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Abstract: We develop a method of quantization for free field the-
ories on manifolds with boundary where the bulk theory is topo-
logical in the direction normal to the boundary and a local bound-
ary condition is imposed. Our approach is within the Batalin-
Vilkovisky formalism. At the level of observables, the construction
produces a stratified factorization algebra that in the bulk recovers
the factorization algebra introduced by Costello and Gwilliam. The
factorization algebra on the boundary stratum enjoys a perturba-
tive bulk-boundary correspondence with this bulk factorization al-
gebra. A central example is the factorization algebra version of the
abelian Chern-Simons/Wess-Zumino-Witten correspondence, but
we examine higher dimensional generalizations that are related to
holomorphic truncations of string theory and M -theory and involve
intermediate Jacobians.
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1. Introduction

Moving from the interior to the boundary of a manifold often leads to interest-
ing, even intricate, generalizations of constructions that make sense on man-
ifolds without boundary. Recall, for example, the generalization of Poincaré
duality to Lefschetz duality. In physics one likewise sees that a field theory
living in the interior — the bulk — often couples to a theory living on the
boundary to produce a rich, interacting composite system. A key example for
us is the Chern-Simons/Wess-Zumino-Witten (CS/WZW) correspondence, in
which a topological field theory on an oriented 3-manifold M interacts with
a chiral conformal field theory on its boundary ∂M , equipped with a com-
plex structure to make it a Riemann surface. Here, the interaction is not via
a term in the action coupling the bulk and boundary theories; instead, the
interaction consists of exhibiting the boundary theory (chiral WZW theory)
as a boundary condition for the bulk theory (Chern-Simons). This correspon-
dence originated in [Wit89], and it has subsequently witnessed a surge of
holographic generalizations in the context of the AdS/CFT correspondence.

In this paper we revisit this kind of situation using the Batalin-Vilkovisky
(BV) formalism and factorization algebras. It is important that we restrict
to field theories that behave as topological theories in the direction normal
to the boundary, as captured in Definition 2.1. Our central result is that
if one imposes a local boundary condition in a homologically correct way,
then a rather naive extension of BV quantization automatically produces a
bulk-boundary correspondence, including a form of the abelian CS/WZW
correspondence (cf. Theorems 4.1 and 4.2. We work perturbatively and see
only a fragment of the full story.) The mathematical formulation is that the
naive BV quantization produces a factorization algebra on the manifold whose
behavior in the bulk is simply the algebra of quantum operators for the bulk
theory and whose behavior on a neighborhood of the boundary is simply the
algebra for the local boundary condition. In this introduction, we state a
special case of our general theorem, with hopes it helps the reader calibrate
to the discussion.

1.1. A model case of our general result

Our focus is on the following geometric situation. Let Σ be an oriented smooth
2-dimensional manifold, which we equip with a complex structure. Let M
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Figure 1: Projection of M onto the boundary Σ.

denote the closed half-space R≥0×Σ, let M̊ denote the open half-space R>0×
Σ, and let π : M → Σ denote the projection map. We view R≥0 as providing
a kind of “time direction” and use t to denote its coordinate. See Figure 1.

In the interior M̊ , which is a manifold without boundary, we put (per-
turbative) Chern-Simons theory with gauge group U(1) with level κ. It has a
factorization algebra ObsqCS of quantum observables. (See §4.5 of [CG17].)

On the boundary Σ = ∂M , there is a factorization algebra CurqWZW

encoding the chiral U(1) currents, with the Schwinger term determined by κ.
(See §5.4 of [CG17] for its construction and verification that it recovers the
standard vertex algebra and OPE.)

We construct a factorization algebra ObsqCS/WZW for abelian Chern–
Simons theory on M with a particular boundary condition called the chiral
WZW boundary condition. (As far as we are aware, this is the first construc-
tion of a factorization algebra of observables of a field theory arising on a
manifold with boundary.) It interpolates between the Chern-Simons observ-
ables and the chiral currents in the following precise sense.

Theorem 1.1. The factorization algebra ObsqCS/WZW is stratified in the
sense that

• on the interior M̊ , there is a natural isomorphism

ObsqCS �
(
ObsqCS/WZW

) ∣∣∣
M̊

of factorization algebras, and
• on the boundary ∂M = Σ, there is a quasi-isomorphism

CurqWZW � π∗
(
ObsqCS/WZW

)
of factorization algebras.
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This factorization algebra thus exhibits the desired phenomenon, as it is
precisely the abelian Chern-Simons system in the “bulk” M̊ but becomes the
chiral currents on the boundary ∂M . The full factorization algebra
ObsqCS/WZW contains more information still: it encodes an action of the bulk
observables ObsqCS on the boundary observables CurqWZW .

There is a version of this theorem for the classical observables; it is a
straightforward interpretation in the BV setting of the standard notion of a
boundary condition for a partial differential equation.

A compelling phenomenon happens at the quantum level: the canonical
BV quantization of abelian Chern-Simons theory in the bulk forces the ap-
pearance of the Kac-Moody cocycle

∫
α ∧ ∂β (i.e., Schwinger term) on the

boundary. We emphasize that these constructions are wholly rigorous, not
requiring any leaps of physical intuition. They also yield naturally a strati-
fied factorization algebra, and hence the theorem suggests that other bulk-
boundary correspondences in the physics literature may also admit formula-
tions in these terms. We will describe a few such correspondences, notably
a generalization of abelian CS/WZW to higher dimensions with a 4k + 3-
dimensional bulk and a 4k+2-dimensional boundary equipped with a complex
structure.

One drawback of our work is that we only deal with perturbative and
Lie algebraic statements here, not with nonperturbative and group-level ver-
sions, where many fascinating issues arise. (As merely a jumping-off point
and not a complete list of citations for this enormous subject, we point to
[FMS07, FFFS02, HS05, KS11, BD04, Wit89, EMSS89, Fre00, BBSS17] as
places where such issues are addressed.) We expect that a rigorous extension
of the BV formalism to global derived geometry would fold those nonpertur-
bative issues together with our perturbative efforts.

1.2. Consequences and applications

One payoff here is a new view on Chern-Simons states in bundles of confor-
mal blocks for chiral WZW models. Factorization algebras, like sheaves, are
local-to-global objects, and so the homology of these stratified factorization
algebras encode nontrivial global information. Here, in particular, they au-
tomatically produce maps from the space of boundary observables into the
global observables of the theory. As an example, we obtain the Chern-Simons
states of the chiral WZW theory from studying the map from the boundary
observables on a Riemann surface to the observables of a compact 3-manifold
bounding that surface.
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We also treat higher dimensional abelian Chern-Simons theory, which ex-
ists on manifolds of real dimension 4k+ 3. Particularly relevant for physics is
the Chern-Simons action on 7- and 11-dimensional manifolds. Witten [Wit97]
has argued that the 7-dimensional abelian Chern-Simons theory is holograph-
ically dual to the abelian “chiral” two-form, which is a piece of the 6-dimen-
sional N = (2, 0) superconformal theory. Likewise, there is a “chiral” four-
form that appears in the Type IIB superstring, and is understood as being
the holographic dual of 11-dimensional Chern-Simons theory. We propose an
interpretation of each of these physical situations via factorization algebras
that follows the outline above for the ordinary CS/WZW correspondence. See
Section 5.4.2 for this discussion.

In arbitrary real dimension 4k + 3, the higher dimensional analogs of
Chern-Simons states are sections of interesting vector bundles over the inter-
mediate Jacobians of any complex 2k + 1-fold that admits an oriented null-
cobordism. It would be very interesting to see how a full non-perturbative
formulation of our constructions relates back to quadratic refinements of in-
tersection pairings [HS05].

Another payoff, which we expect to follow from the present work, is a
systematic generalization of the role played by the Poisson sigma model in
controlling the deformation quantization of Poisson manifolds. The Poisson
sigma model itself (with a Poisson vector space as a target and the half-plane
as a source) is an example of the bulk-boundary systems amenable to our
methods. Here we show that, in the guise of its stratified factorization algebra,
we recover the Swiss cheese algebras that play a key role in deformation
quantization. In addition, we discuss a case of Koszul duality arising from a
pair of transverse Lagrangians; it intertwines deformation quantization with
the general view on Koszul duality via factorization algebras.

In the near future we expect it to be possible to show that for a boundary
condition that is itself topological in nature, the bulk factorization algebra
is the derived center of the boundary factorization algebra, just as the bulk
observables of the Poisson sigma model are the Hochschild cochains of the
deformation quantized algebra living on the boundary.

The setting in which we work — a certain class of BV theories on man-
ifolds with boundary — was formulated at the classical level in [BY]. Their
work focuses on a class of interacting perturbative theories, but they do not
treat quantization. The work here takes the first steps of quantization of per-
turbative bulk-boundary theories in the BV formalism for free theories of
the type studied in [BY]. In the PhD dissertation [Rab21], the third named
author develops quantization for such interacting theories.
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As a remark for readers familiar with the BV-BFV formalism [CMR14,
CMR18], we note that we explore here a less sophisticated situation than a
BFV theory on the boundary. Here we simply impose a boundary condition —
we force the boundary values of our fields to live in a Lagrangian subspace of
all possible boundary values — rather than work with a Lagrangian foliation.
Note that on a linear symplectic space, picking a linear Lagrangian subspace
and picking a linear Lagrangian foliation are in correspondence. Hence, we
hope that our methods, particularly the factorization algebra aspects, may
have some role to play in the BV-BFV approach. In particular, it would be
interesting to relate our results to the perspective of [MSW20], who offer a
different approach to the CS/WZW correspondence.

1.3. Outline of the paper

Section 2 defines the class of bulk-boundary theories that we study in this
paper. The definition is modeled on the definition of a free BV theory in
[Cos11], but we hope it is transparent to anyone already familiar with the
BV formalism in some guise. We end the section with several examples; some
readers may wish to start there.

Section 3 recalls the factorization algebras that appear purely in the bulk
or on the boundary, which were constructed in [CG17], in various guises.
We then construct the natural factorization algebra for the bulk-boundary
system, modeled on those constructions. Functional analytic subtleties are
addressed in the appendix.

Section 4 states and proves the main theorem, both for classical and for
quantum observables. Section 5 addresses specific examples of the theorems.

2. Free bulk-boundary field theories

2.1. Overview

In this section, we describe what we mean by a “free bulk-boundary system.”
We follow the general discussion with a series of examples of interest to us.
(The impatient reader should feel free to skip to the examples.) We use the
Batalin-Vilkovisky (BV) formalism to articulate the relevant definitions, but
before we provide full definitions, let us discuss briefly some general principles
which underlie the study of field theory on manifolds with boundary.

Let M be a manifold with boundary, and M̊ = M\∂M be its interior. In
Lagrangian field theory, one often starts with a bundle E → M̊ and an action
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functional S that is a function of the space of sections of E, for which we tem-
porarily use the symbol E . The equations of motion for the field theory are
the Euler-Lagrange equations for the action S. One may extend E (and also
E ) to M , and the equations of motion can also be extended to M . However,
these equations of motion no longer arise from the calculus of variations for S
considered as a function on all of E : the argument on M̊ uses an integration
by parts, which produces a boundary term when the analogous calculation
is carried through on M . A solution to this issue is to restrict S to a sub-
space of E for which the boundary term vanishes. In other words, we impose
boundary conditions on the fields. We would like our boundary conditions to
be suitably local, which means that they are specified by a sub-bundle of the
bundle of normal jets Jν(E) on ∂M (in more coordinate-dependent terms,
the boundary conditions impose a point-by-point condition on the values and
normal derivatives of sections of E on ∂M).

Our particular approach to these ideas makes use of the Batalin-Vilkovisky
formalism, which is a natural method for encoding the equations of motion
and their symmetries in a homotopically coherent way. We take as a starting
point the definition of a free BV theory given for manifolds without boundary
in [Cos11]. In the sense of that reference, a free BV theory on M̊ is defined
by a graded vector bundle E → M̊ , a differential operator Q on E turn-
ing (E , Q) into an elliptic complex, and a (cohomological degree −1) pairing
〈·, ·〉loc : E ⊗ E → DensM̊ . The pairing 〈·, ·〉loc induces a pairing 〈·, ·〉 on
(compactly-supported) sections of E via integration over M̊ . The crucial ax-
iom of a free BV theory assumes that 〈·, ·〉 is invariant with respect to Q. For
a free BV theory of this sort, define the action functional

S(φ) = 1
2 〈φ,Qφ〉 ;

in almost all cases, the invariance of 〈·, ·〉 with respect to Q is proved by
the same computations which derive the Euler-Lagrange equations of motion
Qφ = 0 from S. Namely, one shows that

〈Qφ, φ〉loc + (−1)|φ| 〈φ,Qφ〉loc

is a total derivative on M̊ , and so its integral over M̊ gives an integral over
∂M̊ = ∅. When extending to M , therefore, one finds that the failure of the
invariance of 〈·, ·〉 (under Q) to hold is measured by a bilinear pairing on
the fields (sections of E) which depends only on the values of the fields and
their normal jets on the boundary ∂N . In other contexts, this bilinear form
is called the Green’s form.
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In order to have control over the structure of the Green’s form, we will
introduce in Definition 2.1 a particular class of free BV theories whose Green’s
form has a simple structure. This definition is a special case of one introduced
in [BY]. Next, we remedy the failure of 〈·, ·〉 to be invariant for Q by imposing
boundary conditions. We do so in a homologically self-consistent way. In
Definition 2.2, we define the precise nature of the boundary conditions we
consider. Finally, in Definition 2.3, we fulfill the advertised purpose of this
section by defining what we mean by a bulk-boundary field theory.

2.2. Detailed definitions

The following definition is a special case of Definition 3.9 of [BY]. Throughout
the remainder of the text, we fix a manifold M with boundary ∂M , and we
let ι : ∂M ↪→ M denote the inclusion.

