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Differential of a period mapping at a singularity∗

Mark Green and Phillip Griffiths

To Herb Clemens; Lefschetz said he put the harpoon of topology into the
whale of algebraic geometry, and Herb did similarly for topology and Hodge

theory

Abstract: The study of the variation of Hodge structure in a
family of algebraic varieties is an important topic in algebraic ge-
ometry. Of special interest is analysis of the Hodge structure in a
family of varieties Xt, t ∈ Δ = unit disc, where Xt is smooth for
t �= 0 while X0 may be singular. It is known that if the monodromy
is finite, then the Hodge structure fills in at t = 0. When the mon-
odromy is infinite there is a well-developed understanding of how
the Hodge structure degenerates. In this paper, we shall define and
study properties of the first order variation of the Hodge structure
at t = 0, both when the monodromy is finite, e.g., for a family of
smooth surfaces acquiring a normal non-Gorenstein singulariy, and
for the case when the monodromy is infinite. In the latter case, we
shall give a Torelli type result that may be used to infer Torelli
properties in the interior of a moduli space from these properties
on the boundary.
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I. Introduction

I.A. General introduction

The uses of Hodge theory in the study of the geometry of algebraic varieties
include

• the topology of algebraic varieties. This is where Hodge theory began.
It includes the topological properties of individual varieties, including
singular and non-compact ones, and of families of varieties;

• geometric constructions that arise from the Hodge structure or mixed
Hodge structure on the cohomology (a transcendental invariant), or
from the first or higher order variations of the Hodge structure or mixed
Hodge structure (an algebraic invariant).

In the second case, the study has been largely confined to the first variation
of the Hodge structure on the cohomology of a smooth variety.1 In this paper,
we will seek to extend this to the situation where the variety may be singular
or where the first variation may vanish and one has to go to higher order to
extract geometric information.

1See [4], [15] and the chapter on IVHS in [2].
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We shall usually restrict to the 1-parameter case of a period mapping

(I.A.1) Φ : Δ∗ → Γ\D

where Γ = {T k : k ∈ Z} is generated by the monodromy operator. In the
Jordan decomposition T = TsTu the semi-simple factor Ts is of finite order
(its characteristic polynomial is a product of cyclotomic polynomials), and
the unipotent factor Tu = eN .2 This work will separate into two parts:

(a) N = 0,
(b) N �= 0.

In the first case, Γ\D is an analytic variety with quotient singularities
by the action of a finite group and (I.A.1) extends to a mapping of analytic
varieties

Φ : Δ → Γ\D
where Φ(0) ∈ D is a polarized Hodge structure having an action of Γ.3

In the second case, we shall assume that Ts = Id. Then Φ(0) ∈ exp(CN)\Ď
where Ď is the compact dual of D; it is given by an equivalence class of lim-
iting mixed Hodge structures.

In both cases, we shall define a differential δΦ that is an invariant of the
suitably interpreted first non-zero term in the expansion of Φ(t) about t = 0.
Some general properties of δΦ will be given; however, the main part of this
paper is in the examples.

One general guiding geometric question that motivated much of this study
and that in special cases will be illustrated below is the following:

Let M be the canonical completion of the KSBA moduli space M of a class
of varieties of general type (cf. [23]). How much of the stratification of M

by the singularity type of the corresponding varieties or by the presence of
“additional” algebraic subvarieties is reflected in the stratification of the image
of M by a canonically extended period mapping?4 How can Hodge theory be
used to help understand the geometry of the stratification of M?

For the case of varieties whose period domain is Hermitian symmetric (alge-
braic curves, abelian varieties, K3’s, hyperKähler varieties, cubic threefolds
and fourfolds, . . . ) this question is classical and is the subject of ongoing work.
We are particularly interested in the non-classical case when D is not Hermi-
tian symmetric. Here there is evidence that at least in particular cases this

2As will be explained below, the case when Φ depends on several parameters
may be done by suitably restricting to 1-parameter sub-families.

3Here, with slight abuse of notation Φ(0) is the lift to D of its image in Γ\D.
4Informally stated, “how much of the geometry of M can be described Hodge

theoretically?”
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general question may have an interesting and occasionally surprising answer,
e.g. as provided by the example of I-surfaces [10], [21], [20].

Another type of motivating question is to establish Torelli results on
boundary components of a moduli space, and from these deduce Torelli re-
sults in the interior. The point here is that although they are singular the
varieties that correspond to boundary points may be easier to prove Torelli-
type results about, and then these can be used to infer similar results in the
interior. A prototype here is [13] and recent related work is in [28].

We conclude this part of the introduction with some notations and ter-
minology. The geometric case is when we start with a family X

′∗ → Δ′∗ of
smooth varieties whose associated period mapping Δ′∗ → Γ\D has mon-
odromy T = TsTu. By semi-stable reduction, or by some other construc-
tion (see Example II.B.4 below), we can obtain a family X

π−→ Δ where the
Xt = π−1(t) are smooth for t �= 0, X0 is a reduced normal crossing divisor and
the monodromy is unipotent. We can and will assume that the finite group
{T k

s : k ∈ Z} acts equivariantly on X → Δ and that the induced action on Δ
has the origin as an isolated fixed point.

We set X = X0 and shall use the standard identification

T Def(X) = Ext1OX
(Ω1

X ,OX).

The local to global spectral sequence of Ext’s gives

H1(Ext0OX
(Ω1

X ,OX)) Ext1OX
(Ω1

X ,OX) H0(Ext1OX
(Ω1

X ,OX))

T Defes(X) T Def(X) T Defsm(X)

(I.A.2)

where the left-hand term is the first order equisingular deformations of X
and where the right-hand term (a quotient space) are the equivalence classes
of partially smoothing deformations. In this paper, we will be interested in
both equisingular families and in families whose tangent in T Defsm(X) is
completely smoothing (cf. the Appendix for further explanation).

The analysis of δΦ can roughly be organized into the following cases:
N = 0:

(i) X0 = X is smooth, Φ(0) = Hn(X) lies in a Mumford-Tate subdomain
D′ ⊂ D, and the condition δΦ �= 0 means that Φ(Xt) leaves D′;

(ii) X0 is singular and δΦ measures either the variation of the Hodge struc-
ture in the equisingular directions or the Hodge theoretic properties of
the smoothing of X0.
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N �= 0: Then the family will either be equisingular or smoothing and
the successive terms in the associated graded to the weight filtration of δΦ
describe Hodge theoretic properties of either the variation of the mixed Hodge
structure in the kerN part of the limiting mixed Hodge structure, or of the
smoothing itself.

I.B. Introduction to Section II

In the first part of Section II.A we give the definition of the differential δΦ of
the extension to

Φ : Δ → Γ\D
of a 1-parameter period mapping Φ : Δ∗→Γ\D where Γ= {T k : k∈Z} is a
finite group. The definition uses a base change t = t̃m to have a lifting

Δ̃ Φ̃
D

Δ Φ Γ\D.

(I.B.1)

In Section II, we will drop the ˜ and simply work with a period mapping

Φ : Δ → D(I.B.2)

where Φ(0) is the pair consisting of a polarized Hodge structure together with
an equivariant action of Γ on (I.B.2) such that the origin is an isolated fixed
point of that action on Δ. Then Γ acts on the polarized Hodge structure Φ(0).
The property δΦ �= 0 is independent of the base change. This is important
because in the geometric case the degree of the base change is not well defined;
all one can say is that it is a multiple of the order of Γ.

In Section II.A, we give two geometric examples of a family of curves
where the action of Γ on Φ(0) is trivial. For the first, we compute δΦ in the
smoothing direction for a compact stable curve. The point here is to illustrate
in a very simple case one of the basic points that arise in general calculation
of δΦ; namely how the BF condition [12] for first order smoothing leads to the
intertwining of components in a semi-stable reduction in the formula for δΦ.5,6

5Below we shall in this example illustrate a cohomological mechanism to address
the question: Is semi-stable-reduction really necessary, or can one just fill in with a
desingularized central fibre? There are Hodge theoretic obstructions to doing this;
one such is the example of compact singular curves given in Section II.A.

6We shall not give detailed proofs of this computation or of several others in this
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The second example is when there is a subfamily of a family consisting of vari-
eties having a non-trivial symmetry group whose induced action on the period
domain is trivial. A classical example here, treated algebro-geometrically in
[26] and differential geometrically in [8] and [14], is hyperelliptic curves of
genus g � 3. Here the basic result is that the usual differential vanishes in
the normal directions to the hyperelliptic locus, whereas the second order
behavior in those directions is given by the full system of quadrics through
the canonical curve. After setting a general context we will discuss this topic
from an alternative perspective.

The examples in Section II.C are normal surfaces X that arise on the
boundary of a KSBA moduli space M ([23] and [24]). The first example,
which is really an illustration, is the standard A1 singularity. The differential
δΦ is computed using semi-stable reduction and, although it is elementary
and confirms the expected result, it illustrates the general method of how one
uses the first order smoothing condition for a normal crossing variety in the
calculation of δΦ.

The next examples are the Q-Gorenstein smoothable semi-log-canonical
normal singularities whose smoothing has finite monodromy. These singulari-
ties are classified ([24] and [23]): they are rational, and aside from two excep-
tional cases, are either ADE or quotient singularities of the 1

d2n(1, dna− 1)
type. They have the following special property that holds for any Q-Goren-
stein smoothable rational singularity: given a local 1-parameter family such
that after a base change the varieties over the punctured disc Δ∗ are smooth
and have trivial monodromy, then the period mapping Φ : Δ∗ → D extends
across the origin to give a polarized Hodge structure Φ(0). In general, this
does not imply that we can then fill in the origin with a smooth variety.
However, in the above situation this is possible.

As mentioned an underlying geometric question is whether the subvariety
of M consisting of surfaces (X, p) with a singularity of one of the above types
is defined by Hodge theoretic conditions. Our main result gives in variational
form sufficient conditions for this in terms of the conditions imposed by the
singularity p on the canonical system |KX |. For the case of canonical singu-
larities, KX is a line bundle and |KX(−p)| has the usual meaning. For the
non-Gorenstein quotient singularities the situation is more involved and the
conditions are expressed in terms of |KX̂(−E)| where (X̂, E) → (X, p) is the
resolution of the singularity.

In Section II.D, we discuss the Wahl singularity 1
4(1, 1) on an I-surface

X (cf. [10], [22]). Such surfaces define a divisor in MI , and we verify that

paper. The point is that once one knows the answer the arguments to justify them
are of a standard type.
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this divisor is reduced by showing that at a general point on it δΦ �= 0 in
the normal (smoothing) direction. The desingularization X̂ of such surfaces
is an elliptic surface with a bi-section being a −4 curve that contracts to
the singular point of X. It is classical that generic local Torelli holds for X̂.
Coupled with δΦ �= 0 this implies that generic local Torelli holds for smooth
I-surfaces.7

I.C. The case of infinite monodromy

When N �= 0 the leading term of Φ(t) is a nilpotent orbit exp(CN) ·Flim. By
definition δΦ is the next order term in the expansion of Φ(t). It is an element
of gC ⊂ End(VC) and measures the deviation of Φ(t) from being a nilpotent
orbit. One objective of Section III.B.1 is to give general structural properties
of δΦ arising from the filtration on gC induced by the weight filtration W (N)
on V . The weights w of δΦ satisfy

−(n + 1) � w � +(n− 1)

where n is the weight of the Hodge structures Φ(t) for t �= 0; we will be
concerned with the properties of δΦ on the associated graded to the weight
filtration. In the classical case n = 1 and the associated graded terms δΦw

are in the range −2 � w � 0. One structural result is that in general for any
weight n

δΦw �= 0 only for − 2 � w � n− 1.

This is a Hodge theoretic result that may be expressed informally by saying
that, up to integration constants, the extension data in the limiting mixed
Hodge structure is determined by that data of levels � 2. When n = 2 the
level +1 part of δΦ only arises in the non-classical case and measures the

7One may also give an alternative argument for this generic local Torelli result
using singular I-surfaces with a degree 2 elliptic singularity. This argument is based
on the generic global Torelli result (III.A.12) for pairs (X,C) where X is a K3
surface of degree 2 and C is a smooth section of the polarizing line bundle. If this
argument could be extended to the case where C has a node it would give a proof
of generic global Torelli for I-surfaces. In this regard, see [28].

It is due to Chakiris [7] that global Torelli holds for a class of regular elliptic
surfaces with a section, and if one were able to extend this to elliptic surfaces with
a bi-section such as X̂, then also generic global Torelli for I-surfaces would be a
consequence.

The recent papers [29], [30] give generic global Torelli for a large class of elliptic
surfaces having a section. The methods use an analogue of a δΦ that is adapted to
the particular geometry of these surfaces.
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failure of the period matrix in a family of surfaces that are smoothings of
surfaces with a double curve to remain in the image of a single Schubert cell.
This seems to be the main new Lie theoretic property of period mappings
that is encountered in the non-classical case (cf. the discussion in [19]).

