).
Accordingly, the local equation of H̃ur (which locally is the normalization of
HME6) in coordinates (a, t2, . . . , t21) is given by s1 = ζ1a, . . . , s6 = ζ6a, t1 =
a3, where ζ1, . . . , ζ6 are primitive cubic roots of unity and a is a local param-
eter. In particular, over a general point of Dazy in G̃E6 there lie 35 = 1

3 × 36

points in H̃ur.
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Theorem 4.5. We have the following formula:

κ = 12λ− 6[D0] − 2[Dsyz ] ∈ CH1(G̃E6).

Proof. By definition κ = f̃∗
(
c21(ωf̃ )

)
. We apply Grothendieck-Riemann-Roch

to the universal curve f̃ : C̃E6 → G̃E6 . The usual calculation of Mumford yields

κ = 12λ− f̃∗[Sing(f̃)].

The general point of D0 has 6 singularities, thus explaining the factor 6[D0].
Similarly, the general point of Dsyz corresponds to a curve with two singular-
ities, namely the points of intersection E ∩ C1, keeping the notation above.
This explains the factor 2[Dsyz ].

4.2. Tautological classes on G̃E6

In [ADFIO, 9.6], after having chosen a universal line bundle L on the universal
curve C̃E6 , the following tautological classes over G̃E6 were defined:

A := f̃∗
(
c21(L)

)
, B := f̃∗

(
c1(L) · c1(ωf̃ )

)
, γ := B− 5

3A ∈ CH1(G̃E6).

Whereas A and B depend on the choice of a universal line bundle L on C̃E6 ,
the class γ is intrinsically defined and does not depend on such a choice. We
define the tautological part of CH1(G̃E6) to be the three dimensional subspace
with the following three distinguished bases:

• (Dazy, Dsyz, D0). All calculations on Hur are carried out using it.
• (λ, γ,D0). This basis is best suited for working with the space G̃E6 .
• (λ, λ(−5), D0). This is the basis compatible with the Prym-Tyurin map
PT .

In what follows we clarify the relation between these bases:

Theorem 4.6. The following relation holds:1

[Dazy] = γ + 4λ− 3[D0] − 2[Dsyz] ∈ CH1(G̃E6).

Proof. We represent Dazy as the push-forward of the codimension two locus
in the universal curve C̃E6 of the locus of pairs [C → R, p], where p ∈ C

1Theorem 4.6 corrects Theorem 8.14 from [ADFIO], where the non-normality of
GE6 along Dsyz was not accounted for.
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is such that h0(C,L(−3p)) ≥ 1. We form the fibre product of the universal
curve C̃E6 together with its projections:

C̃E6
π1←−−−− C̃E6 ×G̃E6

C̃E6
π2−−−−→ C̃E6 .

For each k ≥ 1, we consider the locally free jet bundle Jk(L) defined, e.g.,
in [E96], as a locally free replacement (that is, double dual) of the sheaf of
principal parts Pk

f̃
(L) := (π2)∗

(
π∗

1(L)⊗ I(k+1)Δ

)
on C̃E6 . Note that Pk

f̃
(L) is

not locally free along the codimension two locus in C̃E6 where f̃ is not smooth.
To remedy this problem, we consider the Wronskian locally free replacements
Jk
f̃
(L), related by the following commutative diagram for each k ≥ 1:

0 Ωk
f̃
⊗ L Pk

f̃
(L) Pk−1

f̃
(L) 0

0 ω⊗k
f̃

⊗ L Jk
f̃
(L) Jk−1

f̃
(L) 0.

Here Ωk
f̃

denotes the OG̃E6
-module IkΔ/I(k+1)Δ. The first vertical row here

is induced by the canonical map Ωk
f̃
→ ω⊗k

f̃
relating the sheaf of relative

Kähler differentials to the relative dualizing sheaf of the family f̃ . The sheaves
Pk
f̃
(L) and Jk

f̃
(L) differ only along the codimension two singular locus of f̃ .

Setting V := f̃∗L, there is, for each integer k ≥ 0, a vector bundle morphism
νk : f̃∗(V) → Jk

f̃
(L), which for points [C,L, p] ∈ G̃E6 such that p ∈ Creg, is

just the evaluation morphism H0(C,L) → H0(L|(k+1)p). We specialize now
to the case k = 2 and consider the codimension two locus Z ⊆ C̃E6 where

ν2 : f̃∗(V) → J2
f̃
(L)

is not injective. Then, at least over the locus of smooth curves, Dazy is the set-
theoretic image of Z. Furthermore, a local analysis shows that the morphism
ν2 is simply degenerate for each point [C,L, p], where p ∈ Csing. Taking into
account that a general point of Dazy corresponds to a pencil with six triple
points aligned over one branch point, and that the stable model of a general
element of the divisor Dsyz corresponds to a curve with one node, whereas
that of a general point of D0 to a curve with six nodes, we obtain the formula:

6[Dazy] = f̃∗c2

(
J2
f̃
(L)

f̃∗(V)

)
− 6[D0] − 8[Dsyz] ∈ CH1(G̃E6).
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The fact that Dsyz appears with multiplicity 8 is a result of the fact that
f̃−1([C,L]) = C̃ ∪{p1,p2} E, over a general point [C,L] ∈ Dsyz has two singu-
larities, and that, at each of the nodes, there is a local multiplicity equal to
4 as we shall explain.

We choose a family F : X → B of curves of genus 46 over a smooth 1-
dimensional base B, such that X is smooth, and there is a point b0 ∈ B such
that Xb := F−1(b) is smooth for b ∈ B \ {b0}, whereas Xb0 has precisely two
nodes p1 and p2. Assume L ∈ Pic(X ) is a line bundle such that Lb := L|Xb

is a pencil with W (E6)-monodromy on Xb for each b ∈ B, and furthermore
[Xb0 , Lb0 ] ∈ Dsyz. We have that Xb0 = C ∪{p1,p2} E, where C is a smooth
curve of genus 45 and E is a smooth rational curve, meeting C at the nodes
p1 and p2.

Choose local parameters t ∈ OB,b0 and u, v ∈ OX ,p1 , such that uv = t
represents the local equation of X around the point p1. Here u is the local
parameter on C, whereas v is the local parameter on E. Then ωF is locally
generated at the point p1 ∈ X by the meromorphic differential τ = du

u = −dv
v .

We choose two sections s1, s2 ∈ H0(X , L), where s1 does not vanish at p1 or
p2 and s2 vanishes with order 2 at p1, p2 along C, while being identically zero
along E. Thus (after a local analytic change of coordinates) we can write a
relation s2,p1 = u2s1,p1 between the germs of the two sections s1 and s2 at p1.
We compute

d(s2)−2udu=d(s2)−2u2τ ∈ (u, v)τ, d2(s2)−4udu = d2(s2)−4u2τ ∈ (u, v)τ.

