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Abstract: We show, in this second part, that the maximal number
of singular points of a normal quartic surface X ⊂ P3

K defined over
an algebraically closed field K of characteristic 2 is at most 14, and
that, if we have 14 singularities, these are nodes and moreover the
minimal resolution of X is a supersingular K3 surface.

We produce an irreducible component, of dimension 24, of the
variety of quartics with 14 nodes.

We also exhibit easy examples of quartics with 7 A3-singularities.
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1. Introduction

Once upon a time1 in Cortona there was a Summer school with wonderful
courses held by Herb Clemens and Boris Moishezon. The first author had the
privilege of attending the Summer school. On that occasion Herb lectured
on several beautiful classical topics, and these lectures formed the basis of
a lovely book [Clem80]. Even if the course and the book were devoted to
complex curves, yet characteristic p appeared on the stage, and was used by
Clemens to explain the ‘Unity of Mathematics’ (section 2.12). In this spirit
we are happy to dedicate this ‘characteristic 2’ paper to Herb.

1It was in August-September 1976.
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These are our main results. They feature the property of the minimal
resolution S of being a supersingular K3 surface (i.e. with Picard number
ρ = 22).2 The following is our main theorem:

Theorem 1. A normal quartic surface X ⊂ P3
K defined over an algebraically

closed field K of characteristic 2 contains no more than 14 singular points. If
the maximum number of 14 singularities is attained, then all singularities are
nodes and the minimal resolution is a supersingular K3 surface. The variety
of quartics with 14 nodes contains an irreducible component, of dimension 24.

If the minimal resolution S of a normal quartic X is not a supersingular
K3 surface, then Theorem 1 shows that X has at most 13 singular points.
This bound is not sharp; we have examples with 12 nodes, and we will show
in a forthcoming paper (part III) that if S is a K3 surface which is not
supersingular, then X has at most 12 singular points.

The proof uses mostly classical techniques, notably the Gauss map, but
there are some ingredients (notably the main claim in Section 4) which build
on the theory of genus one fibrations (see Section 5).

We emphasize that each ingredient has some special feature in charac-
teristic 2; for instance, the Gauss map of a normal surface in P3 need not
be birational, and double points behave differently (this affects the degree
formula, see Section 2). The dual surface can be a plane, as we study in Sec-
tion 3. Elliptic fibrations feature wild ramification (at certain additive fibres),
which has surprising consequences for supersingularity (see Section 5). The
notion of genus one fibration also encompasses quasi-elliptic fibrations whose
properties we exploit in Section 6, especially with a view to the dual surface.

Naturally Theorem 1 leads to the question about what is true for other
quasi-polarized K3 surfaces in characteristic 2, which we plan to address in
part III as well.

Convention: We work over an algebraically closed field K, mostly of char-
acteristic 2, though many results may also be stated over non-closed fields.

2. The Gauss map

We consider in this section a normal quartic surface

X = {F (x) = 0} ⊂ P3

2For the reader who has never seen such a surface, an easy example is provided in
Corollary 8 in Section 3, as the resolution of a quartic surface with 7 A3 singularities,
providing 21 independent (−2)-curves on S which together with the hyperplane
section H generate a rank 22 finite index sublattice of Pic(S).
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and summarize and extend some considerations made in the first part, [Cat21b]
in order to gain control over the (number of) singular points of X.

The Gauss map γ : X ��� P := (P3)∨ is the rational map given by

γ(x) := ∇F (x), x ∈ X0 := X \ Sing(X).

We let X∨ := γ(X0) be the closure of the image of the Gauss map, which
is a morphism on X0, and becomes a morphism γ̃ on a suitable blow up S̃ of
the minimal resolution S of X. X∨ is called the dual variety of X.

In order to compute the degree of X∨ (this is defined to be equal to zero
if X∨ is a curve), we consider a line Λ ⊂ P such that Λ is transversal to the
map γ̃, this means:

1) Λ ∩X∨ = ∅ if X∨ is a curve;
2) Λ is not tangent to X∨ at any smooth point, and neither contains any

singular point of X∨, nor any point y where the dimension of the fibre
γ̃−1(y) equals 1, so that

3) Λ ∩ X∨ is in particular a subscheme consisting of deg(X∨) distinct
points, and its inverse image in S̃ is a finite set.

By a suitable choice of the coordinates, we may assume that

γ−1(Λ) ⊂ X ∩ {F1 = F2 = 0} (Fi = ∂F/∂xi).

The latter is a finite set, hence by Bezout’s theorem it consists of 4·32 = 36
points counted with multiplicity, including the singular points of X.

We have therefore proven the following (probably well known) formula:

(DEGREE − FORMULA) deg(γ) deg(X∨) = 36 −
∑

P∈Sing(X)
(F, F1, F2)P ,

where the symbol (F, F1, F2)P denotes the local intersection multiplicity at
P , defined by

(F, F1, F2)P := dimK(OP3,P /(F, F1, F2)) = dimK(OX,P /(F1, F2)).

Under the above assumptions this intersection multiplicity is zero unless
P is a singular point, and then we have

(F, F1, F2)P ≥ 2 ∀P ∈ Sing(X).

The integer (F, F1, F2)P shall be called the Gaussian defect.
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2.1. Calculation of Gaussian defects

Since quartics with triple points were treated in [Cat21b], we will mostly be
concerned with double points, but we will cover all types of singularities in
Proposition 4. Double point singularities are divided into three rough types
according to the rank of the tangent quadric at P :

i) nodes: here the quadric is smooth, and we have an A1-singularity, for-
mally equivalent to xy = z2; the nodes give a contribution
(F, F1, F2)P = 2 to the Gaussian defect;

ii) biplanar double points: here the quadric consists of two planes, and we
have an An-singularity with n ≥ 2, formally equivalent to xy = zn+1

(see for instance [Cat21a]); the biplanar double points of type An give
a contribution of n + 1 to the Gaussian defect;

iii) uniplanar double points: here the quadric consists of a double plane,
and we have several types (see [Art66], [Art77], [Roc96]), the Taylor
development is of the form x2 + ψ = 0, where ψ has order ≥ 3; the
uniplanar double points give a contribution of order at least 8 to the
Gaussian defect, since (F, F1, F2)P = (F, ψ1, ψ2) ≥ 8.

Proposition 2. Let X be a normal quartic surface in P3.
(I) If X has ν singular points of multiplicity 2, among them b biplanar

double points, and u uniplanar double points, then:

36 − deg(γ) deg(X∨) ≥ 2ν + b + 6u.(1)

(II) If X contains a node, then the exceptional curve E in S resolving the
node maps to a line via an inseparable map of degree two. In particular the
Gauss map cannot be birational if X∨ is a normal surface.

(III) The dual variety X∨ cannot be a line.
(IV) For ν ≥ 13, the dual variety X∨ is an irreducible surface; in par-

ticular deg(γ) deg(X∨) ≥ 2, and, if deg(γ) = 1, X∨ is non-normal and
deg(X∨) ≥ 3.

(V) For ν ≥ 14, if the dual variety X∨ is not a plane, then the singularities
of X are all of type An (u = 0).

Proof. (I): follows since the nodes give a contribution equal to 2 to the Gaus-
sian defect, the biplanar double points of type An give a contribution n+1 ≥ 3,
the uniplanar double points give a contribution at least 8.

(II): given a node P , an A1-singularity, then the affine Taylor development
at P is given by

F = xy + z2 + ψ(x, y, z) = 0
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and the Gauss map on the exceptional curve E, given as a conic
E = {xy + z2 = 0} ⊂ P2, is given by (x, y, 0, 0). If X∨ is a normal sur-
face and γ is birational onto its image, then

γ̃ : S̃ → X∨

is an isomorphism over the complement of a finite number of points of X∨, a
contradiction since E maps 2 to 1 to a line.

(III): if X∨ is a line, then there are projective coordinates in P3 such that
the partial derivatives with respect to 2 variables, say z, w, are identically
zero; hence

X = {az4 + bw4 + cz2w2 + z2D(x, y) + w2E(x, y) + f(x, y) = 0}.

Writing

D(x, y) = d1x
2 + d2y

2 + dxy,E(x, y) = e1x
2 + e2y

2 + exy,

f(x, y) = q(x, y)2 + f1x
3y + f2xy

3,

we see that

Sing(X) = X ∩ {yM = xM = 0}, M := dz2 + ew2 + f1x
2 + f2y

2,

hence Sing (X) ⊃ X ∩ {M = 0} and X is not normal.
(IV): since for ν ≥ 13 there must be a node by the degree formula, X∨

contains a line; but X∨ cannot be a line by (III), hence it is a surface; the
rest follows from (II) and from the fact that an irreducible quadric is normal.

(V) For ν ≥ 14, if the dual variety X∨ is not a plane, then deg(γ) ≥ 2,
or deg(X∨) ≥ 3 (since if γ is birational, then X∨ is not normal by (IV)),
hence 2ν + b + 6u ≤ 33, hence u = 0 and the singularities of X are all of
type An.

Remark 3. The degree formula can be improved substantially by taking
the precise types of singularities into account as the proof of (I) shows. For
instance, the biplanar double points contribute b in (1) exactly when they all
have type A2.