The term δΦ0 is the differential of the traditional period mapping for
the graded pure Hodge structures associated to a family of limiting mixed
Hodge structures. The next term δΦ−1 measures how the level 1 extension
data varies. It is an Abel-Jacobi type mapping, one part of which has a
classical algebro-geometric construction and one part that does not. Roughly
speaking if we have a family of smoothable normal crossing varieties, then δΦ0
measures the variation of the Hodge structure of the individual pieces and
δΦ−1 measures the variation of how they pairwise fit together. The next term
δΦ−2 has a discrete part and a variable part that is given by a “secondary”
Abel-Jacobi mapping (like a cross-ratio). Finally, as mentioned above, the
δΦw vanish for w � −3.

Another objective of Section III.B.1 is to illustrate by example how for
a family of generically smooth algebraic varieties Torelli type results on the
boundary may be used to infer Torelli type results in the interior. This re-
quires formulating and establishing local Torelli type results for pairs (Y, Z)
where it is the variation of both the algebraic part of the extension data,
arising when Y is a surface and Z is a curve from the Abel-Jacobi image
of ker{PicY → Pic(Z)}, and from the variation of the transcendental part
(membrane integrals) of the extension data. In the example given there it
is shown how generically (Y, Z) may be constructed from its mixed Hodge
structure together with the algebraic information in δΦ.

The diagram (III.B.7) gives a schematic for defining and interpreting the
mappings δΦw. To compute them cohomologically in the geometric case a
convenient device is to use the schematic B.3 in part B of the Appendix for
the computation of the associated graded to a limiting mixed Hodge structure.

In concluding the introduction, we emphasize that the purposes of this
paper are

• to define the differential δΦ of a period mapping, especially where Φ
may have degeneracies or singularities;

• to formulate some general properties of δΦ, especially those related to
the weight filtration in singular cases;

• to give techniques for computing δΦ cohomologically in the geometric
case,

and perhaps most importantly

• to illustrate in examples how these computations may be carried out
and what their geometric consequences are.
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II. The case of finite monodromy (N = 0)

II.A. Definition of δΦ in the N = 0 case

We assume given the data (D,Γ,Φ) where

(i) D = GR/H is a period domain and Γ ⊂ GR is a finite cyclic group that
acts on D and on the unit disc Δ;

(ii) Φ : Δ → D is a period mapping that is equivariant with respect to the
actions of Γ.

We denote by DΓ and ΔΓ the fixed point sets of the actions and assume that

(iii) Φ(0) ∈ DΓ and ΔΓ = {0} is the origin.

Then Φ(0) = {V,Q, F ; Γ} is a polarized Hodge structure on which the group
Γ acts.
Example. Φ1 : Δ∗

1 → Γ\D arises from a variation of Hodge structure over the
punctured disc Δ∗

1 = {0 < |t1| < 1} and where the monodromy Γ = {T k
s :

k ∈ Z} is finite. Using the base change Δ → Δ1 given by t1 = td where d is
a multiple of the order of Ts there is a diagram

Δ∗ Φ
D

Δ∗
1

Φ1 Γ\D,

and Φ extends across t = 0 to give a period mapping Φ : Δ → D satisfying
the conditions (i), (ii), (iii) above. In particular Φ(0) is a polarized Hodge
structure (V,Q, F ; Γ).

In the geometric case when one does equivariant semi-stable reduction
choices are made that may affect the degree of the base change.

Given a complex manifold M and a non-constant holomorphic mapping
f : Δ → M with f(0) = p ∈ TpM , in local coordinates there is a smallest
integer k such that the kth derivative f (k)(0) �= 0 is non-zero. Then there is
an induced map

f (k) : C → TpM

that is homogeneous of degree k.
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Definition II.A.1. Given the data (D,Γ; Φ) we denote by

δΦ : T{0}Δ → TΦ(0)D

the map given by first non-zero derivative of Φ.
Choosing a coordinate t for Δ and making the usual identification of TD

with a sub-bundle of ⊕Hom(F p, VC/F
p), we have

δΦ : C → F−1 End(VC)
F 0 End(VQ)(II.A.2)

Even in “standard” geometric situations δΦ may not be the usual dif-
ferential of Φ. We note that the condition δΦ �= 0 is invariant under base
change.

Note: In some examples we will discuss situations where we want to define
δΦ on a vector space W that maps to the tangent space TB to a parameter
space B for a variation of Hodge structure, and in this case we will define δ
on W by taking discs Δ ⊂ W . For example, if in the geometric case we have a
smooth family X

π−→ B of projective varieties Xb = π−1(b) and Φ : B → Γ\D is
the corresponding period mapping, then W = H1(ΘXb

) and W → TΦ(b)(Γ\D)
is the composition of the Kodaira-Spencer map and the usual differential of
a locally liftable map to Γ\D.

A second example is one where we have a sub-manifold A ⊂ B such that
for b ∈ A there is a natural splitting of the normal sequence

0 TbA TbB NA/B,b 0

giving NA/B,b ⊂ TbB. In this case for W = NA/B,b we will take a disc Δ ⊂ B
with T{0}Δ ⊂ NA/B,b.
Remark. For a holomorphic mapping f : B → Pm of a complex manifold B
to a projective space, there are associated fundamental forms I, II, III, . . . (cf.
[25]). For a period mapping Φ : B → D we may use a Plücker embedding to
define the fundamental forms associated to Φ. These reflect the higher order
behavior of Φ. A sample of literature on this is in [8], [11] and [14].
Example. Suppose that X

π−→ Δ is a smooth family of smooth curves Xt =
π−1(t) where X0 is hyperelliptic but Xt is non-hyperelliptic for t �= 0. More
precisely, we assume that Δ is a disc in the Kuranishi space Def(X0) ⊂ C3g−3

that meets the hyperelliptic locus transversely at the origin and is invariant
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under the involution acting on Def(X0). Then it is due to Oort-Steenbrink
[26], and will be discussed below, that

Φ′(0) = 0, but Φ′′(0) �= 0.

This phenomenon is general: If γ ∈ Γ acts trivially on the period do-
main D, then differentiating

γΦ(t) = Φ(γt)

at t = 0 gives
γΦ′(0) = Φ′(0),

and this may force Φ′(0) = 0, as in this example. If Φ is non-constant, then
some Φ(k)(0) �= 0. More generally we have the

II.B. Examples when N = 0 and the action of Γ on D is trivial

Suppose that we have

• a period mapping Φ : B → Γ\D;
• a finite group Λ acting on B with fixed point set a submanifold A ⊂ B;
• a representation ρ : Λ → Γ such that for λ ∈ Λ and b ∈ B

Φ(λb) = ρ(λ)Φ(b).

Then we have

Φ∗λ∗ = ρ(λ)Φ∗.(II.B.1)

This general relation imposes constraints on Φ∗. For example, suppose that
we assume

• ρ(Λ) acts trivially on D.

Then there is an induced holomorphic mapping

Φ : B/Λ → D.(II.B.2)

Along A the relation (II.B.1) is trivial on TA ⊂ TB but may be non-trivial in
the normal space NA/B), which we assume to be a direct summand of TB

∣∣
A
.

Then (II.B.1) gives

• ρ(λ)Φ∗ = Φ∗ in NA/B.
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If, for example, ρ(Λ) has no fixed vectors in NA/B,

Φ∗
∣∣
NA/B

= 0

and we have to go to higher order to define δΦ in the normal directions.
How high an order do we expect to have (dkΦ/dtk)(0) �= 0? The analytic

variety B/Λ has quotient singularities along A. These will have a multiplicity
μ and a reasonable expectation is that μ is related to the k above. With
the precise formulation and details to be given elsewhere it may be shown
that
II.B.3. Suppose that

(i) Φ in (II.B.2) is 1-1;
(ii) Φ∗ is 1-1 on B\A, and
(iii)
(
Φ
∣∣
A

)
∗

is 1-1.

Then on any normal disc Δ to A in B, δΦ �= 0 and the order of vanishing of
Φ
∣∣
Δ is equal to the multiplicity of Φ(Δ) at Δ ∩ A.

Example II.B.4. Continuing an example mentioned above, let C be a hyper-
elliptic curve of genus g � 3 with hyperelliptic involution j. Denote by

B ⊂ H1(ΘC) ∼= C3g−3

the Kuranishi space. There is a smooth family of genus g curves parametrized
by B. The involution j acting on H1(ΘC) may be assumed to preserve B and
the parameter space A for the hyperelliptic curves is given by the fixed point
set of j. Writing

H1(ΘC) = H1(ΘC)− ⊕ H1(ΘC)+

∼ = ∼ =(
H0(2KC)−

)∗ (H0(2KC)+)∗

∼ = ∼ =

Cg−2 C2g−1

we have
A = B ∩H1(ΘC)+.

The tangent space to B at the origin is the direct sum of the ±1 eigenspaces
of the induced action of j. At the point in question the +1 eigenspace cor-
responds to TA ⊂ TB and the −1 eigenspace may be identified with the
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normal space NA/B to A or B, which is then a direct summand of TB. In
particular

H0(2KC)− may be identified with the co-normal space N∗
A/B

at the origin.8
(II.B.5)

Identifying H1(C,C) ∼= C2g with the standard alternating form Q, the
period domain D is an open domain in the homogeneous algebraic variety Ď
of Q-isotropic g-planes in C2g. At a point F ∈ D,

TFD ∼= Homs(F,C2g/F ) ∼= Sym2 F ∗

where we have used Q to identify C2g/F with F ∗ and Homs are the symmetric
maps. If

Φ : B → D

is the period mapping with

Φ(0) = F = H0(KC),

then

Φ∗ : Sym2 H0(KC) → H0(2KC) = H0(2KC)+ ⊕H0(2KC)−.(II.B.6)

It is well known that this mapping surjects onto H0(2KC)+; thus

the differential of the period mapping is 1-1 on the subspace
TA ⊂ TB and vanishes on the normal space NA/B ⊂ TB.(II.B.7)

The period mapping factors

B D

B/j

where the quotient B/j looks like C3g−3 = Cg−2⊕C2g−1 factored by (u, v) →
(−u, v). This is a (2g−1)-parameter family of quotient singularities of quadratic
type, i.e., the invariants are generated by degree 2 polynomials in the coor-
dinates ui of u. Taking (II.B.3) into account this suggests that quadrics in

8Cf. [14] and the references cited there.
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Sym2 H0(2KC)− may be related to δΦ in the normal directions to A in B.
Where might such quadrics come from?

For any smooth curve C the cotangent space to D at Φ(0) is naturally
identified with Sym2 H0(KC). For the canonical mapping

ϕKC : C → Pg−1 = PH0(KC)∗

Sym2 H0(KC) are the quadrics in the space of the canonical curve. The co-
differential of Φ is the map

0 → I2(ϕKC (C)) → Sym2 H0(KC) Φ∗
−→ H0(2KC)(II.B.8)

where the kernel are the quadrics containing the canonical curve. For C non-
hyperelliptic the map Φ∗ is surjective and

I2(ϕKC (C)) is the co-normal space to the image of the period
mapping.

For C hyperelliptic the image of Φ∗ in (II.B.8) is H0(2KC)+; thus

the cokernel of Φ∗ in (II.B.8) is H0(2KC)−.

Proposition II.B.9. There is an isomorphism, natural up to scaling,9

δΦ∗ : Sym2(H0(2KC)−
) ∼−→ I2(ϕKC (C))

=

N∗
A/B

Explanation: Using the above identifications

δΦ : NA/B → TD = Sym2 H0(KC)∗

is a quadratic map. The dual is a map

δΦ∗ : Sym2 H0(KC) → Sym2(H0(2KC)−
)
.

Using the eigenspace decomposition of the action of j the sequence (II.B.8)
splits; thus there is a natural direct sum decomposition

Sym2 H0(KC) = I2 (ϕKC (C)) ⊕H0(2KC)+.
9In a different but equivalent form this result is in [26]. This says that the period

mapping in the normal directions to the hyperelliptic locus is analytically equivalent
to the mapping (. . . , ui, . . . ) → (. . . , uiuj , . . . ), i � j.
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Then δΦ∗ is zero on the second summand on the right and is an isomorphism
on the first.10

The scaling factor referred to in the statement of the theorem will be
given by a choice of isomorphisms

∧2H0(OC(1)) ∼= C

where OC(1) is a line bundle giving the 2:1 map C → P1.
Remark. Geometrically the picture is this: If C ′ is a non-hyperelliptic curve
with a specialization C ′ → C to a hyperelliptic curve, then the canonical
curve ϕKC′ (C ′) is a curve of degree 2g−2 in a Pg−1. As C ′ → C it specializes
to 2 × (rational normal curve in Pg−1).

For the period mapping on B, the kernel of the co-differential at C ′ is
I2(ϕKC′ (C ′)), and as C ′ → C this jumps up to I2(ϕKC (C)), which is an addi-
tional Sym2(H0(2KC)−)’s worth of quadrics. This space is naturally identified
with the co-normal space of A in B. The picture of the image Φ(B) is some-
thing like

where the double lines are quotient singularities Cg−2/(± Id).

Proof of Proposition II.B.9: The argument will use standard represen-
tation theory. For the two-sheeted cyclic covering C

π−→ P2 with OC(1) =
π∗OP1(1) we set

U = H0(OC(1)).