In local coordinates, the map H0(Xb0 , Lb0

)
→ H0(Xb0 , Lb0 |3p1

)
is then given

by the following matrix,(
1 0 0
u2 2u2 + (u, v) 4u2 + (u, v)

)
,

where the symbol f +(u, v), indicates an element of OX ,p1 that differs from f
by an element in the ideal (u, v). The local equations of the degeneracy locus
Z are the two by two minors of the above matrix. This shows that the local
multiplicity coming from the node p1 ∈ Xb0 of [Dsyz] in Z is equal to 4, hence
[Dsyz ] appears with multiplicity 8 = 4 + 4 in the degeneracy locus.2

2In [ADFIO, Theorem 9.12] there is a mistake in a similar calculation: the mul-
tiplicity there is 4 and not 3.
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We compute: c1
(
J2
f̃
(L)
)

= 3c1(L) + 3c1(ωf̃ ) and c2
(
J2
f̃
(L)
)

= 3c21(L) +
6c1(L) · c1(ωf̃ ) + 2c21(ωf̃ ), hence

f̃∗c2

(
J2
f̃
(L)

f̃∗(V)

)
= 3A + 6B− 3(d + 2g − 2)c1(V) + 2κ = 6γ + 2κ.

As explained in Theorem 4.5, we also have κ = 12λ− 6[DE6 ]− 2[Dsyz], which
finishes the proof.

Recall that f̃ : C̃E6 → G̃E6 denotes the universal curve and L is a universal
line bundle of relative degree 27 over C̃E6 . The push-forward sheaves f̃∗(L)
and f̃∗

(
ωf̃ ⊗ L∨) are reflexive sheaves, therefore using [Ha], both are locally

free outside a subset of codimension at least 3 in G̃E6 . By possibly removing
this locus, for all divisor class calculations that follow, we may assume that
both f̃∗(L) and f̃∗

(
ωf̃ ⊗L∨) are locally free. Using [ADFIO, Lemma 11.5], for

a general point [π : C → P1] ∈ G̃E6 , if L := π∗(OP1(1)), we have h0(C,L) = 2
and h0(C, ωC ⊗ L∨) = 20, therefore by Grauert’s Theorem

rk
(
f̃∗(L)

)
= 2 and rk

(
f̃∗
(
ωf̃ ⊗ L∨)) = 20.

We fix a point [π : C → P1] = [C,L] ∈ G̃E6 and a point p ∈ P1 such that
π−1(p) ⊆ Creg. We consider the usual cohomology exact sequence on C

0 −→ H0(OC) −→ H0(L) −→ H0(OΓp(Γp))
αp−→ H1(OC) −→ H1(L) −→ 0,

(4A)

where Γp is the divisor of |L| = |π∗OP1(1)| above p. We identify H0(OΓp(Γp))
with the C-vector space spanned by the 27 lines on a fixed cubic surface S. The
incidence correspondence on the set of lines of S induces an endomorphism

γp : H0(OΓp(Γp)) → H0(OΓp(Γp))

with eigenvalues 10, 1 and −5, with eigenspaces H0(OΓp(Γp))(10),
H0(OΓp(Γp))(1) and H0(OΓp(Γp))(−5) of dimensions 1, 20 and 6 respectively.
Note that the eigenspace H0(OΓp)(+10) is spanned by the sum of all the
27 lines on S and, as in the proof of [ADFIO, Theorem 9.3], the space
H0(OΓp(Γp))(+10) can be identified with the trivial representation of W (E6).
Furthermore, if D : H0(C, ωC) → H0(C, ωC) is the endomorphism induced by
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the Kanev correspondence on C, the following diagram is commutative for
each p ∈ P1:

H0(OΓp(Γp))

γp

αp
H0(C, ωC)∨

D∨

H0(OΓp(Γp))
αp

H0(C, ωC)∨.

Therefore, the decomposition into eigenspaces produces the exact se-
quences

0 −→ H0(C,OC) −→ H0(C,L)(+10) −→ H0(OΓp(Γp))(+10) −→ 0,

and

0−→H0(L)(−5) −→ H0(OΓp(Γp))(−5) α
(−5)
p−→ H1(OC)(−5) −→ H1(L)(−5) −→ 0.

(4B)

It follows from [ADFIO, Section 11] that h0(C,L) = 2 (hence h1(C,L) =
20) for a general [C,L] ∈ G̃E6 , therefore in this case we also have H0(C,L) =
H0(C,L)(+10) and H0(C,L)(−5) = 0 and H1(C,L) = H1(C,L)(+1). It also
follows that the space H0(C,L)(+10) can be canonically identified with the
subspace π∗H0(P1,OP1(1)) of H0(C,L) and it always has dimension 2.

4.3. The divisor M

The locus of those triples [C,L, p] ∈ C̃E6 such that the map

α(−5)
p : H0(OΓp(Γp))(−5) −→

(
H0(C, ωC)∨

)(−5)

is not an isomorphism can be represented as the pullback f̃∗(M) of an effective
divisor M on G̃E6 , for the degeneracy of the map α

(−5)
p is independent of the

choice of a point p ∈ P1.
In what follows we characterize this divisor set-theoretically and observe

that, surprisingly, the locus in G̃E6 of pairs [C,L] such that h0(C,L) > 2 is of
codimension one.

Proposition 4.7. If [C,L] ∈ M, then h0(C,L) ≥ 3. If [C,L] ∈ G̃E6 \ M,
then

Im
{
H0(C,L) ⊗H0(C, ωC ⊗ L∨) → H0(C, ωC)

}
⊆ H0(C, ωC)(+1).
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Proof. Assume h0(C,L) = 2, therefore H0(C,L) = H0(C,L)(+10). From the
sequence (4B), it follows that α

(−5)
p is injective, hence by comparing dimen-

sions, it is an isomorphism, that is, [C,L] /∈ M.
In order to establish the second claim, we use the exactness of the second

half of the sequence (4B). Since Im
(
α

(−5)
p

)
= H0(C, ωC)(−5), in particular

Im(αp) ⊇
(
H0(C, ωC)∨

)(−5). By dualising, if s ∈ H0(C,L) is the section
defining the divisor Γp, we obtain that s ·H0(C, ωC ⊗ L∨) ⊆ H0(C, ωC)(+1),
which establishes the claim, by varying the section s ∈ H0(C,L).

4.4. The divisor N

We define the Weyl-Petri divisor N to be degeneracy locus of the map of
vector bundles of rank 40

μ : f̃∗(L) ⊗ f̃∗(ωf̃ ⊗ L∨) → f̃∗(ωf̃ )
(+1)

over G̃E6 . Observe that away from the divisor M, the points in N are precisely
those for which the Petri map μ(L) : H0(C,L)⊗H0(C, ωC⊗L∨) → H0(C, ωC)
is not injective.

