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Even sets of nodes and Gauss genus theory
Arnaud Beauville

Abstract: We observe that a lemma used in the study of even sets
of nodes on surfaces applies almost verbatim to prove a celebrated
formula of Gauss on the 2-torsion of the class group of a quadratic
field.

1. Introduction

It is a great pleasure for me to dedicate this paper to Herb Clemens. I met
Herb in Chile in 1972, and this played a decisive role in my mathematical
orientation.

I visited Herb for one month in Salt Lake City in 1979. I was interested in
surfaces at that time; I gave in particular a talk about the maximum number
of double points that a quintic surface can have. A crucial ingredient was a
lemma expressing the 2-torsion of the Picard group of a double cover in terms
of the branch locus.

Gauss genus theory deals with binary quadratic forms; one of its main
consequences is the precise description of the 2-torsion of the ideal class group
of a quadratic field in terms of the discriminant. It is only quite recently that
I realized that the statement is very close to that of my lemma – in fact, the
lemma applies almost verbatim to give a proof of Gauss’ theorem. This is
what I would like to explain in this note.

Disclaimer : That proof is not new, and can be found (with a somewhat
different language) in many number theory books. So this note is essentially
expository, with the aim of highlighting an unexpected connection between a
classical question in algebraic geometry and a basic result in number theory.

2. Gauss’ theorem

Let K be a number field, and O its ring of integers. The ideal class group
Cl(K) is the Picard group of Spec(O); we will denote it simply by Pic(O).
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It is the quotient of the group of fractional ideals Div(O) (the free abelian
group with basis the nonzero prime ideals of O) by the subgroup of principal
ideals. Thus we have an exact sequence

1 → O∗ → K∗ → Div(O) → Pic(O) → 0 .

An important variant of this definition takes into account the places at
infinity of K. Let K∗

+ be the subgroup of elements α ∈ K∗ which are totally
positive, that is, such that σ(α) > 0 for all embeddings K ↪→ R; put O∗

+ :=
O∩K∗

+. Replacing K∗ by K∗
+ in the above definition we get the narrow class

group Cl+(K) = Pic+(O), which fits into an exact sequence

1 → O∗
+ → K∗

+ → Div(O) → Pic+(O) → 0 .

As a consequence of his deep study of binary quadratic forms, Gauss obtained
the following:

Theorem (Gauss). Let K be a quadratic extension of Q, ramified at r primes.
Then1 Cl+(K)[2] = (Z/2)r−1.

(
If K = Q(

√
d) and d = ± p1 . . . ps, the ramified primes are p1, . . . , ps,

plus 2 if d ≡ 3 (mod 4).
)

From the Remark below one gets Cl(K)[2] ∼= (Z/2)r−1 or (Z/2)r−2. Gauss’
theorem is quite remarkable: such a simple expression does not exist for the
p-torsion of Cl(Q(

√
d)) for p > 2, or the 2-torsion of Cl(K) for [K : Q] > 2.

Remark. − When d < 0, we have K∗
+ = K∗ and Cl+(K) = Cl(K). When

d > 0, there is a surjective map Cl+(K) → Cl(K); its kernel is 0 or Z/2,
according whether O contains elements of norm −1 or not. Indeed we have
an exact sequence (1)

1 → K∗
+ → K∗ s−−→ {±1} × {±1} → 1 , where s(α) = (sgn(α), sgn(σ(α))) ;

since −1 ∈ O∗, the subgroup s(O∗) is either {±1} or {±1} × {±1}, and
the latter occurs if and only if there is a positive unit α with σ(α) < 0,
equivalently with Nm(α) = −1.

3. The key lemma

We work over the complex numbers.
1For an abelian group G, we denote by G[2] its 2-torsion part.
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Lemma. Let X,S be smooth projective varieties, and π : X → S a double
covering. Let (Ei)i∈R be the connected components of the branch locus of π.
Let (ei)i∈R be the canonical basis of (Z/2)R, e :=

∑
ei, and let ϕ : (Z/2)R →

Pic(S)⊗ (Z/2) be the homomorphism such that ϕ(ei) = [Ei]. Then Pic(X)[2]
is isomorphic to Kerϕ/〈e〉.