There is a Z2-action on U and hence on any direct summand R(U) in the
tensor algebra of U and its dual. We will identify the vector spaces H0(kKC),

10We note that

dim I2
(
ϕKC

(C)
)

= g(g + 1)
2 − (2g − 1) = g2 − 3g + 2

2

dim Sym2(H0(2KC)−
)

=
(
g − 2

2

)
= g2 − 3g + 2

2 .

It follows that along the hyperelliptic locus the embedding dimension of the image
of the period map is g(g+1)/2 = dimD. It also follows that along the hyperelliptic
locus the second fundamental form of the period map is given by the quadrics
containing the canonical curve, and the higher fundamental forms are all equal to
zero.
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H0(�KC)∗ and their symmetric products in terms of the ± eigenspaces R(U)±
of the Z2-action on the GL(U)-module R(U).11 When this is done there will
be a GL(U) map, equivariant up to scaling,

Sym2(H0(2KC)−) → I2(ϕKC (C))

which will be the map in the statement of the theorem.
In coordinates if we realize C ⊂ P(1, 1, g − 1) as a non-singular curve

y2 = f2g+2(x0, x1) where (x0, x1; y) are homogeneous coordinates with weights
1, 1, g − 1 and where the involution acts by x0 → x0, x1 → x1, y → −y, then

H0(KC) ∼=
{
ag−1(x0, x1)

y

}
= H0(KC)−,

H0(2KC) ∼=
{
bg−3(x0, x1)y

y2

}
⊕
{
c2g−2(x0, x1)

y2

}
.

The canonical curve is given by {ag−1(x0, x1)}, i.e., by Sg−1U . Thus

I2(ϕKC (C)) = ker
{
S2(Sg−1U) → S2g−2U

}
.

For any d we define

S2Ud−2 → ker{S2Ud − U2d}(II.B.10)

by

P ◦Q → x2P ◦ y2Q− 2xyP ◦ xyQ + y2P ◦ x2Q.(II.B.11)

The right-hand side is clearly in ker{S2Ud → U2d}, and we will prove the

Lemma II.B.12. Any element in ker{S2U2 → U2d} is of this form.

This will show that (II.B.10) is surjective and then by a dimension count
it will be the isomorphism in Proposition II.B.9.

11For instance, using the notation Sm = Symm

H0(KC) = Sg−1U

H0(2KC) = Sg−3U ⊕ S2g−2U

= =

H0(2KC)− H0(2KC)+
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Proof of Lemma II.B.12: If we have

Mij := xiyd−i ◦ xjyd−j , i � j,

then if i � 2 and j � d− 2,

Mij ≡ 2xi−1yd−i+1 ◦ xj−1yd−j−1 − xi−2yd−i+2 ◦ xj+2yd−j−2

where the congruence is modulo terms on the right-hand side of (II.B.11). If
i � j + 3,

Mij ≡ 2Mi−1,j+1 −Mi−2,j+2.

If i = j + 2,
Mi,i−2 ≡ 2Mi−1,i−1 −Mi,i−2 ≡ Mi−1,i−1

where the second step uses

xi−2 ◦ yd−i+2 ◦ xj+2yd−j−1 = xi−2yd−i−2 ◦ xiyd−i

= xi−2yd−i ◦ xi−2yd−i+2 = Mi,i−2.

Thus we can use the right-hand side of (II.B.11) to have only terms

Mi,j where i � 1, j � d− 1 or i � j + 1.

This is because (i, j) = (1, 1), (1, 0), (0, 0) so j = 1 or j = i− 1, and likewise
i � j � d− 1 gives (i, j) = (d, d), (d, d− 1), (d− 1, d− 1) so j = i or j = i− 1.
In all cases, either j = i or j = i− 1.

If ∑
i

aiMi,i +
∑
i

biMi,i−1 ∈ ker{S2Ud → U2d},

then
d∑

i=0
aix

2iy2d−2i +
d∑

i=1
bix

2i−1y2d−2i=1 = 0.

But the terms are all distinct, hence all ai, bi are zero.

This completes the construction of the map in Proposition II.B.9. The
equivalence up to scaling using the standard notation in representation ap-
pears already when d = 2. Then

S2U2 = U4 ⊕ U2,2
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where U2,2 = (∧2U)⊗2 and the scaling factor arises from the choice of an
isomorphism ∧2U ∼= C.

It remains to prove that δΦ �= 0 in the normal directions to A in B. In
period matrix terms, for a normal disc Δ ⊂ B with Δ ∩ A = {0}

d2Φ(t)
dt2

∣∣∣
t=0

�= 0.(II.B.13)

This is true and is proved by an explicit coordinate calculation in [26].
Assuming the global Torelli theorem that the mapping

Mg Ag
∈ ∈

C J(C)

is 1-1, another argument for (II.B.13) runs as follows: We may assume that
Δ ⊂ B is invariant under the involution j; in fact we may take j(t) = −t.
Referring to (II.B.1) we have a holomorphic mapping

f : Δ → C

such that

• f(−t) = f(t) (this implies f ′(0) = 0);
• f is 1-1 on Δ/Z2.

Then it is an elementary complex variable fact that

f ′′(0) �= 0.

Remark. In [26] the moduli spaces Mg and Ag = Sp(2g,Z)\Hg are rigidified
to M

(n)
g and A

(n)
g by adding level n structures given by the n-division points

in J(C) where C ∈ Mg and in J(C) ∈ Ag. The Abel-Jacobi map

AJ : C → Pic1(C)

induces a morphism of complex analytic varieties

M(n)
g → A(n)

g .

This provides additional geometric information beyond the usual Torelli pe-
riod matrix mapping, information that is an integral part of the arguments
in [26].
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Example II.B.14. This is an example of family of curves X → Δ when N = 0
and T = Id. The picture is

where g(C1) = g1, g(C2) = g2 and g1 + g2 = g(Ct). For the period mapping
we have

• D ⊃ D1 ×D2 which are the principal polarized Hodge structures that
are direct sums of principally polarized sub-Hodge structures;

• Φ : Δ → D where Φ(0) corresponds to H1(C0) and Φ(t) for t �= 0
corresponds to H1(Ct).

Proposition II.B.15.12 For C1, C2 non-hyperelliptic, δΦ is the usual differ-
ential Φ∗ and

Φ∗(d/dt) �= 0 in ND1×D2/D(II.B.16)

Proof. We let C̃0 = C1 � C2 be the normalization of C0 and pi ∈ Ci with C0
defined by the identification p1 = p2. The infinitesimal deformation sequence
(I.A.2) is

0 H1
(
Ext0OC0

(
Ω1

C0 ,OC0

))
T Def(C0) H0

(
Ext1OC0

(
Ω1

C0 ,OC0

))
0

= =

T Defes(C0) T Defsm(C0)

(II.B.17)

At the point in question and with the notations V = V1 ⊕ V2, Q = Q1 ⊕Q2
and F = F2⊕F2 we have from TΦ(0)D = Homs(F, V/F ) that at F the normal
space

ND1×D2/D
∼= Hom(F1, V2/F2) ⊕ Hom(F2, V1/F1).(II.B.18)

12This is the well-known local Torelli theorem for stable compact curves. The
point here is to illustrate a computation of δΦ in a simple situation as a prelude to
similar but more involved examples discussed below.
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We note that Φ∗(0) induces a map

T Def(C0)/T Defes(C0) → ND1×D2/D.
13(II.B.19)

Using the local Torelli theorem for the non-hyperelliptic curves C1 and C2,
we want to show that this map is non-zero.

For varying points p1 ∈ C1 and p2 ∈ C2 on fixed curves C1 and C2, we join
C1 and C2 at these points to obtain C1∪pC2. Since the identified points p1, p2
move at the same speed the left-hand side of (II.B.19) is naturally isomorphic
to ΘC1,p1 ⊗ ΘC2,p2 .

For the right-hand side of (II.B.19) using Q1 and Q2 we obtain(
H0(KC1)∗ ⊗H0(KC2)∗

)
⊕
(
H0(KC2)∗ ⊗H0(KC1)∗

)
.

Using the evident symmetry the dual of (II.B.19) is a map

H0(KC1) ⊗H0(KC2) → KC1,p1 ⊗KC2,p2

which is the evaluation mapping

ω1 ⊗ ω2 → ω1(p1) ⊗ ω2(p2).

This may be verified by writing out the maps

ΘC1,p1 ⊗ ΘC2,p2 H1
(
Ext0OC0

(Ω1
C0
,OC0)
)

Ext1OC0
(Ω1

C0
,OC0)

= =

T Defes(C0) T Def(C0)

T Def(C0) H0(Ext1OC0
(Ω1

C0
,OC0))

=

T sm(C0)

T Def(C0) −→ TΦ(0)D ∼= Homs(F, V/F )

and tracing through their dualizations. For this it is convenient to use a
covering by two open sets, one of which is a neighborhood of p and the other
being the complement of a smaller closed neighborhood of p.

13Note that using the direct sum decompositions, ND1×D2/D is actually a sub-
space of TFD and T Defes(C0) maps via Φ1×Φ2 into the complementary subspace.
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II.C. Examples when N = 0 and Γ is non-trivial

These will be examples arising from smoothing a normal surface singularity
(X, p). There are two methods that we shall use.

(i) This one works in general. Given a 1-parameter smoothing deformation
of a variety X one may use semi-stable reduction to have a family

X
π−→ Δ

of varieties Xt = π−1(t) where X is smooth, X∗ → Δ∗ is a smooth fibration,
X0 = ∪Xi is a reduced normal crossing divisor and, when X is irreducible,
one component of X0 is a desingularization X̂ of X. This process requires a
base change after which the semi-simple part of the monodromy of the family
X∗ → Δ∗ becomes trivial.

The notations, basic definitions and results concerning deformations and
smoothing of normal crossing varieties and a schematic for calculating the
associated graded to the corresponding limiting mixed Hodge structure are
collected in the Appendix.

(ii) For the special case of a KSBA smoothing (defined below) of a normal
surface singularity when N = 0 there is an alternate perhaps better method.
It is based on the result that semi-log-canonical Q-Gorenstein smoothable
normal surface singularities are rational and for such singularities there is the
Artin component in the versal deformation space (cf. [32]). For this compo-
nent, after base change the family over Δ∗ may be filled in over the origin by
simply inserting X̂. Thus, after we eliminate monodromy by a base change
not only does the Hodge structure fill in over t = 0 but the family of smooth
surfaces does also. Within this component, but in general not equal to it,
there is the subvariety of Q-Gorenstein smoothings. It is this space that we
shall be concerned with here.

Before turning to this we will first use semi-stable reduction to show how
to compute δΦ for the smoothing of a node (A1 singularity) on a surface. The
results are well known; the interest is in illustrating some of the computational
techniques in a simple but non-trivial case. These techniques will extend to
the general case

We first give a general result and then apply it to the A1-singularity
case. Let X1, X2 be smooth surfaces and C an irreducible smooth curve with
embeddings C ↪→ Ci ⊂ Xi for i = 1, 2. Denote by

X = X1 ∪C X2

the normal crossing surface obtained by joining X1 and X2 along C1 and C2.
The BF condition [12] that X have a first order smoothing is

NC1/X1 ⊗NC2/X2
∼= OC .(II.C.1)
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Assuming this the choice of a parameter ε for the first order smoothing Xε →
Δ(ε) of X is given by choosing an identification H0(OC) ∼= C.

Associated to Xε → Δ(ε) there is a limiting mixed Hodge structure with
unipotent monodromy. Assuming N = 0 we obtain an ordinary weight 2
Hodge structure H2 = ⊕Hp,q together with a first order variation of that
Hodge structure. This is given by

δΦ(d/dt) ∈ Hom(H2,0, H1,1)(II.C.2)

and we will give a recipe for computing the interesting part of this.14 Here we
will do this under the additional assumption that the genus g(C) = 0, as this
will be satisfied in the application we shall give. Later on this method will be
extended to the case when g(C) �= 0.

Proposition II.C.3. There are natural isomorphisms{
H2,0 ∼= H0(Ω2

X1
) ⊕H0(Ω2

X2
),

H1,1 ∼= ([C1] + [C2])⊥/([C1] − [C2]),

and maps (here i ∈ {1, 2} and î = {1, 2}\{i})

H0(Ω2
Xi

) → H1(Ω1
Xî

)(II.C.4)

that give δΦ(d/dt).

In (II.C.4) the intertwining of X1 and X2 will be a consequence of (II.C.1).
For the formula for Φ(0), since N = 0 the limiting mixed Hodge structure
associated to the first order family X → Δ(ε) is a pure weight 2 Hodge
structure; it is given by the cohomology of the complex

H2(X1)
r

H0(C)(−1)

G

G

⊕ H2(C)

H2(X2)

r

14By interesting part we mean that summand of Hom(H2,0, H1,1) that involves
the intertwining of X1 and X2. There are other parts that involve either X1 or X2
alone. These are of standard IVHS maps and we will not discuss them.
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where the first arrows represent the Gysin map

1C → [C1] ⊕ [C2],(II.C.5)

the second arrows are signed restriction maps, and H0(C)(−1) is the Hodge-
Tate twist of H0(C). The composition is

1C → (C2
1 + C2

2 )[C]

which is zero as a consequence of the BF condition. The first part of the
proposition follows from (II.C.5).