Lemma 4.8. For each point [π : C → P1] ∈ G̃E6 , one has the identification
f̃∗(L)[π] ∼= H0(C,L)(+10).

Proof. Use that f̃∗(L) is locally free, coupled with the sequence (4A).

In what follows we shall determine the class of the divisor N.

Proposition 4.9. The following formula holds at the level of G̃E6 :

[N] = λ(+1) − 2λ + γ = λ(−5) = −λ− λ(−5) + γ.

Proof. Using the description of N as a degeneracy locus, we compute that

[N] = λ(+1) − c1
(
f̃∗(L) ⊗ f̃∗(ωf̃ ⊗ L∨)

)
= λ(+1) + c1

(
f̃∗(L) ⊗R1f̃∗(L)

)
.

Using [ADFIO, Proposition 9.11], we have A = 27c1(f̃∗(L)). Applying Gro-
thendieck-Riemann-Roch to the universal curve f̃ : C̃E6 → G̃E6 , we write

c1
(
f̃∗(L)

)
− c1

(
R1f̃∗(L)

)
= f̃∗

[c21(L)
2 −

c1(L) · c1(ωf̃ )
2 + 1

12
(
c21(ωf̃ ) − [Sing(f̃)]

)]
= A

2 − B

2 + λ,

which leads to the claimed formulas.



Hodge classes on the moduli space of W (E6)-covers 1243

Combining Theorem 4.6 and Proposition 4.9, we obtain the following
relation:

Theorem 4.10. In the (λ,Dsyz , D0) basis of CH1(G̃E6), we have:

[N] = 59
42λ− 12

7 [D0] −
29
84[Dsyz ],

and
γ = 18

7 λ− 3
7[Dsyz ] −

12
7 [D0].

Proof. Put together Theorem, 4.6, Proposition 4.9, together with the relation
λ(−5) = 1

6λ− 1
12 [Dsyz ].

Remark 4.11. In the (λ, λ(−5), [D0])-basis of the tautological part of
CH1(G̃E6), the previous formula can be written as

[N] = 5
7λ− 12

7 [D0] + 29
7 λ(−5).

4.5. The ramification divisor of PT

We now show that the ramification divisor of the Prym-Tyurin map PT
is contained in the union of the divisors M and N. This improves on our
[ADFIO, Theorem 0.3]. A W (E6)-cover [π : C → P1, p1 + · · · + p24] ∈ Hur
induces an Prym-Tyurin canonical map

ϕ(−5) = ϕ|H0(C,ωC)(−5)| : C → P5.

Theorem 4.12. If the Prym-Tyurin canonical image of a smooth curve
[C,L] ∈ Hur is contained in a quadric, then [C,L] ∈ M, in particular,
h0(C,L) ≥ 3.

Proof. Let Q ⊆ P5 be a quadric containing the Prym-Tyurin canonical image
of C. Recall from [ADFIO, Section 10] that, for each branch point pi of the
map π : C → P1, the ramification points ri1, . . . , ri6 have the same image, say
pi ∈ P5 in the Prym-Tyurin canonical space P5 ∼= P

(
H0(C, ωC)(−5))∨.

Since the Prym-Tyurin canonical image ϕ(−5)(C) is non-degenerate, the
quadric Q has rank at least 3, hence its singular locus is a linear subspace of
P5 of codimension at least 3. In particular, Q can be singular at most 14 of
the points pi: indeed, if for instance Q is singular at p1, . . . , p15, this implies

h0
(
C, ωC

(
−

15∑
i=1

6∑
j=1

rij
))

≥ 3,

which is not possible because ωC

(
−∑1≤i≤15(ri1 + · · · + ri6)

)
has degree 0.
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Therefore, there exists a branch point p of π such that Q is smooth at
the image p of the ramification points lying over p. Let Γp := 2(r1 + · · · +
r6) + q1 + · · · + q15 be the divisor of |L| above p. We write H0(C, ωC)(−5) =
〈η0, η1, . . . , η5〉, where 〈η1, . . . , η5〉 = H0(C, ωC

)(−5)(−r1 − · · · − r6), therefore
ordri(η0) = 0. Assume the equation defining Q is given by

q = a · η2
0 + η0 · (a1η1 + · · · + a5η5) + q1(η1, . . . , η5) ∈ Sym2 H0(C, ωC)(−5),

where a ∈ C. Evaluating q at ri, we obtain a = 0. Then η := a1η1+· · ·+a5η5 ∈
H0(C, ωC)(−5) satisfies ordri(η) ≥ 2, for i = 1, . . . , 6. Furthermore, η 	= 0,
because p ∈ Qreg, that is, hence

η ∈ H0(C, ωC

)(−5)(−2r1 − · · · − 2r6) 	= 0.

Note that η is the equation of the tangent hyperplane to Q at the point p.
Assume now that [C,L] ∈ G̃E6 \ (M ∪ N), thus the map α

(−5)
p is an

isomorphism. The dual map can be identified with the evaluation map

(
α(−5)
p

)∨ : H0(C, ωC)(−5) → H0(ωC|Γp

)(−5)
,

hence we obtain that H0(ωC|Γp

)(−5)(−2r1 − · · · − 2r6) 	= 0. Identifying the
eigenspace H0(ωC|Γp

)(−5) with the primitive cohomology of a 1-nodal cubic
surface, this fact implies in fact that

H0(ωC|Γ
)(−5)(−2r1 − · · · − 2r6 − q1 − · · · − q15) 	= 0,

which yields 0 	= η ∈ H0(C, ωC)(−5)(−Γp), that is,

η ∈ Im
{
H0(C,L) ⊗H0(C, ωC ⊗ L∨) → H0(C, ωC)

}
.

We conclude that η ∈ H0(C, ωC)(−5) ∩ H0(C, ωC)(+1) = {0}, which is a
contradiction.

Proof of Theorem 1.3. It suffices to combine Theorem 4.12 with [ADFIO,
Theorems 0.3 and 9.3], asserting that a point [C,L] ∈ G̃E6 \N lies in the ram-
ification divisor of PT if and only the Prym-Tyurin canonical curve ϕ(−5)(C)
lies on a quadric.
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5. A universal theta divisor on the moduli space of
W (E6)-covers

In this section we discuss the geometry of a very natural effective divisor on
H̃ur, which can be viewed as (a translate of) the universal theta divisor (not to
be confused with the pull-back of the universal theta divisor from A6). Since
the geometric construction we are interested in is defined directly in terms of
a W (E6)-pencil, it is easier to work again with the parameter space G̃E6 .

Definition 5.1. We consider the following locus inside G̃E6

D1 :=
{
[C,L] ∈ G̃E6 : H0(C, 2ωC − 5L

)
	= 0

}
.(5A)

Note that since deg(2ωC − 5L) = g(C) − 1 = 45, points in D1 are char-
acterized by the condition that 2ωC − 5L lies in the theta divisor W45(C) ⊆
Pic45(C). In particular, D1 is a virtual divisor on G̃E6 .