2.2. Gaussian defect of non-rational double point singularities

In the spirit of Remark 3, we take a closer look at those singularities which
are not rational double point. This will enable us to strengthen the results
of Proposition 2, and to decide when the minimal resolution S of X is a K3
surface (see Proposition 14).
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Proposition 4. If a given singularity P on X is not a rational double point,
we have, for a general (hence any) choice of the affine local coordinates at P ,

(F, F1, F2)P ≥ 10.(2)

Proof. First of all, for a triple point the Gaussian defect is at least 12, since
the Gaussian defect is greater or equal to the product of the respective orders
of F, F1, F2 at P , and a double point which is not a rational double point
must be a uniplanar double point.

We can therefore assume that the affine Taylor development of F at the
point P is of the form

F (x1, x2, x3) = x2
1 + G(x) + B(x),

where G is homogeneous of degree 3 and B of degree 4.
We may take local coordinates such that x := x1, and where y, z are

generic linear forms vanishing at P , hence the Gaussian defect will be the
intersection number (F, Fy, Fz) at the point P .

This said, we can write

F (x, y, z) = x2(1 + A(x, y, z)) + xg(y, z) + g′(y, z) + B′(x, y, z),

and multiplying by (1 + A(x, y, z))−1 we get a formal power series equation

f = x2 + xg(y, z) + g′(y, z) + b(x, y, z),(3)

where g is a quadratic form, g′ is a cubic form, and the power series b has
order at least 4.

We consider the blow up of the singular point P ∈ X.
The equation of X is f(x, y, z) = x2 + xg(y, z) + g′(y, z) + b(x, y, z) = 0;

set now:
x = t ξ, y = t η, z = t ζ

(here t = 0 is the equation of the exceptional divisor, isomorphic to P2 and
(ξ, η, ζ) are homogeneous coordinates in P2) so that the equation of the blow
up is

ξ2 + tξ g(η, ζ) + t g′(η, ζ) + t2 b(ξ, η, ζ) = 0.

On the exceptional line {t = ξ = 0} the singular points are the roots of
g′.

Hence either g′ is identically zero, or the blow up is normal.
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If g′ does not have a multiple root, we get 3 nodes, hence P is a singularity
of type D4 and we are done.

Therefore we may assume that g′ has a multiple root (or is identically
zero) and apply a linear transformation such that y = 0 is this root.

We want to show that the length of the Artin algebra

A := OP /(f, fy, fz)

is ≥ 10.
A fortiori it will suffice to replace the algebra A by the quotient algebra

A4 := OP /((f, fy, fz) + M4
P )

or by the quotient algebra

A5 := OP /((f, fy, fz) + M5
P ).

Inside the algebra B4 := OP /M
4
P , the ideal I generated by f, fy, fz is gener-

ated as a vector space by the vectors

f, fy, fz, xf, xfy, xfz, yf, yfy, yfz, zf, zfy, zfz

where the first three have order at least 2, and the latter at least 3.
Since I ⊂ M2

P , which has colength 4, it suffices to show that

1) (I + M3
P )/M3

P has codimension at least 3 in M2
P /M

3
P , which is a 6-

dimensional vector space.
2) ((I ∩M3

P ) + M4
P )/M4

P has codimension at least 2 in M3
P /M

4
P , which

is a 10-dimensional vector space.
3) if in 2) codimension 2 occurs, then ((I ∩M4

P )+M5
P )/M5

P has codimen-
sion at least 2 in M4

P /M
5
P .

We can now write

f = x2 + xg(y, z) + cy3 + dy2z (mod M4
P ),

fy = axz + cy2, fz = axy + dy2 (mod M3
P ),

where c, d may be equal to zero.
The first assertion is clear, since modulo M3

P we just have three vectors,
x2, axz+ cy2, axy+ dy2. In fact, if a = 0, then the vectors are linearly depen-
dent modulo M3

P , so (I + M3
P )/M3

P has codimension at least 4 in M2
P /M

3
P .
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As one easily checks that ((I ∩ M3
P ) + M4

P )/M4
P has codimension at least

3 in M3
P /M

4
P in this situation, it follows that (F, F1, F2)P ≥ 11 as desired.

Hence, in what follows, we will assume a �= 0 and thus normalize a = 1.
For the second assertion, it suffices to show that, modulo M4

P , we get a
subspace in degree 3 of dimension at most 8.

From f , in degree 3 we get x3, x2y, x2z, and modulo the subspace gener-
ated by the above vectors we get xfy ≡ cxy2, xfz ≡ dxy2: these vectors are
all contained in the 4-dimensional subspace V generated by x3, x2y, x2z, xy2.
Since there are only 4 further generators in degree 3 (given below), this al-
ready proves the second assertion.

For future use, we further investigate (I + M4
P )/M4

P . Modulo V , we get
the 4 vectors,

yfy = y(xz + cy2), zfy = z(xz + cy2), yfz ≡ dy3, zfz = z(xy + dy2).

These are linearly independent if and only if d �= 0; in that case, their span
is generated by xyz, xz2, y3, y2z, in agreement with the second assertion.

Note that, if d = 0, then (I ∩ M3
P )/M4

P has codimension at least 3 in
M3

P /M
4
P , and the main claim of our proposition follows readily.

Hence we will assume d �= 0 in what follows.
In order to prove the third assertion we observe that the ideal

I ′ := (x2, xy2, xz2, xyz, y3, y2z)

arising from the monomials in the above computations contains all monomials
of degree 4 except for z4 and z3y.

Define W to be the subspace of M4
P /M

5
P generated by I ′, i.e. by the

monomials containing x or divisible by y2.
Working in

U := (M4
P /M

5
P )/W ∼= Kz4 ⊕Kz3y

we want to show that ((I ∩M4
P ) + M5

P )/M5
P maps to zero in U .

Observe that, in degree 3, by ≡ λy2z + μz3, bz ≡ λy3 + μyz2 modulo I ′.
But in order to get this, we must have some degree 1 relation between

the quadratic parts of f, fy, fz, giving then rise in degree 4 to some non-zero
vector in U .

In fact, one relation is obvious, namely

(cy + dz)f + dxfy + cxfz ∈ M4
P ,

but it only produces multiples of x and y2 in degree 4, i.e. zero in U .
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Direct calculation shows that the above is the only relation in degree 1
occurring, so we are done.

We will use the proposition soon to derive a criterion for the minimal
resolution S of X to be a K3 surface (Proposition 14), but as a preparation
we have to discuss the case where the dual surface X∨ is a plane.

3. When the dual surface is a plane

We continue to consider a normal quartic surface X ⊂ P3. The term
deg(γ) deg(X∨) in (1) deems it essential to study the case where the dual
surface X∨ is a plane.

In this case there are coordinates (x1, x2, x3, z) such that the partial
derivative of F with respect to z is identically zero, hence

X = {(x, z)|az4 + z2Q(x) + B(x) = 0}.(4)

We are going to show that for the general such surface X has 14 nodes as
singularities (Theorem 11). This will prove part of Theorem 1.

There are a few special equations where X∨ is a plane which require extra
treatment. Two of them were contained in part one of this paper [Cat21b]:

(1) X = {(x, z) | z2Q(x) + B(x) = 0} (a = 0) is the case where there
is a singular point P (x = 0) such that projection with centre P is
inseparable.

(2) Q(x) is the square of a linear form (see Proposition 9).

One more equation will appear in Proposition 10. Together with Lemma 13,
they will suffice to prove the instrumental fact that, with at least 13 singular
points, the minimal resolution S of X is a K3 surface (Proposition 14).

The curve {B(x) = 0} obtained from equation (4) is a plane quartic curve,
and we want now to establish some simple properties of plane quartic curves
which will be relevant for our issues.

3.1. The strange points of a plane curve of even degree in
characteristic = 2

We define here, as in [Cat21b], the strange points of a plane curve
{B(x) = 0} ⊂ P2 to be the points outside the curve where the gradient
∇B vanishes.

We have seen in Part I ([Cat21b]) for the case of a general plane quartic
curve {B(x) = 0} ⊂ P2:
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Proposition 5. For a homogeneous quartic polynomial B ∈ K[x1, x2, x3]4
let Σ be the critical locus of B, the locus where the gradient ∇B vanishes. If
Σ is a finite set, then it consists of at most 7 points.

For B general, Σ consists of exactly 7 reduced points.

The above result does indeed nicely extend to the case of a homogeneous
polynomial of even degree B ∈ K[x1, x2, x3]2m.

As noticed in [Cat21b], because of the Euler identity

x1B1 + x2B2 + x3B3 = 0

among partial derivatives, taking coordinates such that the line {x3 = 0}
does not intersect Σ, it follows that

Σ = {x | B1(x) = B2(x) = 0, x3 �= 0}.

For a polynomial of the Klein form

B0 := x2m−1
1 x2 + x2m−1

2 x3 + x2m−1
3 x1,

the critical scheme is defined by

x2m−1
i = x2m−2

i+1 xi+2 =⇒ x = (ε, 1, ε2m−1), ε(2m−2)(2m−1)+1 = 1.

Letting s be the general number of strange points (s := |Σ|), we have
therefore that, setting d = 2m, s lies in the interval

(d− 1)(d− 2) + 1 = (d− 1)2 − (d− 2) ≤ s ≤ (d− 1)2.