Definition 2.1. A free field theory on M that is topological normal to
the boundary (free TNBFT) consists of

• an elliptic complex (E , Q) over M ; here E denotes the sheaf of sections
of a Z-graded smooth vector bundle E → M of finite total rank, and

• a skew-symmetric cohomological degree −1 bundle map

〈·, ·〉loc : E ⊗ E → DensM

satisfying the following conditions:

1. The pairing 〈·, ·〉loc is fiberwise non-degenerate.
2. If e1, e2 ∈ Ec have compact support contained in M\∂M , then

(1)
∫
M

(
〈Qe1, e2〉loc + (−1)|e1| 〈e1, Qe2〉loc

)
= 0,

i.e., Q is a derivation for the pairing 〈·, ·〉 induced from 〈·, ·〉loc by inte-
gration over M .

3. In a tubular neighborhood T ∼= ∂M × [0, ε) of ∂M , there is an isomor-
phism

(2) E
∣∣
T
∼= E∂ � Λ•(T ∗[0, ε)),

where E∂ is a graded vector bundle over ∂M . With respect to this
isomorphism, we require that
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• In the tubular neighborhood T where we make the identification
of Equation (2), Q have the form Q∂ ⊗1+1⊗ddR, where Q∂ gives
E∂ (the sheaf of sections of E∂ on ∂M) the structure of an elliptic
complex on ∂M and ddR is the de Rham differential in the normal
direction, and

• the pairing 〈·, ·〉loc have the form 〈·, ·〉loc,∂ � ∧, where 〈·, ·〉loc,∂ is a
vector bundle map

〈·, ·〉loc,∂ : E∂ ⊗ E∂ → Dens∂M

on ∂M which is fiberwise non-degenerate, of cohomological degree
0, skew-symmetric, and satisfies∫

∂M

(
〈Q∂e

′
1, e

′
2〉loc,∂ + (−1)|e′1| 〈e′1, Q∂e

′
2〉loc,∂

)
= 0

for all compactly supported sections e′1, e
′
2 of E∂ .

We will often use the letter E to denote the full information of the TNBFT
(E , Q,E∂ , Q∂ , 〈·, ·〉loc , 〈·, ·〉loc,∂).

Following the discussion in the previous subsection, we note that the
pairing 〈·, ·〉loc,∂ is essentially the datum of the Green’s form. There should
be convenient generalizations of this setup that do not require the elliptic
complex E to be topological in the normal direction, but these require more
sophisticated analysis.
Remark 1. Having a manifold with boundary is not essential here. One can
make a similar definition if there is a hypersurface S in M such that in a
tubular neighborhood of S, the field theory has an analogous decomposition as
an elliptic complex along S tensored with the de Rham complex in the normal
direction. (This setup is reminiscent, in Lorentzian field theories, of picking a
foliation of a globally hyperbolic manifold by spacelike hypersurfaces.) This
more general situation would enable one to study certain domain walls in the
BV context. Since we are only interested in boundary conditions, however,
we do not explore this more general definition.
Notation 1. There is a sheaf map ρ : E → ι∗E∂ that is the composite of
restriction to the tubular neighborhood T , followed by the isomorphism

E
∣∣
T
∼= E∂ ⊗̂Ω•

[0,ε),

followed by the evaluation map

E∂ ⊗̂Ω•
[0,ε) → E∂
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induced from the pullback of forms to t = 0. The map ρ is a cochain map.
We denote by 〈·, ·〉 the pairing between sections e1, e2 ∈ E (at least one of
which has compact support) given by

〈e1, e2〉 =
∫
M

〈e1, e2〉loc ,

and similarly for 〈·, ·〉∂ .
Remark 2. To make contact with Lagrangian field theory, we note that the
pairing 〈·, ·〉loc and the differential Q give rise to the action functional

S(φ) = 1
2 〈φ,Qφ〉 .

We will see below (e.g., Equation 3) that the data (E∂ , Q∂ , 〈·, ·〉∂) encode the
boundary terms that arise from variational calculus. Our formulation of the
problem guarantees that this construction is done in a way consistent with
gauge symmetry on the boundary.
Remark 3. Condition (3) explains why TNBFTs are considered “topological
normal to the boundary”: a solution to the equations of motion is locally
constant in the direction normal to the boundary, as the fields in the normal
direction are entirely dictated by the behavior of de Rham forms in that
direction.

Equation 1 does not need to hold for sections e1, e2 that have non-zero
values at the boundary. In fact, we find that, in general,

(3) 〈Qe1, e2〉 + (−1)|e1| 〈e1, Qe2〉 = 〈ρe1, ρe2〉∂ .

In other words, the pairing 〈·, ·〉∂ on E∂ measures the failure of 〈·, ·〉 to be
invariant for the differential Q. Because of Equation (3), a free TNBFT is
not, strictly speaking, a field theory on M ; however, a free TNBFT is still a
field theory on M \ ∂M . We will therefore persist in the usage of the term
“field theory” for free TNBFTs, even when we consider them on the whole
spacetime manifold M .

The pairing 〈·, ·〉∂ is also closely related to the boundary terms which arise
when integrating by parts in the derivation of the Euler-Lagrange equations of
motion for the action of Remark 2. In order to construct the quantum observ-
ables in the Batalin-Vilkovisky (BV) formalism and to avoid these boundary
terms, we will need Equation 1 to hold for a broader class of e1, e2 than the
class of sections in E that vanish on ∂M . To remedy this, we introduce a
notion of boundary condition.
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Definition 2.2. A local Lagrangian boundary condition for a free
TNBFT E is a graded subbundle L → ∂M of E∂ → ∂M with the following
four properties:

• the total rank of L is half that of E∂ ,
• 〈·, ·〉loc,∂ is identically zero on L⊗ L, and
• the sheaf L of smooth sections of L on ∂M is a subcomplex of E∂ with

respect to the differential Q∂ .
• The complex (L , Q∂) is elliptic.

The following is the main definition of this section.

Definition 2.3. Given a free TNBFT E and a boundary condition L for E ,
we will call the pair (E ,L ) a free bulk-boundary field theory. For a free
bulk-boundary field theory (E ,L ), we denote by EL the pullback of sheaves
of complexes

EL E

ι∗L ι∗E∂

�
ρ .

In other words, EL (U) consists of sections e ∈ E (U) such that ρ(e) ∈
ι∗L (U) ⊂ ι∗E∂(U). We will call EL the sheaf of fields of the bulk-
boundary system. The fields in EL satisfy a boundary condition imposed
by the choice L .

Remark 4. The term bulk-boundary field theory deserves to encompass a much
larger class of situations, including those where the equations of motion are
not locally constant in the normal direction to the boundary, but that is the
only situation in which we work in this paper. Hence we use the term here as
shorthand. We will also use the term “bulk-boundary system” to denote the
same object.
Remark 5. Note that all maps in the pullback square defining EL are cochain
maps, so the differential Q on E descends to one on EL . Since EL is a subsheaf
of E , one can also restrict the pairing 〈·, ·〉 to EL . Then, it is straightforward
to verify (using the definitions directly) that Equation 1 is satisfied for the
fields of the bulk-boundary system. Hence, we are free to think of (EL , Q) as
a bulk-boundary free BV theory. In a sense, EL is a maximal subspace of E
for which Equation 1 is satisfied. We will find that most of the constructions
of [CG17] for the analogous case with ∂M = ∅ carry over with little or no
change once we use EL for the space of fields.
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Remark 6. We note that, since the map ρ is an epimorphism, EL also coincides
with the homotopy pullback E ×h

(ι∗E∂) ι∗L in a suitable model category of
presheaves of complexes (see [Rab21] for more details). Hence, EL imposes
the boundary condition L in a homotopically consistent way. Physically, the
way we impose boundary conditions guarantees that the gauge symmetries of
the theory remain manifest. In [MMST20], a similar procedure is performed
for abelian Yang-Mills theory. There, the authors also take care to impose
boundary conditions in a homologically consistent way.

2.3. Examples of free bulk-boundary systems

We now discuss several examples of free bulk-boundary systems.
Example 2.1. Suppose V is a symplectic vector space with symplectic form ω.
Let M = [0, ε) and E = Ω•

[0,ε)⊗V , together with the pairing 〈·, ·〉 induced from
the Poincaré duality pairing and ω. Here, E∂ = E∂ = V , and 〈·, ·〉loc,∂ = ω.
This theory is topological mechanics. A Lagrangian subspace L of V gives
a boundary condition for topological mechanics.
Example 2.2. Let Σ be any surface with boundary, and let V be a vector
space with a constant Poisson structure, i.e., V is a vector space equipped
with a skew-symmetric map Π : V ∨ → V . Let

(E , Q) = (Ω•
Σ ⊗ V ⊕ Ω•

Σ ⊗ V ∨[1], ddR ⊗ 1 + 1 ⊗ Π).

The pairing 〈·, ·〉loc is defined using the wedge product and the natural pairing
between V ∨ and V . It is evident that one can write

(E∂ , Q∂) = (Ω•
∂Σ ⊗ V ⊕ Ω•

∂Σ ⊗ V ∨[1], ddR ⊗ 1 + 1 ⊗ Π),

and 〈·, ·〉loc,∂ is again defined using the wedge product of forms and the canon-
ical pairing between V ∨ and V . This theory is a special case of the Poisson
sigma model [CF01]. The subcomplex Ω•

∂Σ ⊗ V ⊂ E∂ gives a boundary
condition for this theory.
Example 2.3. Suppose A is a complex vector space together with a non-
degenerate symmetric bilinear pairing κ. Let M be an oriented 3-manifold
with boundary. For (E , Q) we take (Ω•

M ⊗ A[1], ddR). For the pairing 〈·, ·〉loc
we take

〈α, α′〉loc = κ(α, α′),
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where we are implicitly taking a wedge product of forms and only keeping
the top-form component of the resulting wedge product. From these charac-
terizations, it is evident that (E∂ , Q∂) = (Ω•

∂M ⊗ A[1], ddR), and

〈α, α′〉loc,∂ = κ(α, α′).

This theory is an abelian Chern-Simons theory. In the bulk 3-manifold,
M \ ∂M , this elliptic complex is simply abelian Chern-Simons theory where
we view A as an abelian Lie algebra. The solutions to the bulk equations of
motion are the A-valued closed one-forms.

If M = Σ × R≥0 (where Σ is a Riemann surface), the space of fields is
endowed with the decomposition

E = Ω0,•
Σ ⊗̂Ω•

R≥0
⊗ A[1] ⊕ Ω1,•

Σ ⊗̂Ω•
R≥0

⊗ A,

with differential Q = ∂ + ∂ + ddR.
The boundary condition we consider depends on the choice of a complex

structure on the boundary ∂M . Henceforth, when we want to stress the de-
pendence on the complex structure, we denote the boundary Riemann surface
by Σ.

For a holomorphic vector bundle V → Σ, the Dolbeault complex
Ω0,•(Σ, V ), with differential ∂, provides a resolution for its sheaf of holomor-
phic sections V hol. The differential is the Dolbeault operator ∂ : Ω0(Σ, V ) →
Ω0,1(Σ, V ) = Γ(T ∗0,1 ⊗ V ) defining the complex structure on V . In the case
that V = T ∗1,0, we denote this Dolbeault complex by Ω1,•(Σ) with the ∂-
operator understood.

The subcomplex Ω1,•
Σ ⊗ A ⊂ Ω•

Σ ⊗ A[1] defines a boundary condition for
abelian Chern-Simons theory (at any level if M = C × R≥0). To see this,
consider L as the sections of a vector bundle L on Σ. It is clear that the
rank of L is half that of E∂ , where E∂ is the vector bundle whose sheaf of
sections is E∂ . Also, 〈·, ·〉loc,∂ is identically zero on L ⊗ L since only forms of
type (1, •) appear in L . Finally, the cochain complex Ω1,•

Σ ⊗ A is a subcom-
plex of the full de Rham complex since ∂α = dα for forms α of type (1, •).
We call it the chiral WZW boundary condition. Notice that although
Chern-Simons theory is topological, we may choose a non-topological bound-
ary condition for the theory. In this situation, the boundary condition has a
chiral, or holomorphic, nature.

On M = Σ×R≥0 we remark on a slightly different presentation of abelian
Chern–Simons theory, as a deformation of BF theory. Using κ, we can identify
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the fields E with

Ω0,•
Σ ⊗̂Ω•

R≥0
⊗ A[1] ⊕ Ω1,•

Σ ⊗̂Ω•
R≥0

⊗ A∗,

by keeping track of the Dolbeault decomposition along Σ. In this decompo-
sition, fields are pairs (α, β), where β now takes values in A∗. Upon making
this identification the pairing becomes 〈α, β〉loc = αβ and the differential is
κ∂+∂+ddR. In this presentation, it now makes sense to contemplate the limit
κ → 0, which results in a BF theory on Σ×R≥0 that is partially topological.
We dub this boundary condition L = Ω1,•

Σ ⊗ A∗, the chiral WZW bound-
ary condition. We note that the chiral WZW boundary condition is indeed
a boundary condition for Chern-Simons theory for any κ (including κ = 0).
We remark that even after quantization, there will be no shift by the critical
level, since we only consider free theories (i.e., abelian WZW theories).
Example 2.4. Let M be an oriented manifold of dimension 4k+3, and suppose
∂M has the structure of a complex manifold (of dimension 2k+ 1). As in the
case of ordinary Chern–Simons theory, we fix a vector space A equipped with
a non-degenerate symmetric pairing κ.

The fields are the (shifted) de Rham forms

E = Ω•
M ⊗ A[2k + 1],

with Q = ddR. There is an obvious degree (−1)-pairing on the fields given by
wedging and integrating. This theory describes higher-dimensional abelian
Chern-Simons theory, the action functional reads∫

M
κ(α, dα)

where α ∈ Ω•
M ⊗ A[2k + 1].

Geometrically, this theory encoding deformations of the trivial flat U(1)
k-gerbe with fiber A. (Taking k = 0, we note that a flat U(1) 0-gerbe is a flat
U(1)-bundle.) We have E∂ = Ω•

∂M ⊗ A[2k + 1], and Q∂ = ddR. The pairings
are defined exactly as in the previous example, by wedging and integration.