Theorem 5.2. The virtual class of D1 is given by the following formula:

[D1]vir = −λ− κ + 15
2 γ ∈ CH1(G̃E6).

Proof. We reinterpret the defining property of points in D1 via the Base Point
Free Pencil Trick, as saying that the multiplication map

μ1(L) : H0(C,L) ⊗H0(C, 2ωC − 4L
)
−→ H0(C, 2ωC − 3L

)
is not bijective. Note that h0(2ωC − 4L) = 27 and h0(C, 2ωC − 3L) = 54.
Furthermore, using the construction given in 4.1 of the birational isomorphism
β̃ : H̃ur ��� G̃E6 , it follows that L is a base point free pencil for every point
[C,L] ∈ G̃E6 . The map μ1(L) can be globalized to a morphism of vector
bundles over G̃E6 having the same rank

μ1 : f̃∗(L) ⊗ f̃∗
(
ω⊗2
f̃

⊗ L⊗(−4)) −→ f̃∗
(
ω⊗2
f̃

⊗ L⊗(−3)),
where, as in the previous section, L is a universal pencil with W (E6)-mono-
dromy over the universal curve f̃ : C̃E6 → G̃E6 . Clearly, D1 is the degeneracy
locus of μ1.

Since one has

R1f̃∗
(
ω⊗2
f̃

⊗ L⊗(−4)
)

= 0, R1f̃∗
(
ω⊗2
f̃

⊗ L⊗(−3)
)

= 0,
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the Chern classes of the sheaves appearing in the definition of the morphism μ1
can be computed via a Grothendieck-Riemann-Roch calculation. For instance,

c1
(
f̃∗
(
ω⊗2
f̃

⊗ L⊗(−4))) = λ + κ + 8A− 12B,

and after routine manipulations we obtain the claimed formula.

Corollary 5.3. The (virtual) class of [D1] in the (λ, [Dsyz ], [D0]) basis of
Pic(G̃E6) is given by:

[D1]virt = 44
7 λ− 17

14[Dsyz ] −
48
7 [D0].

5.1. A degenerate W (E6)-cover

It is crucial to establish that the virtual divisor D1 is a genuine divisor on G̃E6 .
To that end we shall use degeneration and we first need some preparation.
We start once more with a W (E6)-cover [π : C → P1, p1 + · · · + p24] ∈ Hur.
Recall that fibers of π over a generic point in P1 can be identified with the
lines 
1, . . . , 
27 on a fixed smooth cubic surface S, as well as with the (−1)-
vectors in the orbit W (E6).�6 of the coweight lattice Λ∗

W (E6). The reflections
w ∈ W (E6) can be identified with the roots of the root lattice ΛW (E6) modulo
±1: the roots +r and −r give the same reflection. For each root r there are
exactly 6 coweights ar,i with (r, ar,i) = 1 and 6 coweights br,i with (r, br,i) = −1
so that br,i = ar,i+r. The switch from r to −r exchanges ar,i’s and br,i’s. Under
the monodromy representation W (E6) ↪→ S27 the reflection w is represented
by a double sixer (ar,1, br,1) · · · (ar,6, br,6).

The following lemma describes the basic degeneration used to show that
D1 is a genuine divisor. This degeneration will also prove to be instrumental
in the final step of the proof of Theorem 1.4.

Lemma 5.4. Let C :=
(
πt : Ct → P1, p1(t), . . . , p24(t)

)
be a 1-parameter

family of W (E6)-covers such that the local monodromies wi of the points pi
are pairwise equal: w2i−1 = w2i for i = 1, . . . , 12. Assume lim p2i−1(t) =
lim p2i(t) = qi ∈ P1. Then the family C can be flatly completed to a family
of covers of P1 so that the central fiber C = C0 is a nodal curve labeled by
the lines 
1, . . . , 
27, a union of 27 copies of P1 each mapping isomorphically
down to the base P1. The sheets are glued as follows. For each point qj ∈ P1,
j = 1, . . . , 12 with local monodromy wj, glue the point above qj on the sheet
labelled by ajk to the point above qj on the sheet bjk, for k = 1, . . . , 6.



Hodge classes on the moduli space of W (E6)-covers 1247

Proof. For a generic point t ∈ P1, each ramification point over pi(t) is of the
form y2 = x, with the 6 pairs (aik, bik) coming together. It is immediate that
when two branch points on the base come together, the limit points on C
are nodes. Let

∐m
s=1 C̃s be the normalization of C. It first follows that all

the components of C are rational, since the map C → P1 induces étale maps
C̃s → P1. The dual graph Γ := (V (Γ), E(Γ)) of C is connected since the
reflections wi are chosen so that they generate W (E6). For the arithmetic
genus of C one has

∣∣E(Γ)
∣∣− ∣∣V (Γ)

∣∣+ 1 +
m∑
s=1

pa(C̃s) =
∣∣E(Γ)

∣∣− ∣∣V (Γ)
∣∣+ 1 = 46.

Since there are 12× 6 = 72 edges, it follows that the number of vertices, that
is, that of the irreducible components Cs of C is 27. Thus, the normalization
of C is a disjoint union of 27 copies of P1’s and the gluing is as described.

Remark 5.5. The switch from a root r to −r representing the same reflec-
tion w changes the orientation of the 6 respective edges in the oriented dual
graph Γ.

The glued curve C = C0 comes with an ample line bundle L = π∗(OP1(1)).
It also comes with a Kanev correspondence sending a point over x ∈ P1 on
the sheet labeled 
 to the 10 points in the same fiber on the sheets labeled

′ such that 
 and 
′ intersect on the abstract cubic surface S. The induced
endomorphism D on H0(C, ωC) satisfies (D + 5)(D − 1) = 0 and the corre-
sponding eigenspaces have dimension 6 and 40, just as on a smooth curve.
For more details, see [ADFIO, Sections 4 and 5].

Theorem 5.6. There exists a choice of reflections w1 = w2, . . . , w23 = w24
generating W (E6) and of points q1, . . . , q12 ∈ P1 for which the central curve
C and the cover π : C → P1 as described above have the following properties:

1. h0(C,L) = 2.
2. The image of the multiplication map H0(L)⊗H0(ωC ⊗L∨) → H0(ωC)

has dimension 40.
3. h0(C, ω⊗2

C (−5L)) = 0.
4. The 6-dimensional eigenspace H0(C, ωC)(−5) is base point free.
5. The image of the Prym-Tyurin canonical curve ϕ(−5)(C) does not lie

on a quadric.

Proof. The computation is reduced to linear algebra. A line bundle on C of
multidegree (d1, . . . , d27) is identified with a sheaf

∐27
i=1 OP1(di) with specified
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twists cq,i,j at the nodes where the sheets labelled by i and j are glued over
a point q ∈ P1. If q1, . . . , q12 ∈ A1 = P1 \ {∞}, then a section of this line
bundle is identified with a collection of polynomials Pi(t) of degrees di with
the values at the nodes matching up to multiplication by the twist cq,i,j .