For the second part, we shall use the cohomology sequences associated to
two exact sheaf diagrams, the first of which is

0 Ω2
X1

(−C1) Ω2
X1

Ω1
C1

⊗N∗
C1/X1

0
∼ =

Ω1
C2

⊗NC2/X2

where the last term in the top sequence is adjunction and the vertical iso-
morphism, which is the key step, uses the BF condition. The second is the
diagram

0

0 Ω1
X2

Ω1
X2

(logC2) Ω1
X2

(logC2)
∣∣
C2

0

0 Ω1
X2

Ω1
X2

([C2]) Ω1
X2

([C2])
∣∣
C2

0

Ω1
C2

([C2])

0

Using the cohomology sequence of

0 → Ω1
X2 → Ω1

X2(logC2)
∣∣
C2

→ OC2(−1) → 0,
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and using H1(OC2)(−1) = 0, combining the cohomology diagrams we have
induced maps

H0(KX1) → H0(KC1 ⊗N∗
C1/X1)

H0(KC1 ⊗N∗
C1/X1

) → H0(KC2 ⊗NC2/X2),

H0
(
KC2 ⊗NC2/X2

)
→ H1(Ω1

X2)/H
0(OC2)(−1)

where we have used that the map

H0(OC2)(−1) → H1(Ω1
X2)

gives the fundamental class of C2. The issue is now to show that the map

H0(KX1) → H1(Ω1
X2)/H

1(OC2)(−1)

actually computes δΦ(d/dt). The idea is

• to take the argument where you have a smooth family X
π−→ Δ of smooth

varieties and where δΦ(d/dt) is the connecting map in the long exact
hypercohomology sequence of

0 → π∗Ω1
Δ ⊗ Ω1

X/1 → Ω2
X → Ω2

X/Δ → 0

and modify it using

0→π∗Ω1
Δ(log{0})⊗Ω1

X/Δ(logX0) → Ω2
X(logX0) → Ω2

X/Δ(logX0) → 0;

• next trace through the same calculation in the case when Xt is smooth
for t �= 0 and where X0 = X1 ∪C X2 with the local smoothing x1x2 = t

in (x1, x2, x3, t) space;
• in carrying this out one may use a covering by open sets like the one that

one used in the previous example but supplemented with the additional
parameter x2;

• in the resulting computation the interesting step is in the passage from
X1 to X2 using BF conditions to have the replacement

Ω1
C1 ⊗N∗

C1/X1

∼−→ Ω1
C2 ⊗NC2/X2 .
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Example II.C.6. Let X′ π−→ Δ′ be a family of surfaces X ′
s acquiring a node

p ∈ X ′
0. Away from the node we have a smooth fibration, and in a neighbor-

hood U ⊂ X′
0 of p we have

{
U = {x, y, x; s} : x2 + y2 + z2 = s}
π(x, y, z; s) = s.

There is one vanishing cycle δ ∈ H2(X ′
s), and local monodromy around s = 0

is a Z2 acting by δ → −δ. After semi-stable reduction, retaining the notations
in Proposition II.C.3 we obtain a new family X → Δ where Δ has coordinate
t with s = t2 and X ′

0 is replaced by

X0 = X1 ∪C X2

where
X1 −→ X ′

0
∪ ∈

C1 −→ p,

with C1 ∼= P1, C2
1 = −2 being the desingularization of X ′

0, and X2 ∼= P1 ×P1

with C2 ∼= P1 is the diagonal and C2
2 = +2. Denoting by L1, L2 the classes in

H2(X2) generated by the two factors in the product,

[C2] = L1 + L2

L1 − L2 ∈ ([C1] + [C2])⊥.15

From the proposition, we have that for ω ∈ H0(KX1)

δΦ(d/dt)(ω) = ω(p)(L1 − L2).(II.C.7)

More precisely, we identify H0(OC) = C. Then from

KX1

∣∣
C1

= NC1/X1 ⊗KC1 = OC1

we have

ω(p) := ω
∣∣
C1

∈ C.

15Using the notation from Proposition II.C.3, (L1−L2) → ((L1−L2)·C2)[C] = 0.
Thus L1 − L2 ∈ H2 and monodromy acts by L1 − L2 → L2 − L1.
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Remark. The main purpose of this paper is to define and illustrate the use of
the differential of the period mapping at the locus of singular varieties in a
family {Xb}b∈B of generically smooth algebraic varieties. Assume B is smooth
and that the singular Xb are nodal surfaces that occur along a subvariety
A ⊂ B. We will say that the family satisfies local Torelli if for any disc
Δ ⊂ B we have δΦ �= 0 at the origin. If Δ meets A only at the origin, then
δΦ is defined above. If Δ ⊂ A, then δΦ �= 0 means that the differential of
the period mapping for the desingularized surfaces X1 is non-zero. In various
forms the following is well known.

Proposition II.C.8. If each Xb has one node and if the canonical series
|KXb

| is base point free and local Torelli is satisfied, then A is a smooth,
reduced divisor in B. Moreover, A may be defined Hodge theoretically.

Proof. What the above computation shows is that the locus where a given
cohomology class is a Hodge class is a smooth reduced divisor A ⊂ B. What
we have to show is that if we have a family {Xt}t∈Δ of smooth surfaces and
a Hodge class γt ∈ Hg1(Xt) such that γ0 is the class of a −2 curve C0 ⊂ X0,
then C0 deforms to −2 curves Ct ⊂ Xt. This is also well known and we shall
only indicate why it is true.

If Lt → Xt are line bundles with c1(Lt) = ξt and L0 = [C0], then it will
suffice to show the vanishing of the obstruction space to first order deforming
ξ0 along with L0; this is

H1(L0) = 0.

For simplicity we assume that X0 is regular; in general an additional argument
is needed.16 By duality h1(L0) = h1(KX0 −L0) = h1(KX0(−C0)). Since C0 is
a −2 curve, KX0

∣∣
C0

∼= OC0 and we have

0 → KX0(−C0) → KX0 → OC0 → 0.

Using h1(KX0) = 0 this gives

0 �= h1(K0(−C0)) ⇐⇒ H0(KX0(−C0))
∼−→ H0(KX0).

If the linear system |KX0 | is base point free, then it follows that h1(L0)
= 0.

16The additional argument entails modifying the Lt by elements in Pic0(Xt) to
kill the obstruction to deforming the section of L0 whose divisor is C0. A standard
cohomological argument shows that to first order this is possible, from which we
may conclude the desired result.
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Our next example will be the computation for a KSBA family X → Δ
of surfaces where X0 has a Q-Gorenstein smoothable normal singular point
p and the Xt are smooth for t �= 0. Here we will consider the case where the
monodromy of X∗ → Δ∗ is finite. The period mapping then extends to Δ and
we will give a method for computing δΦ. Among the underlying geometric
questions are

What is the expected number of Hodge theoretic conditions imposed on moduli
by having a singularity of the type of X0? In examples, such as the case of
I-surfaces, are these conditions independent?

Before turning to this we will give a quick

Review of Q-Gorenstein smoothable isolated surface singu-
larities.14

(II.C.9)

The theory is local and we shall discuss the deformation theory of a germ
(Y, p) of an isolated surface singularity.

• KY denotes the Weil divisorial canonical sheaf; it is represented on
Y ∗ := Y \{p} by the linear equivalence class of the divisor of a differen-
tial ψ ∈ H0(KY ∗);

• there is a unique minimal (no (−1) curves) resolution (Ŷ , E) f−→ (Y, p) of
the singularity; here E =

∑
iEi is a normal crossing divisor (the Ei are

irreducible, smooth curves meeting transversely) and the intersection
matrix ‖Ei · Ej‖ is negative definite; we set E2

i = −di where di > 1;
• the singularity is rational if all the Ei’s are P1’s and the graph of E

contains no cycles; rational is equivalent to R1
fOŶ = 0 and this implies

the other two conditions but is not equivalent to them;
• we shall assume that (Y, p) is a semi-log-canonical singularity (not de-

fined here; cf. [23], [22] and [24]), then there is a unique index 1 cover
(Z, q) → (Y, p) such that

– (Z, q) is Gorenstein, thus KZ is a line bundle;

– for m = index (Y, p) and μm = mth roots of unity, there is a μm

action on (Z, q) with q an isolated fixed point and (Y, p) is the
quotient of (Z, q);

• by a Q-Gorenstein smoothing of (W, p) we mean a smoothing Zt of the
index 1 cover Z = Z0 of Y such that μm acts on the total space of the

14Cf. [22] and [32]. In Section II.D these definitions and facts will be illustrated
in an example.
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family {Zt} fixing the fibre Z0 and where the quotient of {Zt}t∈Δ is
{Wt}t∈Δ; this may be formalized by a diagram

Z Y

Δ Δ

on which μm acts with q ∈ Z0 as the unique fixed point (cf. [22]); an
important point is that ωY/Δ is Q-Gorenstein with Z → Y being the
relative index 1 cover;

• The Q-Gorenstein smoothings of (Y, p) are, after base change, the quo-
tients of the ordinary deformations of the index 1 cover in which the
μm action is preserved.

The semi-log-canonical Q-Gorenstein smoothable normal surface singu-
larities have been classified (cf. [24]). Those that are open sets in complete
general type surfaces for which the monodromy of the smoothing has N = 0
satisfy

(a) they are rational;
(b) there are two types

(i) ADE or Du Val singularities,
(ii) some quotient singularities.

The ADE singularities are hypersurface singularities. Hence they are
Gorenstein and their versal deformation may be described explicitly by vary-
ing their defining equation (cf. [1]). The exceptional divisor of a minimal
resolution is a tree of −2 curves given by a Dynkin diagram.

For the second type of singularities, for a, d coprime integers with a < d,
the singularity 1

d(1, a) is the quotient of C2 by the action

(u, v) → (ζu, ζav)

where ζ is a primitive dth root of unity.

• The [24] quotient singularities we shall consider are of type 1
d2n(1, dna

−1) where d, n, a are relatively prime. They are Z/dZ quotients of their
index 1 cover which is an Adn−1 singularity

xy + zdn = 0
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and the action of ζ = e2πi/d is

x → ζx, y → ζdn−1y, z → ζaz;

the Q-Gorenstein smoothings are quotients of

xy + zdn + a1t
dzd(n−1) + a2t

2dzd(n−1) + · · · + ant
nd = 0(II.C.10)

under the action

x → ζx, y → ζdn−1y, z → ζaz, t → t;

we note that implicit in (II.C.10) is a base change s = tnd from the
standard smoothing xy + zdn + s = 0 of the Adn−1 singularity.

Remark. For some circumstances it is preferable to write a general smoothing
of an Ad−1 singularity Y given by xy + zd = 0 as

Yt =
{
xy +

d∏
i=1

(z − tai) = 0
}

(II.C.11)

where the ai are the ordered roots of the degree d homogeneous polynomial
in z, t that gives the smoothing after base change. As explained in [1] the ai
correspond to the vanishing cycles by

Δ1 ↔ a2 − a1,Δ2 ↔ a3 − a2, . . . ,Δd−1 ↔ ad − ad−1.

Replacing Y = Y0 by Ŷ gives a smoothing family Y → Δ where Δ maps as a
d-sheeted branched covering over a general disc in Def(Y0).15 The vanishing
cycles are now invariant under monodromy and the corresponding homology
classes are the [Ei] ∈ H2(Ŷ ).

Although not needed here, there are similar descriptions for all of the
ADE singularities.

Deformation theory Let (Ŷ , E) → (Y, p) denote the resolution of a germ of
normal surface singularity. We are interested in

(i) T Def(Ŷ ;E1, . . . , Ek) := tangent space to the deformations of Ŷ along
which all of the Ei deform;16

∩
15Here general means meeting the discriminant locus transversely at the origin.
16These correspond to the equisingular deformations of (Y, p).
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(ii) T Def(Ŷ , E) := tangent space to the deformations of Ŷ along which the
curve E deforms, and

∩
(iii) T Def(Ŷ ) := tangent space to the deformations of Ŷ .

The normal sheaf to E in Ŷ is defined by

NE/Ŷ = HomOE (IE/I2E ,OE).

The following are cohomological expressions for each of the above.

Proposition II.C.12. There are natural identifications

T Def(Ŷ ) ∼= H1(ΘŶ ),

T Def(Ŷ , E) ∼= ker
{
H1(ΘŶ ) → H1(NE/Ŷ )

}
,

T Def(Ŷ , E1, . . . , Ek) ∼= ker
{
H1(ΘŶ ) →

k
⊕
i=1

H1(NEi/Ŷ
)
}
.

Proof. The first of these is standard (cf. [32]). Because dim Ŷ = 2 and we are
working with the germ of singularity, H2(ΘŶ ) = 0 and consequently the first
order deformations of Ŷ are unobstructed.

The second identification is also standard using T Def(Ŷ , E) = H1(ΘŶ →
NE/Ŷ ) (cf. the remark below).

