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Abstract: Let X be a regular tame stack. If X is locally of finite
type over a field, we prove that the essential dimension of X is equal
to its generic essential dimension; this generalizes a previous result
of P. Brosnan, Z. Reichstein and the second author. Now suppose
that X is locally of finite type over a 1-dimensional noetherian
local domain R with fraction field K and residue field k. We prove
that edk Xk ≤ edK XK if X → SpecR is smooth and edk Xk ≤
edK XK + 1 in general.

1. Introduction, and the statement of the main theorems

Let k be a field, X → Spec k an algebraic stack, � an extension of k, ξ ∈ X(�)
an object of X over �. If k ⊆ L ⊆ � is an intermediate extension, we say, very
naturally, that L is a field of definition of ξ if ξ descends to L. The essential
dimension edk ξ, which is either a natural number or +∞, is the minimal
transcendence degree of a field of definition of ξ. If X is of finite type then
edk ξ is always finite.

This number edk ξ is a very natural invariant, which measures, essentially,
the number of independent parameters that are needed for defining ξ. The
essential dimension edk X of X is the supremum of the essential dimension
of all objects over all extensions of k (if X is empty then edk X is −∞). This
number is the answer to the question “how many independent parameters

Received November 1, 2021.
∗The first author was partially supported by the DFG Priority Program “Homo-

topy Theory and Algebraic Geometry” SPP 1786.
†The second author was supported by research funds from the Scuola Normale

Superiore, Project SNS19_B_VISTOLI. The paper is based upon work partially sup-
ported by the Swedish Research Council under grant no. 2016-06596 while the
second author was in residence at Institut Mittag-Leffler in Djursholm.

1365

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


1366 Giulio Bresciani and Angelo Vistoli

are needed to define the most complicated object of X?”. For example, this
is a very natural question for the stack Mg of smooth projective curves of
genus g.

Essential dimension was introduced for classifying stacks of finite groups
in [10], with a rather more geometric language. Since then it has been ac-
tively investigated by many mathematicians. It has been studied for classify-
ing stacks of positive dimensional algebraic group starting from [14], and for
more general classes of geometric and algebraic objects in [7]. See [3, 8, 15, 13]
for an overview of the subject.

Suppose that X is an integral algebraic stack which is locally of finite
type over k. We can define the generic essential dimension gedk X (see [8,
Definition 3.3]) as the supremum of all edk ξ taken over all ξ ∈ X(�) such
that the associated morphism ξ : Spec � → X is dominant. For example, if
X has finite inertia and X → M is its moduli space, then M is an integral
scheme over k; if k(M) is its field of rational functions, the pullback Xk(M) →
Spec k(M) is a gerbe (the generic gerbe of X), and

gedk X = edk(M) Xk(M) + dimM.

So, if a generic object of X has trivial automorphism group, then

gedk X = dimM = dimX.

P. Brosnan, Z. Reichstein and the second author proved two results linking
edk X and edk(M) Xk(M).

(1) The genericity theorem (see [7, 9, 8, 18]) says that if X is a smooth
integral tame Deligne–Mumford stack over k, then edk X = gedk X.

(2) If R is a DVR with quotient field K and residue field k, and X → SpecR
is a finite tame étale gerbe, then edk Xk ≤ edK XK . This was proved
in [8, 9] (the proof in the first paper did not work when R had mixed
characteristics).

(1) plays a pivotal role in the calculation of the essential dimension
of many stacks of geometric interest, such as stacks of smooth or stable
curves, stacks of principally polarized abelian varieties [8], coherent sheaves
on smooth curves [4], quiver representations [19] and polarized K3 surfaces
[11].

In this paper we extend both these results to weakly tame stacks, in a
somewhat more general form.

Tame stacks have been defined by D. Abramovich, M. Olsson and the
second author in [2]. They are stacks with finite inertia, whose automorphism
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group schemes for objects over a field are linearly reductive. In characteris-
tic 0 these are the Deligne–Mumford stacks with finite inertia, but in positive
characteristic they are not necessarily Deligne–Mumford, as there exist finite
group schemes that are linearly reductive but not reduced, such as μp in char-
acteristic p, and étale finite group schemes are linearly reductive if and only
if their order is prime to the characteristic.

We define weakly tame stacks as algebraic stacks, in the sense of [12],
whose automorphism group schemes for objects over a field are finite and
linearly reductive, but whose inertia is not necessarily finite.

Theorem 1.1. Let X be a regular integral weakly tame stack, which is locally
of finite type over a field k. Then

edk X = gedk X.