For the sheaf L ∈ W 1
27(C) we choose the multidegree to be (1, . . . , 1)

and the twists are all equal to 1. For ωC the corresponding degrees are di =∣∣Ci ∩C \ Ci| − 2. The restriction ωi to Ci of a section of ωC can be viewed as

ωi = Pi(t)dt∏
(t− qis)

,

where Pi(t) is a polynomial of degree di. Here, qis are the nodes lying on the
sheet labelled by i. The twist at a node over q ∈ A1 joining the sheets i and
j is the negative of the ratio of residues:

cq,i,j = −Resq
dt∏

(t− qis)
/ Resq

dt∏
(t− qjt)

.

The twists for the line bundles ω⊗m
C (dL) are then the appropriate products

of the above twists. We thus reduce the computation of the dimension of the
spaces of sections H0(C, ω⊗m

C (dL)
)

for any integers m and d to a concrete
linear algebra question.

The eigenspace H0(C, ωC)(−5) is the subspace of H0(C, ωC) where for
every branch point q1, . . . , q12 the residues over each of the sheets ai1, . . . , ai6
are equal to each other. The subspace H0(C, ωC)(+1) is the subspace where
the sums of these residues are zero.

We performed the check for a concrete glued curve corresponding to the
following choices:

• The points qi = i ∈ Z ⊆ C.
• The following roots, in standard notation for the Minkowski space I1,6:
α135 = e0 − e1 − e3 − e5, α12 = e1 − e2, α23 = e2 − e3, α34 = e3 − e4,
α45 = e4 − e5, α56 = e5 − e6, α16 = e1 − e6, α456 = e0 − e4 − e5 − e6,
α123 = e0−e1−e2−e3, α346 = e0−e3−e4−e6, α234 = e0−e2−e3−e4,
α156 = e0 − e1 − e5 − e6.

All the computations were done in Mathematica and are available at [Al].

As discussed in [ADFIO, Section 11], a consequence of parts (1, 2, 3)
of (5.6) is that the morphism μ defining the Weyl-Petri divisor (see (4.4)) is
generically non-degenerate, that is, N is indeed a genuine divisor on Hur. A
consequence of the other parts is:
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Theorem 5.7. For a generic cover [π : C → P1] ∈ Hur, one has H0(C, 2ωC−
5L) = 0. Thus D1 is a genuine divisor on Hur.

Proof. Indeed, we consider a flat family degenerating to the glued curve as in
Theorem 5.6. In the central fiber the dimension of H0(C, 2ωC − 5L) can only
increase, which the above argument shows not to be the case.

6. The Prym-Tyurin map is unramified generically along the
divisor D0

In this section, we prove Theorem 1.4 by showing that the differential of the
Prym-Tyurin map PT : Hur ��� A6 is bijective at a general point of the
divisor D0 of Hur. We fix throughout the section a suitably general W (E6)-
admissible cover

[π : C = C1 ∪ C2 → R := R1 ∪q R2, p1 + · · · + p24] ∈ D0 ⊆ Hur.(6A)

We shall assume that C1 is a smooth curve of genus 40. The curve C2
has 21 components, all rational, with 6 components mapping to R2 with
degree 2 and the other 15 mapping isomorphically to R2. The degree 27 map
π1 = π|C1 : C1 → R1 has monodromy W (E6) and is branched precisely at the
points p1, . . . , p22 ∈ R1 \ {q}.

Definition 6.1. Let Hur1 denote the Hurwitz space of W (E6)-covers
[π1 : C1 → P1, p1 + · · · + p22] of degree 27 with branch points at p1, . . . , p22.
The source C1 is a smooth curve of genus 40 and the local monodromy of π1
at each branch point pi ∈ P1 is given by a reflection in a root of E6. As in the
case of covers with 24 branch points, the curve C1 has a Kanev correspondence
which we denote by D1 and which induces an endomorphism D1 : JC1 → JC1
and a 5-dimensional Prym-Tyurin variety PT (C1, D1) := Im(D1 − 1) ⊆ JC1.
Put L1 := π∗

1(OP1(1)) ∈ W 1
27(C1).

Let ρ : C → C be the map contracting C2. The curve C is the stabilization
of C and it has 6 ordinary double points obtained by identifying two points
of C1 if they are connected by a component of C2. We denote by L ∈ W 1

27(C)
the line bundle characterized by the property

(
ρ∗|C1

(L) ∼= L1.
Given a reduced fiber Γ of the map π1 : C1 → P1, we consider the usual

exact sequence; see also (4A)

0 −→ H0(OC1) −→ H0(L1) −→ H0(OΓ(Γ)) α1−→ H1(OC1) −→ H1(L1) −→ 0.
(6B)
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The map α1 is equivariant for the action of the Kanev correspondence
D1, hence it maps the 6-dimensional (−5)-eigenspace of H0(OΓ(Γ))(−5) into
the 5-dimensional space H1(C,OC)(−5). It follows that h0(C1, L1) ≥ 3, in
particular [C1] ∈ M40 is a Brill-Noether special curve.

Notation 6.2. Let M1 ⊆ Hur1 denote the locus where H0(C1, ωC1 ⊗L
⊗(−2)
1 )

	= 0.

We denote by PT5 : Hur1 → A5 the Prym-Tyurin map. The proof in
[ADFIO, Section 10] carries through without changes to the case of 22 branch
points so that we have the following result:

Theorem 6.3. The Prym-Tyurin map PT5 is ramified at a point

[π1 : C1 → P1, p1 + · · · + p22] ∈ Hur1 \M1

if and only if the Prym-Tyurin canonical image of C1 is contained in a
quadric.

6.1. The map PT5 is dominant

This follows for instance, from the fact that the ordinary Prym map P : R6 →
A5 is dominant, using the fact that 6-dimensional Prym-Tyurin varieties de-
generate to Prym varieties, as was shown in [ADFIO, Theorem 5]. Therefore,
the codifferential of the map PT5 is generically injective. The rest of this
Section is devoted to the proof of the above result.

Theorem 6.4. Assume [π1 : C1 → R1, p1 + · · ·+ p22] ∈ Hur1. If the map PT
is ramified at the point

[C = C1 ∪ C2 → R1 ∪R2] ∈ Hur,

then, either h0(C1, ωC1 − 2L1
)
> 0, or, the Prym-Tyurin canonical image of

C1 is contained in a quadric, in which case h0(C1, L1) ≥ 4 and h0(C,L) ≥ 3.
Generically on D0, none of these cases occur.

In what follows, we first recall the interpretation of the cotangent spaces
to A6, A46, M46 and Hur, then we describe the codifferential of PT .

6.2.