The inverse isomorphism is given as follows: let I ⊂ R such that
∑
i∈I

ei ∈

Kerϕ, so that
∑
i∈I

Ei ≡ 2L for some L ∈ Pic(S). Put Fi := π−1(Ei); then
∑
i∈I

Fi − π∗L is the element of Pic(X)[2] corresponding to
∑
i∈I

ei.

The lemma can be applied in two ways: information on the branch locus
can give information on Pic(X)[2], or the other way around. We will explain
in the next section how even sets of nodes give an example of the latter
situation. Let us give first an example of the former.

Example: Campedelli surfaces.
In [C], Campedelli claimed to construct a surface of general type with

pg = 0 and K2 = 1 by taking a double covering of P2 branched along a curve
C of degree 10 with one ordinary quadruple point q, 5 triple points p1, . . . , p5
of type (3, 3)2, and no other singularity.

Indeed, assume that such a curve exists. Let b : S → P2 be the blowing
up of q, p1, . . . , p5, then of the intersection point of the exceptional divisor
above each pi with the strict transform of C. The fiber b−1(pi) is the union of
the new exceptional divisor E′

i and the strict transform Ẽi of the exceptional
divisor above pi. The strict transforms C̃ of C and the curves Ẽi are smooth
and do not meet. Let F be the exceptional divisor above q, and let L be a line
in P2. We have C̃ ≡ 10 b∗L−4F −∑5

i=1(3Ẽi+6E′
i) in Pic(S). It follows that

the divisor R := C̃ +
∑

Ẽi is divisible by 2 in Pic(S), hence we can form the
double covering π : X̂ → S branched along R. The (−2)-curves Ẽi become
(−1)-curves on X̂, and we can contract them and get a minimal surface X.
If the six points q, p1, . . . , p5 do not lie on a conic, it is easy to check that
pg(X) = 0 and K2

X = 1.
Unfortunately Campedelli’s construction of the curve C was incorrect.

A correct one appears in [O-P], and another one in [W] (using some computer
algebra). Werner takes for C the union of a plane curve B of degree 8 and
a conic Q. The points q and p5 are on B � Q; the points p1, . . . , p4 are on
Q, and are tacnodes for B, with the same tangents for B and Q. Let B̃ and
Q̃ be the strict transforms of B and Q in S; we have R = B̃ + Q̃ +

∑
Ẽi.

2This means that they become ordinary triple points after one blow up.
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But Q̃ +
4∑

i=1
Ẽi ≡ 2b∗L is divisible by 2 in Pic(S), hence by the key lemma

Pic(X̂)[2] = Pic(X)[2] is nonzero. The torsion subgroup of Pic(X) is cyclic,
of order ≤ 5 [Mi]; therefore it is Z/2 or Z/4. Werner shows that the linear
system |3KX | is base point free; by [Mi] this implies Tors(Pic(X)) = Z/2.

The same method applies to the Oort-Peters construction. In that case
|3KX | has a base point, so Tors(Pic(X)) = Z/4 [W].

4. Even sets of nodes

I used the key lemma to tackle a classical problem: what is the maximum
number μ(d) of nodes (= ordinary double points) that a nodal surface of
degree d in P3 can have? It is classical that μ(3) = 4, the maximum be-
ing realized by the Cayley cubic surface

∑ 1
Xi

= 0; and that μ(4) = 16, the
maximum being realized by the Kummer surface. In [S] Severi claimed the in-
equality μ(5) ≤ 31, which implies μ(5) = 31 because Togliatti has constructed
a quintic surface with 31 nodes [T]; but the proof was insufficient.

I proved this inequality in 1979 by applying, among others, the key lemma
[Be]. The same method, with some harder work, allowed Jaffe and Ruberman
to prove μ(6) = 65 [J-R]; here the maximum is achieved by a sextic surface
constructed by Barth [Ba]. The problem is still wide open for d ≥ 7.

The basic idea is that a large set of nodes on a surface must contain
some particular subsets, called even, which are easier to control. Let Σ be a
projective surface, with a finite set N of nodes and no other singularities. Let
b : S → Σ be the minimal resolution of Σ; for n ∈ N , b−1(n) is a (−2)-curve
En. We say that a subset R ⊂ N is even if

∑
n∈R

En is divisible by 2 in Pic(S);

equivalently, there exists a double covering X → S branched along
⋃

n∈R
En

(this notion was introduced and thoroughly studied by Catanese in [Ca], see
also [C-C]). In this situation Riemann-Roch gives χ(OX) = 2χ(OS)− r

4, with
r := Card(R); in particular, r is divisible by 4.