Theorem 1.2. Let S be a regular integral scheme, X an integral, weakly tame
stack, X → S a smooth morphism. If s ∈ S is a point with residue field k(s),
then

edk(s) Xk(s) ≤ gedk(S) Xk(S).

Theorem 1.3. Let X be a regular integral weakly tame stack, which is locally
of finite type over a noetherian 1-dimensional local domain R with fraction
field K and residue field k. Then

edk Xk ≤ gedK XK + 1.

In fact, all these theorems have a more general formulation, which applies
to individual objects, rather than whole stacks: see Section 2 for a discussion,
and an application to an interesting geometric case, reduced local intersection
curves. We only state this for Theorem 1.1: see Theorem 2.1.

Theorem 1.1 generalizes (1) above. Theorem 1.2 generalizes (2) above, not
because S is not assumed to be the spectrum of a DVR (in fact, the general
case easily reduces to this), but mostly because X is not assumed to be a
gerbe over S. Theorem 1.3 is, as far as we know, the first result comparing
essential dimensions in mixed characteristic without smoothness assumptions.

Theorem 1.2 also implies a slightly weaker version of Theorem 1.1, in
which the morphism X → Spec k is assumed to be smooth.

Theorems 1.2 and 1.3 are related in spirit with the results in [16, 17].
Our approach to the proof of the genericity theorem is very different

from those in the references above. The main tool is an new version of the
valuative criterion for properness of morphisms of tame stacks (Theorem 3.1),
which was proved, in a slightly weaker form, by the first author in [5] in
characteristic 0. The proof of the general case will appear in [6].
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2. Tame objects and weakly tame stacks

Here, and for the rest of the paper, algebraic stacks will be defined as in [12];
that is, we will assume that the they have finite type diagonal. If � is a field,
we denote by (Aff/�) the category of affine schemes over �.

Let X be an algebraic stack, � a field, and ξ an object in X(�). The functor
of automorphisms Aut� ξ : (Aff/�)op → (Grp) is a group scheme of finite type.
We say that ξ is tame if Aut� ξ : (Aff/�)op → (Grp) is finite and linearly
reductive (see [2, §2] for a thorough discussion of finite linearly reductive
group schemes).

An algebraic stack X is weakly tame if every object over a field is tame;
it is tame if is weakly tame and has finite diagonal (see [2]).

The following is a strong form of Theorem 1.1.

Theorem 2.1. Let X be a regular integral stack, which is locally of finite
type over a field k. If � is an extension of k and ξ is a tame object of X(�),
then

edk ξ ≤ gedk X.

If X has finite diagonal, then there exists an open substack Xtame ⊆ X

such that an object ξ ∈ X(�) is tame if an only if ξ is in Xtame(�) (see [2,
Proposition 3.6]); however, this fails in general if the diagonal of X is only
quasi-finite. Thus, for stacks with finite diagonal Theorem 1.1 and Theo-
rem 2.1 are equivalent, but not in general.

There are many geometrically natural stacks that are Deligne–Mumford
in characteristic 0, but not in positive characteristic, as the corresponding
objects may have infinitesimal automorphisms. Examples include polarized
K3 surfaces, surfaces of general type, polarized torsors for abelian varieties,
stable maps. In analyzing the essential dimension of these classes of geometric
objects in positive characteristic it is essential to go outside the framework of
Deligne–Mumford stacks. Here is an example.

Let k be a field, � an extension of k, C a geometrically reduced, geomet-
rically connected, and local complete intersection curve over � of arithmetic
genus g ≥ 2. We are interested in the essential dimension edk C, that is, the
smallest transcendence degree of a field of definition of C over k. If char k = 0
and C has a finite automorphism group, it is proved in [8, Theorem 7.3] that

(2.1) edk C ≤
{

3g − 3 if g ≥ 3
5 if g = 2
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We do not know if this holds in positive characteristic, but we can prove
the following. Let us say that C is tame if Aut� C is finite and tame. If
char � = 0, then the tame condition is automatic.

Proposition 2.2. The inequality 2.1 above holds in any characteristic, if C
is tame.

Proof. Let Mfin
g be the stack over Spec k whose objects over a scheme S are

proper flat finitely presented morphisms C → S, whose fibers are geometri-
cally reduced, geometrically connected, and local complete intersection curves
of arithmetic genus g. By standard results in deformation theory, this is an
integral smooth algebraic stack over Spec k. The integer gedk M

fin
g = gedk Mg

is computed in [8]; it is equal to 3g− 3 when g ≥ 3, while it is 5 when g = 2.
Thus the result follows from Theorem 2.1. ♠

One can show that the tame points of Mfin
g do not form an open substack,

so Theorem 1.1 would not be sufficient for this application.
Here is an example of a tame curve of the type above, whose automor-

phism group scheme is not reduced.