Let P be the usual compactification of the semi-abelian variety PT (C,D)
obtained by first completing PT (C,D) to a P1-bundle over the 5-dimensional
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ppav B := PT (C1, D1), and then identifying the 0 and ∞-sections after
translating by the extension datum of PT (C,D) over B. We refer to [M] for
details. The local to global spectral sequence induces the exact sequence

0 H0(Ext1
P
(Ω1

P
,OP ))∨ Ω1

A6,[PT (C,D)] Ω1
D6,[PT (C,D)] 0,

where Ω1
D6,[PT (C,D)] is the cotangent space to the boundary divisor D6 of A6.

Note that Ω1
D6,[PT (C,D)] is the dual to the space of deformations of PT (C,D)

that stay singular. Let Ω1
A6

(logD6) be the sheaf of 1-forms with at worst
simple logarithmic poles along D6. By [CF, IV Proposition 3.1(vi), p. 107],
the fiber Ω1

A6
(logD6)[PT (C,D)] can be identified with Sym2 H0(C, ωC)(−5), and

this induces an identification

Ω1
D6,[PT (C,D)] = H0(C, ωC)(−5) �H0(C1, ωC1)(−5),

where

H0(ωC)(−5)�H0(ωC1)(−5) :=
(
H0(ωC)(−5)⊗H0(ωC1)(−5)

)⋂
Sym2 H0(ωC)(−5).

Remark that in this description H0(ωC1)(−5) ⊆ H0(ωC)(−5) is a codimension
one subspace.

6.3.

The cotangent space to M46 at [C] is H0(C,Ω1
C
⊗ ωC). We have the natural

map

Ω1
C
⊗ ωC −→ ρ∗(Ω1

C ⊗ ωC),

obtained from ρ∗(Ω1
C
⊗ ωC) → Ω1

C ⊗ ωC , which induces the map

H0(C,Ω1
C
⊗ ωC) −→ H0(C,Ω1

C ⊗ ωC).(6C)

A local computation shows that the natural map ωC → ρ∗ωC is an iso-
morphism. Therefore, it induces an isomorphism H0(C, ωC)

∼=−→ H0(C, ωC),
which shows that H0(C, ωC) is endowed with an endomorphism, which we
still denote by D, that is induced by the Kanev correspondence.
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6.4.

Let JC denote the compactification of the Jacobian of C described as the
scheme parametrizing torsion-free sheaves of degree 0 on C; see [OS]. As
above, we have the exact sequence

0 H0(Ext1
JC

(Ω1
JC

,OJC)
)∨ Ω1

A46,[JC] H0(ωC)�H0(ωC1) 0,

where, again by [CF, IV Proposition 3.1(vi), p. 107], the space on the right
classifies deformations of JC of toric rank 6. Here H0(C1, ωC1) ⊆ H0(C, ωC)
is viewed as a subspace of codimension 6.

6.5.

Consider the pull-back diagram

H b

q

M0,24

p

Hur br M̃0,24.

The ramification divisor of p is the divisor B2, its ramification index being
equal to 2. The ramification divisor of q is the divisor E0 + Eazy [ADFIO,
Paragraph 6.11]. Furthermore, b∗(B2) = E0+3Eazy+2Esyz. It follows that the
map br is generically unramified along D0 and we can identify the cotangent
space Ω1

Hur,[C,π] with H0(R,Ω1
R ⊗ ωR(B)) which is the cotangent space to

M̃0,24.

Definition 6.5. Let M and A be the ramification and anti-ramification di-
visors of the W (E6)-admissible cover π : C → R. As M and A are supported
on the smooth locus of C, we have the usual identities

π∗(B) = 2M + A,Ω1
C = π∗(Ω1

R)(M),Ω1
C ⊗ ωC(A) = π∗(Ω1

R ⊗ ωR(B)),
(6D)

and we can define the trace map as for smooth covers:

Definition 6.6. Let tr : π∗OC(−A) → OR be the trace map on regular func-
tions. For an open affine subset U ⊆ P1, a regular function ϕ ∈ Γ(U,OC(−A)),
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and a point y ∈ U , one has

tr(ϕ)(y) =
∑

x∈f−1(y)
ϕ(x),

counted with multiplicities. Note that tr is surjective. By (6D), the trace map
induces the map π∗(Ω1

C ⊗ ωC) → Ω1
R ⊗ ωR(B). Let Tr : H0(C,Ω1

C ⊗ ωC) →
H0(R,Ω1

R⊗ωR(B)
)

be the induced map on global sections. The composition
of Tr with the map (6C)

Tr: H0(C,Ω1
C
⊗ ωC) −→ H0(C,Ω1

C ⊗ ωC) −→ H0(R,Ω1
R ⊗ ωR(B))

can be viewed as the codifferential of the forgetful map Hur → M46 at the
point [C, π].

Proposition 6.7. The codifferential (dPT )∨[C,π] : T∨
[PT (C,D)](A6)→T∨

[C,π]
(
Hur

)
is given by the following composition of maps:

T∨
[PT (C,D)]

(
A6
)
↪→ T∨

[JC]
(
A46

) tor−→ H0(C,Ω1
C
⊗ ωC) Tr−→ H0(R,Ω1

R ⊗ ωR(B)
)
,

(6E)

where the second map is the codifferential of the Torelli map M46 → A46.

Proof. Follows along the lines of the proof of [ADFIO, Theorem 10.3] (which
treats the same question in the case of a point [C, π] ∈ Hur corresponding to a
smooth source curve) with obvious modifications. The first map in (6E) is the
codifferential of the map from the perfect cone compactification of the moduli
space of ppav of dimension 46 having an endomorphism D with eigenvalues
+1 and −5 of eigenspaces of dimensions 40 and 6 respectively to A6.

6.6.

We first study the codifferential dPT∨ on the conormal space to the boundary
divisor D6 of A6. To that end, we first describe locally differentials on C,C

and R near the node q of R corresponding to the point described in (6A).
Choose local coordinates t on R1 and s on R2 at the node q of R. These

can be identified via π with local coordinates at the nodes o1, . . . , o27 of C
above q. Then the stalks of the sheaves Ω1

R, ωR,Ω1
C , ωC ,Ω1

R ⊗ωR,Ω1
C ⊗ωC at
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their nodes have the following presentations

Ω1
R,q,Ω1

C,oi : O〈ds, dt〉/ (tds + sdt)
ωR,q, ωC,oi : O

〈
ds
s ,

dt
t

〉/ (
ds
s + dt

t

)
Ω1

R,q ⊗ ωR,q,Ω1
C,oi

⊗ ωC,oi : O
〈

(ds)2
s , (dt)2

t

〉/(
t (ds)2

s − s (dt)2
t

)
.