Let us now specialize to the case of a nodal quintic surface Σ ⊂ P3. An
inequality of Castelnuovo gives r ≥ 16; and there are indeed some natural
constructions of even sets with r = 16, and also r = 20. If r ≥ 24, we get
χ(OX) < χ(OS), hence q(X) ≥ 1; therefore Pic(X)[2] �= 0, so by the lemma
our subset R is the disjoint union of two even subsets, hence r ≥ 2×16 = 32.

Suppose that Σ has (at least) 32 nodes; the corresponding (−2)-curves
En define a map (Z/2)32 → H2(S,Z/2). The image is totally isotropic in
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H2(S,Z/2), hence of dimension ≤
[1
2b2(S)

]
= 26. Therefore its kernel has

dimension ≥ 6. This kernel is a vector subspace of (Z/2)32 whose elements
have weight (= number of nonzero coordinates) 0, 16, 20 or 32. Some easy
linear algebra over Z/2 shows that this is impossible.

5. Proof of the key lemma

Let KV be the function field of a variety V . We start from the exact sequence

1 → C∗ → K∗
S

div−−−→ Div(S) → Pic(S) → 0

which we split as

1 → C∗ → K∗
S → K∗

S/C
∗ → 1 , 1 → K∗

S/C
∗ → Div(S) → Pic(S) → 0 .

The group G = Z/2 acts on X via the involution σ of X which swaps the
two sheets of π. Comparing the second exact sequence with the G-invariants
of the corresponding sequence for X, we get the diagram (2):

1 �� K∗
S/C

∗ ��

α

��

Div(S) ��

β
��

Pic(S) ��

γ

��

0

1 �� (K∗
X/C

∗)G �� Div(X)G �� Pic(X)G �� H1(G,K∗
X/C∗) .

The essential points of the proof are the two following cohomological facts:

Fact 1: H1(G,K∗
X/C∗) = 0: this follows from H1(G,K∗

X) = 0 (Hilbert’s
theorem 90) and H2(G,C∗) = C∗/C∗2 = 0.

Fact 2: Cokerα = Z/2: this follows from H1(G,C∗) = Ker
(
C∗ ×2−−−→ C∗) =

Z/2 and the diagram

1 �� C∗ �� K∗
S

�� K∗
S/C

∗ ��

α

��

1

1 �� C∗ �� (K∗
X)G �� (K∗

X/C∗)G �� H1(G,C∗) �� 0 .

Now we consider the exact sequence of cokernels in the diagram (2). Since
Pic(S)[2] = (0), γ is injective. Div(X)G is the free abelian group with basis
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the divisors C + σ(C) = π∗C, for C an irreducible curve on S distinct from
the Ei, and the curves Fi := π−1(Ei). Therefore Cokerβ = (Z/2)R, and we
get an exact sequence

0 → Cokerα = Z/2 j−−→ Cokerβ = (Z/2)R k−−→ Coker γ → 0 ,

with k(ei) = [Fi] in Pic(X)G (mod Im γ). Since
∑

Ei is divisible by 2 in
Pic(S), k maps e :=

∑
ei to 0, hence j(1) = e. Thus we get an isomorphism

Coker γ ∼= (Z/2)R/〈e〉, with e :=
∑

ei.
Now we apply the snake lemma to the diagram

0 �� Pic(S) γ ��

×2
��

Pic(X)G ��

×2
��

(Z/2)R/〈e〉 ��

×2
��

0

0 �� Pic(S) γ �� Pic(X)G �� (Z/2)R/〈e〉 �� 0 .

We get an exact sequence 0 → Pic(X)G[2] → (Z/2)R/〈e〉 ϕ̄−−→ Pic(S) ⊗
(Z/2), with ϕ̄(ei) = [Ei]. Observe that Pic(X)G[2] = Pic(X)[2]: indeed for
L ∈ Pic(X)[2] we have NmL ∈ Pic(S)[2] = (0), hence σ∗L ⊗ L = OX , so
σ∗L = L−1 = L. Finally we get our isomorphism ψ : Pic(X)[2] ∼−→ Kerϕ/〈e〉.