Example 2.3. Suppose that char k = p > 0. Choose three rational points on
P

1
k, say 0, 1 and ∞, and call V 	 Spec k[x]/

(
(x − 1)p

)
the pth infinitesimal

neighborhood of 1. Take two copies of P1, and glue the two copies of V . Call
C1 and C2 two smooth curves with trivial automorphism groups and not
isomorphic, and glue them to the union of two P

1, as in the picture below.

It is an exercise to show that the automorphism group scheme of the resulting
curve is μp, which is finite and linearly reductive, but not reduced.

3. A version of the valuative criterion for properness of
tame algebraic stacks

A basic example of tame stacks is root stacks (see [1, Appendix B2]). We
will need this in the following situation. Let R be a DVR with uniformizing
parameter π and residue field k

def= R/(π). If n is a positive integer, we will
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denote by n
√

SpecR the nth root of the Cartier divisor Spec k ⊆ SpecR. It is a
stack over SpecR, such that given a morphism φ : T → SpecR, the groupoid
of liftings T → n

√
SpecR is equivalent to the groupoid whose objects are

triples (L, s, α), where L is an invertible sheaf on T , s ∈ L(T ) is a global
section of L, and α is an isomorphism L⊗n 	 OT , such that α(s⊗n) = φ�(π).
Alternatively, n

√
SpecR can be described as the quotient stack [SpecR[t]/(tn−

π)/μn], where the action of μn on SpecR[t]/(tn − π) is by multiplication
on t. The morphism ρ : n

√
SpecR → SpecR is an isomorphism outside of

Spec k ⊆ SpecR, while the reduced fiber ρ−1(Spec k)red is non-canonically
isomorphic to the classifying stack Bkμn.

Our version of the valuative criterion is as follows.

Theorem 3.1. Let f : X → S be a proper morphism where S is a scheme
and X a tame stack, R a DVR with quotient field K. Suppose that we have
a 2-commutative square

SpecK X

SpecR S

f

Then there exists a unique positive integer n and a representable lifting
n
√

SpecR → X, unique up to a unique isomorphism, of the given morphism
SpecR → S, making the diagram

SpecK X

n
√

SpecR SpecR S

2-commutative.

The proof of the theorem will appear in [6].
We say that an extension of DVRs R ⊆ R′ is weakly unramified if its

ramification index is 1; in other words, if a uniformizing parameter of R maps
to a uniformizing parameter of R′.

Lemma 3.2. Let R ⊆ R′ be a weakly unramified extension of DVRs, and let
K ⊆ K ′ be the fraction fields of R and R′ respectively. Given a diagram

SpecK X

SpecR S

f
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with the same hypotheses as in Theorem 3.1, if there is an extension SpecR′→
X of SpecK ′ → SpecK → X, then there is an extension SpecR → X, too.

Proof. By Theorem 3.1, there exists a unique positive integer n with a unique
representable extension n

√
SpecR → X, we want to show that n = 1. Since

R ⊆ R′ is weakly unramified, then n
√

SpecR′ → n
√

SpecR is representable,
hence the composition n

√
SpecR′ → n

√
SpecR → X is representable, too. By

hypothesis there exists an extension SpecR′ → X, hence the uniqueness part
of Theorem 3.1 implies that n = 1. ♠

4. Some easy commutative algebra

In the proof of the main theorems we will also use the following well known
facts, for which we do not know a reference.

Lemma 4.1. Let B be a regular local ring with dimB ≥ 1, and b ∈ mB a
non-zero element. There exists a surjective homomorphism φ : B → R, where
R is a DVR, such that φ(b) �= 0. Furthermore, if b ∈ mB � m2

B we can find
such a φ : B → R with φ(b) ∈ mR �m2

R.

Proof. If dimB = 1 then we take B = R. If dimB ≥ 2 we proceed by
induction on dimB; it is enough to show that there exists c ∈ mB �m2

B such
that b /∈ (c), and b /∈ (c) + m2

B if b ∈ mB �m2
B.

If b ∈ mB �m2
B it is enough to chose c ∈ mB so that the images of b and

c in mB/m
2
B are linearly independent.

In general, we know that the ring B is a UFD. Let x and y be elements of
mB, whose images in mB/m

2
B are linearly independent; the elements x + yd,

for d ≥ 1 are irreducible. We claim that they are pairwise not associate: this
implies that only finitely many of them can divide b, which implies the claim.