For the third, from the exact cohomology sequence of

0 → ΘŶ (− logE) → ΘŶ →
k
⊕
i=1

NEi/Ŷ
→ 0

and
T Def(Ŷ , E) ∼= H1(ΘŶ (− logE))

we obtain the result.

Remark. The way in which these identifications will be used is the following,
here illustrated for the A1-singularity discussed above (keeping the notations
used there).

The tangent space to the deformation space of a pair C ⊂ X̂ is given by
H1(ΘX̂ → NC/X̂). Then to first order

• ker{H1(ΘX̂) → H1(NC/X̂)} = tangent space to deformations where C

deforms with X̂; and
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• the image of {H1(ΘX̂) → H1(NC/X̂)} may be identified with deforma-
tions of X̂ where C disappears (fails to deform to first order).

For the A1-singularity where X0 = X1 ∪C X2 with X1 = X̂ and X2 =
P1 × P1, as usual T Def(X0) ∼= Ext1OX0

(Ω1
X0

,OX0) maps to T sm Def(X0) =
H0(Ext1OX0

(Ω1
X0

,OX0)). A computation using h1(ΘX2) = 0 and h1(OC) = 0
shows that the smoothing deformations of (X, p) are obtained by deforming
the desingularization X̂ in the directions where C disappears. In other words,
in this example using semi-stable-reduction is not necessary; we may simply
deform the desingularization of X. This extends to the Adn−1 singularities.
Remark. Keeping these notations, suppose we have just one E ∼= P1. Then Ŷ
is a cone over a rational normal curve in Pd where d = −E2, and a 1-parameter
deformation of Ŷ given by a diagram

E ⊂ Ŷ ⊂ Ŷ⏐� ⏐�
{0} ∈ Δ.

The exact sequence of normal bundles

0 NE/Ŷ NE/Ŷ OE 0

∼ =

N
Ŷ /Ŷ
∣∣
E

has extension class e ∈ H1(NE/Ŷ ). We also have the Kodaira-Spencer class
d/dt ∈ H1(ΘŶ ). We will omit the straightforward proof of the following.

Proposition II.C.13. (i) e is the image of d/dt in the map H1(ΘŶ ) →
H1(NE/Ŷ );

(ii) e is non-zero if, and only if, to first order E disappears in the deforma-
tion Yt of Ŷ = Ŷ0;

(iii) in this case
NE/Ŷ

∼= OE(−α) ⊕ OE(−β)
where α, β > 0, and when α = β = 1 the curve E contracts to a Q-
Gorenstein terminal singularity in the deformation space Y of Y .

Proposition II.C.14. There are maps of OE-modules

IE/I
2
E → N∗

Ei/Ŷ
⊗N∗

Ei+1/Ŷ
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that upon dualizing lead to the exact sheaf sequence of OE-modules

0 →
k
⊕
i=1

NEi/Ŷ
→ NE/Ŷ →

k−1
⊕
i=1

NEi/Ŷ
⊗NEi+1/Ŷ

∣∣
Ei∩Ei+1

→ 0.(II.C.15)

Proof. The issue is local around a point of Ei ∩Ei+1 locally given by xy = 0.
Then

IE/I
2
E = (xy)

(x2y2) has a C-basis 1 · (xy), xi(xy), yj(xy) for i > 0, j > 0,

N∗
Ei/Ŷ

∼= (x)
(x)2 has a C-basis 1 · x, xi · x for i > 0,

N∗
Ei+1/Ŷ

∼= (y)
(y)2 has a C-basis 1 · y, yj · y for j > 0,

yN∗
Ei/Ŷ

∼= (xy)
(x2y) and xN∗

Ei+1/Ŷ
∼= (xy)

(xy2) .

The map
IE/I

2
E → N∗

Ei/Ŷ
⊕N∗

Ei+1/Ŷ

given by
(xy)

(x2y2) → (xy)
(x2y) ⊕ (xy)

(xy2)
is well defined, and because (x2y) ∩ (xy2) = (x2, y2) it is injective. Since
1 → 1 · (xy) ⊕ 1 · (xy), the maps

(xy)
(x2y) → (xy)

(x2y, xy2) ,
(xy)
(xy2) → (xy)

(x2y, xy2)

are individually surjective. By taking the difference locally around xy = 0
where Ei = (x = 0) and Ei+1 = (y = 0) we obtain the exact sequence

0 IE/I
2
E N∗

Ei/Ŷ
⊕N∗

Ei+1/Ŷ
OEi∩Ei+1 0

∪
(xy)

(x2y2)
(xy)
(x2y) ⊕

(xy)
(xy2)

(xy)
(x2y,xy2)

∼= (1)
(xy)

(II.C.16)

which globalizes to

0 → IE/I
2
E →

k
⊕
i=1

N∗
Ei/Ŷ

→
k−1
⊕
i=1

NEi/Ŷ
⊗NEi+1/Ŷ

∣∣
Ei∩Ei+1

→ 0.
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Dualizing gives the exact sequence (II.C.15).

Proposition II.C.17. H0(NE/Ŷ ) = 0, so that we have

0 →
k−1
⊕
i=1

H0(NEi/Ŷ
⊗NEi+1/Ŷ

∣∣
Ei∩Ei+1

) →
k
⊕
i=1

H1(NEi/Ŷ
) → H1(NE/Ŷ ) → 0.

Proof. Using adjunction and NEi/Ŷ
∼= OEi(−di), in the exact cohomology

sequence of (II.C.15) the map

k−1
⊕
i=1

H0
(
NEi/Ŷ

⊗NEi+1/Ŷ

∣∣
Ei∩Ei+1

)
→

k
⊕
i=1

H1(NEi/Ŷ
)

is dual to

k
⊕
i=1

H0 (OEi(di − 2)) →
k−1
⊕
i=1

H0
(
N∗

Ei/Ŷ
⊗N∗

Ei+1/Ŷ

∣∣
Ei∩Ei+1

)
.(II.C.18)

Since di � 2, this mapping is surjective and this implies the result.

Note II.C.19. Below we will interpret (II.C.18) as giving a map

k−1
⊕
i=1

(
H0(KŶ

∣∣
Ei

) → ⊕H0(KŶ

∣∣
Ei∩Ei+1

)
)

whose kernel is equal to H0(KŶ

∣∣
E
).

The following summarizes the above:

T Def(Ŷ ;E1, . . . , Ek)⊂
	=
T Def(Ŷ , E)⊂

	=
T Def(Ŷ )

quotient is ⊕H1(NEi/Ŷ
)

quotient is
k−1
⊕
i=1

ΘŶ

∣∣
Ei∩Ei+1

quotient is
H1(NE/Ŷ )

(II.C.20)

The canonical bundle Setting Y ∗ = Y \{p} with j : Y ∗ ↪→ Y the inclusion,
the canonical Weil divisorial sheaf

KY = j∗KY ∗
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is the linear equivalence class of the divisor of any differential ψ ∈ H0 (Ω2
Y ∗
)
.

Since KY is only Q-Cartier we cannot evaluate ψ ∈ H0(KY ) at the singular
point p. Rather, we shall use the identification

H0(KY ) ∼= H0(KŶ )

to define evaluation of ψ at p by considering ψ ∈ H0(KŶ

∣∣
E
). The basic

observation is that by adjunction

KŶ

∣∣
Ei

∼= N∗
Ei/Ŷ

⊗KEi
∼= OEi(di − 2).(II.C.21)

We are now ready to put things together. The usual form of the differential
of a period mapping for weight 2 is

T → Hom(H2,0, H1,1),

or equivalently

T ⊗H2,0 → H1,1.(II.C.22)

In the geometric case ⎧⎪⎪⎨⎪⎪⎩
T = H1(Θ),
H2,0 = H0(Ω2),
H1,1 = H1(Ω1).

In the local version, we use the cohomology of Ŷ , and the commutative dia-
gram

H1(ΘŶ ) ⊗H0(KŶ ) H1(Ω1
Ŷ
)

⊕H1(NEi/Ŷ
) ⊗H0(KŶ ) ⊕H1(Ω1

Ei
).

(II.C.23)

From Propositions II.C.12 and II.C.14 we have the

Theorem II.C.24. The first mapping below is surjective, and assuming the
second is surjective

H1(ΘŶ )
k
⊕
i=1

H1(NEi/Ŷ
)

H0(KŶ ) H0(KŶ

∣∣
E
),



Differential of a period mapping at a singularity 1455

then for a general ξ ∈ H1(ΘŶ ) and any Ei, there is a ψ ∈ H0(KŶ ) such that
the image of ξ ⊗ ψ in H1(Ω1

Ei
) is non-zero.

This implies that all images ξi of ξ in H1(NEi/Ŷ
) are non-zero; thus ξ

maps to a non-zero element in T Def(Ŷ )/T Def(Y,E) under which to first
order all of the Ei disappear. Thus ξ gives a non-zero element in T Defsm(X).
This is the local picture.

For the global case we assume that we have a surface (X, p) with an
isolated semi-log-canonical singularity of the above type and with canonical
resolution (X̂, E) → (X, p). Denote by (Y, p) the germ of a neighborhood of
p in X and by (Ŷ , E) → (Y, p) the resolution. For simplicity of exposition we
assume that H1(ΘX̂) is unobstructed. There are maps

T Def(X̂)

ρ

(a) H1(ΘX̂)

α

H1(ΘŶ )
k
⊕
i=1

H1(NEi/Ŷ
)

(b) H0(KX̂)

β

H0(KŶ )
k
⊕
i=1

H0(K
Ŷ
∣∣
Ei

)

H0(KX)

(c) H1(Ω1
X̂

) H1(Ω1
Ŷ
)

k
⊕
i=1

H1(KEi).

(II.C.25)

The differential of the period mapping at the point corresponding to the
singular surface (X, p) may be identified with

δΦ : H1(ΘX̂) → Hom
(
H0(KX̂), H1(Ω1

X̂
)
)
.17(II.C.26)

The following is by far not the strongest possible result. It is given to il-
lustrate how via the extended period mapping Hodge theory enters into the

17Here we recall our convention that δΦ on H1(ΘX̂) is defined by composing
the Kodaira-Spencer map on discs Δ ⊂ H1(ΘX̂) with δΦ as earlier defined in the
1-parameter case.
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geometry of completed moduli spaces, in this case the locus of surfaces having
a particular type of singularity.

Theorem II.C.27. A sufficient condition that ξ ∈ T Def(X̂) map to a
smoothing direction in T Def(X) is that for each i there exists ψi ∈ H0(KX)
such that the composite map λ in

αρ(ξ) ⊗ β(ψi) ∈ H1(NEi/X̂
) ⊗H0(KX̂

∣∣
Ei

)

H1(KEi)

be non-zero.

Indeed, by the analysis above this is sufficient to insure that to first order
every Ei does not move when we deform X in the direction ξ.

There are similar results expressing when a subset of the Ei does not de-
form, so that the direction ξ will give at least partially smoothing deformation
of X.

Summary Stripped to its essentials the above argument is the following:

• (X̂, E) → (X, p) is the resolution of a rational, Q-Gorenstein smooth-
able singular surface.

• The [24] smoothing deformations of X are Q-Gorenstein smoothings
in Def(X) and are the images of deformations of X̂ under which the
normal crossing curve E = ∪Ei disappears;

• More specifically, there is a picture

Gorenstein singularity (an Adn−1 singularity)⏐⏐�
Gorenstein singularity/finite group (a Q-Gorenstein

smoothable singularity).

We smooth the quotient by a smoothing the Adn−1 singularity that
preserves the finite group action. The actual equations for this were
written out above (cf. (II.C.10)).

• We ask whether this is the same condition as that the Hodge classes
[Ei] ∈ Hg1(X̂) cease to be Hodge classes.
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• The result is that the conditions in the second and third bullets are to
first order equivalent if, and only if, p is not a base point of the canonical
series |KX |.18

• To express this condition cohomologically, first taking the case where
there is one Ei := E as a consequence of the commutative diagram

ΘŶ ⊗KX̂ Ω1
X̂

NE/X̂ ⊗K
X̂
∣∣
E

Ω1
E = KE

we have the commutative diagram

H1(ΘX̂) ⊗H0(KX̂) H1(Ω1
X̂

)

H1(NE/X̂) ⊗H0(K
X̂
∣∣
E

) H1(Ω1
E).

• For ξ ∈ H1(ΘX̂) the condition that to first order the Hodge class given
by E not deform to a Hodge class is that ξ ⊗ H0(KX̂) maps non-zero
to H1(Ω1

E).19

• For the case when E = ∪Ei we use the normal sheaf

NE/X̂ := HomOE (IE/I2E ,OE)

to obtain the same result where now the map must map non-zero onto
each H0(KEi).

II.D. Wahl singularity for I-surfaces

Local theory We recall that any 1
d(1, a) quotient singularity (Y, p) has an

index 1 cover (Ŷ , p̂) with an action of μm with fixed point p̂ and with quotient
18This means that there is ψ ∈ H0(KX) such that ψi := image of ψ in H0(KX̂

∣∣
Ei

)
for all i when X is Gorenstein so that KX is a line bundle this is the same as
ψ(p) �= 0; when KX is only Q-Cartier the condition is more subtle.