Let f =
∑
i∈I

ei be an element of Kerϕ; then
∑
i∈I

Ei ≡ 2L in Pic(S), and
∑
i∈I

Fi − π∗L is an element of Pic(X)[2] which maps to f under ψ.

Remark. − With no hypothesis on Pic(S)[2], the proof gives a (split) exact
sequence3

0 → Pic(S)[2] π∗
−−→ Pic(X)G[2] → Kerϕ/(1, . . . , 1) → 0

and an isomorphism Pic(X)G[2] = Ker
(
Pic(X)[2] Nm−−−→ Pic(S)[2]

)
. In other

words, the line bundles L on X with L2 = OX and NmL = OS are of the
form π∗M(− ∑

i∈I
Fi) for some subset I ⊂ R and line bundle M on S such

that M2 = OS(
∑
i∈I

Ei); this presentation is unique up to replacing (I,M) by

(R� I, (L⊗M)−1), with L = det(π∗OX).
This applies in particular when π is a double covering of projective curves;

we get a description of P [2], where P := Ker
(
JX

Nm−−−→ JS
)

is the Prym
variety of (X,S). Note that in that case Pic(S)⊗ (Z/2) = Z/2, so the subsets
I ⊂ R which appear in that description are those with #I even.

3We assume here R �= ∅; when π is étale Kerπ∗ has order 2.
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6. Proof of Gauss’ theorem

Let d be a square-free integer, and let O be the ring of integers of K := Q(
√
d).

The proof of the key lemma can be easily adapted to the case S = SpecZ,
X = SpecO: we replace the diagram (1) by

1 �� Q∗
+

��

α

��

Div(Z) ��

β

��

Pic+(Z) = 0 ��

γ

��

0

1 �� (K∗
+/O∗

+)G �� Div(O)G �� Pic+(O)G �� H1(G,K∗
+/O∗

+) .

We just have to check that the two cohomological facts used in the previous
proof still hold. We recall that if M is a G-module, that is, an abelian group
with an involution σ, we have

H1(G,M)=Ker(1+σ)/ Im(1−σ) and H2(σ,M) = Ker(1− σ)/ Im(1 + σ).

Fact 1: H1(G,K∗
+/O∗

+) = 0.
We use the exact sequence H1(G,K∗

+)→H1(G,K∗
+/O∗

+)→H2(G,O∗
+) →

H2(G,K∗
+). If we make G act on {±1} × {±1} by swapping the factors, the

sequence (1) of § 2 is an exact sequence of G-modules. Taking invariants
gives an exact sequence Q∗ sgn−−−→ {±1} → H1(G,K∗

+) → H1(G,K∗); since
H1(G,K∗) = 0 by Hilbert’s Theorem 90, we get H1(G,K∗

+) = 0.
We have H2(G,O∗

+) = (O∗
+)G/NmO∗

+ = (O∗
+)G. This group is trivial if

d > 0, and equal to {±1} if d < 0. In the latter case the map H2(G,O∗) →
H2(G,K∗) is the composite {±1} ↪→ Q∗ → Q∗/Nm(K∗). Since Nm(K∗) ⊂
Q+ this map is injective. So in both cases we find H1(G,K∗

+/O∗
+) = 0.

Fact 2: H1(G,O∗
+) = Z/2.

If d > 0, we have O∗
+ = Z, with G acting by changing sign; thus

H1(G,O∗
+) = Z/2. If d < −3, O∗

+ = O∗ = {±1}, hence the result. For
d = −1 we observe that (1 − σ)(i) = −1, and for d = −3 (1 − σ)(ρ) = ρ2, so
H1(G,O∗) = O∗/ Im(1 − σ) = {±1}.

Thus as before we get an exact sequence

0 → Cokerα = Z/2 j−−→ Cokerβ = (Z/2)R k−−→ Coker γ = Pic+(O)G → 0 ,

where R ⊂ SpecZ is the set of ramified primes. As above we have Pic+(O)G =
Pic+(O)[2] = Cl+(K), hence Gauss’ theorem – in fact we get as above an
explicit isomorphism (Z/2)R/〈e〉 ∼−→ Cl+(K).
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