We have the natural exact sequence on R

0 −→ Tors(Ω1
R) −→ Ω1

R
ιR−→ ωR −→ Cq −→ 0

where Tors(Ω1
R) ∼= Cq is a sky-scraper sheaf at q generated by the torsion

differential sdt = −tds. From this, by tensoring with the locally free sheaf ωR

we obtain the exact sequence

0 −→ Cq −→ Ω1
R ⊗ ωR

κR−→ ω⊗2
R −→ Cq −→ 0

where the kernel of κR is generated by ds dt = s (dt)2
t = t (ds)2

s . One has a
similar exact sequence for C at oi. A torsion section γ ∈ H0(C,Ω1

C ⊗ωC) can
be written as

γ = λit
(ds)2

s
= λis

(dt)2

t
near oi ∈ C.

6.7. Local description at the nodes

Assume the nodes o1, . . . , o27 of C are labeled in such a way that o2i−1 and
o2i map to the node ui of C for i = 1, . . . , 6. Labeling by si, ti the local
coordinates on the two branches of C2 and C1 at the point oi for i = 1, . . . , 27,
then t2i−1, t2i are local coordinates at the point ui ∈ C for i = 1, . . . , 6. We
have the natural commutative diagram of exact sequences

0
⊕6

i=1 Cui

ρ∗

Ω1
C
⊗ ωC

κ
C

ρ∗

ω⊗2
C

ρ∗

0 ρ∗
(⊕27

i=1 Coi

)
ρ∗
(
Ω1

C ⊗ ωC

)ρ∗κC
ρ∗ω

⊗2
C

where
⊕6

i=1 Cui is the torsion subsheaf of Ω1
C
⊗ωC . The torsion part

⊕27
i=1 Coi

of Ω1
C ⊗ ωC has an action of the correspondence D which leaves the image of⊕6

i=1 Cui invariant. The action of D on this subspace has two eigenspaces of
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dimensions 1 and 5 for the eigenvalues −5 and +1 respectively. The proof of
this is analogous to [ADFIO, Lemma 10.8].

A torsion section γ of Ω1
C
⊗ ωC can be locally written near ui ∈ C as

γ = μit2i
(dt2i−1)2

t2i−1
= μit2i−1

(dt2i)2

t2i
, where μi ∈ C.

Identifying the local coordinates on C with those on R as in the previous
paragraph, a generator of the (−5)-eigenspace is the section γ ∈ Tors(Ω1

C
⊗

ωC) with μi = 1 for i = 1, . . . , 6.

6.8. Injectivity in conormal directions

By Proposition 6.7, the map PT is ramified at [C, π] ∈ Hur if the kernel of
the composition of maps (6E) is nonzero. Each of the above cotangent spaces
has a natural subspace which is the conormal space to the equisingular defor-
mations. Restricting the above sequence to each conormal space appearing in
(6E), we obtain the exact sequence:

H0(Ext1
P
(Ω1

P
,OP )

)∨
↪→ H0(Ext1

JC
(Ω1

JC
,OJC)

)∨ tor−→ H0(Ext1
C
(Ω1

C
,OC)

)∨(6F)

Tr−→ H0(Ext1R(Ω1
R(B),OR)

)∨
Using e.g., [An, Corollary 15.4], the map tor in (6F) is an isomorphism.

Identifying the second and third space in (6F), by Paragraph 6.7, the second
space has an action of the correspondence D and the image of the first ar-
row is the 1-dimensional eigenspace for the eigenvalue −5. With our earlier
choice of bases (see 6.7), a generator of the (−5)-eigenspace is the element∑6

i=1 t2i
(dt2i−1)2
t2i−1

. The image of an element
∑6

i=1 μit2i
(dt2i−1)2
t2i−1

in the last space
is
∑6

i=1 μit
(ds)2
s . It follows that the composition above is an isomorphism be-

tween two 1-dimensional spaces.
Note that, via push-forward to R1, we have the following identification

H0(R,Ω1
R ⊗ ωR(B)) ∼= Torsq

(
ΩR ⊗ ωR(B)

)
⊕H0(R1, ω

⊗2
R1

(B1 + q)
)

Cq ⊕H0(R1, ω
⊗2
R1

(B1 + q)
)
,

where B1 = p1 + · · ·+p22 and the skyscraper sheaf Cq is generated by ds dt =
s (dt)2

t = t (ds)2
s . The image of H0(C,Ω1

C
⊗ ωC) in H0(C, ω⊗2

C
) is the space of

sections vanishing at the nodes of C. This image will be then identified with
H0(C1, ω

⊗2
C1

(o1 + · · · + o12)
)
⊆ H0(C, ω⊗2

C
) ⊆ H0(C1, ω

⊗2
C1

(2o1 + · · · + 2o12)
)
.
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6.9.

Taking the quotient of the exact sequence (6E) by (6F), we obtain the com-
mutative diagram

T∨
[PT (C,D)](A6) T∨

[JC](A46)

H0(C, ωC)(−5) �H0(C1, ωC1)(−5) H0(C, ωC) �H0(C1, ωC1)

H0(C,Ω1
C
⊗ ωC) Tr

H0(R,Ω1
R ⊗ ωR(B))

H0(C1, ω
⊗2
C1

(o1 + · · · + o12)
) tr

H0(R1, ω
⊗2
R1

(B1 + q)
)
.

To summarize the discussion above, the injectivity of the codifferential of
PT at the point [C, π] ∈ D0 is equivalent to the injectivity of the composition
in the bottom row above.

6.10. The kernel of tr

For each of the branch points pi ∈ R1 with i = 1, . . . , 22, let {rij}6
j=1 ⊆ C1 be

the ramification points lying over pi. The formal neighborhoods of the points
rij are naturally identified, so that we can choose a single local parameter x
and write a section γ ∈ H0(C1, ω

⊗2
C1

(o1 + · · · + o12)
)

as

γ = ϕij(x) · (dx)2 near rij ∈ C.

Choose a local parameter y at the point pi, so that π|C1 is given locally by
the map y = x2. We can use the same local parameter at the remaining 15
antiramification points {qik}15

k=1 over pi at which π is unramified, and write
γ = ψik(y) · (dy)2 near qik ∈ C, for k = 1, . . . , 15.

At the point q, we similarly choose a local parameter x and identify it
with the local parameters at the points o1, . . . , o27. Write γ = ρi(x) (dx)2

x near
oi for i = 1, . . . , 12.

Lemma 6.8. The kernel of the trace map

tr : H0(C1, ω
⊗2
C1

(o1 + · · · + o12)
)
→ H0(R1, ω

⊗2
R1

(B1 + q)
)
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consists of those quadratic differentials γ which, using the previous notation,
satisfy

6∑
j=1

ϕij(rij) = 0, for i = 1, . . . , 22, and
12∑
j=1

ρj(oj) = 0.

Proof. Local calculation, very similar to the proof of [ADFIO, Lemma 10.5].

We are now in a position to describe set-theoretically the ramification of
the map PT : Hur → A6 along D0, which then quickly leads to an alternative
proof of the dominance of PT .