19The condition that to first order E not deform along with X̂ is that ξ maps to a
non-zero element in H1(NE/X̂). We observe that to first order deforming preserving
E and preserving the Hodge class [E] ∈ H1(Ω1

X̂
) are equivalent.
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(Y, p) (cf. [22]). For the 1
d2n(1, dna− 1) singularity we have

(Ŷ , p̂) → (Y, p)

where (Ŷ , p̂) is an Adn−1 singularity with a μd action. The Wahl singularity
is the first case d = 2, n = a = 1 giving a 1

4(1, 1) singularity with index 1
cover the 1

2(1, 1) singularity A1 having an equation and Z2-action{
xy = z2

x → −x, y → −y, z → −z.

The smoothing xy = z2 + s gives, after a base change s = t2 with t → −t
and then taking the Z2-quotient, a Q-Gorenstein smoothing of it. The Wahl
singularity is of historical significance: it is the first non-Gorenstein cyclic
quotient singularity, and its smoothing has no vanishing cycles and therefore
has trivial monodromy.

Before illustrating Theorem (II.C.24) and the above construction we shall
briefly describe some geometric interpretations of the Wahl singularity and
its Q-Gorenstein smoothing.

• a 1
d(1, 1) singularity is realized as the cone over the rational normal

curve of degree d in Pd; equivalently, it is the section P(OP1 ⊕ 0) of the
P1-bundle P(OP1 ⊕ OP1(−d)) over P1;

• for a smooth non-degenerate surface S of minimal degree d in Pd+1, a
hyperplane through the vertex of the cone over S gives a realization
of this singularity, and deforming the hyperplane to not pass through
vertex gives a smoothing;

• for the Wahl singularity when d = 4 there are two choices for S, the
rational normal scroll and the Veronese surfaces P2 ↪→ P5 embedded by
|OP2(2)|; only the second of these gives a Q-Gorenstein smoothing.

For the desingularization (Ŷ #, E#) f#
−−→ (Y #, p#) of the node, since the

singularity is canonical,

f#∗KY #
∣∣
E# = KŶ #

∣∣
E# = OE# .

We note that
H1
(
NE#/Ŷ #

)
∼= H1(OP2(−2)) ∼= C

and the map
H1(ΘŶ #) → H1(NE#/Ŷ #)
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is non-zero; thus by the analysis at the end of Section II.C the −2 curve E#

disappears (in fact already to first order).
For the desingularization (Ŷ , E) f−→ (Y, p) of the Wahl singularity we have

the equations of Q-line bundles

f∗KY = KŶ + 1
2[E],

KŶ

∣∣
E
∼= OE(2).

The localized derivative of the period mapping is

H0(KŶ

∣∣
E
) ⊗H1(NE/Ŷ ) H1(KE)

∼ = ∼ = ∼ =

H0(OE(2)) ⊗H1(OE(−4)) H1(OE(−2)).

(II.D.1)

Thus under the smoothing direction of the Wahl singularity the class [E] ∈
H1(Ω1

E) disappears.

Global theory Example of I-surfaces. An I-surface is a smooth, minimal
general type surface X with

pg(X) = 2, q(X) = 0, K2
X = 1.

These surfaces were studied classically; recently they have emerged as among
the first examples where the completed KSBA moduli space MI has been
analyzed.20 From the cited works there is one divisor in MI whose general
point corresponds to an I-surface (X, p) with a single Wahl singularity. Here
we shall describe these surfaces and, with details to be provided elsewhere,
will discuss how this divisor may be detected Hodge theoretically under the
extended period mapping

Φ : MI,f → Γ\D

20See [10] for a detailed analysis of the Gorenstein components of MI and also
for the elusive non-Gorenstein divisorial components of that space. See also [22] for
the Wahl singularity case. Much of the following discussion is based on notes by
them that are a sequel to [10] and on discussions with them and Radu Laza and
Colleen Robles.
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where MI,f ⊂ MI parametrizes the possibly singular I-surfaces that have a
Q-Gorenstein smoothing with finite monodromy.21

Let X be an I-surface with a 1
4(1, 1) singularity p. There are several ways

to construct (X, p), and to describe one of these we use the notations

• P(1, 1, 2) has coordinates (x1, x2, y) and is embedded in P3 as a quadric
cone with vertex P

• P(1, 1, 2, 5) has coordinates (x1, x2, y, z); any Gorenstein I-surface Y has
the equation

z2 = a0y
5 + a2(x1, x2)y4 + · · · + a10(x1, x2)

where a2k(x1, x2) is homogeneous of degree 2k and a0 �= 0 (cf. [10]).
• Y → P(1, 1, 2) ⊂ P3 is branched over a quintic V ∈ |OP3(5)| where P �∈ V .
• As a0 → 0 the quintic V passes through the vertex P = (0, 0, 1, 0) and the

limit surface X ceases to be Gorenstein but acquires a 1
4(1, 1) singularity

over P .
• For a0 = 0 and (x1, x2) �= (0, 0) over the fibre of projection P(1, 1, 2) → P1

we have a double cover of a quartic intersection with the line over (x1, x2).
The discriminant of the quartic has terms like a3

2a
3
10, a

2
4a

2
6a

2
0, . . . ,; they all

have the same degree 3 · 2 + 3 · 10, 2 · 4 + 2 · 6 + 2 · 8, · · · = 36. Hence,
when a0 = 0 outside of what happens at P we have a 2:1 covering of
P(1, 1, 2)\P with four branch points over the intersection of V with the
rulings of the quadric. In general, there are 36 such rulings where two of
the branch points come together; i.e., the corresponding curves acquire
nodes.

• Over x1 = x2 = 0 we have z = 0 which is the singular point (0, 0, 1, 0)
on X. Here P(1, 1, 2, 5) has a 1

2(1, 1, 1) singularity of index 2. A weighted
blowup inserts a Veronese surface X2 under the map

(x1, x2, 0, z) → {all quadratic monomials in x1, x2, z};

the blown up surface X1 intersects the Veronese X2 in the conic hy-
perplane section E given by z2 − a2(x1, x2) = 0. Here we assume a2 is

21The period domain D has dimension 57 and H ⊂ TD is a contact structure.
The differential Φ∗ : Mf → Γ\D is injective at all smooth surfaces X, and the
image Φ(Mf ) is a contact subvariety. The monodromy group Γ is arithmetic; it is
not known if it is the full GZ.
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non-degenerate. The conic E maps 2:1 to the P1 coming from x1, x2; i.e.,
we have z = ±

√
a2(x1, x2).

• Thus X1
f−→ P1 is an elliptic surface having a bi-section

with branch points at the zeroes of a2(x1, x2).
• For the numerology we have for Ei := E ⊂ Xi

–
{
E2

1 = −4
E2

2 = 4

– KX1 · EX2 = 2 (thus KX1 · EX1 + E2
X1

= −2)
– f∗ωX1/P1 ∼= OP1(1).

Since the monodromy T = I, from Hodge theory we have pg(X1) = 2.
We now denote by E the P1 in either X1 or X2 and consider the surface

X0 = X1 ∪E X2. Then H2
lim is the cohomology of

H0(E)(−1) G−→ H2(X1) ⊕H2(X2)
R−→ H2(E)

where G is the direct sum of Gysin maps and R is the sum of signed restric-
tion maps. Thus in the diagram (II.D.1) the image of the map to H2(X1) is
spanned by

[E]⊥ ∈ H1(Ω1
X1) ∼= H2(Veronese) ∼= C.

This has dimension 1, and from a work in preparation on moduli of I-surfaces
and Hodge theory we will provide details of the argument to show

For the moduli of I-surfaces there is 1-condition to have a 1
4 (1, 1) singularity.

This condition is detected Hodge theoretically by the presence of an additional
Hodge class in Φ(0) = H2

lim.22

Note Following a suggestion of the referee there is a conjectured formulation
of the above as follows: a general I-surface X having a Wahl singularity
corresponds to a general point η ∈ Mf , which is a smooth divisor in MI in

22It is due to FPR that there is another divisor in MI,f given by I-surfaces
having a 1

25 (1, 14) singularity. We do not know if this one may be detected Hodge-
theoretically. It is work in progress to develop a good formalism for dealing with
the calculation of general such examples.
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a neighborhood of η. Denoting by X̂ the desingularization of X with E ⊂ X̂
being the exceptional elliptic curve with E2 = −4 and that contracts to the
singular point p ∈ X, there is a commutative diagram with exact rows and
where the superscripts denote dimensions

0 TMf
(η)27 TMI ,X

28 N
Mf ,MI

1 0

0 Hom(H2,0(X̂), {E, h}) 56 TΦ(X)P Hom
(
H2,0(X̂), H1,1(V )

)2 0

(II.D.2)

where h ∈ H2(X̂) is the class of OX(1) pulled back to X̂, P = Φ(Mf ) ⊂ Γ\D
is the image of the period mapping on Mf , and V is a Veronese surface
where E is a hyperplane section passing through the vertex of the cone over
V and where the Q-Gorenstein smoothing of E is obtained by varying the
hyperplane section.

Note There is an interesting dimension count going on here. Namely,

• elliptic surfaces Y with q(Y ) = 0, pg(Y ) = 2 have 30 = 10 ·χ(OY ) moduli.
Specifically, in the case at hand

h1(ΘY ) = 30 and h0(ΘY ) = 0;

• the “expected codimension” in moduli for Y to have a line bundle L → Y
is pg(Y ) = 2;

• the L we are interested in has L2 = −4, L ·KY = 2;
• if h0(L) �= 0, then h0(L) = 1 and there is a unique curve E ∈ |L|; from

E2 = −4, E ·KY = 2

we infer that the arithmetic genus pa(E) = 0, and from the above local
picture generically E = P1;

• for (Y,E) as above we may contract E to give an I-surface with a 1
4(1, 1)

singularity.

With the details to be given elsewhere,

— dim{pairs (Y, L) as above} = 30 − 2 = 28;
— among such pairs (Y, L) it is one condition to have h0(L) �= 0;
— the space of pairs (Y,E) has dimension 27;
— since dimMI = 28, the above explains why imposing a 1

4(1, 1) singular-
ity is one condition in moduli of I-surfaces.
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III. The case of infinite monodromy (N �= 0)

In this section, we will define and give examples of δΦ in the situation where
a semi-stable reduction gives a family X → Δ where X0 := X is a reduced
normal crossing divisor. We will break the discussion into two parts.23

(i) T Defes(X),
(ii) T Defsm(X).

III.A. General structure and examples of δΦ in the equisingular
in case

This is essentially the case of δΦ for a family of mixed Hodge structures
([31]). The assumption that these are limiting mixed Hodge structures does
not enter.

There is a structural result concerning the differential δΦ. Following some
preliminary discussion this result is stated as Proposition III.A.3 below. The
weight filtration is preserved in a variation of mixed Hodge structure, and
in the non-classical case the interactions among the associated graded pure
Hodge structures are reflected by how the extension data in the mixed Hodge
structures is constrained. Basically up to integration constants all of the ex-
tension data is determined by that of level � 2.

The space of graded polarized mixed Hodge structures with given Hodge-
Deligne numbers forms a period domain D [27]. It is a homogeneous complex
manifold consisting of filtrations {F p} on a complex vector space VC, and the
tangent bundle to D has a horizontal sub-bundle H ⊂ TD defined by the
condition

Ḟ p ⊆ F p−1.(III.A.1)

There is a weight filtration W on V such that for each point F ∈ D the
filtration induced by F on each GrWm (VC) defines a pure Hodge structure of
weight m. Finally, there are bilinear forms that polarize the GrWm (V )’s.

The period mappings we consider will give holomorphic mappings Φ :
Δ → D that satisfy (III.A.1); i.e.,

Φ∗(TΔ) ⊆ H,

23We refer to the Appendix for the notation and summary of deformation theory
and Hodge theory for normal crossing varieties.
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and will induce variations of pure Hodge structure on GrWk (V ) := Hk. More-
over, the variations of mixed Hodge structure we will consider over discs Δ
will be restrictions to Δ of global admissible ones over possibly non-complete
algebraic curves C with Δ ⊂ C. The reason is that Φ will give the restriction
to Δ of a morphism C → J , where J is an Abelian variety, and the condi-
tion that the induced map H1(C) → H1(J) be a morphism of mixed Hodge
structures is used in the proof of Proposition III.A.3.

The period domain D is an iterated analytic fibration with successive
fibres isomorphic to the space

E� := Ext1MHS(Hk+�, Hk)(III.A.2)

of level � extensions. E� is an abelian complex Lie group that is a quotient of
a complex Euclidean space by a discrete subgroup. Using the notations from
[19] it is shown there that

(i) for � = 1, the Lie algebra of E� has a Hodge structure whose Hodge
decomposition looks like

(2k + 1, 0) + · · · + (k + 1, k) ⊕ (k, k + 1)︸ ︷︷ ︸+ · · · + (0, 2k + 1)

and a holomorphic mapping of a possibly non-complete algebraic variety
to Ek has differential mapping to the complexification of the largest
sub-Hodge structure over the bracket;

(ii) for � = 2 the differential is a mapping to the complexification of the
largest Q-subspace, which is then a sub-Hodge structure, over the brack-
et in

(2k, 0) + · · · + (k, k)︸ ︷︷ ︸+ · · · + (0, 2k);

(iii) for � � 3 the differential is zero.24

In summary, we have the

Proposition III.A.3. For an equisingular deformation of X, the differential
of the period mapping to the mixed Hodge structures is determined by the
differentials of the map to the associated graded pure Hodge structures and to
the extension data of levels � 2.