Like the WZW boundary condition for ordinary Chern–Simons, there is
a boundary condition which utilizes the complex structure of the boundary
∂M . It is given by the Lagrangian

L = Ω>k,•
∂M ⊗ A[k],

which we call the intermediate Jacobian boundary condition, due to it
being a piece of the Hodge filtration. We return to this example in more
detail in Section 5.4.
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Example 2.5. There is an alternative boundary condition of higher dimen-
sional Chern–Simons that depends on a Riemannian metric rather than a
complex structure. As above, let M be an oriented manifold of dimension
4k + 3, and suppose the boundary N = ∂M is equipped with a Riemannian
structure. In turn, we decompose the middle de Rham forms on N into the
±
√
−1-eigenspaces

(4) Ω2k+1(N) = Ω2k+1
+ (N) ⊕ Ω2k+1

− (N)

of the Hodge star operator.
Consider the subcomplex of Ω•

∂M ⊗ A[2k + 1]:

L =
(

Ω2k+1
+ (N) ⊗ A

d−→ Ω2k+2(N) ⊗ A[−1] d−→ · · ·

· · · d−→ Ω4k+2(N) ⊗ A[−2k − 1]
)
.

It defines a boundary condition for (4k+3)-dimensional abelian Chern-Simons
theory.

The elliptic complex on N perpendicular to the boundary condition L is
L ⊥, which we identify with

(5) L ⊥ =
(

Ω0(N) ⊗ A[2k + 1] d−→ Ω1(N) ⊗ A[2k] → · · ·

· · · → Ω2k(N) ⊗ A[1] d−−→ Ω2k+1
− (N) ⊗ A

)

where d− : Ω2k(N) → Ω2k+1
− (N) denotes the de Rham differential followed

by the projection using the decomposition (4).

3. The factorization algebras at play

In this section we describe the three factorization algebras that appear in a
bulk-boundary system:

• the observables ObsE living purely in the bulk M̊ , which depend only
on the BV theory in the bulk,

• the observables ObsL of the boundary condition, which live only on the
boundary ∂M , and

• the observables ObsE ,L of the bulk-boundary system, which lives on
the whole manifold M with boundary.
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There are classical and quantum versions of both factorization algebras. Now
aware of the these three algebras, the reader can skip to Section 4 and un-
derstand the statement of our main theorems.

The bulk observables ObsE arising here were defined in [CG17], and they
are a straightforward interpretation of the observables in a free BV theory.
The observables of the boundary condition ObsL are defined in a similar
way. At the classical level, they are simply functions on the space L , but
the quantization uses a Poisson structure arising from the map to E∂ that
identifies L as a Lagrangian in E∂ . In this sense, the boundary condition
behaves like a Poisson field theory, in contrast to the symplectic-type bulk
theory.

The observables ObsE ,L are constructed in an analogous way to the other
algebras. The classical observables realize, in a homotopical sense, the algebra
of functions on the space of solutions to the equations of motion that satisfy
the boundary condition. The quantization is in the spirit of the BV formalism;
it amounts to changing the differential by adding an operator determined by
the natural pairing on the fields, with boundary condition imposed. Our main
theorems show that ObsE ,L interpolates between ObsE and ObsE ,L , and in
this way we see that there is a natural quantization of the bulk-boundary
system that realizes a correspondence between the bulk and boundary systems
themselves.

3.1. Bulk observables

Chapter 4 of [CG17] is devoted to constructing and analyzing the observables,
both classical and quantum, of a free BV theory on a smooth manifold. Here
we simply recall the definitions.

Definition 3.1. Let E be a free TNBFT. The factorization algebra of classi-
cal observables for E assigns to an open subset U ⊂ M̊ the (differentiable)
cochain complex

(Sym(Ec[1](U)), Q) =: ObsclE (U),

where the symmetric powers are taken with respect to the completed bornolog-
ical tensor product of convenient vector spaces (see, e.g. Definition B.4.9 and
Section B.5.2 of [CG17]).

Note that for a smooth vector bundle V → M , these completed tensor
products can be understood concretely as

(Vc(U))⊗̂k ∼= C∞
c (U×k;V �k).
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In other words, they are the compactly supported sections on the k-fold prod-
uct Uk with values in the natural vector bundle V �k → Uk.

Something a bit subtle is happening in this definition. A priori the clas-
sical observables ought to consist of functions on the fields E ; in other words,
they ought to be a symmetric algebra on the linear dual vector space or,
better yet, the continuous linear dual. Here, however, we took a symmet-
ric algebra on Ec[1], which looks different. Two facts combine to explain our
choice. First, the local pairing lets us identify the continuous linear dual of
E with the distributional and compactly supported sections of E[1] → M :
every such section determines a linear functional on E by plugging it into the
pairing. Second, the Atiyah-Bott lemma (see Appendix E of [CG17]) shows
that the elliptic complex of distributional, compactly supported sections of
E[1] → M is continuously quasi-isomorphic to the subcomplex of smooth,
compactly supported sections of E[1] → M . Together, these facts show that
our definition captures correctly — up to quasi-isomorphism — the most nat-
ural choice of classical observables. Concretely, we are working with smeared
observables.

With our definition, BV quantization is straightforward, because the pair-
ing determines a natural BV Laplacian Δ : Sym(Ec[1](U)) → Sym(Ec[1](U))
as follows. We set Δ = 0 on the constant and linear terms (i.e., the subspace
Sym≤1(Ec[1](U)), and we require

Δ(ab) = Δ(a)b + (−1)|a|aΔ(b) + {a, b}

for arbitrary a and b. Here, {·, ·} is the unique biderivation (with respect to
the product in the symmetric algebra) on

Sym(Ec[1](U)) × Sym(Ec[1](U))

which coincides with 〈·, ·〉 on

Ec[1](U) × Ec[1](U).

This equation defines Δ inductively on the symmetric powers.
For instance, if a and b are linear, then ab ∈ Sym2(Ec[1](U)), and we see

that
Δ(ab) = 〈a, b〉

because we have set Δ(a) = 0 = Δ(b). As such pure products ab span
Sym2(Ec[1](U)), we have defined Δ on all quadratic functionals. To determine
Δ on the cubics Sym3(Ec[1](U), we use the equation and our knowledge of
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Δ on Sym≤2(Ec[1](U)); inductively continue this process to higher symmetric
powers.

By construction, Δ is a second-order differential operator on the graded
commutative algebra Sym(Ec[1](U)). It is straightforward to verify that Δ2 =
0 and that Δ commutes with Q (because Q is compatible with the pairing
〈·, ·〉). Hence we posit the next definition, following the BV formalism.

Definition 3.2. Let E be a free TNBFT. The factorization algebra of quan-
tum observables for E assigns to an open subset U ⊂ M̊ , the (differen-
tiable) cochain complex

(Sym(Ec[1](U))[�], Q + �Δ) =: ObsqE (U),

where the symmetric powers are taken with respect to the completed bornolog-
ical tensor product of convenient vector spaces.

3.2. Observables of the boundary condition

A boundary condition L leads to factorization algebras on the boundary in
a parallel fashion.

At the classical level, the idea is that we want to use a commutative
algebra of functions on L , which we take to be a symmetric algebra on the
continuous linear dual L ∗. It is convenient to work with a smeared (and hence
smooth) version of L ∗. One approach is to note that L is a subspace of E∂ ,
and so we could work with the quotient of ObsclE∂

by the ideal of functions
that vanish on the subspace L . This approach is canonically determined by
the map L → E∂ , and hence manifestly meaningful. On the other hand, it is
convenient to have an explicit graded vector bundle to use, particularly when
we quantize and need to transport the BV Laplacian for the bulk theory to
an operator on the boundary observables. Hence we now introduce a different
approach that we will see, later, is equivalent.
Construction 3.1. Let L be a boundary condition for a free TNBFT associ-
ated to the graded subbundle L of E∂ . Let L⊥ be a complementary subbundle
so that E∂ = L ⊕ L⊥. Let L ⊥ denote the sheaf of smooth sections of L⊥,
and let L ⊥

c the cosheaf of compactly supported smooth sections of L⊥. With
respect to this splitting, the differential Q∂ decomposes as QL +QL⊥ +Qrel,
where QL preserves L , QL⊥ preserves L ⊥, and Qrel maps L ⊥ to L . (There
is no operator from L to L ⊥ because we have assumed that Q∂ preserves L .)

Notice that every element of L ⊥
c determines a continuous linear func-

tional on L via the local pairing 〈·, ·〉loc,∂ on E∂ . In fact, these smeared
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observables encompass essentially all the linear functionals: by the Atiyah-
Bott lemma, the complex (L ⊥

c , QL⊥) is continuously quasi-isomorphic to the
complex of compactly supported distributional sections of E∂/L with the dif-
ferential induced by Q∂ . Hence a symmetric algebra on L ⊥

c deserves to be
understood as an algebra of observables.

Definition 3.3. Let L be a boundary condition for a free TNBFT. The
factorization algebra of classical boundary observables for L assigns to
an open subset U ⊂ ∂M , the (differentiable) cochain complex

(Sym(L ⊥
c (U)), QL⊥) =: ObsclL (U),

where the symmetric powers are taken with respect to the completed bornolog-
ical tensor product of convenient vector spaces.

At the quantum level, one obtains a Heisenberg-type deformation of ObsclL
as a factorization algebra. The relevant deformation arises from a canonical
bilinear form on L ⊥

c determined by our construction. Let μ be the following
local degree −1 cocycle on L ⊥

c : for any pair of compactly-supported sections
e1 and e2 on an open U ⊂ ∂M , define

(6) μ(e1, e2) =
∫
∂M

〈e1, Qrele2〉loc,∂ ,

We use this pairing to define a second-order differential operator �Δμ on
Sym(L ⊥

c (U))[�] of cohomological degree 1, just as we constructed the BV
Laplacian Δ on the bulk observables.

Definition 3.4. Let L be a boundary condition for a free TNBFT. The
factorization algebra of quantum boundary observables for L assigns
to an open subset U ⊂ ∂M , the (differentiable) cochain complex

(Sym(L ⊥
c (U))[�], QL⊥ + �Δμ) =: ObsqL (U),

where the symmetric powers are taken with respect to the completed bornolog-
ical tensor product of convenient vector spaces.

Remark 7. The quotient map qL : E∂ → E∂/L makes L⊥ canonically iso-
morphic to the quotient bundle E∂/L, and hence we can identify L⊥ with
the image of a splitting of that quotient map. Any two choices of splitting
L⊥

0 and L⊥
1 are related by a bundle automorphism of E∂ . We emphasize this

isomorphism is at the point set level; it is an automorphism of graded vector
bundles. Using this automorphism one gets a natural equivalence between the
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associated pairings μ0 and μ1. Hence, any two versions of the construction
above are isomorphic.
Remark 8. The pairing μ determines a central extension L̂ ⊥

c(U) of L ⊥
c (U)

(as an abelian dg Lie algebra) by the vector space C� placed in degree 1. That
is, L̂ ⊥

c(U) is a kind of Heisenberg Lie algebra. As it is defined for any open
subset U of the whole manifold ∂M , we get a precosheaf of central extensions.
The quantum observables are then the Chevalley-Eilenberg chains of this dg
Lie algebra L̂ ⊥

c. Thus our definition above is a case of taking a twisted en-
veloping factorization algebra. See Definition 3.6.4 of [CG17] for an extensive
discussion, and Chapter 4 for an explanation of why this construction encodes
canonical quantization.

3.3. Observables of the bulk-boundary system

There is a natural way to extend our methods above to obtain observables
on EL , which describes solutions to the equations of motion for fields in
E that must live in L on the boundary. We will begin by describing the
corresponding functor

Opens(M) → Ch

and then turn to verifying it is a factorization algebra.

Definition 3.5. Let (E ,L ) be a free bulk-boundary field theory. The pref-
actorization algebra of bulk-boundary classical observables for (E ,L )
assigns to each open subset U ⊂ M , the (differentiable) cochain complex

(Sym(EL ,c[1](U)), Q) =: ObsclE ,L (U),

where EL ,c denotes the cosheaf of compactly-supported fields for the bulk-
boundary system (i.e., elements of EL (U) whose support is compact). The
symmetric powers are taken with respect to the completed bornological tensor
product of convenient vector spaces.

To see that ObsclE ,L is a prefactorization algebra, one can borrow verbatim
Section 3.6 of [CG17].
Remark 9. We note here that in the appendices, we provide two useful results,

• a more geometric interpretation of the tensor powers EL (U)⊗̂k and
• a version of the Atiyah-Bott lemma for the bulk-boundary fields (cf.

Appendix D, [CG17]),
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that underpin our choice of smeared observables for the bulk-boundary sys-
tem. Analogs of these results played a key role in the case of free BV theories
on manifolds without boundary. The first allows us to recognize why the com-
pleted bornological tensor product is natural here, and it also plays a role in
the proof that we get a factorization algebra. The second justifies that work-
ing with the continuous linear dual EL (U)∨ adds no further information than
EL ,c(U)[1], up to continuous quasi-isomorphism.

In fact, we can, without much difficulty, show that the classical observables
form a factorization algebra, that is, they satisfy the local-to-global condition
of Definition 6.1.4 in [CG17].

Theorem 3.2. For a free bulk-boundary theory E with local Lagrangian bound-
ary condition L , the classical observables ObsclE ,L form a factorization alge-
bra.