Proposition 6. The number of strange points s := |Σ| (Σ := {∇B(x) = 0})
of a general homogeneous polynomial B(x1, x2, x3) of even degree d is equal
to s = (d− 1)(d− 2) + 1.

Whenever the subscheme Σ is finite, its length equals s.

Proof. To show this, two steps suffice:
I) if Σ is finite, then the scheme {x | B1(x) = B2(x) = 0} is finite for

general choice of coordinates, and Σ ∩ {x3 = 0} is empty in general;
II) the subscheme {x|B1(x) = B2(x) = x3 = 0}, if we write

B = x3B
′ + β(x1, x2) + q(x1, x2)2, β(x1, x2) =

∑
n odd

anx
n
1x

2m−n
2 ,
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equals the subscheme
{
x

∣∣∣∣∣ x3 =
∑
n odd

anx
n−1
1 x2m−n

2 =
∑
n odd

anx
n
1x

2m−n−1
2 = 0

}
=

{
x

∣∣∣∣∣ x3 = x2

( ∑
n odd

anx
n−1
1 x2m−n−1

2

)
= x1

( ∑
n odd

an−1x
n−1
1 x2m−n−1

2

)
= 0

}
.

I) holds since changing variables we get that the new partials are general
linear combinations of the old partials: if Σ is finite then we can keep B1 fixed
and vary B2 so that it has no common factor with B1; hence the result holds
for general choice of linear coordinates, and the rest is obvious.

Our result follows then from I) and II), since then the scheme Σ is disjoint
from the length (d− 2) scheme

{
x3 =

∑
n odd

an−1x
n−1
1 x2m−n−1

2 = 0
}
,

and we conclude since their union is the complete intersection subscheme
{x|B1(x) = B2(x) = 0}, which has length (d− 1)2.

Remark 7. A more general result (also valid in other characteristics) is con-
tained in Theorem 2.4 of [Lied13], whose formulation, however, does neither
mention derivatives nor critical sets.

3.2. Supersingular quartics with 7 A3-singularities

A first immediate consequence of the previous result is:

Corollary 8. For B a homogeneous polynomial B ∈ K[x1, x2, x3]4, a normal
quartic surface of the form:

X := {(x, z) | z4 + B(x) = 0}

has at most 7 singular points.
If B is general, X has 7 A3-singularities.

Proof. The singular points of X are in bijection with the critical set Σ of B,
which consists of 7 reduced points for B general. Hence at these points there
are local coordinates u, v such that B = a4 + uv, hence the local equation of
X is (z + a)4 = uv, and we have an A3-singularity.
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3.3. Quartics with 14 nodes blowing up to 7 lines in the plane
under the Gauss map

A second immediate consequence concerns the quartics with dual surface
equal to a plane, and with a singular point such that the second order term Q
of the Taylor development (see formula (4)) is equal to the square of a linear
form.

Proposition 9. Consider a normal quartic of equation

X = {(x, z) | z4 + z2x2
1 + B(x) = 0},

where B is a homogeneous polynomial of degree 4. Then X has at most 14
singular points, inverse image of the (at most 7) points in the plane where
∇B(x) = 0.

For general choice of B, X has exactly 14 nodes as singularities.
The Gauss map γ is inseparable, it factors through the projection

(x, z) �→ x and a degree two map P2 → P2, x �→ ∇B(x).
In particular, if X has 14 singular points, these are nodes.

Proof. The Gauss map is given by

γ(x, z) = (∇B(x), 0).

The singular points are the inverse image of the critical locus of B,
Σ = {x | ∇B(x) = 0}. Σ consists of at most 7 points by Proposition 5.

For general B we get 7 reduced points, and since z2 is the root of a
quadratic polynomial with derivative x2

1, if the line {x1 = 0} does not meet
the locus Σ, we get 14 nodes as singularities.

Observe finally that x �→ ∇B(x) has degree 2 since the base locus consists
of the length 7 subscheme Σ.

The last assertion follows now easily from the fact that the Gauss map
has degree 8, and from the Gauss estimate (1) of Proposition 2.

3.4. Quartics with inseparable projection from one node

This is another specialization, corresponding to the case a = 0 in (4), but the
conic Q is a smooth one.

Proposition 10. Consider a quartic of equation

X = {(x, z) | z2(x1x2 + x2
3) + B(x) = 0},
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where B is a homogeneous polynomial of degree 4.
The Gauss map γ is inseparable, it factors through the degree two projec-

tion (x, z) �→ x and a degree four map P2 → P2.
X has at most 14 singularities, the node P = {x = 0}, and the inverse

image of a 0-dimensional subscheme of the plane of length 13. If X has 14
singularities, these are nodes; and, for general choice of B, X has 14 nodes
as singularities.

Proof. The Gauss map is given by

γ(x, z) = (z2x2 + B1, z
2x1 + B2, B3).

Multiplying by Q = (x1x2 + x2
3) and using the equation of X, we get that

γ(x, z) = γ′(x) := (Bx2 + B1Q,Bx1 + B2Q,B3Q).

The base point scheme of γ′ in the plane consists of {Q = B = 0}, which is a
length 8 subscheme which in general consists of 8 reduced points, and, since
outside of this subscheme we may assume that Q(x) �= 0 (since
x1 = x2 = Q = 0 has no solutions), of the locus

S := {Bx2 + B1Q = Bx1 + B2Q = B3 = 0}.

We observe now that every quartic polynomial can be uniquely written as the
sum of a square q2 plus a polynomial of the special form below

B′ :=
∑
i�=j

bijx
3
1xj +

∑
i

cixix1x2x3.

Then, working modulo (x3), we get:

B′ ≡ b12x
3
1x2 + b21x

3
2x1, B′

2 ≡ b12x
3
1 + b21x

2
2x1,

B′
1 ≡ b12x

2
1x2 + b21x

3
2.

Hence x1B
′
1 ≡ x2B

′
2 ≡ B′ (mod x3).

Consider the subscheme

L := {x3 = Bx2 + B1Q = Bx1 + B2Q = 0}.

For B = B′ we get L = {x3 = 0}, because Q = x1x2 + x2
3.
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If we now add to B′ the square of a quadratic form q2, L coincides with

{x3 = q2x2 = q2x1 = 0} = {x3 = q2 = 0}.

This is a subscheme of length equal to 4.
Our subscheme S is the residual scheme with respect to the above length

4 scheme L of the scheme

HB := {Bx2 + B1Q = Bx1 + B2Q = x3B3 = 0}.

HB is a Hilbert-Burch Cohen-Macaulay subscheme of codimension 2, corre-
sponding to the 2 × 3 matrix with rows (x1, x2, Q) and (B2, B1, B).

Since the ideal I of the subscheme has a resolution

0 → OP2(−6) ⊕OP2(−6) → OP2(−5)2 ⊕OP2(−4) → I → 0,

an easy Chern class computation shows that the length of HB is 17. Moving
q, the scheme L is disjoint from S, hence we conclude that the length of S is
13.

The degree of the Gauss map is then 2(25 − 8 − 13) = 8; hence, by the
Gauss estimate (1) of Proposition 2 we get 28 ≥ 2ν + b+ u, hence for ν = 14
we obtain 14 nodes.

That the subscheme S consists in general of 13 distinct points follows
from the examples given in [Cat21b], step IV of proposition 3.

3.5. A 24-dimensional family of quartics with 14 nodes

We pass now to the general case, where a �= 0, and Q is not a double line.

Theorem 11. Let K be an algebraically closed field of characteristic 2, and
let X ⊂ P3

K be a general quartic hypersurface such that the dual variety is a
plane.

Then X has 14 nodes as singularities and is unirational, hence supersin-
gular.

These quartic surfaces form an irreducible component, of dimension 24,
of the variety of quartics with 14 nodes.

Proof. The condition that the dual variety is a plane is equivalent to the
existence of coordinates (x, z) (x = (x1, x2, x3)) such that

X = {(x, z) | az4 + z2Q(x) + B(x) = 0}.
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Since we have already dealt with the special case a = 0, and with the
cases Q = 0 or the square of a linear form, let us assume that

a = 1, Q(x) = x1x2 + λx2
3.

The Gauss map is given by

γ(x, z) = z2∇Q + ∇B = (z2x2 + B1, z
2x1 + B2, B3).

Hence for the singular points B3(x) = 0, which implies x1B1 + x2B2 = 0.
Therefore, for the singular points we have

z2 = B1

x2
= B2

x1
.

More precisely, if we have a point x ∈ P2 such that B3(x) = 0, and x2 �= 0,
necessarily we have z2 = B1

x2
and we have a singular point if the equation of

X is satisfied, namely if

z4 + z2Q(x) + B(x) = 0 ⇐⇒ B2
1 + B1x2Q + Bx2

2 = 0.

An easy calculation shows that

B3 = b32x
2
3x2 + b31x

2
3x1 + b13x

3
1 + b23x

3
2 + c1x

2
1x2 + c2x

2
2x1,

which is in the ideal (x1, x2) but does not in general vanish neither on
x1 = x3 = 0 nor on x2 = x3 = 0.

We look now at the points x where

B3 = B2
1 + B1x2Q + Bx2

2 = x2 = 0 ⇐⇒ B3 = x2 = B1 = 0 :

these are contained in the set {x2 = b31x
2
3x1 + b13x

3
1 = 0}, which consists of

the point P ′′ := {x2 = x1 = 0}, and the point P ′ := {x2 = b31x
2
3+b13x

2
1 = 0}.