24This does not mean that the higher level extension data is uninteresting. For
instance if the GrWm (V ) are Hodge-Tate, then entries in the period matrix repre-
sentation of the higher level extension data is given by polylogarithms and the
constants of integration give functional equations for them.
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Example III.A.4 (General). Let X1, X2 be smooth surfaces, C a smooth irre-
ducible curve with embeddings

C ↪→ Ci ⊂ Xi, i = 1, 2,

and

X = X1 ∪C X2(III.A.5)

the normal crossing surface obtained by gluing X1 and X2 along C1 and C2.
With the further assumptions that the Xi are regular so that

Pic(Xi) = Hg1(Xi)

and notation

Pic0(Xi, Ci) = {Li ∈ Pic(Xi) : deg(Li

∣∣
Ci

) = 0}
∼= ker{Hg1(Xi) → H2(Ci)}

we want to interpret δΦ on T Defes(X).
Assuming that [Ci] �= 0 in H2(Xi), Mayer-Vietoris gives the exact se-

quence

0 H1(C) H2(X) Ker{H2(X1) ⊕H2(X2) → H2(C)} 0

∼ = ∼ =

GrW1 H2(X) GrW2 H2(X).

Part of δΦ detects the differential of the period mappings on GrW2 H2(X) and
on GrW1 H2(X). These are standard mappings, so for the purpose of illustra-
tion we shall assume that both of them are constant on Δ ⊂ T Defes(X).
Then what is varying is the extension data in

0 → H1(C) → H2(X,C) → ker{H2(X) → H2(C)} → 0.(III.A.6)

From this and setting we may infer the

Proposition III.A.7. This extension data is a sum of pieces in

(i) Ext1MHS(Pic0(Xi, Ci), H1(Ci)) ∼= Ext2MHS(⊕Q(−1), H1(C));
(ii) Ext1MHS(H2(Xi)tr, H1(Ci)).25

25H2(Xi)tr = Pic0(Xi)⊥ is the transcendental part of H2(Xi).



1466 Mark Green and Phillip Griffiths

For the geometric interpretation of (i), we let Di,t be a family of divisors
on Xi such that deg(Di,t ·Ci) = 0. Then AJC(Di,t ·Ci) is a curve in J(C) and
the corresponding part of δΦ(d/dt) is the tangent to this curve.26

The term (ii) is represented by membrane integrals, which are transcen-
dental invariants. Their derivative is, however, algebraic and we shall give an
explicit example to illustrate how this may contain useful geometric informa-
tion.

Proposition III.A.8. If T Defes(X) is unobstructed, assuming generic local
Torelli holds for each of Defes(X1, C1) and Defes(X2, C2), it then holds for
Defes(X) as well.

We will not give a formal proof of this result; it is a straightforward
consequence of deformation theory, Hodge theory and the period mapping
for normal crossing divisors.

The point of this proposition will be to be able to use generic local Torelli
on a boundary component in moduli to infer generic local Torelli in the inte-
rior.

A typical example we have in mind is given by the following well-known
construction:

• (X1, C1) is the desingularization of a surface (X0, p) with a simple el-
liptic singularity of degree d = −C2

1 ; we assume that T Def(X1, C1) is
unobstructed;

• (X2, C2) is a del Pezzo surface given by realizing C2 as a cubic curve
isomorphic to C1 and blown up at 9 − d points {qi} so as to have

NC1/X1 ⊗NC2/X2
∼= OC ;

• then X = X1 ∪C X2 is to first order smoothable, and the limiting
mixed Hodge structure H2

lim locally in T Defes(X) determines the pair
(X2, C2); this is because GrW1 H2

lim determines C2 and the level 1 exten-
sion data determines the pair (X2, C2);

• GrW2 H2
lim locally determines X1 and then the extension data in

H2(X1, C1) locally determines the pair (X1, C1);

• when we discuss δΦ in smoothing directions it may be shown that if
T Def(X) is unobstructed, so that the Kuranishi space of X is smooth, and
that if the conditions in Proposition III.A.8 are satisfied, generic local Torelli
will hold for the KSBA moduli space of a smoothing of X1.

(III.A.9)

26This is due to Carlson (cf. [2] for an exposition).
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Example III.A.10 (Specific). As suggested in (II.D.2) the above conditions are
satisfied when (X0, p) is a general specialization of smooth I-surfaces ([10],
[21], [28], [20], [3]). In the notation of (II.D.2), P is a 28 dimensional contact
subvariety of Γ\D and the deformations of (X̂, E) give a 27 dimensional
family for which local Torelli holds (X̂ in (II.D.2) is equal to X1 above).

generic local Torelli holds for I- and H-surfaces.

Example III.A.11. We will now illustrate how δΦ may be used to prove generic
global Torelli results.27 The specific example will be the mixed Hodge struc-
ture on a pair (X,C) where C ⊂ X is a smooth curve in a smooth surface. The
idea is that δΦ is an algebraic invariant of the pair (X,C), and in some cir-
cumstances it contains sufficient information to be able to determine (X,C).
This example arose in the study of the boundary of moduli of I-surfaces

• D ⊂ P2 is a general plane sextic defined by an equation F̂ (x, y, z) = 0;
• X ⊂ P(1, 1, 1, 2) is a 2-sheeted covering of P2 branched along D; X is

given by
F (x, y, z, w) = w2 − F̂ (x, y, z) = 0;

• � ⊂ P2 is a line, not tangent to D; we may take x = 0 to be the equation
of �;

• C ⊂ X is the 2-sheeted covering of � branched along � ∩D.

Then X is a K3 surface of degree 2, i.e., with an ample line bundle L → X
with L2 = 2, and C ∈ |L| is a general section. We note that (X,C) uniquely
determines the pair (D, �).28

Proposition III.A.12. The mapping

(D, �) → H2(X,C)

has degree 1.

What will be shown is if (D, �) is general, then up to a projective trans-
formation the differential of the period mapping sending (D, �) to the mixed
Hodge structure H2(X,C) is injective and the algebraic expression for it
uniquely determines F, �. This is the analogous situation to Donagi’s proof of
generic global Torelli for most hypersurfaces in Pn+1, n � 2 (cf. [9] and [17]).

27In [28] there is a global Torelli theorem for a particular class of I-surfaces. It
is deduced from a global Torelli result for lattice polarized K3’s.

28What this means is that given (X,C) we may uniquely determine (D, �) up to
a projective transformation.
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We set

W = H0(OX(1)), W k = Symk W,

W = W/(�).

The following are done by similar calculations to those in [17] and we shall
just give the basic steps. The intermediate local Torelli step in the proof is
summarized in (III.A.15) below.

Using
H2(X\C) ∼= H∗(Ω•

X(logC))
we have

F 2H2(X\C) ∼= H0(KX(C)) ∼= H0(OX(1)) ∼= W.

This fits in the standard exact sequence

0 H2,0(X) F 2H2(X\C) H1,0(C) 0

∼ = ∼ = ∼ =

C W W.

A further calculation gives

F 1H2(X\C)/F 2H2(X\C) ∼= W 7/(F, Fy, Fz).

Denoting by JF and JF the Jacobian ideals the extension exact sequences are

0 H2,0(X) F 2H2(X\C) H1,0(C)(−1) 0

∼ = ∼ = ∼ =

0 C
�

W W 0;

0 H1,1(X)pr
F 1H2(X\C)
F 2H2(X\C) H0,1(C)(−1) 0

∼ = ∼ = ∼ =

0 W 6/JF
x W 7

(F,Fy,Fz)
W

7

JF
0

and
0 H1,0(C) F 1H2(X,C)

F 2H2(X,C) H1,1(X)pr 0

∼ = ∼ = ∼ =

0 W
4
/JF

W 6

(F,Fy,Fz)
W 6

JF
0.
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Here the map on the bottom left is

u → ũFx

where ũ is a lift of u to W 4; the map on the bottom right is projection using
JF ⊇ (F, Fy, Fz).

Next, for the differential of the period mapping we have

0 T{�} T{(D, �)} T{D} 0

∼ = ∼ = ∼ =

0 W W 6/(F, Fy, Fz) W 6/JF 0

where again the map on the left is u → ũFx. Then

T{D,�} ⊗ F 2H2(X\C) F 1H2(X\C)
F 2H2(X\C)

∼ = ∼ = ∼ =
W 6/(F, Fy, Fz) ⊗W W 7/(F, Fy, Fz)

(III.A.13)

is multiplication, as is (using W 0 = C)

T{D,�} ⊗ F 2H2(X,C) F 1H2(X,C)/F 2H2(X,C)

∼ = ∼ = ∼ =

W 6/(F, Fy, Fz) ⊗ C W 6/(F, Fy, Fz).

(III.A.14)

From Macaulay’s theorem

W 6/(F, Fy, Fz) ∼= (W 7/(F, Fy, Fz))∗,

and surjectivity of the multiplication of polynomials gives the

Conclusion: Local Torelli holds for H2(X\C) and H2(X,C).(III.A.15)

As in the proof of generic global Torelli for hypersurfaces ([9] and [17]),
the final step is to deduce the polynomial structure on the W k appearing in
(III.A.13) and (III.A.14). Setting

Rk = W k/Ik, Ik ⊇ (F, Fy, Fz)k

the period mapping is
W ⊗R6 δ−→ R7.
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There is a Koszul complex

R2 α−→ W ∗ ⊗R6 β−→ ∧2W ∗ ⊗R7(III.A.16)

where β can be deduced from δ and we need that (III.A.16) is exact. Using
Macaulay’s theorem in this situation, the dual of (III.A.16) is

∧2W ⊗R6 → W ⊗R7 → R8.

Then using ([15], [16])

∧2W ⊗W 6 → W ⊗W 7 → W ⊗W 8

is exact at the middle term. Also

W ⊗ I7 � I8

is surjective, so that we may infer that (III.A.16) is exact and that α is
injective. Thus we have

R5 → W ∗ ⊗R6.

By duality
R4 → W ∗ ⊗R5 → ∧2W ∗ ⊗R6

is exact at the middle so that we recover

R4 → W ∗ ⊗R5.

Continuing in this way we obtain

R3 → W ∗ ⊗R4.

But R3 ∼= W 3 and R4 ∼= W 4 so that we have recovered the multiplicative
structure on R3, R4. From this we are able to recover (F, Fy, Fz) in all degrees.
It remains to show that

We can recover F, � from (F, Fy, Fz).

We have Fy, Fz and this gives F = G(x) for some G(x). If

(F + G(x), Fy, Fz) = (F, Fy, Fz),

then G(x) ∈ (Fy, Fz). For a general F there is no function of x above in
(Fy, Fz)6.
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Having F , since Fx, Fy, Fz are linearly independent

W ∗ → δ2W

picks out (W/�)∗ and hence �, which completes the proof.

III.B.1. Definition and properties of δΦ in the smoothing case
Given a period mapping

Φ : Δ∗ → Γ\D
where Γ = {T k : k ∈ Z} with T = Tu = eN , N �= 0, setting Γ(N) =
exp(CN) ⊂ GC there is a set theoretic extension of this mapping to

Φ : Δ → Γ(N)\Ď(III.B.1)

where Ď is the compact dual of D. The image of the origin

Φ(0) := Hn
lim = {V,W (N), Flim}

is an equivalence class of limiting mixed Hodge structures. There is an induced
mixed Hodge structure on End(V ), and we shall define

δΦ ∈ F−1 End(V )
F 0 End(V ) + CN

.(III.B.2)

The principal part of Φ(t) is N and δΦ will be the term of next order in the
expansion of Φ(t).

To define δΦ we denote by

VC = ⊕Ip,q

the Deligne decomposition of the mixed Hodge structure Hn
lim and by

gC = ⊕gp,q

the induced Deligne decomposition on g ⊂ End(V ). The Hodge and weight
filtrations on g are

F pgC = ⊕
p′�p

q

gp
′,q

Wmg = ⊕
p+q�m

gp,q.
(III.B.3)
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The tangent and horizontal spaces are

TF Ď ∼= g/F 0g
∪

IF Ď ∼= F−1g/F 0g.

Setting �(t) = log t/2πi the lift of Φ in (II.B.1) is

(III.B.4) Φ(t) = exp(�(t)N) exp ξ(t) · Flim

where
ξ(t) ∈ ⊕

q
g−1,q.29

Definition III.B.5. δΦ = ξ′(0) modCN .

The interpretation of δΦ is that exp(�(t)N)Flim is the nilpotent orbit ap-
proximating Φ(t) and δΦ measures the first order deviation from Φ(t) actually
being a nilpotent orbit.