Proof. The context here is nearly identical to that of Theorem 6.5.3(ii) of
[CG17]. By the same arguments as in the proof of that theorem, we need
only to show that, given any Weiss cover U = {Ui}i∈I of an open subset
U ⊂ M , the map

(7)
∞⊕
n=0

⊕
i1,··· ,in

Symm (EL ,c[1](Ui1 ∩ · · · ∩ Uin)) [n− 1] → Symm(EL ,c[1](U))

is a quasi-isomorphism, where the left-hand side is endowed with the Čech
differential. According to the appendix, particularly Corollary B.2,

Symm (EL ,c[1](Ui1 ∩ · · · ∩ Uin))

is the subspace of

Symm (Ec[1](Ui1 ∩ · · · ∩ Uin)) ⊂ C∞
c ((Ui1 ∩ · · · ∩ Uin)m, (E[1])�m)

consisting of those sections that lie in (L⊕E∂dt)x1⊗Ex2⊗· · ·⊗Exm whenever
the first of the points x1, · · · , xm ∈ (Ui1∩· · ·∩Uin)m lies on ∂M , and similarly
for x2, · · · , xm. The proof of Lemma A.5.7 of [CG17] constructs a contracting
homotopy of the mapping cone of Equation 7 without any conditions imposed
at the boundary of M . Because the contracting homotopy involves only mul-
tiplication by smooth functions and addition of sections, it preserves the lie-in
condition for (EL ,c)⊗̂m. Hence, the contracting homotopy from the proof of
Lemma A.5.7 of [CG17] gives a contracting homotopy for the mapping cone
of Equation 7, so that the map of that equation is a quasi-isomorphism.
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We also define a factorization algebra of quantum observables.

Definition 3.6. Let (E ,L ) be a free bulk-boundary field theory. The pref-
actorization algebra of bulk-boundary quantum observables for (E ,L )
assigns to each open subset U ⊂ M , the (differentiable) cochain complex

(Sym(EL ,c[1](U)[�], Q + �Δ) =: ObsqE ,L (U).

Here Δ is the restriction of the BV Laplacian for ObsqE to this graded sub-
space.

Remark 10. The fact that Q + �Δ is a differential on ObsqE ,L (U) requires
some proof. In the case where ∂M is empty, it follows from the invariance of
〈·, ·〉 under Q (see equation 1). In the present case, equation 1 is satisfied for
EL , so that Q + �Δ squares to zero on ObsqE ,L (U). This property motivates
the use of local Lagrangian boundary conditions for TNBFTs.

Theorem 3.3. The functor ObsqE ,L is a factorization algebra.

Proof. That ObsqE ,L is a prefactorization algebra is an immediate conse-
quence of the fact that ObsclE ,L is, since the BV Laplacian is local. To see
that the local-to-global condition is also satisfied, note that ObsqE ,L (U) has
a filtration given by

F nObsqE ,L (U) =
⊕

j+k≤n

�
jSymk(EL ,c(U)[1])

for every open subset U . The differential on ObsqE ,L (U) preserves this filtra-
tion. Moreover, for any Weiss cover U of U , the Čech complex Č(U,ObsqE ,L )
for this cover also has a filtration and the map

(8) Č(U,ObsqE ,L ) → ObsqE ,L (U)

respects this filtration, hence induces a map of spectral sequences. The in-
duced map on the associated graded spaces (the E1 page) is the map

Č(U,ObsclE ,L [�]) → ObsclE ,L (U)[�],

which was shown to be a quasi-isomorphism in the proof of Theorem 3.2.
Hence the map in Equation 8 is a quasi-isomorphism.
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4. The main theorems

In this section, we state and prove a generalization of Theorem 1.1 that applies
to a general free bulk-boundary field theory E with boundary condition L .
Without loss of generality, we will assume that the underlying manifold is
of the form M = M∂ × R≥0, so that ∂M = M∂ . Let π : M → M∂ denote
projection onto the boundary. We will also assume that the space of fields is
globally of the form E ⊗̂Ω•

R≥0
, with the pairing 〈·, ·〉 of the form specified in

Definition 2.1.
Remark 11. The assumption that M = M∂ × R≥0 is purely for convenience.
Our methods construct factorization algebras on an arbitrary manifold with
boundary, so long as one can find a tubular neighborhood of the boundary
on which the fields decompose to be “topological normal to the boundary.”
After all, factorization algebras are local-to-global in nature, so we can patch
together a construction near the boundary with a construction far into the
bulk.

Here is our generalization of Theorem 1.1 at the classical level.

Theorem 4.1. For a free bulk-boundary field theory (E ,L ), we have the
following identifications:

1. Let Obscl denote the factorization algebra on M̊ of classical observables
for E , constructed using the techniques of Chapter 4 of [CG17]. Then,
there is an isomorphism

ObsclE ,L

∣∣
M̊

∼= ObsclE .

2. There is a quasi-isomorphism

I
cl : ObsclL → π∗ObsclE ,L .(9)

We will state now the quantum analogue of this theorem before turning
to the proofs.

Theorem 4.2. For a free bulk-boundary field theory (E ,L ), we have the
following identifications:

1. Let Obsq denote the factorization algebra on M̊ of quantum observables
for E , constructed using the techniques of Chapter 4 of [CG17]. Then,
there is an isomorphism

ObsqE ,L

∣∣
M̊

∼= ObsqE .
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2. There is a quasi-isomorphism

I
q : ObsqL → π∗ObsqE ,L .(10)

Remark 12. One consequence of this theorem is that the quantum bound-
ary observables, for any choice of splitting L⊥, are explicitly identified with
π∗ObsqE ,L . Hence we see again that the choice of splitting is irrelevant.
Remark 13. Theorems 4.1 and 4.2 are characterizations of the “boundary
value” and the “bulk value” of the factorization algebras ObsclE ,L , ObsqE ,L .
However, the bulk-boundary factorization algebras contain more information
than their bulk and boundary values alone—they also encode an action of the
bulk observables on the boundary observables. This is a rich structure. For
example, in the Poisson sigma model we believe the structure to be related
to the formality quasi-isomorphism of Kontsevich [Kon03]. We study this
action for topological mechanics and the Chern-Simons/chiral WZW system
in Proposition 5.1 and Lemma 5.14, respectively.

We now turn to proving these theorems.

Proof of classical theorem. The first statement of the theorem follows imme-
diately from the fact that EL (U) = E (U) when U ∩ ∂M = ∅.

It remains, therefore, to prove the second statement. Throughout the
proof, let U be an open subset of M∂ . Let us first construct the cochain map

I
cl
U : ObsclL (U) → ObsclE ,L (U × R≥0)

for each open subset U ⊂ M∂ . To this end, let φ be a compactly-supported
function on R≥0 whose integral over R≥0 is 1, and let Φ(t) :=

∫ t
0 φ(s)ds.

Both the boundary and bulk observables arise as symmetric algebras built on
cochain complexes, so the map I

cl will be induced from a cochain map on the
linear observables.

As a first step, we decompose the fields EL ,c further. By hypothesis, we
have the isomorphism

Ec(U × R≥0) ∼= (E∂)c(U) ⊗̂Ω•
R≥0,c

(R≥0).

Recall that in the construction of the boundary observables, we have a de-
composition

Q∂ = QL + QL⊥ + Qrel,

where QL preserves L , QL⊥ preserves L ⊥, and Qrel maps L ⊥ to L . We
can therefore write

EL ,c(U × R≥0) ∼=
(
Lc(U) ⊗̂Ω•

R≥0,c
(R≥0) � L ⊥

c (U) ⊗̂Ω•
R≥0,c,D

(R≥0)
)
,
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where Ω•
R≥0,c,D

(R≥0) is the cochain complex

{
f ∈ Ω0

R≥0,c
(R≥0) | f(t = 0) = 0

}
Ω1

R≥0,c
(R≥0).

ddR

(Note it is concentrated in degrees 0 and 1.) The symbol � reminds us that
L ⊥ is not a subcomplex of E∂ . Note that our boundary condition requires
that only the L ⊥-valued fields vanish at the boundary.

Define the map I
cl
U : L ⊥

c (U)[−1] → EL ,c(U × R≥0) by

I
cl
U (α) = α ∧ φ dt− (−1)|α|(Φ − 1)Qrelα,

where |α| denotes the cohomological degree of α in L ⊥ (not L ⊥[−1]). The
map I

cl
U is of cohomological degree zero because of the terms ∧φ dt and Qrel.

Moreover, I
cl
U (α) does indeed have compact support if α does, since (Φ −

1)(t) = 0 for t � 0. By construction I
cl is a map of precosheaves. We also see

that IclU (α) satisfies the boundary condition because

ρ
(
I
cl
U (α)

)
= (−1)|α|Qrelα

and Qrelα lives in Lc. Finally, we check that IclU is a cochain map: on the one
hand,

I
cl
U (QL⊥α) = (QL⊥α) ∧ φ dt− (−1)|α|+1(Φ − 1)QrelQL⊥α,

and on the other,

QI
cl
U (α) = QL⊥α ∧ φ dt + Qrelα ∧ φ dt

−Qrelα ∧ φ dt− (−1)|α|(Φ − 1)QLQrelα.

Once one uses the relation QLQrel = −QrelQL⊥ , one sees that the two ex-
pressions are equal. Since I

cl
U respects the differentials on the complexes as

well as the extension maps, it extends to a map of factorization algebras
ObsclL → π∗ObsclE ,L .

It remains to show that IclU is a quasi-isomorphism. We will exhibit, in fact,
something much stronger: a deformation retraction. Namely, we will produce
a cochain map P

cl
U such that Pcl

U I
cl
U = id and a cochain homotopy K

cl
U between

I
cl
UP

cl
U and the identity id.
To this end, consider the map

P
cl
U : EL ,c(U × R≥0) → L ⊥

c (U)[−1]
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where

P
cl
U (e) = pL⊥

(∫
R≥0

e

)
and where pL⊥ : E∂ → L ⊥ is the canonical map induced by the quotient
bundle map E∂ → L⊥. Notice that

P
cl
U (QL⊥e + QLe+Qrele + (−1)|e| de

dt
∧ dt)

= QL⊥pL⊥

∫
R≥0

e + (−1)|e|pL⊥

∫
R≥0

de

dt
∧ dt

= QL⊥pL⊥

∫
R≥0

e

= QL⊥P
cl
U (e),

where the second equality holds because e is compactly supported and also
pL⊥e(0) = 0. Hence it is a cochain map. Direct computation verifies that
P

cl
U I

cl
U = id.
Consider now the degree −1 map

K
cl
U : EL ,c(U × R≥0) → EL ,c(U × R≥0)

where (
K

cl
U (e)

)
(t) = (−1)|e|−1(Φ(t) − 1)(Pcl

U (e)) − (−1)|e|
∫ ∞

t
e(s).

The field K
cl
U (e) satisfies the required boundary condition because

K
cl
U (e)(0) = (−1)|e|pL⊥

∫
R≥0

e− (−1)|e|
∫
R≥0

e

and hence K
cl
U (e)(0) is an element of L . Direct computation shows that K

cl
U

is a cochain homotopy between I
cl
UP

cl
U and the identity.

Just as I
cl
U extends to a map of symmetric algebras, extend K

cl
U and P

cl
U

to maps

K
cl
U : Sym(EL ,c[1](U × R≥0)) =

(
π∗ObsqE ,L

)
(U) →

(
π∗ObsqE ,L

)
(U)

P
cl
U : ObsqE ,L (U) → Sym(L ⊥

c (U)) = ObsclL (U)

by the usual procedure extending a deformation retraction at the linear level
to symmetric powers. (One treatment with the necessary formulas is Section
2.5 of [Gwi12].)
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Proving the quantum theorem is a modest modification of the classical
argument.

Proof of quantum theorem. The first statement of the theorem again follows
immediately from the fact that EL (U) = E (U) when U ∩ ∂M = ∅.

It remains, therefore, to prove the second statement, using the construc-
tions from the proof of the classical theorem. Throughout the proof, let U be
an open subset of M∂ . Recall that the cocycle μ determines ObsqL and the
cocycle 〈·, ·〉 determines ObsqE ,L . We will show that I

cl
U respects the cocycles

and hence determines the desired map I
q between the quantized factorization

algebra. In particular, we must show that

μ(α1, α2) =
〈
I
clα1, I

clα2
〉
.

To see this, compute

〈
I
clα1, I

clα2
〉

= −
∫
M∂×R≥0

〈α1, Qrelα2〉loc,∂ φ(1 − Φ) dt

− (−1)|α1|
∫
M∂×R≥0

〈Qrelα1, α2〉loc,∂ φ(Φ − 1) dt

and so 〈
I
clα1, I

clα2
〉

= −2μ(α1, α2)
∫
R≥0

φ(1 − Φ) dt.

Since d
dt(Φ − 1) = φ, we find∫

R≥0

φ(1 − Φ) =
∫ 1

u=0
u du = 1

2 ,

which verifies that I
cl is a cochain map at the level of quantum observables,

as needed.

5. Applications

In this section, we apply our main theorems to several bulk-boundary field
theories, namely the examples already mentioned in Section 2.3. In the low-
dimensional examples, we can relate the factorization algebras to more famil-
iar objects, such as associative algebras and vertex algebras. For instance, in
the example of topological mechanics, we find that our procedure is equiva-
lent to the canonical quantization of the algebra O(V ) (on the “bulk” line)
and its Fock space (on the boundary point).
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In higher dimensions, our factorization algebras recover familiar phenom-
ena when using simple product spaces and performing compactifications (aka
pushforwards). For example, on a slab of the form N × [0, 1] with N an ori-
ented 2-manifold, the CS/WZW system is shown to be equivalent to the free
massless scalar boson on N (see Lemmas 5.11 and 5.12).

One payoff of our approach is that we get nontrivial constructions when
we use interesting manifolds with boundary, thanks to factorization homology.
For instance, in the example of the Poisson sigma model, we find that the
global observables depend in an interesting way on the genus and the number
of boundary components of the surface. Similarly, Koszul duality makes an
appearance by pointing transverse boundary conditions on either side of a
strip (cf. [Sho10, CFFR11]), although we do not go far in this direction here.

5.1. Topological mechanics

In this subsection, we study the factorization algebras for topological me-
chanics with values in V and with boundary condition L. We will see that
the factorization algebra of classical bulk-boundary observables encodes the
commutative algebra Sym(V ) together with the module Sym(V/L). For the
quantum observables, we obtain the Weyl algebra W (V ) and the Fock module
F (L) built on L. (We define these objects in the sequel.)