Since

B1 = b12x
2
1x2 + b13x

2
1x3 + b31x

3
3 + b21x

3
2 + c3x

2
3x2 + c2x

2
2x3,

B1 does not in general vanish in P ′′, but it vanishes indeed in P ′.
At the point P ′, for general choice of B, x1 �= 0, hence if P ′ were to

correspond to a singular point of X, we would have

z2 = B2

x1
⇒ B2

2 + B2x1Q + Bx2
1.
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But the right hand side does not in general vanish at P ′, since x1 �= 0, and
since we can add to B the square of a quadratic form q(x) without affecting
the partial derivatives.

The number of singular points of X is then equal, by the Bézout theo-
rem, to the difference between 18 and the intersection multiplicity of B3 and
B2

1 + B1x2Q + Bx2
2 at the point P ′.

In the special case B = x3
1x2 + x3

2x3 + x3
3x1 + q2, we get the point

P ′ = {x2 = x3 = 0}, and

B3 = x2
3x1 + x3

2, B1 = x2
1x2 + x3

3.

The curve {B3 = 0} has a cusp with tangent {x2 = 0}, so that x3 has order
3, x2 has order 2, hence B2

1 + B1x2Q + Bx2
2 has order equal to 4 for general

choice of q.
By semicontinuity the intersection multiplicity is in general at most 4,

hence the ‘number’ of singular points of X is at least 14. But in the special
case of proposition 9 we have exactly 14 nodes, so 14 points counted with
multiplicity 1; hence by semicontinuity in the other direction we have in
general exactly 14 nodes.

That X is unirational, hence supersingular by [Shio74b], follows since X
is an inseparable double cover of the surface

Y = {(x,w) | aw2 + wQ(x) + B(x) = 0} ⊂ P(1, 1, 1, 2).

Y has degree 4, hence ωY = OY (−1) and Y is a Del Pezzo surface, hence
rational.

The dimensionality assertion follows by a simple parameter counting,
1 + 6 + 15 − 1 = 21 parameters for the above polynomial equations, plus
3 parameters for the plane X∨, which in the chosen equations is the plane
{z = 0}.

Finally, consider the surface

X0 := {(x, z) | z4 + z2l(x)2 + B0(x) = 0}, B0 = x3
1x2 + x3

2x3 + x3
3x1,

and consider the deformations obtained by adding to the equation of X0 a
polynomial

f := z
7∑

i=1
λiG(i)(x) + z3

3∑
j=1

μjLj(x),

where G(1), . . . , G(7) are polynomials of degree 3 such that G(i) is vanishing
at exactly all the critical points of B0 except the i-th point Pi, and the linear
forms Lj(x) vanish on the points Pi, 1 ≤ i ≤ 3, i �= j.
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The polynomial f belongs to a 10-dimensional vector subspace, and we
shall show now that we get independent smoothings of ten of the nodes: one
for each of the pairs of singular points P ′

i , P
′′
i lying over Pi, for i = 4, 5, 6, 7,

and two over each Pi for i = 1, 2, 3.
Then, if we choose one of the two singular points P ′

i , P
′′
i lying over Pi,

for i = 4, 5, 6, 7, say P ′
i , the map to the local deformation space of the sin-

gularity is of the form (in local coordinates u, v, ζ := (z + z′i) such that
B = uv + constant)

uv + (z + z′i)2 + λiz + z
3∑

j=1
μjLj(Pi)(z′i)2,

since z3 = (ζ + z′i)3 ≡ z(z′i)2 (mod ζ2); whereas for j = 1, 2, 3 the map is
given by

uv + (z + z′j)2 + λjz + zμj(z′j)2,

respectively by

uv + (z + z′′j )2 + λjz + zμj(z′′j )2.

Observe that, if we have a node of equation uv + ζ2 = 0, the local defor-
mations are of the form

uv + ζ2 + c0 + c1ζ = 0,

and we have a smoothing iff c1 �= 0.
It is easily seen that the deformation yields ten independent smoothings

of the ten nodes P ′
1, . . . , P

′
7, P

′′
1 , P

′′
2 , P

′′
3 , hence it follows that the variety of

quartics with 14 nodes, at the point X0, has Zariski tangent space of codi-
mension at least 10 in the space of all quartics. Since the space of all quartics
has dimension 34, and our family is irreducible of codimension 10, it follows
that at the point X0 our family coincides with the variety of quartics with 14
nodes, and our family is a component of this variety.

Remark 12. Since our family yields a dimension 9 locus in the moduli space,
we have found an irreducible component of the moduli space of supersingular
K3 surface with a quasi-polarization of degree 4. This may be compared to
Shimada’s results on double sextics where there is an irreducible component
with 21 nodes [Shim04].
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3.6. When the minimal resolution is a K3 surface

Concerning the degree of the Gauss map, which is in the above situation
generally equal to 8, we have a weaker result, which is sufficient, as we will
see in Proposition 14, for the purpose of showing that the minimal resolution
of X is always a K3 surface if the number of singular points is at least 13.
Equivalently, all singularities are rational double points.

Lemma 13. Assume that the normal quartic X has the following equation

X = {(x, z) | z4 + z2Q(x) + B(x) = 0},

where the quadratic form Q is not the square of a linear form.
Then the degree of the Gauss map is at least 4 or X has at most 12

singular points.

Proof. We use again the normal form where Q(x) = x1x2 + λx2
3, λ ∈ {0, 1}.

The Gauss map factors through the inseparable double cover (setting
w := z2) of the Del Pezzo surface Y of degree 2 in P(1, 1, 1, 2), such that
ωY = OY (−1).

The projection to the P2 with coordinates x and the Gauss map to the
plane with coordinates y induce a birational embedding of Y in P2×P2, since
y = γ(x,w) = (wx2 + B1, wx1 + B2, B3), hence

y1/y3 = (wx2 + B1)/B3 ⇒ w = (B3/x2)(y1/y3 + B1/B3).

The image lands, as it is immediate to verify, in the flag manifold F, a
smooth divisor of bitype (1,1)

F =
{

(x, y)
∣∣∣∣∣
∑
i

xiyi = 0
}
,

and inside F the image Z of Y is a divisor of bitype (d, 2) where 2d is the
degree of the Gauss map.

We want to show that d > 1.
By adjunction the dualizing sheaf ωZ of Z is a divisor of bitype (d−2, 0).

whereas the canonical system of Y corresponds to a divisor of bitype (−1, 0).
The crucial observation is that, if d = 1, then these two divisors coincide.

Y has a rational map to Z and composing with the first projection we
get a morphism, while composing with the second projection we get the blow
up of some points.
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Let Y ′ be the blow up of Y , such that π : Y ′ → Z is a birational morphism.
Also the second projection p : Z → P2 is a birational morphism, moreover the
fibres of p are contained in the fibres of p : F → P2, which are isomorphic to
P1. We blow up the points of P2 where the fibre of p : Z → P2 has dimension
1, obtaining Z ′. Then we get a factorization Z → Z ′ → P2.

Since Z ′ is smooth, and Z → Z ′ is finite and birational, follows that
Z ∼= Z ′ and Z is smooth.

Now Z and Y are birational normal Del Pezzo surfaces, and for both the
anticanonical divisor is the pull back of OP2(1) under the first projection (to
the P2 with coordinates (x)).

The first projection φ : Z → P2 has degree two and is either finite, or
its fibres are isomorphic to P1. By normality we have a birational morphism
ψ : Z → Y . In the first case ψ is an isomorphism, in the second case it is a
minimal resolution of singularites. And since the fibres are smooth rational
curves with normal bundle of degree −2, then the corresponding singularities
of Y are nodes.

This shows that d = 1 is only possible if there are no singular points of
X which do not map to singular points of Y , and the latter are nodes.

Since the singularities of Y correspond to the singularities of X for which
Q(x) = 0, we see that all the singular points of X satisfy Q(x) = 0. Since the
singular points of Y are defined by Q(x) = 0 and by 3 equations of degree
3, it follows that there is a linear combination B′(w, x) of these 3 equations
such that the singular points of Y are contained in the finite set defined by
Q(x) = B′(w, x) = 0.

Since OY (1) has self-intersection equal to 2, Y has at most 12 singular
points.

Proposition 14. If 2ν > 28 − deg(γ) deg(X∨), then all singularities of X
are rational double points, and the minimal resolution S is a K3 surface. In
particular, this holds for ν ≥ 13.

Proof. The first statement follows directly from combining Propositions 2
and 4.

Let’s deal with the second assertion.
If X∨ is not a plane, then, by Proposition 2 (IV), deg(γ) deg(X∨) ≥ 3

and we are done.
Hence we may assume that X∨ is a plane.
By Lemma 13, Propositions 9 and 10, either the number of singular points

is at most 12, or deg(γ) deg(X∨) ≥ 4, or we are in the cases where

X = {(x, z)|z2x2
1 + B(x) = 0},
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or
X = {(x, z)|z2x1x2 + B(x) = 0}.

The former case was dealt in Step I of Proposition 3 of Part I, showing
that X has at most 8 singular points, and in this case Example 10 ibidem
shows that deg(γ) ≥ 4.