To check this, assume that x+ ye = u(x+ yd) for some u ∈ B �mB with
e > d > 0. Reducing modulo (y) we see that u ≡ 1 (mod y), while reducing
modulo (x) and dividing by yd, which is possible because A/(x) is a domain,
we get u ≡ ye−d (mod x), and this is clearly a contradiction. ♠

Lemma 4.2. Let A be a DVR, B a regular local ring, A → B a local homo-
morphism. Assume that the induced ring homomorphism mA/m

2
A → mB/m

2
B

is injective. There exists a surjective homomorphism B → R such that A → R
is an injective, weakly unramified extension of DVRs.

The proof is immediate from Lemma 4.1.

Lemma 4.3. Let U be an integral regular scheme, V ⊆ U a nonempty open
subset, u ∈ U . There exist a morphism f : SpecR → U , where R is a DVR,
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which sends the closed point of SpecR to u, inducing an isomorphism k(u) 	
R/mR, and the generic point into V .

Proof. If u ∈ V , this is clear. If not, call I ⊆ OU,u the radical ideal of the
complement of the inverse image of V in Spec OU,u, take b ∈ I � {0}, and
apply Lemma 4.1. ♠

Lemma 4.4. Let A be a noetherian 1-dimensional local domain with fraction
field K, R a DVR with quotient field L and residue field �. Let A ⊆ R be a
local embedding, inducing embeddings k ⊆ � and K ⊆ L. Then

trdegk � ≤ trdegK L.

Proof. If A is a DVR, this is [9, Lemma 2.1] (there it is assumed that A ⊆ R
is weakly unramified, but this is not in fact used in the proof). In the general
case, consider the normalization A of A in K, and its localization A′ at the
maximal ideal mR∩A. By the Krull–Akizuki theorem A is a Dedekind domain,
so A′ is a DVR.

Call k′ the residue field of A′; we have a factorization k ⊆ k′ ⊆ �, and k′

is algebraic over k, so that trdegk � = trdegk′ �, so the general case reduces
to the case of an extension of DVRs. ♠

Lemma 4.5. Let k be a field, R a DVR containing k, with residue field �
and fraction field K. Assume trdegk � < +∞. Then

trdegk � < trdegk K.

Proof. Suppose u1, . . . , un are elements of R whose images in � are alge-
braically independent over k. If π is a uniformizing parameter for R, it is
immediate to show that π, u1, . . . , un are algebraically independent over k. ♠

5. Proofs of the theorems

Let us proceed with the proof of the theorems. For all of them, the first step is
to reduce to the case in which X is tame. The reduction is done almost word
by word as in the beginning of the proof of [8, Theorem 6.1]. Let � be a field,
ξ : Spec � → X an object of X(�). By a result due essentially to Keel and
Mori ([8, Lemma 6.4]) there exists a representable étale morphism Y → X,
where Y is a stack with finite inertia, and a lifting η : Spec � → Y of ξ. The
fact that the morphism Y → X is representable implies that the induced
homomorphism Aut� η → Aut� ξ is injective, which implies that Aut� η is
linearly reductive. By [2, Proposition 3.6] there exists a tame open substack
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Y ′ of Y containing η. The rest of the argument is identical to that in the
proof of [8, Theorem 6.1]; so we can assume that X is tame. The theorems
are easy consequences of the following.

Let X → S be a dominant morphism locally of finite type, where X is a
regular integral tame stack, S an integral locally noetherian scheme.

Lemma 5.1. Let � be a field, ξ : Spec � → X a morphism; call s ∈ S the
image of the composite Spec � ξ−→ X → S. Then � is an extension of k(s), and
we can think of ξ as a morphism Spec � → Xk(s). Assume that s is not the
generic point of S.

(1) If S is locally of finite type over a field k, there exists a generalization
s′ �= s of s such that

edk ξ ≤ edk Xk(s′).

(2) If S has dimension 1, then

edk(s) ξ ≤ edk(S) Xk(S) + 1.

(3) If X → S is smooth, there exists a generalization s′ �= s of s such that

edk(s) ξ ≤ edk(s′) Xk(s′).

Proof. By [12, Théorème 6.3] there exists a regular scheme U and a smooth
morphism U → X with a lifting Spec k → U of ξ; if we call u ∈ U the image
of Spec � → U , we can replace � with k(u), and assume � = k(u).

In cases (1) and (2), we call V the inverse image of S � {s} in U , and we
construct a morphism SpecR → U as in Lemma 4.3 such that the composition
SpecR → S maps the generic point to a generalization s′ �= s of s.