Recall that a symplectic vector space (V, ω) together with a Lagrangian
subspace L ⊂ V define a free bulk-boundary system on [0, ε), which we call
topological mechanics (cf. Example 2.1). (We can take V to be Z-graded,
if we like, but of bounded total dimension.) The main theorem 4.1 identi-
fies ObsclE ,L

∣∣∣
(0,ε)

with the factorization envelope of the abelian Lie algebra
V on the open interval (0, ε). Proposition 3.4.1 of [CG17] shows that this
factorization algebra is equivalent to the locally constant factorization al-
gebra on the open interval (0, ε) corresponding to the associative algebra
O(V ) := Sym(V ∨). Similarly, ObsqE ,L

∣∣∣
(0,ε)

is equivalent to the factorization
algebra on (0, ε) corresponding to the Weyl algebra W (V ). (Recall that the
Weyl algebra is the algebra generated by V and � and subject to the relation
v1v2 − v2v1 = ω(v1, v2)�.)

The main theorems also identify bulk-boundary observables ObsclE ,L ([0, δ))
and ObsqE ,L ([0, δ)) living on half-open intervals [0, δ) with purely boundary
observables

ObsclL ∼= Sym(V/L)
and

ObsqL ∼= Sym(V/L)[�],
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respectively, for any δ ≤ ε. The second isomorphism arises from the fact that
Qrel = 0.

These identifications are purely identifications of factorization algebras
on {0}; they do not take into account the actions of ObsclE and ObsqE on the
boundary observables. In this subsection, we show how the bulk and bound-
ary observables interact through the bulk-boundary factorization algebras
ObsclE ,L and ObsqE ,L . Namely, we will examine the structure maps involving
one or more intervals including the boundary point. These structure maps
will give the boundary observables the structure of a right module over the
corresponding algebras in the bulk.

More precisely, given an algebra A and a pointed right module M of A,
there is a stratified locally constant factorization algebra FA,M on [0, ε) which
assigns A to any open interval, and M to any half-closed interval (cf. §3.3.1 of
[CG17]). We will show that the cohomology factorization algebras H•ObsclE ,L

and H•ObsqE ,L will be of this form for particular choices of A and M . We
have already discussed that the corresponding algebras are O(V ) and W (V )
for the classical and quantum observables, respectively. It remains only to
identify the relevant modules.

The Lagrangian L ⊂ V determines a (right) module for the commutative
algebra O(V ), namely O(V/L) with the module structure induced from the
restriction map. Similarly, L determines a right module F (L) for the Weyl
algebra, namely the quotient of W (V ) by the right-submodule generated by
L. The underlying vector space for F (L) is Sym(V/L⊕�). Having established
all the relevant notation, we can now state the main proposition.

Proposition 5.1. For (E ,L ) corresponding to topological mechanics of Ex-
ample 2.1, there is a quasi-isomorphism of factorization algebras on R≥0

ObsclE ,L
�−→ FO(V ),O(V/L)

from classical observables to the stratified locally constant one associated to
functions O(V ) and the module O(V/L). Likewise, there is a quasi-isomor-
phism of factorization algebras

ObsqE ,L
�−→ FW (V ),F (L)

from the quantum observables and the stratified locally constant one associated
to the Weyl algebra W (V ) and the Fock module F (L).

Note that this proposition says that the cohomology of the observables
is wholly concentrated in degree zero, so that the observables are determined
precisely by the usual information in mechanics.
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Proof. It is straightforward to verify that the factorization algebras of both
the classical and quantum bulk-boundary observables are stratified locally
constant with respect to the stratification {0} ⊂ [0, ε). Hence, each factoriza-
tion algebra corresponds to some pair (A,M). We need only to determine the
modules living on the boundary. To this end, let I1 = (0, ε) and I2 = [0, ε).
Consider the structure maps for the inclusion I1 ⊂ I2. Let A stand momentar-
ily for either of O(V ), W (V ), and similarly let M stand for either of the two
modules on the boundary. The structure map mI2

I1
induces a map A → M .

The associativity axiom of a prefactorization algebra guarantees that this is
a map of A modules.

Recall from the proof of Theorem 4.1 that the map I
cl is induced from a

choice φ of compactly-supported function on I2 whose total integral is 1. Let
us suppose that φ is supported on I1. Then, we have a quasi-isomorphism

I
cl
int : V → EL ,c(I1)[1]

where
I
cl
int(v) = φ dt⊗ v.

The symmetrization of this map, which we also denote by I
cl
int, induces a

quasi-isomorphism
I
cl
int : Sym(V ) → ObsclE ,L (I1).

Consider the composite map

Sym(V )
Iclint �� ObsclE ,L (I1)

m
I2
I1 �� ObsclE ,L (I2) Pcl

�� Sym(V/L),

where P
cl(I2) is introduced in the proof of Theorem 4.1. It follows directly

from the definitions that the composite is the map Sym(V ) → Sym(V/L)
induced from the projection V → V/L. The statement of the proposition for
the classical observables follows.

We now “perturb” the classical information. We would like to understand
the structure map

mI2
I1

: ObsqE ,L (I1) → ObsqE ,L (I2)

at the level of cohomology. We know that the cohomology of ObsqE ,L (I1) is
the underlying vector space of W (V ), and the cohomology of ObsqE ,L (I2) is
Sym(V/L)[�], which is the underlying vector space of a module M for W (V ).
The structure map mI2

I1
induces a map T : W (V ) → M which intertwines the
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right W (V ) actions. Because ObsqE ,L is filtered by powers of �, and because
the associated graded factorization algebra is ObsclE ,L ⊗CC[�], T is surjective.
Hence, to understand M , we simply need to identify the kernel of T . In the
proof of Theorem 4.1, we constructed maps I

cl(I2),Pcl(I2),Kcl(I2) which fit
into a deformation retraction. Hence, the homological perturbation lemma
(see, e.g., [Cra]) gives a formula for a quasi-isomorphism

P
q : ObsqE ,L (I2) → Sym(V/L)[�].

On the sub-complex EL ,c(I2)[1] ⊂ ObsqE ,L (I2), Pq agrees with P
cl. Moreover,

as demonstrated in [CG17], the map

V
Iclint �� EL ,c(I1)[1] �

� �� ObsqE ,L (I1)

induces the canonical map
V → W (V )

on cohomology. Finally, tracing through the definitions, the composite

V
Iclint �� EL ,c(I1)[1] �

� �� ObsqE ,L (I1)
m

I2
I1 �� ObsqE ,L (I2) Pq

�� M

is seen to be the quotient map V → V/L followed by the inclusion V/L →
Sym(V/L)[�]. Thus, L is in the kernel of T , and hence so too is the whole
submodule of W (V ) generated by L. For dimension reasons, this implies that
M ∼= F (L).

5.2. Free Poisson sigma model

We examine Example 2.2 and explore some interesting consequences. For
instance, we show that our results recover naturally — for this simple class of
Poisson spaces and coisotropic submanifolds — the well-known Swiss cheese
algebras. We then turn to a discussion of Koszul duality, and finally to what
happens with higher genus surfaces.

5.2.1. The boundary observables Recall from Example 2.2 that a vector
space V and a skew-symmetric linear map Π : V ∨ → V determine a field
theory on any oriented surface Σ with boundary. The (underlying graded
vector) space of fields of this theory is

Ω•
Σ ⊗ V ∨[1] ⊕ Ω•

Σ ⊗ V.
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The differential is of the form (ddR ⊗ id) ⊕ (id ⊗ Π) (the first term preserves
the decomposition above, and the second term maps the first summand to
the second). In particular, one obtains a field theory on the upper half-plane
Σ = H. For the choice of Lagrangian L0 = Ω•

R
⊗V , we have L ⊥

0 = Ω•
R
⊗V ∨[1].

The following lemma is a straightforward application of Proposition 3.4.1
of [CG17].

Recall our notational convention: given an associative algebra A, let FA

denote the locally constant factorization algebra on R constructed from A (cf.
the first example in Section 3.1.1 of [CG17]).

Lemma 5.2. For L0 as defined just above, there is a quasi-isomorphism of
factorization algebras on R

ObsclL0

�−→ FSym(V ∨)

for classical observables and a quasi-isomorphism of factorization algebras

ObsqL0

�−→ F(Sym(V ∨)[�],∗),

where ∗ refers to the Kontsevich star product on Sym(V ∨)[�]. The product is
characterized by the relation

ν1 ∗ ν2 − ν2 ∗ ν1 = �ν1(Πν2),

where ν1, ν2 ∈ V ∨.

In our situation the dual space V ∨ can be decomposed into a direct sum
of a vector space V ∨

t with a trivial pairing and a vector space V ∨
s with a

nondegenerate (i.e., symplectic) pairing. Thus the quantum observables cor-
responds to a tensor product of a commutative algebra Sym(V ∨

t ) and a Weyl
algebra W (Vs). It is thus natural to analyze just these two cases since the
general answer can be assembled from them.
Remark 14. One can define the boundary observables ObsqL0

without making
any reference to the theory on H for which L0 is a boundary condition. The-
orem 4.2 tells us that these observables are equivalent to the pushforward of
the coupled bulk-boundary observables. When V ceases to be a linear Poisson
manifold, there is no direct definition of ObsqL0

, and in fact the quantization
of Sym(V ∨) produced in [Kon03] requires in an essential way the study of the
theory on H. We expect that once one constructs the factorization algebra
of quantum observables for the (interacting) Poisson sigma model on H, its
pushforward to R recovers the algebra Sym(V ∨)[�] with the Kontsevich star
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product. In fact, we expect that one can apply a similar procedure to any
theory with a shifted Poisson structure, using the so-called “universal bulk
theory” [BY].

As a special case, when Π is zero, the quantum observables correspond to
the commutative algebra generated by V ∨ and �; moreover, a new boundary
condition becomes available. Namely, we take L1 = Ω•

R
⊗ V ∨[1], so that

L ⊥
1 = Ω•

R
⊗ V . We have a similar lemma.

Lemma 5.3. There are quasi-isomorphisms

ObsclL1

�−→ FΛ•V

ObsqL1

�−→ F(Λ•V )[�];

where we use Λ•V to denote the free graded algebra generated by V in degree 1.

5.2.2. The bulk algebra and Swiss cheese-type structures On half-
space H our bulk-boundary factorization algebra is locally constant with re-
spect the stratification ∂H ⊂ H. By [Lura, AFT17] it thus encodes an algebra
over the Swiss cheese operad. It is interesting to ask whether we recover the
expected Swiss cheese algebra, and it is easy to see that we do for the classi-
cal observables. Let OΠ denote the dg commutative algebra consisting of the
polyvector fields Sym(V ∨ ⊕ V [−1]) equipped with the differential [Π,−].

Lemma 5.4. There is a natural quasi-isomorphism

ObsclE
�−→ FOΠ

of factorization algebras on H̊ where FOΠ denotes the locally constant factor-
ization algebra on H̊ associated to the dg commutative algebra OΠ.

In other words, the classical observables encode precisely the desired dg
commutative algebra.

Proof. We start by verifying the claim when Π = 0 and then explain how to
deform to the general case. Consider the canonical inclusion of the constant
sheaf C into the de Rham complex Ω•

H̊
, which induces a canonical quasi-

isomorphism of sheaves

i : V ⊕ V ∨[1] ↪→ Ω•
H̊
⊗ (V ⊕ V ∨[1]).

This map determines a map on cosheaves of dg commutative algebras

i∗ : ObsclΠ=0 → OΠ=0,
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and hence the desired quasi-isomorphism. Turning on Π, we deform the dif-
ferential on the polyvector fields, which also deforms the differential on the
classical observables, but this deformation is manifestly Ω•-linear, as it only
depends on the target space and not on the source.

This quasi-isomorphism is compatible with the quasi-isomorphism pro-
vided by Lemma 5.2: the quotient map OΠ → Sym(V ∨) fits in a commuting
square with the structure map ObsclΠ=0(R2) → ObsclL0(R

1) determined by a
disk in the bulk sitting inside a semi-disk intersecting the boundary.

We now turn to the quantum case. Here a comparison is a bit more hairy,
because it is more complicated to compare an E2 algebra to a P2 (or Ger-
stenhaber) algebra. Even worse, our construction produces explicitly a locally
constant factorization algebra on R

2, and it requires work to unpack its as-
sociated E2 algebra. As a step in this direction, we note that the underlying
cochain complex of the quantum observables on a disk is quasi-isomorphic
to OΠ[�]. Indeed, the quasi-isomorphism for the classical observables carries
over immediately: it remains a quasi-isomorphism at the quantum level be-
cause the BV Laplacian is nontrivial only on elements that are annihilated
by the map.

Lemma 5.5. The natural quasi-isomorphism ObsclE (R2) �−→ OΠ quantizes to
a quasi-isomorphism ObsqE (R2) �−→ OΠ[�] of cochain complexes.

We do not verify here that the expected Gerstenhaber structure appears
under this identification, as it would require developing machinery orthogonal
to the efforts of this paper. We remark, however, that so long as Π �= 0,
the quantum observables determine a nontrivial E2 deformation of ObsclE .
This fact can be seen by examining the dimensional reduction of the linear
Poisson sigma model from R× S1 to R; the quantum observables there have
a nontrivial commutator.

5.2.3. A case of Koszul duality By combining the boundary conditions
in the case Π = 0, we get an appealing view on the archetypal Koszul duality
between the algebras Sym(V ∨) and Λ•V . Consider the Poisson sigma model
on the slab R × [0, 1] with the boundary conditions L0 at t = 0 and L1
at t = 1, and let p : R × [0, 1] → R denote the canonical projection, as in
Figure 2. We will denote this total boundary condition by L .

Something interesting happens here: the composite system looks trivial,
so that the observables are the unit factorization algebra.
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Figure 2: Strip equipped with transverse boundary conditions.

Lemma 5.6. For the Poisson sigma model with Π = 0 on R × [0, 1] with
boundary condition L , we have an equivalence of factorization algebras

p∗ObsclE ,L � C

on the real line, where C is the factorization algebra which assigns C to all
open subsets U ⊂ R. Likewise,

p∗ObsqE ,L � C[�],

where C[�] also denotes the locally constant factorization algebra.