In the latter case Step II of Proposition 3 of Part I shows that X has at
most 13 singular points; and that it has exactly 13 points only if it has 12
nodes (corresponding to the points of the plane where B3 = B1x1 + B = 0),
and a biplanar singular point (at x = 0): hence also in this case the minimal
resolution is a K3 surface.

The following result improves upon part (V) of Proposition 2.

Corollary 15. If ν ≥ 14 all the singularities are either nodes or biplanar
double points.

Proof. Recall the basic inequality

36 − deg(γ) deg(X∨) ≥ 2ν + b + 6u.

We are claiming u = 0 if ν ≥ 14, hence it suffices to recall that we saw in
the previous proposition that deg(γ) deg(X∨) ≥ 3.

4. Proof of the Main Theorem 1 – general bound

Throughout this section until 4.4, we assume that X is a normal quartic
surface with ν ≥ 15 singular points in order to establish a contradiction and
prove the general bound of Theorem 1. We use the following result which
will follow from Propositions 29 and 30 (to be proven in Section 6 using the
theory of elliptic and quasi-elliptic fibrations on K3 surfaces).

Main Claim 16. If X has ν ≥ 15 singular points, then, for each pair Pi, Pj

of singular points of X, the line L∨
ij dual to Lij := PiPj is contained in the

dual surface X∨.

4.1. The main claim implies the general bound of Theorem 1

It will suffice to show that:

Claim 17. In the above setting, X∨ contains two skew lines and 7 distinct
coplanar lines.
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Indeed the claim implies that X∨ is a surface of degree ≥ 7, and by the
Gauss map estimate (1) of Proposition 2 we have

36 − 7 deg(γ) ≥ 2ν + b + 6u,

hence ν ≤ 14 as announced.

4.2. Proof of Claim 17

We observe first that if a line Lij passes through a third singular point P of
X, then it is contained in X, and the planes H ⊃ Lij cut X in the line Lij

plus a cubic C meeting Lij in the three points P, Pi, Pj .
Hence there cannot be 4 collinear singular points: because then C would

contain Lij and Lij ⊂ Sing(X), contradicting the normality of X.
We show now that each plane contains at most 6 singular points of X.
In fact, if the plane is the plane z = 0, and the equation of X is

B(x) + zG(x) mod (z2),

the singular points on the plane are the solutions of

z = ∇B(x) = B(x) = G(x) = 0.

A reduced plane quartic has at most 6 singular points. If the quartic is non-
reduced, and B(x) = q(x)2, then the singular points are the solutions of
z = q(x) = G(x) = 0 and they are at most 6 by the theorem of Bézout and
since X is normal.

The case where {x | B(x) = 0} consists of a double line and a reduced
conic leads to at most one singular point outside the line, hence at most 4
singular points in the plane.

Whence, if ν ≥ 7, there are 4 linearly independent singular points of X,
and we have found two skew lines Lij , Lhk: likewise the dual lines are skew.

Assume now that ν ≥ 15 and consider all the lines of the form L1j : these
are at least 7, since at most 3 singular points are collinear, and the dual lines
are contained in the plane dual to the point P1.

4.3. Propositions 29 and 30 imply the Main Claim 16

Since we assume ν ≥ 15, we can apply Proposition 29 to show that each pair
(Pi, Pj) induces a quasi-elliptic fibration. By the degree estimate in Proposi-
tion 2, all singularities are nodes or biplanar double points, so Proposition 30
proves that the pencil of planes containing Lij yields a line L∨

ij contained in
X∨.
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4.4. Auxiliary results

We establish here, with similar arguments, two easy results for later use. To
this end, we distinguish whether two given singular points P1, P2 are collinear
with a third singularity or not (in the latter case we call P1, P2 companions).
Recall that in the first case, the line L = P1P2 is contained in X, and each
plane containing L contains at most 6 singularities.

Lemma 18. If ν ≥ 9, then there is a singular point with two companions.

Proof. Assume to the contrary that each singularity has at most one compan-
ion. Take a point P1 and three collinear pairs, say P1, P2, P3 ∈ L,
P1, P4, P5 ∈ L1, P1, P7, P8 ∈ L′.

Let H be the plane containing P1, P2, P3, P4, P5, and let H ′ be the plane
containing P1, P2, P3, P7, P8. These are different, since each plane contains at
most 6 singular points.

By assumption, we may assume without loss of generality that P4 is not
companion of P2, hence there is P6 collinear with P2, P4, so that
P2, P4, P6 ∈ L2 ⊂ X. At this stage we have obtained 6 singular points (the
maximum) in the plane H, and we observe that P3 is not companion of P4 or
P5.

Hence we get 4 lines

X ∩H = L + L1 + L2 + L3,

where L3 must contain the singular points P3, P6 and thus also P5. Thereby
we reach the conclusion that P1 is companion of P6.

We establish now a contradiction as follows. Playing the same game for
the other plane H ′, we find another companion of P1, call it P9.

Since P9 ∈ H ′, while P6 �∈ H ′ (since H ∩ H ′ = L) we have found two
different companions for P1, and we have reached a contradiction.

Proposition 19. If X has ν = 14 singular points and, for each pair Pi, Pj

of singular points of X, the pencil of planes containing the line Lij = PiPj

yields a line L∨
ij contained in the dual surface X∨, then the degree of the dual

surface is at least 8. In particular, the singular points are just 14 nodes.

Proof. By the Gauss estimate it suffices to show the first assertion, and since
X∨ contains at least two skew lines, it suffices to show that it contains at
least 8 coplanar lines. But this follows from Lemma 18 as there is a singular
point P1 on X collinear with at most 5 pairs of singularities, thus companion
to at least 3, yielding a total number of at least 8 coplanar lines on X∨.
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We will use Proposition 19 later, and we observe that a weaker form
suffices, where there is one point P1 with the property of the proposition
holding for all lines P1Pj , if X∨ contains a line skew to (one of) the 8 dual
lines from P1.

5. Genus one fibrations

We shall now invoke some results from the theory of genus one fibrations on
K3 surfaces in order to achieve the proof of Propositions 29 and 30.

These will also be used for the proof of the other parts of Theorem 1.
Let X be a projective K3 surface. Let L ∈ Pic(X) be a divisor class with

L2 ≥ −2; then, by Riemann-Roch, χ(L) ≥ 1 hence L or −L is effective.
Hence let us assume that L is linearly equivalent to an effective divisor D.
If D2 = 0, then the linear system |D| has dimension ≥ 1, and we can write
|D| = |M |+Ψ, where Ψ is the fixed part. Clearly then Ψ =

∑
i Ei where each

Ei is an irreducible curve with E2
i = −2.

Since

0 = D2 = M2 + DΨ + MΨ, M2 ≥ 0, MΨ ≥ 0,(5)

we have DΨ < 0, or Ψ = 0. Because, if DΨ ≥ 0 and Ψ > 0, then (5) implies
M2 = DΨ = MΨ = 0, hence Ψ2 = 0 ⇒ Ψ = 0, the intersection form being
negative definite by Zariski’s lemma on the divisor Ψ: because Ψ is contained
in the fibres of the fibration associated to |M |, there are no multiple fibres,
and Ψ does not contain any full fibre (else, it would not be the fixed part).

The conclusion is that either |D| has no fixed part or there is E1 such
that DE1 < 0, hence reflection in the (−2)-curve E1 produces a new divisor
class

D′′ := D + (DE1)E1

such that (D′′)2 = 0. The system |D′′| has dimension ≥ 1, and since the degree
of D′′ is smaller than the degree of D, the process terminates producing a
base point free system |D′|, with (D′)2 = 0, hence |D′| is a pencil of genus 1
curves. We may also assume that D′ is primitive, so that D′ is indeed a fibre
of a fibration f : X → P1.

If the general fibre is smooth, we call the fibration elliptic and we may
further distinguish whether the fibration admits a section or not. In charac-
teristics 2 and 3, however, the general fibre may also be a cuspidal cubic curve
whence the fibration is called quasi-elliptic.
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Examples are given by sparse Weierstrass forms; more precisely, in terms
of the general equation (8) which shall be recalled later, those forms which do
not contain terms linear in y (in characteristic 2) or all of whose terms have
degree 0 or 3 in x (in characteristic 3).

In particular, quasi-elliptic surfaces over P1 are unirational and thus
supersingular (ρ = b2) by [Shio74b] which makes them quite special (see
[Ru-Sha79], for instance).

Remark 20. Any (−2) curve C on X which is perpendicular to D′ features
as a fibre component of |D′| (but the analogous statement for (−2)-curves
orthogonal to D is surprisingly subtle in case there is some base locus involved.
We will come back to this problem in part III.

Remark 21. In general, given an effective divisor D with D2 = 0, |D| need
not be a pencil, the easiest example being the one where D consists of a genus
2 curve and a disjoint (−2)-curve, that is,

D = M + E,M2 = 2, E2 = −2,ME = 0,

here M − E gives the desired pencil.
A sufficient condition for dim |D| = 1 is that the divisor D is numerically

connected, that is, any decomposition D = A + B, where A,B are effective,
satisfies AB ≥ 1.