Proof of Theorem 6.4. The global sections of ωC can be identified with the
sections of ωC1(o1 + · · · + o12) whose residues at o2i−1 and o2i are opposite
for i = 1, . . . , 6. A proof analogous to that of [ADFIO, Lemma 10.8] shows
that, under this identification, the elements of H0(C, ωC)(−5) correspond to
sections having the same residue at o2i−1 and o2i for i = 1, . . . , 6 (in addi-
tion to opposite residues at o2i−1 and o2i). This first implies that the points
o1, . . . , o12 have the same image, say o, in the Prym-Tyurin canonical space
P
(
H0(C, ωC)(−5))∨ ∼= P5. Next, using Lemma 6.8, we deduce that if an ele-

ment
β ∈ H0(C, ωC)(−5) �H0(C1, ωC1)(−5)

belongs to the kernel of the composition on the bottom row of the diagram
in paragraph 6.9, then its image in H0(C1, ω

2
C1

(o1 + · · ·+ o12)
)

belongs to the
subspace

H0
(
C1, ω

⊗2
C1

(
−

22∑
i=1

6∑
j=1

rij
))

= H0(C1, ωC1 ⊗ L
⊗(−2)
1 ).

Assuming H0(C1, ωC1 ⊗ L
⊗(−2)
1 ) = 0, and regarding β as an element of

Sym2 H0(C, ωC)(−5), we obtain that β is the equation of a quadric containing
the image of C in the Prym-Tyurin canonical space P

(
H0(C, ωC)(−5))∨.

Since, as explained, PT1 : Hur1 → A5 is dominant, we may assume via
Theorem 6.3 that the Prym-Tyurin canonical image of C1 in P4 is not con-
tained in a quadric. It follows that the quadric defined by β is not a pull-back
from P

(
H0(C1, ωC1)(−5))∨ via the projection from o. Therefore, this quadric is

not singular at o and its tangent hyperplane at o contains the lines tangent to
the Prym-Tyurin canonical image of C. The image of this tangent hyperplane
in P

(
H0(C1, ωC1)(−5))∨ contains the images of o1, . . . , o12. In other words, the
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Table 2: The character table of W (E6)
χ name 1a 2a 2b 3a 3b 3c 4a 4b 5a 6a 6b 6c 6d 9a 12a 2c 2d 4c 4d 6e 6f 6g 8a 10a 12b
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
3 10 10 −6 2 1 −2 4 2 −2 . −3 . . 2 1 −1 . . . . . . . . . .
4 6 6 −2 2 −3 3 . 2 . 1 1 1 −2 −1 . −1 4 . −2 2 1 −2 . . −1 1
5 6 6 −2 2 −3 3 . 2 . 1 1 1 −2 −1 . −1 −4 . 2 −2 −1 2 . . 1 −1
6 20a 20 4 −4 −7 2 2 4 . . 1 −2 −2 2 −1 1 . . . . . . . . . .
7 15a 15 −1 −1 6 3 . 3 −1 . 2 −1 2 −1 . . 5 −3 1 1 −1 2 . −1 . 1
8 15a 15 −1 −1 6 3 . 3 −1 . 2 −1 2 −1 . . −5 3 −1 −1 1 −2 . 1 . −1
9 15b 15 7 3 −3 . 3 −1 1 . 1 −2 1 . . −1 5 1 3 −1 2 −1 1 −1 . .

10 15b 15 7 3 −3 . 3 −1 1 . 1 −2 1 . . −1 −5 −1 −3 1 −2 1 −1 1 . .
11 20b 20 4 4 2 5 −1 . . . −2 1 1 1 −1 . 10 2 2 2 1 1 −1 . . −1
12 20b 20 4 4 2 5 −1 . . . −2 1 1 1 −1 . −10 −2 −2 −2 −1 −1 1 . . 1
13 24 24 8 . 6 . 3 . . −1 2 2 −1 . . . 4 4 . . −2 1 1 . −1 .
14 24 24 8 . 6 . 3 . . −1 2 2 −1 . . . −4 −4 . . 2 −1 −1 . 1 .
15 30 30 −10 2 3 3 3 −2 . . −1 −1 −1 −1 . 1 10 −2 −4 . 1 1 1 . . −1
16 30 30 −10 2 3 3 3 −2 . . −1 −1 −1 −1 . 1 −10 2 4 . −1 −1 −1 . . 1
17 60a 60 12 4 −3 −6 . 4 . . −3 . . −2 . 1 . . . . . . . . . .
18 80 80 −16 . −10 −4 2 . . . 2 2 2 . −1 . . . . . . . . . . .
19 90 90 −6 −6 9 . . 2 2 . −3 . . . . −1 . . . . . . . . . .
20 60b 60 −4 4 6 −3 −3 . . . 2 −1 −1 1 . . 10 2 −2 −2 1 1 −1 . . 1
21 60b 60 −4 4 6 −3 −3 . . . 2 −1 −1 1 . . −10 −2 2 2 −1 −1 1 . . −1
22 64 64 . . −8 4 −2 . . −1 . . . . 1 . 16 . . . −2 −2 . . 1 .
23 64 64 . . −8 4 −2 . . −1 . . . . 1 . −16 . . . 2 2 . . −1 .
24 81 81 9 −3 . . . −3 −1 1 . . . . . . 9 −3 3 −1 . . . 1 −1 .
25 81 81 9 −3 . . . −3 −1 1 . . . . . . −9 3 −3 1 . . . −1 1 .

image of H0(Oo1+···+o12(Γ)) by the map α1 in the sequence (6B) is contained
in a hyperplane. This first implies that h0(C1, L1) ≥ 4. Next, since the (−5)-
eigenspace in H0(OΓ(Γ)) can be identified with the primitive Picard group of
a smooth cubic surface, having the same value at each pair of points o2i−1, o2i
for i = 1, . . . , 6 imposes only one condition on the sections of L1. Hence we
always have h0(C,L) ≥ h0(C1, L1) − 1, and, in this case, h0(C,L) ≥ 3.

The fact that these situations do not occur for a general choice of a
point of D0 is a consequence of Theorem 5.6, for the W (E6)-admissible cover
constructed there lies in D0.

Corollary 6.9. The Prym-Tyurin map PT : Hur ��� A6 is generically finite.

Proof. Indeed, the above shows that the differential of PT on tangent spaces
is generically an isomorphism.

Appendix: the character table of W (E6)

At several points in this paper we have used the character table of W (E6).
We record it in the form presented by GAP [GAP] by applying the command
Display(CharacterTable("W(E6)")). It is also the same as the table in
Atlas [CCNPW, p. 27] for the group U4(2).2 = W (E6), obtained from the
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character table of U4(2) by the splitting and fusion rules. As usual, rows are
for characters (we added convenient names in column 2), and columns are for
conjugacy classes.
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