The essential reason for this result is that the Lagrangian boundary con-
ditions are transverse, so that the only solution is trivial. A careful proof is
below.

But the geometry here encodes interesting relations on the algebraic struc-
tures.

• The inclusion R× [0, t) ↪→ R× [0, 1] leads to a structure map of factor-
ization algebras from the boundary classical observables to the global
observables; in terms of algebras, it corresponds to the augmentation
Sym(V ∨) → C corresponding to the quotient by the ideal (V ∨). This
augmentation quantizes to an augmentation Sym(V ∨)[�] → C[�].

• The inclusion on the other boundary component encodes the standard
augmentation Λ•V → C, for the classical observables, and the analog
over C[�] for the quantum observables.

• Consider now the inclusion

R× ([0, t) � (1 − t, 1]) ↪→ R× [0, 1].
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The structure map of factorization algebras here encodes a nontrivial
pairing of algebras

q : Sym(V ∨) ⊗ Λ•V → C

whose restriction to each factor is the standard augmentation. The same
holds in the quantum case.

All these maps are essentially induced by the inclusion of the empty open set,
which gives a distinguished line inside the observables on each open.

The pairing q witnesses the algebras as Koszul dual, because the (derived)
hom-tensor adjunction yields a canonical map

Λ•V → REndSym(V ∨)(C,C) =: Sym(V ∨)!

and it is a quasi-isomorphism here. (See Section 5.2.5 of [Lura] for a careful
treatment, or [Lurb] for a beautiful exposition, of Koszul duality along these
lines.)
Remark 15. We find this approach complementary to prior work connecting
Koszul duality to deformation quantization [Sho10, CFFR11]. It also provides
a concrete, physical example of the general, abstract approach to Koszul
duality via factorization algebras [AF19, Mat15]. For a further and deeper
discussion of how Koszul duality fits into physics, particularly topological
field theories, see Appendix A of [CP21]. For a connection with holography,
see [CLb].

Proof of Lemma 5.6. Given an open subset U ⊂ R, we construct a contract-
ing homotopy for

EL ,c(U × [0, 1])[1].

The space of fields is

E = Ω•
R×[0,1] ⊗ V ∨[1] ⊕ Ω•

R×[0,1] ⊗ V.

Let us write a general field in the form A+B, where A and B lie in the first
and second summands of E . Let t denote the coordinate on [0, 1], and let ι0
and ι1 denote the inclusions R ⊂ R× [0, 1] at the t = 0 and t = 1 coordinates,
respectively. The boundary condition L requires ι∗0A = 0, ι∗1B = 0. Consider
fields of the type A = α⊗ ν, B = β ⊗ μ, where α ∈ Ω•

R
⊗ V ∨[1], β ∈ Ω•

R
⊗ V ,

ν, μ ∈ Ω•
[0,1]. Let η0 denote the degree −1 endomorphism of the de Rham

forms Ω•
[0,1] which takes a one-form ν to the unique anti-derivative of ν which
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vanishes at t = 0. Similarly, define η1 to be the anti-derivative which vanishes
at t = 1. For each open subset U ⊂ R, define the map

K : EL ,c(U × [0, 1]) → EL (U × [0, 1])[−1]

as follows:

K(α⊗ μ) = (−1)|α|α⊗ η0(μ)
K(β ⊗ ν) = (−1)|β|β ⊗ η1(ν).

With the domain and codomain written as above, K is a degree 0 map; it can
also be understood as a degree −1 map from EL ,c to itself. Here, we note that
a general field A + B cannot be written literally in the form α ⊗ μ + β ⊗ ν,
or even as a finite sum of such elements; however, the formulas for K written
above specify K on the full (completed bornological) tensor product uniquely.
Another way to interpret the above formulas is that K acts as 1⊗η0 on the A
fields and 1⊗ η1 on the B fields. One verifies readily that ddRK +KddR = id,
so that EL ,c(U × [0, 1]) is acyclic for all U . The lemma follows.

Remark 16. We expect that the analogous arguments for 2-dimensional BF
theory give the Koszul duality between, on the one hand, the factorization
algebra corresponding to Ug and, on the other hand, the factorization algebra
corresponding to C•(g).

5.2.4. The structure of the global sections We now consider the Pois-
son sigma model on a compact, connected, oriented surface M with non-empty
boundary ∂M . Let M have genus g and b > 0 boundary components. Our
main result is the following.

Lemma 5.7. For the Poisson sigma model with boundary condition L0, the
cohomology of the global quantum observables

H•
(
ObsqE ,L0

(M) ⊗R[�] R�=1
)

has rank 1 over R and is concentrated in degree −2g(dim ker Π) − b dim V .

Remark 17. In all observable complexes appearing in this remark, we tacitly
set � = 1 but omit this from the notation. (More accurately, we perform
the tensor product − ⊗R[�] R�=1 for all observable complexes.) We begin by
making two claims whose proofs are straightforward:
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1. The cohomology H•(ObsqL0
(∂M)) of the boundary observables is the

b-fold tensor product of the Hochschild homology of the algebra A :=
(Sym(V ∨), ∗�=1) with itself.

2. The Hochschild homology of A is concentrated in degrees

− dimV, · · · ,−(dimV − dim ker Π).

Choose a tubular neighborhood T of ∂M . The structure map for the inclusion
T ⊂ M induces a map

τ : H•(ObsqL0
(∂M)) ∼= H•(ObsqE ,L0

(T )) → H•(ObsqE ,L0
(M)).

Therefore, we find that the domain of τ is concentrated in negative degrees
≥ −b dimV , while the codomain is concentrated in degree −2g(dim ker Π) −
b dim V . There are a number of cases to consider. First, for g �= 0 and
dim ker Π �= 0, the map τ is manifestly trivial, simply because its domain
and codomain are concentrated in different cohomological degrees. However,
when g = 0 or dim ker Π = 0, the map τ could be non-trivial, since its do-
main is concentrated in negative degrees ≥ −b dimV and its codomain is
concentrated in degree −b dimV . Since the Hochschild homology of A is a
refinement of the quotient A/[A,A], one should understand τ as defining a
(possibly trivial) trace on A. Therefore, τ is a sort of state of the quantum
mechanical system on R defined by A. We expect this trace to be non-zero
exactly when Π is non-degenerate.

5.2.5. Proof of Lemma 5.7 We prove Lemma 5.7 in steps. First, recall the
form of the cohomology and relative cohomology of surfaces with boundary.

Lemma 5.8. The absolute and relative cohomology groups of M and (M,∂M)
with coefficients in R are

H•(M) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R • = 0
R

2g+b−1 • = 1
0 • = 2
0 else

and

H•(M,∂M) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 • = 0
R

2g+b−1 • = 1
R • = 2
0 else

,

respectively.



1524 Owen Gwilliam et al.

In our computation of the observables, we need to understand more than
the isomorphism classes of the cohomology groups H•(M) and H•(M,∂M).
We also need to understand two further pieces of information: the structure
of the map

δ : H1(M,∂M) → H1(M)
induced from the inclusion Ω•(M,∂M) → Ω•(M) and the structure of the
Lefschetz duality pairing:

Ω : H1(M,∂M) ⊗H1(M) → R.

That is the aim of the following lemma which follows directly from Lemma 1.2
of [CILW].

Lemma 5.9. There are isomorphisms

H1(M,∂M) ∼= R
2g ⊕ R

b−1

H1(M) ∼= R
2g ⊕ R

b−1

so that

1. with respect to these decompositions, δ has the block-diagonal form(
T 0
0 0

)
,

where T : R2g → R
2g is an isomorphism, and

2. under these isomorphisms, Ω is the sum of a bilinear form on R
2g and

a bilinear form on R
b−1.

Corollary 5.10. The space of bulk-boundary fields for the Poisson sigma
model with boundary condition L0 has the following cohomology:

H0(EL0(M)) ∼= (R2g ⊗ ker Π) ⊕ (Rb−1 ⊗ V ∨) ⊕ V,

H1(EL0(M)) ∼= (R2g ⊗ coker Π) ⊕ (Rb−1 ⊗ V ) ⊕ V ∨,

where the summand R
b−1 ⊗ V ∨ (respectively R

b−1 ⊗ V ) arises from the R
b−1

summand in H1(M,∂M) (respectively H1(M)) of the preceding Lemma.

Proof. The complex EL0(M) is filtered, with F 0(EL0) = Ω•(M) ⊗ V and
F 1(EL0(M)) = EL0(M). The E0 page of the corresponding spectral sequence
is H•(M,∂M) ⊗ V ∨[1] ⊕H•(M) ⊗ V . The differential on the E0 page is

δ ⊗ Π : H1(M,∂M) ⊗ V ∨ → H1(M) ⊗ V [−1].
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Using the splitting of Lemma 5.9, and choosing splittings V ∼= coker Π ⊕ V ′,
V ∨ ∼= ker Π ⊕ (V ′)∨, we arrive at the conclusion of the Corollary.

Proof of Lemma 5.7. The complex ObsqE ,L0
(M)⊗R[�]R�=1 is filtered by Sym-

degree, and the associated graded cochain complex is ObsclE ,L0(M), whose
cohomology is Sym(H•(EL0(M)[1])). The BV Laplacian induces on this space
a differential Δfd, which arises from the (−1)-shifted pairing on H•(EL0(M))
that is induced from the corresponding pairing on the space of fields. This
pairing respects the decompositions so that

• R
2g ⊗ ker Π pairs with R

2g ⊗ coker Π via the non-degenerate pairing of
claim (2) of Lemma 5.9 and the canonical pairing between ker Π and
coker Π;

• R
b−1 ⊗V ∨ pairs with R

b−1 ⊗V via the duality pairing of V and V ∨, as
well as the pairing of claim (2) of Lemma 5.9;

• V pairs with V ∨ in the canonical way.

The Lemma then follows from direct computation of the Δfd-cohomology; in
particular, see Proposition 2.4.11 of [Gwi12] for a proof.

5.3. Abelian CS/WZW

As we have seen, a finite-dimensional complex vector space A endowed with a
non-degenerate symmetric pairing κ defines an abelian Chern-Simons theory
on an oriented 3-manifold M , with space of fields E = Ω•

M ⊗ A[1]. We focus
here on the boundary condition L = Ω1,•

Σ ⊗A, which encodes chiral currents,
and we examine this system in three different cases of interest.

We remark that when A = C, we are studying perturbative Chern–Simons
theory for the abelian group U(1) and with the boundary condition given by
the U(1) WZW model. Since we are treating Chern–Simons theory pertur-
batively, the integrality of the level will play no role for us. (The models we
consider are isomorphic for any two nonzero values of the level.)

First, we consider the case of a compact 3-manifold M with boundary
and see how a Chern-Simons state of the chiral WZW system on ∂M arises
canonically from the factorization algebra structure. The key observation is
that the structure map for the inclusion of a tubular neighborhood T of ∂M
into M induces a map

ObsqL (∂M) → ObsqE ,L (M),

where the left hand side depends on the chiral currents and the right hand
side ends up being, in good cases, quasi-isomorphic to C[�].
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Second, we study the system on a manifold of the form N × [0, 1], where
N is an oriented 2-manifold endowed with a complex structure at t = 0 and
the conjugate complex structure at t = 1. Let p : N × [0, 1] → N denote
the projection onto the first factor. We study the pushforwards p∗ObsclE ,L

and p∗ObsqE ,L , which is a kind of “slab compactification.” In this case, we
find that the pushforwards are equivalent to the factorization algebras of
observables of the massless free scalar on N (Lemmas 5.11 and 5.12). At the
level of factorization algebras, we are recovering a “full” CFT by intertwining
a chiral and antichiral CFT.

Finally, we study the system on a 3-manifold of the form Σ×R≥0, where
Σ is a Riemann surface. Here, we push forward via the projection p′ onto R≥0,
and find that the systems are equivalent to topological mechanics on R≥0 with
values in Ω•(Σ)[1] and with boundary condition Ω1,•(Σ) (see Lemma 5.14).

Fixing the complement L⊥ The elliptic complex on Σ perpendicular to
the boundary condition L is L ⊥, which can be identified with

L ⊥ = Ω0,•(Σ) ⊗ A[1]

equipped with the ∂ differential (this is not a subcomplex of E∂). Using the
obvious splitting of Ω•(∂M) into the components Ω0,•(Σ) and Ω1,•(Σ), we see
that the differential Q∂ = ddR decomposes as

Q∂ = QL + QL⊥ + Qrel = ∂Ω1,• + ∂Ω0,• + ∂

where we view Qrel = ∂ as the map of elliptic complexes ∂ : Ω0,•(Σ)⊗A[1] →
Ω1,•(Σ) ⊗ A.

The classical observables The sheaf EL of L -conditioned fields has the
following explicit description. For U ⊂ M :

EL (U) = {α ∈ E (U) | π(α) ∈ ι∗L (U)}
= {α ∈ Ω•(U) ⊗ A[1] | ι∗α ∈ Ω1,•(∂U) ⊗ A}.

That is, the L -conditioned fields supported on U ⊂ M consist of differential
forms on U whose pullback to the boundary are forms of type (1, •). Like-
wise, we have the cosheaf U �→ EL ,c(U) on M which consists of compactly
supported differential forms on U whose pullback to the boundary are com-
pactly supported forms of type (1, •). Note that restriction here makes sense
as ι : ∂M ↪→ M is a closed embedding.
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The factorization algebra of classical boundary observables ObsclL on Σ
assigns the cochain complex

Sym(L ⊥
c (U)) =

(
Sym

(
Ω0,•

c (U) ⊗ A[1]
)
, ∂

)
.

to an open set U ⊂ Σ. Note that this is the (untwisted) enveloping factor-
ization algebra of the cosheaf of abelian dg Lie algebras Ω0,•

c ⊗ A on Σ. See
§3.6.2 of [CG17].

The quantum observables The factorization algebra of bulk-boundary
quantum observables ObsqE ,L assigns to the open set U ⊂ M the cochain
complex (Sym(EL ,c[1](U))[�], Q + �Δ).