Because, by the exact sequence

0 → OX → OX(D) → OD(D) → 0

we have H1(OX(D)) = 0 unless h1(OD(D)) ≥ 2. Since h1(OD(D)) = h0(OD),
and h0(OD) = 1 if D is numerically connected, [Fran49], [Ram72], our claim
follows.

In this case, M2 = 0, and D could, for instance, consist of a fibre plus a
(−2)-curve which is a section,

D = M + E, M2 = 0, E2 = −2, ME = 1.

5.1. Disjoint smooth rational fibre components

For later use, let us record some rather special features of elliptic fibrations
in characteristic 2.

Proposition 22. In characteristic 2, on an elliptic K3 surface the singular
fibres contain at most 12 disjoint (−2)-curves.
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At first, this result may seem rather surprising, since usually, i.e. outside
characteristic 2, elliptic fibrations allow for as many as 16 disjoint (−2)-curves.
This happens in the case of 4 fibres of Kodaira type I∗0, each containing 4
disjoint (−2)-curves – for instance, on the Kummer surface of a product of
two elliptic curves.

Proof. What prevents the same as above to happen in characteristic 2 is the
fact that all additive fibres, except for Kodaira types IV, IV∗, come with wild
ramification by [SS13].

More precisely, there still is a representation of the Euler-Poincaré char-
acteristic of the elliptic K3 surface X as a sum over the fibres:

24 = e(X) =
∑
v

(e(Fv) + δv).

Here δv denotes the index of wild ramification, studied in more generality in
[Del73]. On an elliptic surface, it can be computed as the difference of the
Euler number e(Fv) and the local multiplicity of the discriminant which is
the equation for the singular fibres and may be computed on the Jacobian by
[CDL21, p.348]. The bounds for δv in the next table have been taken from
[SS13, Prop. 5.1]. Note that the number of components mv is the index of
the Dynkin type plus one, while, except in the first case, the Euler number
is mv + 1. The table also collects the maximal number Nv disjoint (−2)-fibre
components, to be computed below.

fibre type In II III IV I∗n(n �= 1) I∗1 IV∗ III∗ II∗

Dynkin type An−1 A0 A1 A2 Dn+4 D5 E6 E7 E8
mv n 1 2 3 n + 5 6 7 8 9
δv 0 ≥ 2 ≥ 1 0 ≥ 2 1 0 ≥ 1 ≥ 1

e(Fv) n 2 3 4 n + 6 7 8 9 10
Nv �n

2 � 0 1 1 4 + �n
2 � 4 4 5 5

For the convenience of the reader, we also include the dual graphs of the
fibres in terms of the extended Dynkin diagrams Ãn, D̃k (k ≥ 4). For fibre
types IV∗, III∗, II∗, we only give the Dynkin diagram El (l = 6, 7, 8) for sake
of a unified presentation. For these types the fibre is obtained by adding
another fibre component e0 adjacent to the vertex e1 in case E6, resp. e2 in
case E7, resp. e8 in case E8.

In total, the simple fibre components (i.e. those having multiplicity 1 in
the fibre) are, depending on the fibre type:

Ãn all components,
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D̃k the exterior components,
Ẽl e0, e2, e6 (l = 6) resp. e0, e7 (l = 7), resp. e0 (l = 8).

� � � � �

a1 a2
. . .

an
����

�����a0
(Ãn)

(D̃k) � � � �. . . ��
��

�

�

��
��

�

�

d0

d1 d2 dk−2

dk−1

dk

� � � � � � �

e2 e3 e4 e5

�e1

. . .
el

(El)

Case by case, this allows us to compare the maximal number Nv of disjoint
(−2)-fibre components with the contribution to the Euler-Poincaré character-
istic, see the above table.

Overall, we find

Nv ≤
1
2�e(Fv) + δv�(6)

and thus
∑
v

Nv ≤
∑
v

1
2�e(Fv) + δv� ≤

1
2
∑
v

(e(Fv) + δv) = 12.(7)

This yields the desired inequality and proves our assertion.

Remark 23. If equality holds at each step of the chain of inequalities

Nv ≤
1
2�e(Fv) + δv� ≤

1
2(e(Fv) + δv),

then δv attains its minimum value, and the multiplicity (e(Fv) + δv) is an
even number, hence we get only the types

I2n (n > 0), I∗2n (n ≥ 0), I∗1, IV∗, III∗.

Corollary 24. If the fibres of an elliptic K3 surface in characteristic 2 con-
tain 12 disjoint (−2)-curves, then the only possible singular fibre types are
(with minimum possible δv each)

I2n (n > 0), I∗2n (n ≥ 0), I∗1, IV∗, III∗.
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Proof. This is a direct consequence of the proof of Proposition 22 since all
the inequalities in (7) actually have to be equalities (in particular the same
must hold for (6) at each v, as in Remark 23).

A close inspection of the fibres in the proof of Proposition 22 allows us
even to rule out higher ADE-types:

Corollary 25. If the fibres of an elliptic K3 surface in characteristic 2 sup-
port 12 disjoint ADE-configurations of (−2)-curves, then each has type A1.

Proof. These 12 disjoint ADE-configurations produce at least 12 disjoint
(−2)-curves, hence we may apply the previous corollary and check directly.

5.2. Connection with supersingularity

To relate with Theorem 1, especially with the statement about supersingular
K3 surfaces, we provide the next result which concerns the case of exact
equality in Proposition 22.

Proposition 26. Let X be an elliptic K3 surface such that there are 12
disjoint (−2)-curves contained in the fibres. Then X is supersingular or there
are two additive fibres.

Note that the fibres in Proposition 26 are the fibres of Corollary 24: either
I2n, or additive fibres which are non-reduced. This will be of great use in what
follows.

Remark 27. (i) It is easy to see that both cases of Proposition 26 can occur:
the first one via inseparable base change from rational elliptic surfaces (see
[SS19, p. 342], Proposition 12.32) the other one (as in characteristic zero!)
by taking the Kummer surface of the product of two elliptic curves (both
not supersingular): here there are two singular fibres of Kodaira type I∗4 by
[Shio74a].

(ii) The second case of Proposition 26 encompasses the case where there
are 12 disjoint (−2)-curves contained in the fibres and the j-invariant is con-
stant, since then every reducible fibre is additive, and if there were a single
reducible fibre, it would have type I∗16, which is impossible by [Sch06].

Proof of Proposition 26. If the singular fibres contain 12 disjoint (−2)-curves,
then by the proof of Proposition 22, both inequalities in (7) are in fact equal-
ities, with fibre types given in Corollary 24.

Hence δv attains the minimal possible value δv(min) and e(Fv) + δv =
e(Fv) + δv(min) is always even.
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Since e(Fv) + δv is exactly the vanishing order of the discriminant Δ at v
by [Ogg67], we find that Δ is a square in k(t).

5.2.1. The Jacobian fibration We now switch to the Jacobian J of X
– another elliptic K3 surface, since it shares the same invariants of X by
[CD89, Cor. 5.3.5]. Note that J also has the same Picard number as X, but,
by definition, J has a section while X may not.

By [CD89, Theorem 5.3.1] J and X share the same singular fibres (and
by [CDL21, p.348] also the same Δ and δv (minimal!)) since, by virtue of
the canonical bundle formula (Theorem 2 of [Bom-Mum77]), there are no
multiple fibres.

In terms of a minimal Weierstrass equation for J ,

(8) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ k[t], deg(ai) ≤ 2i,

there are essentially two options for a1 (since a1 ≡ 0 forces all singular fibres
to be additive and is thus covered by the second alternative of Proposition 26,
cf. Remark 27 (ii)), up to Möbius transformations:

a1 = t or a1 = t2.

In the first case, we can argue directly with the general expression of the
discriminant,

Δ = a4
3 + a3

1a
3
3 + a4

1a
2
4 + a4

1a2a
2
3 + a5

1a3a4 + a6
1a6.(9)

Notably, if a1 = t, then this reads modulo t4

Δ ≡ a3(0)4 + a3(0)3t3 mod t4,

so Δ can only be a square if a3(0) = 0 which makes the fibre at t = 0 singular
and in fact additive. By symmetry, the same reasoning applies at t = ∞,
so there are two additive fibres and we reach the second alternative of this
proposition.

5.2.2. Normal forms for additive fibre types There remains to study
the case a1 = t2. We start arguing with the minimality of δ0 to reduce to just
3 cases.

If there is a singular fibre at t = 0 (then a3 vanishes at t = 0 and we have
an additive fibre), then we can use Tate’s algorithm to develop a normal form
for the fibre [Tat75], [Sil94, IV.9].
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For fibres of type I∗2n, the normal form is

y2 + t2xy + tn+2a′3y = x3 + ta′2x
2 + tn+2a′4x + t2n+4a′6(10)

with t � a′2a
′
4; here we have used Steps 6 and Step 7 in [Sil94, IV.9], pages

367-368. For n = 0 we use indeed Step 6, and the fact that the auxiliary
polynomial P (T ) in loc. cit. has three distinct roots to infer that t � a′2a

′
4

after locating one root at T = 0. For n = 1 the assertions are proven in
Step 7, page 367; for higher n one proceeds by induction on n, see line 8 of
page 368 concerning the assertion on the divisibility of a3, a4, a6 going up in
each induction step. Note that by the argument in loc. cit., the divisibility
of a6 grows in fact by two in each of our steps. This shows that tn+2 | a3, a4
and t2n+3 | a6 and then a translation in x ensures that indeed t2n+4 | a6 as
claimed.