In case (3) X → S is smooth, so U → S is also smooth, and S is regular;
in this case we start by choosing a point s′ in S such that s ∈ {s′}, and O{s′},s
is a DVR. Then we apply Lemma 4.2 to the embedding O{s′},s ⊆ OU ′,u, where
U ′ is the inverse image of {s′} in U , and obtain a morphism SpecR → U such
that the composition SpecR → S maps the generic point to s′ and O{s′},s ⊆ R
is weakly unramified.

Let M be the moduli space of X, with the resulting factorization X →
M → S. Let K be the fraction field of R; there exists an intermediate exten-
sion k(s′) ⊆ K1 ⊆ K with

trdegk(s′) K1 ≤ edk(s′) Xk(s′)



1374 Giulio Bresciani and Angelo Vistoli

and a factorization SpecK → SpecK1 → X. Write R1 = R ∩ K1; clearly
K1 �⊆ R, so that R1 is a DVR; call �1 ⊆ � its residue field. The composite
SpecR → M factors through SpecR1, and we get a commutative diagram

SpecK SpecK1 X

SpecR SpecR1 M S

By Theorem 3.1, since X → M is proper then there exists an integer n and
a representable extension

n
√

SpecR1 → X

of the morphism SpecK1 → X. Since X → S is separated, the diagram

n
√

SpecR n
√

SpecR1 X

SpecR SpecR1 M S

commutes. If we chose a lifting Spec � → n
√

SpecR of the embedding Spec � ⊆
SpecR we obtain a factorization

Spec � →
(
Spec �1 ×SpecR1

n
√

SpecR
)

red
= B�1μn → X

of ξ. Since the essential dimension of B�1μn over �1 is at most 1, we get that

edk(s) ξ ≤ trdegk(s) �1 + 1.

If S is locally of finite type over a field k, then by Lemma 4.5 applied to R1/k
we obtain

trdegk(s) �1 + 1 ≤ trdegk(s′) K1 + 1
≤ trdegk(s′) K1 + trdegk k(s′) − trdegk k(s);

Since edk ξ=edk(s) ξ+trdegk k(s) and edk Xk(s′) = edk(s′) Xk(s′)+trdegk k(s′),
we obtain the thesis.

If S has dimension 1, then s′ is the generic point and by Lemma 4.4
applied to the embedding OS,s ⊆ R1 we obtain the desired inequality

trdegk(s) �1 + 1 ≤ trdegk(S) K1 + 1 ≤ edk(S) Xk(S) + 1.
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If X → S is smooth, then O{s′},s is a DVR and R is weakly unramified
over it, and since O{s′},s ⊆ R1 ⊆ R then R is weakly unramified over R1, too.
We can thus assume that n = 1, by Lemma 3.2, so that B�1μn = Spec �1,
and by Lemma 4.4 applied to the embedding O{s′},s ⊆ R1 we get

edk(s) ξ ≤ trdegk(s) �1 ≤ trdegk(s′) K1 ≤ edk(s′) Xk(s′)

as claimed. ♠

The proof of Theorem 1.1 We apply the above to the case in which
S = M is the moduli space of X. Let ξ : Spec � → X be a morphism; we need
to show that edk ξ ≤ gedk X. Call s ∈ M the image of ξ; if s is the generic
point of M , the result follows immediately.

If not, by induction on the codimension of {s} in M we may assume that
the inequality holds for all morphisms Spec �′ → X, such that the codimension
of the closure of the image s′ ∈ M , which equals dimM − trdegk k(s′), is less
than the codimension of {s}. In particular, this holds for morphisms as above,
such that s′ is a generalization of s different from s.

From Lemma 5.1 we get a generalization s′ �= s of s and an inequality

edk ξ ≤ edk Xk(s′).

By inductive hypothesis, edk Xk(s′) ≤ gedk X, hence we conclude.

The proof of Theorem 1.2 By Theorem 1.1 applied to Xk(S)→Spec k(S),
it enough to prove that edk(s) Xk(s) ≤ edk(S) Xk(S) for any s ∈ S. Once
again we proceed by induction on the codimension of {s} in S, the case of
codimension 0 being obvious. If this is positive, given a morphism Spec � →
Xk(s), Lemma 5.1 gives us a generalization s′ of s with edk(s) ξ ≤ edk(s′) Xk(s′),
and the theorem follows.

The proof of Theorem 1.3 By Theorem 1.1 applied to XK → SpecK,
it is enough to prove the inequality edk Xk ≤ edK XK + 1, which follows
immediately from Lemma 5.1.
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