From the general prescription in Section 3 the factorization of algebra
quantum boundary observables ObsqL is the enveloping factorization algebra
of L ⊥

c [−1] = Ω0,•
c (U)⊗A twisted by a local cocycle μ whose formula appears

in Equation (6).
Since Qrel = ∂ we have the explicit formula for μ:

μ(α1, α2) =
∫
C

κ(α1, ∂α2).

Explicitly, this local cocycle defines the factorization algebra on Σ which
assigns the cochain complex(

Sym
(
Ω0,•

c (U) ⊗ A[1]
)

[�], ∂ + �μ
)
.

to an open set U ⊂ Σ. In other words, this is the twisted factoriazation
enveloping algebra of the cosheaf of abelian dg Lie algebras Ω0,•

c ⊗ A on Σ
associated to the local cocycle μ. (See §3.6.3 of [CG17].)

In Chapter 5 of [CG17] it is shown that locally on Σ = C, this factorization
algebra is a model for the abelian Kac-Moody vertex algebra associated to
the level κ upon specializing � = 1.

5.3.1. Global sections and conformal blocks We now consider abelian
Chern-Simons on a compact, oriented 3-manifold M coupled to chiral WZW
on the boundary Riemann surface ∂M = Σ. In this case, E∂(∂M) = Ω•(∂M)⊗
A receives two Lagrangian embeddings:

1. the chiral WZW boundary condition

L (Σ) = Ω1,•(Σ) ⊗ A ↪→ E∂(∂M),
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2. the restriction map

π : E (M) = Ω•(M) ⊗ A[1] → E∂(∂M).

When the intersection is transverse, the global classical observables satisfy
ObsclE ,L (M) � C, while the quantum observables satisfy ObsqE ,L (M) � C[�].
In other words, the global sections of the factorization algebras of bulk-
boundary observables are equivalent to the ground ring (C and C[�], respec-
tively).

Let T be a tubular neighborhood of ∂M in M . Our main theorem asserts
that

ObsL (∂M) � ObsE ,L (T );

the structure maps for the inclusion T ⊂ M induce maps

Φcl
M : ObsclL (∂M) � ObsclE ,L (T ) → ObsclE ,L (M) � C,

Φq
M : ObsqL (∂M) � ObsqE ,L (T ) → ObsclE ,L (M) � C[�].

We interpret ObsclL (∂M) and ObsqL (∂M) as the spaces dual to the classical
and quantum conformal blocks, respectively, of the chiral WZW model. Given
a 3-manifold M that cobounds ∂M , therefore, we obtain the Chern-Simons
classical (respectively quantum) conformal block Φcl

M (respectively Φq
M ) for M .

We can also call Φcl
M and Φq

M the classical and quantum Chern-Simons states
for M .

The idea outlined here is analogous to the discussion in Remark 17. For
the case of the Poisson sigma model on an oriented, closed, connected two-
manifold N , we were only able to define states for the boundary system when
N had genus 0. In the case at hand, we see that the existence of states of the
sort we desire here depends on the topology of M and the complex structure
on ∂M , and the way that the two interact via the inclusion ∂M → M . As an
example, the long-exact sequence associated to the short-exact sequence

0 → EL (M) → Ω•(M)[1] → Ω0,•(∂M)[1]

shows that H1EL (M) surjects onto H2(M), so that when H2(M) �= 0,
EL (M) is not acyclic. At least when M is a handle-body, this issue does
not arise, and we expect EL (M) to be acyclic.
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Figure 3: Projection of N × [0, 1] onto N .

5.3.2. Slab compactification Let N be an oriented 2-manifold. We con-
sider a three-manifold of the form M = N×[0, 1]. Moreover, we equip N×{0}
with a complex structure and denote it by Σ; we equip N×{1} complex conju-
gate complex structure and denote it by Σ. Let ι0 and ι1 denote the inclusions
of N at t = 0 and t = 1, respectively. Let π : M → N be the projection onto
the “space” slice of M . See Figure 3.

For these choices

EL =
{
μ ∈ Ω•

N×[0,1] ⊗ A[1] | ι∗0μ ∈ Ω1,•
Σ ⊗ A, ι∗1μ ∈ Ω•,1

Σ ⊗ A
}
.

is the space of L -conditioned fields for the Chern-Simons/chiral WZW bulk-
boundary system.

We study now the “slab compactification” of the factorization algebra of
bulk-boundary observables. This is the factorization algebra on N obtained
by pushing forward ObsE ,L along π. To decongest the notation, we assume
that A = C, since all proofs proceed with little change for general A.

Let Escalar denote the cochain complex underlying the BV theory of the
scalar field on Σ. Namely, it is the two-term chain complex

Ω0
Σ

∂∂ �� Ω2
Σ

concentrated in cohomological degrees 0 and 1, together with the natural de-
gree −1 pairing between top forms and functions. Let ObsclEscalar

and ObsqEscalar
denote the factorization algebras of classical and quantum obervables, respec-
tively, for the massless free scalar.

We now show that there is a quasi-isomorphism of factorization algebras
between the observables of the free scalar and the slab compactification of
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the bulk-boundary observables of Chern-Simons theory. In words, this quasi-
isomorphism says that the free massless 2-dimensional scalar field emerges as
the theory describing a “thin” slab with chiral currents on one side coupled
to antichiral currents on the other via a Chern-Simons theory between them.

Lemma 5.11. There is a quasi-isomorphism

ObsclEscalar
→ π∗ObsclE ,L

of factorization algebras on N .

Proof. Define a map I : Escalar → π∗EL by the formulas:

I(f) = f ⊗ dt + ∂f ⊗ t− ∂f ⊗ (1 − t)
I(ω) = ω ⊗ 1.

The sheaf π∗EL is a subsheaf of Ω•
Σ⊗̂Ω•

[0,1]([0, 1]), so we “factorize” forms into
their tangential and normal components and write elements of π∗EL as tensor
products. Strictly speaking, not all forms can be written as tensor products,
or even as finite sums of such. However, all formulas we write down have
a canonical extension to the full (completed bornological) tensor product
Ω•

Σ⊗̂Ω•
[0,1]([0, 1]). The map I is manifestly a sheaf map, and it induces the

desired quasi-isomorphism, as we proceed to show.
We construct an inverse quasi-isomorphism P to I. Let f ∈ Ω0

Σ, α ∈ Ω0,1
Σ ,

β ∈ Ω1,0
Σ , ω ∈ Ω2

Σ, and ν1, ν2, ν3, ν4 ∈ Ω•
[0,1]. Define the map P : π∗EL →

Escalar by the formulas

P (f ⊗ ν1 + α⊗ ν2 + β ⊗ ν3 + ω ⊗ ν4) = (ι∗0ν4)ω + f

∫
[0,1]

ν1 − ∂β

∫
[0,1]

ν3.

Let us check that P is a cochain map. Let f ⊗ ν1 be a zero form on M which
lies in EL , i.e. it vanishes at t = 0 and t = 1. Then,

P ((∂ + ∂)f ⊗ ν1 + f ⊗ dν1) = f ⊗ ν1(1) − f ⊗ ν1(0) = 0 = QscalarP (f ⊗ ν1).

Let α⊗ ν1 +β⊗ ν2 + f ⊗ ν3 be a one-form on M which satisfies the boundary
conditions to lie in EL (here, ν1, ν2 ∈ Ω0

[0,1], and ν3 ∈ Ω1
[0,1]; the boundary

conditions are ι∗0ν1 = 0 and ι∗1ν2 = 0). Then,

P (∂α⊗ ν1 − α⊗ dν1 + ∂β ⊗ ν2 − β ⊗ dν2 + (∂ + ∂)f ⊗ ν3)

= ν1(0)∂α + ν2(0)∂β + ∂β(ν2(1) − ν2(0)) − ∂∂f

∫
[0,1]

ν3
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= ∂∂f

∫
[0,1]

ν3 = Q (P (α⊗ ν1 + β ⊗ ν2 + f ⊗ ν3)) .

This exhausts all the non-trivial checks that P intertwines differentials.
It is immediate that PI = id. We now construct a homotopy between IP

and id. Let η0 denote the degree −1 endomorphism of the de Rham forms Ω•
[0,1]

which takes a one-form ν to the unique anti-derivative of ν which vanishes at
t = 0. Similarly, define η1 to be the anti-derivative which vanishes at t = 1.
Now, define the map K : π∗EL → π∗EL [−1] by

K(f ⊗ ν1 + α⊗ ν2 + β ⊗ ν3 + ω ⊗ ν4)

= f ⊗ η0(ν1) −
(∫

[0,1]
ν1

)
f ⊗ t− α⊗ η0(ν2) − β ⊗ η1(ν3) + ω ⊗ η0(ν4),

One can verify by straightforward computation that QK + KQ = IP − id,
which proves that P and I are inverse quasi-isomorphisms.

All maps involved are manifestly sheaf-theoretic over Σ, and moreover
they preserve compact support. Hence, we also have quasi-isomorphisms

Escalar,c(U)[1] → EL ,c(U × [0, 1])[1]

for each U , and the quasi-isomorphisms respect the extension by zero maps.
The lemma follows, using the usual extension of a deformation retraction
between cochain complexes to a deformation retraction between the corre-
sponding symmetric algebras.

A similar lemma holds for the quantum observables.

Lemma 5.12. There is a quasi-isomorphism

ObsqEscalar
→ π∗ObsqE ,L

of factorization algebras on N .

Proof. By direct inspection, the map I defined in the proof of Lemma 5.11
respects the (−1)-shifted pairings on Escalar and EL . Hence it induces also a
quasi-isomorphism on the quantum observables.

Corollary 5.13. Let Obsclχ denote the boundary observables for the chiral
WZW boundary condition on Σ, and similarly let Obsclχ denote the boundary
observables for the anti-chiral WZW boundary condition on Σ. There is a
map of factorization algebras on N :

Obsclχ ⊗ Obsclχ → ObsclEscalar
.
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There is an analogous map for the quantum factorization algebras.

This map encodes the chiral and antichiral “sectors” of the full CFT.
When evaluated on a disk, it determines a map from a vertex algebra tensored
with its conjugate into the OPE-algebra of the massless scalar field. On a
closed Riemann surface, the global sections of Obsclχ and Obsclχ are (dual to)
the conformal blocks of the holomorphic and anti-holomorphic Kac-Moody
vertex algebras, respectively. This pairing of the factorization algebras gives a
local-to-global description of the “holomorphic factorization” of the conformal
blocks of the full WZW theory [Wit92] in the case of an abelian group.
Remark 18. We now indicate how the map of Corollary 5.13 is a quotient
map, in the following sense. Consider the factorization algebra

A = π∗

(
ObsclE ,L

∣∣∣
N×(0,1)

)
on N . Because the system under consideration is topological in the transverse
direction, we may use the factorization product in the transverse direction to
endow A with the structure of an E1-algebra in the category of factorization
algebras on N . Further, Obsclχ and Obsclχ are right and left modules for A (in
the category of factorization algebras on N), respectively. The associativity
property of factorization algebras implies that the map of Corollary 5.13
factors through the map

Obsclχ ⊗ Obsclχ → Obsclχ ⊗L

A Obsclχ .

Our claim is that the resulting map

Obsclχ ⊗A Obsclχ → ObsclEscalar

is an equivalence. We make the same claim for the quantum observables.

Proof. By Theorem 4.1,

Obsclχ � π∗ ObsclE ,L

∣∣∣
N×[0,1/2)

,

and
Obsclχ � π∗ ObsclE ,L

∣∣∣
N×(1/2,1]

.

By Lemma 5.11,
ObsclEscalar

� π∗ObsclE ,L

The map of the present corollary is then induced from the structure maps of
ObsclE ,L for inclusions of the form U × [0, 1/2)�U × (1/2, 1] ⊂ U × [0, 1].
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5.3.3. The other projection Let M = Σ × R≥0, and consider the pro-
jection p : M → R≥0. In this section, we study the pushforward factorization
algebras p∗ObsclE ,L and p∗ObsqE ,L , which can be seen as studying canonical
quantization of Chern-Simons theory (cf. §4.4 of [CG17]).

Let V = H•(Σ)[1] and endow it with the symplectic structure induced
from the Poincaré duality pairing. This graded vector space models the tan-
gent complex at the basepoint of the U(1)-character stack for Σ; its symplectic
structure is also known as the Atiyah-Bott form. Let L denote the cohomol-
ogy of the holomorphic 1-forms on Σ; it is the Lagrangian in V given by the
(1, •)-part of the Dolbeault cohomology of Σ. (A choice of Kähler metric on
Σ gives such an embedding L → V .) Conceptually picking this Lagrangian
corresponds to choosing a polarization of the character stack.

By pushing forward from M to R≥0, we reduce the study of abelian Chern-
Simons theory to the problem to the study of topological mechanics for the
pair (V, L), which we treated in Section 5.1.

Lemma 5.14. As factorization algebras on R≥0, we find

• the classical observables p∗ObsclE ,L are quasi-isomorphic to FO(V ),O(L),
and

• the cohomology of the quantum observables H•(p∗ObsqE ,L ) is isomorphic
to FW (V ),F (L), which encodes the Weyl algebra associated to that tangent
complex as well as the Fock space determined by the Lagrangian.

In other words, at the classical level, our factorization algebra encodes the
symplectic geometry of the U(1)-character stack near its base point, including
the natural polarization associated with choosing a complex structure on the
surface. Our quantization recovers the canonical quantization of that data. In
short, our process recovers a shadow of the geometric quantization of abelian
Chern-Simons theory.