Substituting into (9) gives

Δ = t4n+8a′ 43 + t3n+12a′ 33 + t2n+12a′ 24 + h.o.t.,

whence, for the wild ramification

δ0 = ord(Δ) − e(F ) = ord(Δ) − (2n + 6) ≥ 2n + 2,

we have δ0 ≥ 4 for n > 0. Since Corollary 24 requires minimal wild ramifica-
tion δ0 = 2, this leaves only fibres of type I∗0 among all fibre types I∗2m.

For a fibre of type I∗1, the normal form arises from an additional vanishing
condition at a4 compared to (10), again by [Sil94, IV.9, Step 7]:

y2 + t2xy + t2a′3y = x3 + ta′2x
2 + t3a′4x + t4a′6 with t � a′2a

′
3.

Then fibre type IV∗ is given by further imposing t2 | a2 by [Sil94, IV.9,
Step 8], still with t � a′3 (in agreement with δv = 0). Meanwhile a fibre of type
III∗ imposes additional vanishing conditions t3 | a3, t

5 | a6, but t4 � a4 [Sil94,
IV.9, Step 9]. Substituting into (9) gives

Δ = t12a′ 43 + t14a′ 24 + t15a′ 33 + h.o.t.,

so in particular δ0 ≥ 3, ruling out fibre type III∗ by Corollary 24 again.
To sum it up, the only additive fibre types remaining from Corollary 24

are I∗0, I∗1 and IV∗. In each case, one can easily parametrize all K3 surfaces with
such a given fibre and square discriminant, starting from the above normal
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form. It should be noted that for these types the normal form can be derived
by means of a linear transformation

(x, y) �→ (x + α4, y + α2x + α6)(11)

with αi ∈ k[t] of degree at most i; in particular, the degree bounds of (8) are
preserved.

5.2.3. Conditions for the discriminant to be a square For type I∗0, (10)
leads to the discriminant

Δ = t8(a′ 43 + t4a′ 33 + t4a′ 24 + t5a′2a
′ 2
3 + t6a′3a

′
4 + t8a′6)

where, by the minimality of wild ramification, t � a′3. Modulo square sum-
mands, this simplifies as

Δ ≡ t12(a′ 33 + ta′2a
′ 2
3 + t2a′3a

′
4 + t4a′6) mod k[t]2.

Write a′i =
∑

j a
′
i,jt

j . Then the condition that Δ is a square, i.e. that all odd
degree coefficients vanish, determines

• the odd degree coefficients of a′6 in terms of the coefficients of the other
forms a′m (looking at the coefficients of Δ at t17, . . . , t23).

• a′2,0 = a′3,1 (from the t13-coefficient);
• a′4,1 = (a′2,2a′ 23,0 + a′ 23,0a

′
3,3 + a′3,1a4,0)/a′3,0 (from the t15-coefficient).

In particular, we find that the family of elliptic K3 surfaces with a fibre
of type I∗0 with wild ramification of index 2 and all other singular fibres of
type I2n (generically 8 I2’s) is irreducible.

Its moduli dimension, equal to 7, is obtained by comparing the degrees

deg(a′3) ≤ 4, deg(a′2) ≤ 3, deg(a′4) ≤ 6, deg(a′6) ≤ 8

(these bounds follow from the degree bounds in (8) and from (10)), against
Möbius transformations t �→ ut/(εt + 1) (u ∈ k×, ε ∈ k) and the following
variable transformations preserving the shape of (10) (since Δ being a square
is automatically preserved):

(x, y) �→ (u4x + t2β2, u
6y + tβ1x + t2β4)(12)

where the degree of each polynomial βi ∈ k[t] is at most i.
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5.2.4. Conclusion of proof using number of moduli Any smooth K3
surface arising from a member of the above family satisfies

ρ ≥ 2 + 8 + 4 = 14

by the Shioda–Tate formula where the first entry comes from the zero section
and the fibre, the second from the semi-stable fibres (each of type I2n for
some n ∈ N, hence contributing 2n to the Euler–Poincaré characteristic and
2n − 1 to the Shioda–Tate formula) and the third from the fibre at t = 0
(contributing 8 to the Euler–Poincaré characteristic, including wild ramifica-
tion, and 4 to the Shioda–Tate formula). If a very general member were not
supersingular, then it would deform in a 6-dimensional family as in [LM18,
Prop. 4.1] (based on [Del81]) but this is exceeded by our moduli count. Hence
the whole family is supersingular as claimed.

We pass now to the case of a fibre of type I∗1 or of type IV∗. As explained
before, the K3 surfaces with a fibre of type I∗1 are contained in the subfamily
where t3 | a4 (while for I∗0 we simply had t2 | a4) and type IV∗ additionally
requires t2 | a2. Each family allows the same transformations, so the moduli
dimension is 6, resp. 5. But ρ generically goes up by 1 each time (promoting
the root lattice at the special fibre from D4 through D5 to E6), so the whole
family is supersingular again by [LM18, Prop. 4.1].

If there is no additive fibre, then the condition that Δ is a square gives
9 moduli for Δ: moreover the condition that a1 = t2 reduces the number of
moduli to 8, and one can show by the same kind of arguments as above that
we have an irreducible 8-dimensional family of semi-stable elliptic K3 surfaces
with 12 disjoint A1’s embedding into the singular fibres; since ρ ≥ 2+12 = 14,
again by the formula of [LM18, Prop. 4.1] the family is supersingular.

Remark 28. Another possible argument of proof is as follows: in each case
we have an irreducible family of a certain dimension k, and inside it we
can construct a family of the same dimension k of surfaces arising via an
inseparable base change from a rational elliptic surface. The surfaces are thus
unirational, hence supersingular, and this shows directly that the original
family is a family of supersingular surfaces.

Indeed, starting from rational elliptic surfaces with singular fibre at t = 0
of type I0 (smooth supersingular), II, III, IV, respectively, inseparable base
change exactly results in a family of supersingular K3 surfaces of the expected
type and dimension. Note that, since the elliptic fibrations admit a 2-torsion
section by [SS19, p.342], the Artin invariants [Art74] satisfy σ ≤ 9.
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6. Proof of the main claim: there cannot be at least 15
singularities

In order to bound the number of singularities on a normal quartic X ⊂ P3,
we shall use the theory of genus 1 fibrations laid out in the previous section.

By Proposition 14, if X has at least 13 singular points (ν ≥ 13), then the
singularities are rational double points and the minimal resolution S is a K3
surface.

S is endowed with the following divisors: the pull-back H of a plane section
and, for each pair of singular points, say P1, P2, the respective fundamental
cycles D1, D2 (see [Art66]), consisting of the exceptional curves with suitable
multiplicities, and equal to the pull back of the maximal ideal at the singular
point.

Then, since D2
i = −2,

E := H −D1 −D2

gives an effective isotropic class in Pic(S).
We have that the linear system |E| is base point free if and only if the line

L = P1P2 is not contained in X: this is clear for the points of S not lying over
P1, P2; moreover, since for each exceptional curve C the intersection number
DiC ≤ 0, E has no fixed part (it was observed at the beginning of the previous
section that the fixed part Ψ satisfies, if non empty, EΨ < 0) hence it has no
base points since E2 = 0.

If instead the line L is contained in X, denote still by L the strict trans-
form of the line and replace E by E − L, observing that EL = −1, hence
(E − L)2 = 0, and continue until we get a base point free pencil |E′|, which
gives a morphism S → P1 whose fibres correspond to the planes through
P1, P2.

Proposition 29. Let X ⊂ P3 be a normal quartic with at least 15 singulari-
ties. Then every genus one pencil |E′| arising from two singularities on X as
above is quasi-elliptic.

Proof. Let ν ≥ 15 denote the number of singularities, P1, . . . , Pν , and let
Cj

i , j = 1, . . . , n(i) be the irreducible exceptional curves lying above the point
Pi.

Let us first assume that no Pi (i > 2) lies on L, so that each lies on a unique
plane through P1, P2; hence the Cj

i ’s are components of the corresponding
fibre of |E′| (as in Remark 20). Then the fibration |E′| has ν−2 > 12 disjoint
smooth rational fibre components (the Cj

i ).
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If, on the other hand, there is a third singularity on L, say P3, then this
implies not only that L ⊂ X, but also that L appears as a multiple component
of X ∩H for a unique plane H (just take a point P ∈ L which is a smooth
point of X, and let H be the tangent plane to X at P : then H ∩X ≥ 2L).

This implies that L is a component of the fibre corresponding to H, and,
together with C1

4 , . . . , C
1
ν , we obtain ν− 2 > 12 disjoint smooth rational fibre

components as before.
In both cases the proposition follows then from Proposition 22.

Proposition 30. Let X ⊂ P3 be a normal quartic. Let L be a line through
two singular points of X such that X ∩ L consists of nodes and biplanar
double points (and smooth points if L ⊂ X). If the fibration induced by L is
quasi-elliptic, then the line dual to L is contained in the dual surface X∨.

Proof. We consider the curve Σ0 ⊂ S (S is the minimal resolution of X as
usual) consisting of the horizontal divisorial part of the set of singular points
of the fibres, the so-called curve of cusps.