The weight filtration on g induces one on δΦ. For weight n the weights
w satisfy −(n + 1) � w � +(n − 1). The associated graded to the weight w

part of the differential is given by maps

Ip,q → Ip−1,q+w+1

in the Deligne decomposition of g. In the geometric case the Ip,q are inter-
preted cohomologically and this leads to a Kodaira-Spencer type interpreta-
tion of the graded pieces of the differential of the extended period mapping.
An application of this will be a cohomological expression for the first order
variation of the level k extension data when that data of levels less than k

are held constant.
For the cases n = 1, 2 we shall give a schematic depicting this structure.

We recall that for an ordinary period map to polarized Hodge structures of
weight n when n = 1, 2, the differential is determined by the maps V n,0 →
V n−1,1. Hence for the cases of curves and surfaces the differential will be
determined by the maps

In,q → In−1,q+w+1, 0 � q � n

29Here we are following the notations in [19].
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and so we shall only depict those. The first case is

n=1(III.B.6)

The interpretations are

−→ is weight 0 and reflects the first order variation of the associated graded
to the limiting mixed Hodge structure;

−→ is weight −1 and reflects the first variation in the level 1 extension data
when the associated graded to the limiting mixed Hodge structures are
held constant;

��� contains the same information, in dual form, as ↘ ;
−→ is weight −2 and reflects the first variation in the level 2 extension data

when the associated graded to the limiting mixed Hodge structures and
the level 1 extension data are held constant. This is only well defined
modulo the action of N .

We note that there are no elements of positive weight in (III.B.6) and that the
lowest weight is −2. The first of these properties are special to the classical
case.

We next turn to the n = 2 case

(III.B.7)

The interpretations are
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−→ has weight +1. It is not present in the classical case, and has the Lie-
theoretic interpretation that to first order the point Φ(0) ∈ Ď moves
out of the Schubert cycle in which it lies.30

The arrows −→, −→ and −→ have the same interpretation as in the n = 1
case. The −→ has weight −3 and reflects the first order variation of the level
3 extension data when to first order Φ(t) remains in its Schubert cycle, and
the associated graded to the limiting mixed Hodge structure together with
the first two levels of extension data remain fixed. We have seen that under
these conditions this map is zero.

In the geometric case the Ip,q’s are given by the algorithm represented
pictorially given in a special cases by III.B.6, III.B.7, and III.B.9. In the
geometric case the maps giving these arrows will then be expressed by mul-
tiplication by cohomology classes, and we now illustrate one of these.
Example. We will cohomologically interpret the arrows −→, −→ and −→ in
(III.B.7) in the case when

X = X1 ∪C X2

consists of two smooth surfaces X1, X2 joined along a double curve C. We
use Ci ⊂ Xi for the curve C in the surface Xi (i = 1, 2). The BF condition is

NC1/X1
∼= ŇC2/X2 ,

or equivalently

OC(C1) ∼= OC(−C2).(III.B.8)

The relevant parts of (III.B.7) are

(III.B.9)
30In the classical case the image of the lift of Φ : Δ∗ → Γ\D to the universal

cover H of Δ∗ lies in a bounded domain in a Cm, hence in a Schubert cell. This
is no longer true in the non-classical case, and its failure is a significant property
there. Geometric examples occur already for the smoothing of two smooth surfaces
glued along a smooth double curve (cf. [19]). The proof of the main result in that
paper is based on the fact that there is a lifting of Φ to a Schubert cell in the
neighborhood of a fibre of Φ1.
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The dots representing the Ip,q’s are given by the prescription in (B3).
Using these a part of the red arrow will be a mapping31

H0(Ω2
X1) → H1(OC2)(−1)/H1(Ω1

X2).(III.B.10)

Note the exchange between X1 and X2; this will be a reflection of (BF).
To describe the further maps in (III.B.9) we will use the cohomology

mappings arising from the commutative diagram

Ω2
X1

→ Ω2
X1

∣∣
C1

∼= Ω1
C1

(−C1)
0
↓ ∼ =

Ω1
X2

↓
0 → Ω1

X2
(logC2) → Ω1

X2
(C2) → Ω1

C2
(C2) → 0

↓
OC2(−1)

↓
0.

The horizontal isomorphism on the top is adjunction, and the vertical isomor-
phism on the right uses (BF). The composition of the maps on cohomology
give the map

An explicit example where this map is non-zero is given by an I-surface
having a simple elliptic singularity.

We next turn to the mapping −→. In general, this mapping is defined
only if the mapping −→ is zero, which will be the case if we are in the N = 0
subspace of the LMHS. Thus one may think of X as giving an equi-singular
deformation Xt = X1,t

⋃
Ct

X2,t. Then

−→ : H0(Ω2
X1) → H1(Ω1

X1)

31This mapping was discussed in the special case when C ∼= P1 in II.C.3.
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is the usual derivative of a period mapping. We note that the image of this
mapping lies in

(C1)⊥ ⊂ H1(Ω1
X1)

reflecting the assumption that C1 deforms along with X1.
For the mapping

↘ : I2,1 → I1,2(III.B.11)

we first note that it is defined when both −→ and −→ are zero.32 Geometri-
cally we imagine a family

Xt = X1
⋃
t,C

X2

where X1, X2, C are constant but the gluing of X1 and X2 along C varies
with t. Now

Ext1MHS(H1(−1), H2) ∼= H1

̂

(−1) ⊗H2

F 0(H1

̂

(−1) ⊗H2) + (H1

̂

(−1) ⊗H2)Z
.

This is a compact complex torus having a summand that is an abelian variety
J with tangent space

TJ ∼= Hom(I0,1, I2,2
Z ⊗ C).

Using the duality Ǐ0,1 ∼= I2,1 we shall give the geometric interpretation of
(III.B.11) under the simplifying assumption that the H1(Xi) = 0 for i = 1, 2.
Then J = J(C) is the Jacobian variety of C. We set

(PicX1 ⊕ PicX2)0 = (C1 ⊕ C2)⊥.

For the family of embeddings jt : C ↪→ X1 ×X2 there is a mapping

αt : (PicX1 ⊕ PicX2)0 → J(C)

and unwinding the definitions the mapping −→ may be identified with the
derivative of αt. In words

Fixing X1, X2, C and mapping the gluing of X1, X2 along a family of different
embeddings of C in these surfaces, a part of the variation in the first order
extension data is measured by the variation when the Pic(Xi) map to J(C).

32In a somewhat different form this description has been given above.
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To interpret the arrow ↘ we note that because we have a limiting mixed
Hodge structure there is a duality between Ext1MHS(H1(−1), H2) and
Ext1MHS(H2, H1). Thus this arrow contains no new information beyond ↘.

That leaves the interpretation of ↓. Here we just note that in [19] it is
shown that the level 1 extension data gives a cone σ of line bundles over a
compact complex torus T and that the fibres of the map to the associated
graded maps to a sub-torus J of T over which the line bundles L ∈ σ are
ample. The level 2 extension data then maps the fibres of Φ1 to nowhere
vanishing sections of these line bundles.

Note In the geometric case of a family X
π−→ Δ a natural option for the

derivative of the period mapping at the origin is given by using the canonically
extended Gauss-Manin connection ∇. As we will now explain, δ corresponds
to d/dt while ∇ corresponds to t d/dt.33

Given the standard geometric situation

X
π−→ Δ

of a family Xt with Xt smooth for t = 0 and X0 a reduced normal crossing
divisor, for Ve the canonical Deligne extension of the cohomology bundle of
the smooth fibres there is the map

TΔ(− log{0}) → F−1 End(Ve)

induced by ∇. When written out in coordinates this corresponds to t d/dt.
The difference between the two may be illustrated by the period matrix

of a family of genus 2 curves acquiring a node at t = 0. The picture is

(III.B.12)

and the normalized period matrix has the well-known form (cf. [19] for the
notation) ⎛⎜⎜⎜⎝

1 0
0 1
a λ
b a

⎞⎟⎟⎟⎠
33More precisely, if we twist Φ(t) by composing with exp(−�(t)N), then δΦ

corresponds to d/dt
∣∣
t=0 of the twist.
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where a, λ are holomorphic with Imλ > 0 and b = �(t) + b0 where b0 is
holomorphic. Then

δΦ =
(
a′ λ′

0 a′

)
34

while

t d/dt =
(

0 0
1 0

)
.

Example III.B.13. We will show that the example (III.B.12) is not a nilpotent
orbit. This is interesting not so much in its statement, which is certainly what
one expects, but in the method of proof. The result is pretty obvious, but how
can one prove it?

Proposition III.B.14. The degeneration (III.B.12) is not a nilpotent orbit.

Proof. To obtain for X0 a global normal crossing divisor we must blow up
the node to have

where p, q are ordered. The relevant sheaf sequences are first

0 KX1(−p− q) KX1 KX1,p ⊕KX1,q 0

∼ =

N∗
p/X1

⊕N∗
q/X1

∼ =

Np,X2 ⊕Nq/X2

∼ =

ΘX2,p ⊕ ΘX2,q

where the second isomorphism on the right uses the BF condition, and sec-
ondly

0 → ΘX2(p− q) → ΘX2 → ΘX2,p ⊕ ΘX2,q → 0.
34Recall the δΦ is Φ∗ modulo CN .
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The cohomology sequences lace together to give

H0(KX1)
α

KX1,p ⊕KX1,q

H0(ΘX1) ΘX2,p ⊕ ΘX2,q H1(ΘX2(−p− q)).

The map α is non-zero provided that there is ω ∈ H0(KX1) with ω(p), ω(q) �=
0 and H1(ΘX2(−p− q)) = 0. The latter happens when X2 = P1, which is the
case above.

For the former, since in semi-stable reduction the points p, q are ordered,

AJX1(p− q) ⊂ J(X1)

is well defined. If it is non-zero, which may be assumed in the example at
hand, then the interpretation of the blue arrow (representing extension data)
in (III.B.6) gives that α �= 0.

Example III.B.15. A related example that illustrates the weight filtration on
δΦ is given by semi-stable reduction applied to the family of curves

where the order pairs of points p, p′ and q, q′ on Ĉ are identified to give the
two nodes on C. Then

δΦ has Gr0,Gr−1,Gr−2

pieces.

Gr0(δΦ): This is the differential of the period mapping Φ̂ for the variable
curve Ĉ.

Gr−1(δΦ): If Φ̂ is constant, then Gr−1(δΦ) is given by the pair {AJĈ(p −
p′),AJĈ(q − q′)}.

Gr−2(δΦ): Suppose first that Ĉ = P1. Then the points {p, p′, q, q′} have a
cross-ratio, and as in [19] δΦ is given by its variation.

For Ĉ of any genus one may define a generalized cross-ration using nor-
malized differentials of the third kind.
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Appendix: Summary of notations and of properties of
normal crossing varieties

Notations In general, we shall follow those in [12].

• X = ∪Xi;
• locally X is isomorphic to x1 · · ·xk = 0 in Cn+1;
• X̃ = �

i
Xi is the desingularization X;

• X [k] = �
|I|=k

Xi1 ∩ · · · ∩Xik , I = (i1, . . . , ik);

• ak : X [k] ↪→ X, a1 = a;
• D = ∪

i<j
Xi ∩Xj = Xsing;

• Ω1
X = sheaf of Kähler differentials with

0 → τX → Ω1
X → a∗Ω1

X [1]

where τX is the torsion subsheaf of Ω1
X ;

• τX is locally generated by ϕi = x1 · · · x̂i · · · xkdxi;
• OD([X]) = Ext1OX

(Ω1
X ,OX) ∼= τX is the infinitesimal normal bundle;

• if X is embedded in a smooth (n + 1)-dimensional variety Y , then

OD([X]) = OX([X])
∣∣
D

= OY ([X])
∣∣
D

where the middle term is the usual normal bundle of X in Y ;
• the BF condition is

(BF) OD([X]) ∼= OD.

<◦>

A. Deformation theory [12]

We shall make the usual identification

T Def(X) = Ext1OX
(Ω1

X ,OX).

The local to global spectral sequence of Ext gives

0 H1(Ext0OX
(Ω1

X ,OX)) Ext1OX
(Ω1

X ,OX) H0(Ext1OX
(Ω1

X ,OX)

T Defes(X) T Def(X) H0(OD([X]))

(A.1)



Differential of a period mapping at a singularity 1481

The first term is the first order equisingular deformations of X.
For the third term a smoothing of X is given by a proper holomorphic

fibration X
π−→ Δ where X is smooth and, setting Xt = π−1(t), X0 ∼= X. A first

order smoothing is given by similar data Xε → Δε where Δε = SpecC[ε] with
ε2 = 0. The necessary and sufficient condition that there be a first order
smoothing is that (BF) hold. Assuming this we denote by

T Defsm(X) ⊂ T Def(X)

the open set of first order smoothings of X given by the ξ ∈ Ext1OX
(Ω1

X ,OX)
that map to a global section of OD that is non-vanishing on every connected
component of D. Given ξ ∈ T Defsm(X) we denote by

Xξ → Δε

the corresponding first order smoothing.
In the use of the period mapping to moduli two types of deformations of

normal crossing varieties are particularly relevant:

(i) equisingular deformations,
(ii) smoothing deformations.

In (i) it is natural to assume the BF condition; and the deformations should
be constrained to those where the BF condition remains satisfied.
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