The first case is when this curve is not exceptional for the map

Φ : S → X ⊂ P3;

then we get a curve on X consisting of singular points of the intersections
H ∩ X, where H is a plane of the pencil through L = PP ′. Therefore the
dual line L∨ is contained in X∨.

The second case is where Σ0 is exceptional: we use for this Proposition 1,
page 199 of [Bom-Mum76], and denote as in loc. cit. f : S → B the quasi-
elliptic fibration. At a general point Q′ ∈ Σ0, the fibre F := Ff(Q′) has a cusp
and, if t is a local parameter for B at f(Q′), the map is given by t = u(x2+y3)
where u is a unit in the formal power series ring which is the completion of
the local ring OS,Q′ .

Bombieri and Mumford show that there is a local parameter σ such that
Σ0 = {σ = 0}, and that (Σ0 · F )Q′ = 2, so that x, σ are local parameters for
S at Q′, and we can write y = σ + λx plus higher order terms.

Since we assume that the curve Σ0 is contracted by the map Φ, it follows
that Φ has a local Taylor development which contains only terms in the ideal
generated by y.

Hence we are left only with monomials y, y2, xy, . . . whose respective or-
ders on the normalization of the fibre F are: 2, 4, 5.

We conclude that the image of F under Φ has a higher order cusp at a
singular point P ′′ lying in L.
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By assumption, we can write the equation of X at P ′′ in local affine
coordinates as

h := xy + λz2 + g(x, y, z) = 0 (λ ∈ K),

where g has order ≥ 3.
Since we want that the planes of the pencil cut a cusp at P ′′, the quadratic

part of the restriction of the equation h to the planes must be the square of a
linear form, hence in the projectivized tangent space we get lines intersecting
the exceptional conic C with multiplicity two, hence lines tangent to the conic;
from the equation xy + λz2 of the quadratic part follows that this pencil is
generated by the linear forms x, y.

We claim now that, as in the first case, the pencil of planes through L
yields a line in the dual surface X∨.

Because the Gauss map is given by (y, x, 0, 0)+h.o.t, and the image of the
exceptional divisor in the dual surface is the pencil of planes
μ0x + μ1y = 0, which is exactly the pencil of planes containing L by our
previous argument.

Remark 31. Both cases from the proof of the proposition actually occur (for
the second case, it suffices that g(x, y, z) above has order 4).

Note that Propositions 29 and 30 provide the missing ingredients for the
proof of the Main Claim 16 in 4.3. Thereby the proof of the first statement
of Theorem 1 is now complete.

7. 14 singularities are nodes

The aim of this section is to prove the following result which covers the second
part of Theorem 1:

Theorem 32. Let X ⊂ P3 be a normal quartic with 14 singular points. Then
all singularities are nodes.

Proof. The minimal resolution S of X is a K3 surface by Proposition 14, and
the singular points are nodes or biplanar double points (u = 0) by Corol-
lary 15.

Assume that we have a singular point P which is not of type A1. Just like
in the proof of Proposition 29, any genus one fibration S → P1 induced by
two singular points admits 12 disjoint smooth rational curves in the fibres.
By Proposition 22 this is the maximum possible for an elliptic fibration.
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If the fibration is not induced by P and another singular point, P lies
in exactly one fibre of X and the fundamental cycle is supported on the
corresponding fibre of S. Hence Corollary 25 implies that the fibration is
quasi-elliptic.

Any singular point Q �= P thus admits at least 6 quasi-elliptic fibrations
induced by a pair of singular points Q,Q′ which are nodes or biplanar double
points. Hence we infer from Proposition 30 and the proof of Proposition 19
that deg(X∨) ≥ 6 and b ≤ 2. More precisely, by Remark 3, P can only have
type A2 or A3, and in the former case there may be a second singular point
P ′ of type A2.

In fact, we can say more about the configuration of singularities relative
to Q. Namely Q is collinear with at least 5 pairs of singularities (possibly
including P ), for else it would induces at least 8 quasi-elliptic fibrations, and
deg(X∨) ≥ 8 would give a contradiction using (1).

We pick one such pair not involving P , say Q,Q′, Q′′ ∈ L ⊂ X, and
consider the induced quasi-elliptic fibration

π : S → P1.

The fibres are the cubics C residual to L in the respective plane H con-
taining L. Except possibly for the cubic containing L as a component, these
cubics are all reduced, since they meet L in the three points Q,Q′, Q′′. Re-
call moreover that the exceptional (−2)-curve resolving a node not on L also
appears always with multiplicity 1, hence the only fibres of π which may not
be reduced are those containing exceptional curves lying above the singular
points of type An with n ≥ 2 and the one containing L. Since b ≤ 2, this
makes for at most 3 fibres.

Since there are 5 pairs of singular points collinear with Q, there has to be
a pair of nodes left which lie on a reduced fibre (since no plane can contain
more than 6 singular points (cf. 4.2), so all pairs of points �= (Q′, Q′′) collinear
with Q lie on different fibres). In particular, this reduced fibre has at least 4
components. However, by [CD89, Prop. 5.5.10] the possible fibre types of a
quasi-elliptic fibration are a priori

II, III, I∗2n (n ≥ 0), III∗, II∗.(13)

Of these, only fibres of type II, III are reduced, with one or two compo-
nents. This gives the required contradiction. Hence all singularities of X are
nodes.
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8. Proof of Theorem 1: the non-supersingular case

To complete the proof of Theorem 1, it remains to analyse the non-supersingular
case.

Proposition 33. Let X ⊂ P3 be a normal quartic such that a minimal
resolution is not a supersingular K3 surface. Then X contains at most 13
singular points.

Proof. By the general part of Theorem 1, we only have to rule out: X con-
tains 14 singularities. Assuming this, all singular points are nodes by The-
orem 32, and the minimal resolution S is a K3 surface (non-supersingular
by assumption). We continue to study the fibrations πi,j induced by pairs
of nodes (Pi, Pj). The proof of Theorem 32 shows that the fibres contain 12
disjoint (−2)-curves, so by Proposition 26 there are two additive fibres; by
Corollary 24, the possible types are

I∗2n(n ≥ 0), I∗1, IV∗, and III∗.(14)

We distinguish three cases:

8.1 If there are 3 collinear nodes, then they give sections of the induced
fibration, and the 11 exceptional curves above the other nodes embed into
the negative definite root lattices which are the orthogonal complements of
the sections. On the multiplicative fibres, this imposes no general restrictions,
but additive fibres can, by inspection of the singular fibres, as described in
the proof of Proposition 22, only support one disjoint smooth rational curve
less. This is because the sections necessarily intersect only the simple fibre
components. Therefore the number of disjoint rational curves not meeting
one of the three sections is at most Nv − 1, where we recall that

Nv ≤
1
2�e(Fv) + δv�.(15)

Hence, with two additive fibres, there can only be 10 disjoint (−2)-curves
supported on the orthogonal complement of the sections, contradiction.

8.2 Thus we may assume that there are no three collinear nodes (i.e., any
two nodes are companions). Note that this implies that any 3 nodes lie on a
unique plane. If some connecting line is contained in X, then the line and the
two nodes give sections of the fibration, with 12 disjoint (−2)-curves in the
fibres. Hence the argument from 8.1 applies to establish a contradiction.
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8.3 We can therefore assume that no line PiPj is contained in X. We con-
tinue by restricting the possible additive fibre types. They arise from the
quartic curve X ∩ H by blowing up the nodes in the plane H: two of them
give bisections of the fibration while the others give (−2)-fibre components,
which cannot be such that their multiplicity in the fibre is ≥ 3.

Only the additive fibre type I∗0 can be realized of the possible types listed
in (14) (as a double conic with 6 nodes; see part III). The reason is based on
the fact that this is the only one with only one component with multiplicity at
least 2, while the others have several components appearing with multiplicity
at least 2, indeed at least 3 components except for the case of I∗1.

Indeed, the blow ups of nodes appear with multiplicity 1, hence the plane
section X ∩H must be non reduced. In particular there are at most 2 com-
ponents appearing with multiplicity at least 2.

To exclude the case of I∗1, we need to exclude that X ∩H consists of two
double lines. In this case there are at most 4 nodes in H, since the intersection
point of the two double lines cannot be a node, and there are no 3 collinear
nodes by assumption, hence the number of irreducible components of the fibre
is at most 4, a contradiction.

Therefore each fibration πi,j admits two such fibres. This turns out to be
too restrictive: in fact, we have seen that for each pair P of nodes, there are
exactly two planes π containing the pair, each containing six nodes.

Consider then the number of pairs as above (P, π),P ⊂ π. The number
is therefore (13) · 14. But since each such plane π contains exactly 15 such
pairs P, we have obtained a contradiction.

8.4. Proof of Theorem 1 Since the triple point case was covered in
[Cat21b], we only have to deal with double point singularities. The general
statement that a normal quartic in characteristic 2 contains at most 14 sin-
gularities was proved in 4.1 (using Propositions 29 and 30). That 14 singular
points necessarily form nodes was proved in Theorem 32. An irreducible com-
ponent was exhibited in Theorem 11. Finally, the result that there are fewer
than 14 singularities if the resolution is not a supersingular K3 surface, was
proved in Proposition 33.
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