Proof. Choose a Kähler metric on the surface Σ. Let (E ,L ) denote the
Chern-Simons/chiral WZW bulk-boundary system on Σ ×R≥0. Let (F ,K )
denote topological mechanics on R≥0 with values in H•(Σ)[1] and with bound-
ary condition H1,•(Σ). Hodge theory using the Kähler metric allows one to
construct a quasi-isomorphism

FK ,c(U)[1] → EL ,c(Σ × U)[1]

for any open subset U ⊂ R≥0. This quasi-isomorphism manifestly preserves
the cocycles used to define the quantum observables and the extension-by-zero
maps for inclusions U ⊂ V . It follows that p∗ObsclE ,L and p∗ObsqE ,L are equiv-
alent to the corresponding factorization algebras for topological mechanics.
The lemma follows via Proposition 5.1.
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5.4. Higher-dimensional abelian Chern-Simons theory

In Example 2.4 we introduced a generalization of abelian Chern-Simons the-
ory for higher abelian gerbes on oriented manifolds of dimension 4k + 3. In
physics, such theories appear in the Type IIB superstring and in the worldvol-
ume theory of the M5 brane. When the manifold has boundary, there are nat-
ural boundary conditions suggested by Hodge theory depending on a choice
of a complex structure on the boundary. For n = 0, this boundary condition
involves asking for flat connections in the bulk that become holomorphic on
the boundary. This situation has a global (or nonperturbative) refinement
involving the space of holomorphic line bundles, known as the Jacobian va-
riety of the boundary. For n > 0, the global refinement of our construction
here involves the intermediate Jacobian of the boundary (or, to be more ac-
curate, a derived version thereof). For 7-dimensional manifolds (i.e., k = 1),
the associated boundary theory on complex 3-folds has a close connection
with holomorphic theories arising from the M5 brane and the N = (2, 0)
superconformal theory. When k = 2, there is a relationship of the theory to
field strengths of the Ramond–Ramond field in Type IIB string theory.

In this section, we primarily stick to the perturbative setting, and hence
work around the basepoint of the intermediate Jacobian (i.e., L can be un-
derstood as the tangent complex at the trivial gerbe). Our main theorems
produce interesting factorization algebras on manifolds with boundary. In
particular, one could pursue analogs of the constructions we did with or-
dinary Chern-Simons/WZW, and produce “higher Chern-Simons states” or
construct a slab compactification.
Remark 19. We learned of this factorization algebra associated to the inter-
mediate Jacobian from a talk by Kevin Costello at GAP XI in Pittsburgh.

We mostly focus here on what happens when one chooses a complex
structure on the boundary which gives rise to the intermediate Jacobian.
Additionally, there is another class of boundary conditions that depends on
the choice of a Riemannian metric on the boundary that we address below in
Section 5.4.4.

The complement L⊥ We take M to be a 4k + 3-manifold with boundary
∂M is equipped with a complex structure. Also, A is a finite dimensional
complex vector space equipped with a non-degenerate symmetric pairing κ.

In the bulk M we have higher dimensional abelian Chern–Simons theory
whose fields are α ∈ Ω•

M ⊗ A[2k + 1] and action is

S(α) =
∫
M

κ(α, dα).
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In Example 2.4 we introduced the intermediate Jacobian boundary con-
dition which is defined using the complex structure on ∂M by

L = Ω>k,•
∂M ⊗ A[k].

In this case, we have
L ⊥ = Ω≤k,•

∂M ⊗ A[2k + 1]
(the grading is such that forms have cohomological degree given by their form
degree minus 2k + 1). The twisting cocycle μ is given by

μ(α1, α2) =
∫
∂M

κ(α1, ∂α2);

it is non-zero only on Ωk,•
∂M ⊗ A[2k + 1].

The quantum observables The factorization algebra of quantum observ-
ables ObsqL assigns the cochain complex (Sym(EL ,c[1](U))[�], Q+ �Δ) to an
open set U ⊂ M .

From the general prescription in Section 3, the factorization algebra of
quantum boundary observables ObsqL is the enveloping factorization algebra
of L ⊥

c [−1] = Ω≤k,•
c (U) ⊗ A[2k] twisted by a local cocycle μ whose general

formula appears in equation (6) is given by

μ(α1, α2) =
∫
U
κ(α1, ∂α2)

where α1, α2 ∈ Ω≤k,•
c (U), for U ⊂ ∂M an open set. Explicitly, this local

cocycle defines the factorization algebra on ∂M which assigns the cochain
complex

(11)
(
Sym

(
Ω≤k,•

c (U) ⊗ A[2k + 1]
)

[�], ∂ + ∂ + �μ
)

to the open subset U ⊂ ∂M In other words, this is the twisted factoriazation
enveloping algebra of the cosheaf of abelian dg Lie algebras Ω≤k,•

∂M,c ⊗ A[2k]
associated to μ.

5.4.1. Relationship with the intermediate Jacobian Let X denote
the complex manifold ∂M . We have seen that the boundary observables of
higher dimensional abelian Chern-Simons theory are obtained as the (twisted)
enveloping factorization algebra of the abelian dg Lie algebra

JX := Ω≤n,•(X)[2k].
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When X is compact Kähler, this dg Lie algebra is related to the intermediate
Jacobian [Gri68a, Gri68b, CG72].

Like our theories and boundary conditions have been, notice that the
object JX is sufficiently local on the complex manifold X, meaning it is given
as the sheaf of sections of a vector bundle and its differential is a differential
operator. Although no Lie bracket plays a role here, we will continue to refer
to it as a sheaf of abelian dg Lie algebras.

For X compact and Kähler, the (k+1)st intermediate Jacobian is defined
by

Jk+1(X) = H2k+1(X,C)/(F k+1H2k+1(X,C) ⊕H2k+1(X,Z)).
where F k+1Hk(M,C) = ⊕i>kH

i,j−i(X) is the (k + 1)st step in the Hodge
filtration. There is a canonical isomorphism

H2k+1(X,R) = H2k+1(X,C)/F k+1Hk(M,C),

so the intermediate Jacobian is the quotient H2k+1(X,R)/H2k+1(X,Z). The
group H2k+1(X,Z) forms a lattice inside of H2k+1(X,C)/F k+1Hk(M,C), and
hence the intermediate Jacobian is a complex torus of dimension half of the
(2k + 1)st Betti number of X. When k = 0, so X = Σ is a Riemann surface,
the intermediate Jacobian is the usual Jacobian variety.

The tangent space of the intermediate Jacobian can be identified with
the cohomology group Hk,k+1(X). That is, it is precisely H1 of the dg Lie
algebra JX . When k = 0, the dg Lie algebra describing its infinitesimal be-
havior is simply JΣ = Ω0,•(Σ), which describes deformations of the trivial
holomorphic line bundle.

We can regard the dg Lie algebra gX as a derived enhancement for the
formal neighborhood of a point in Jk+1(X) (see Section 9 of [FM20]), so we
refer to the (sheaf of) dg Lie algebra(s) JX as the “intermediate Jacobian
dg Lie algebra.” We anticipate that a global derived intermediate Jacobian
exists whose tangent complex is indeed modeled by JX . We also expect that
it leads to a factorization space, providing an analog of the Beilinson-Drinfeld
Grassmannian, but the techniques needed to construct it are quite different
than those we use in this paper.

5.4.2. Relationship to physics In physics, higher dimensional Chern-
Simons theory has appeared in various contexts. Seven-dimensional Chern-
Simons theory and the intermediate Jacobian on complex three-folds have ap-
peared in the context of M -theory [Wit97]. Specifically, the seven-dimensional
Chern–Simons theory is holographically dual to the “chiral” two-form that
lives in the worldvolume theory of the M5-brane. Another instance arises
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from Ramond–Ramond fields in the Type IIB superstring in ten dimensions,
which are described by “chiral” four-forms whose field strengths are required
to be self-dual.

Throughout this section we focus on the holomorphic twist of the super-
symmetric theories in question. Such a holomorphic twist of a supersymmet-
ric theory is a sector of the full theory that depends holomorphically on a
complex structure placed on spacetime, much as a topological twist (when
it exists) is a sector that depends on the underlying smooth structure (see
[Cos13] for the mathematical development). Holomorphic twists of theories
are appealing mathematically as their moduli spaces admit elegant descrip-
tions in terms of complex geometry, as we see here with the intermediate
Jacobian, but our methods can also be used to study these theories before
twisting. (See Section 5.4.4 for comments on the untwisted setting.)

First, let’s consider seven-dimensional Chern-Simons theory and describe
how our setting is related to the physical one. The relevant physical theory
is the abelian six-dimensional N = (2, 0) superconformal theory. This theory
is rather peculiar as it contains among its field content a two-form with a
self-dual field strength that admits no Lagrangian formulation. In physics,
such a two-form is referred to as a “chiral” two-form. Physical arguments
identify this six-dimensional theory as the low energy effective theory of a
single M5-brane [Wit97, Sch98].

The holomorphic twist of the abelian N = (2, 0) superconformal the-
ory on R

6 has been analyzed in the BV formalism by Saberi and the third
author [SW]. They show that the twist decomposes as the product of a free
holomorphic theory and the intermediate Jacobian theory we described above.
More precisely, they prove the following.

Theorem 5.15 ([SW, Theorem 4.2]). For the abelian N = (2, 0) supercon-
formal theory on R

6 formulated in the BV formalism, the holomorphic twist
of the chiral two-form component is perturbatively equivalent to the theory of
the intermediate Jacobian described by the dg Lie algebra JC3 = Ω≤1,•(C3)[1].

Notice that Maurer–Cartan elements in the dg Lie algebra JC3 consist of
pairs α ∈ Ω0,2(C3) and β ∈ Ω1,1(C3) that satisfy ∂α = 0 and ∂β + ∂α = 0.
The fields α, β are the components of the chiral two-form that survive in the
holomorphic twist. This theorem uses a description of the abelian N = (2, 0)
theory in the BV formalism that was, in part, motivated by the work [ESW21].
Another description of twists of the tensor multiplet can be found in [CNT02].

In [Wit97], an analogy is formulated between the untwisted self-dual the-
ory on three-folds and the theory of the chiral boson in one complex di-
mension vis-à-vis their relationships to Chern-Simons theory. In complex di-
mension one, we have witnessed this analogy at the level of factorization
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algebras in Section 5.3: the factorization algebra of abelian Chern-Simons
theory on three-manifolds with boundary is equivalent to the factorization
algebra of the U(1)-valued chiral boson on the boundary. In complex dimen-
sion three, we propose a holomorphic variant of this setup with the dg Lie
algebra JX = Ω≤k,•(X)[2] of the intermediate Jacobian sitting at the bound-
ary of seven-dimensional Chern-Simons theory.

Indeed, by the above theorem, the factorization algebra of classical ob-
servables for the holomorphic twist has a factor arising from the intermediate
Jacobian, namely, (

Sym
(
Ω≤1,•

C3,c [3]
)
, ∂ + ∂

)
,

and this factor is precisely the � → 0 limit in (11) of the factorization al-
gebra of boundary observables for seven-dimensional Chern-Simons theory
(when A = C) with our preferred holomorphic boundary condition. As a
corollary of our work here we thus obtain a quantization of these classical
observables.

Corollary 5.16. Bulk-boundary quantization provides a BV quantization of
the classical observables of the abelian N = (2, 0) superconformal theory in
the holomorphic twist.

Note that the free theory component of the holomorphic twist admits
an easy BV quantization, so that we have obtained a quantization of the
holomorphic twist of the abelian 6d theory. In future work we plan to study
aspects of this quantization in more detail as it relates to six-dimensional
superconformal field theories.

Next, we turn to 11-dimensional Chern-Simons theory and its relationship
to the Type IIB superstring. Costello and Li [CLb] have proposed a model for
the holomorphic twist of the Type IIB supergravity on a Calabi–Yau five-fold
X, which includes fields described by the cochain complex

PV2,•(X) ∂Ω−→ ΠPV1,•(X) ∂Ω−→ PV0,•(X),

in its field content. Here, PVj,•(X) = Ω0,•(X,∧iT 1,0X) denotes the Dolbeault
complex of j-polyvector fields and ∂Ω is the divergence operator with respect
to the holomorphic volume form. The Π(−) denotes parity shift as this theory
only makes sense in a Z/2-graded sense, so we forget any Z-gradings down to
Z/2-gradings.

Using the holomorphic volume form, one can identify this cochain complex
with the cochain complex Ω≥3,•(C). Within this complex is a field of Dolbeault
form type (3, 2), which is identified with a piece of the five-form field strength
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of Ramond-Ramond field in the original untwisted theory. The factorization
algebra of classical observables is(

Sym
(
ΠΩ≤2,•

X,c

)
, ∂ + ∂

)
,

which is the � → 0 (and Z/2 degeneration) of the complex of boundary
observables of 11-dimensional Chern-Simons theory with our preferred holo-
morphic boundary condition. For a study of the BV quantization of the full
interacting Type IIB theory in the holomorphic twist, we refer to [CLa].

5.4.3. Compactification In this section we show that the intermediate
Jacobian is closely related to a familiar object in two-dimensional chiral con-
formal field theory. Let X be a complex (2k + 1)-fold of the form Σ ×CP 2k.

Lemma 5.17. Let X = Σ × CP 2k, where Σ is a Riemann surface, and let
π : X → Σ be the projection. Then π∗JX is equivalent to the sheaf of dg Lie
algebras

Ω0,•
Σ ⊕

⎛⎝n−1⊕
j=1

C[2k + 2j]

⎞⎠
on Σ, where C[q] is the constant sheaf of Σ with one-dimensional fiber con-
centrated in degree −q.

Proof. By formality of projective space we have an equivalence of sheaves of
dg Lie algebras on Σ:

π∗JX �
⊕

i+j≤n

Ωi,•(Σ) ⊗Hj,•(CP 2k)[2k − 2].

The only remaining differential is ∂Σ + ∂Σ.
For j < k, this complex is a direct sum of complexes of the form

−2k − 2j −2k − 2j + 1

Ω0,•(Σ) ⊗Hj,j(CP 2k)

Ω1,•(Σ) ⊗Hj,j(CP 2k).

∂Σ



1540 Owen Gwilliam et al.

The remaining part of the complex is Ω0,•(Σ)⊗Hn,n(CP 2k) = Ω0,•(Σ). Thus,
π∗JX is quasi-isomorphic to

Ω0,•(Σ) ⊕

⎛⎝n−1⊕
j=1

C[2k + 2j]

⎞⎠
as a sheaf of Lie algebras on Σ.

Next, we show that the central extensions are compatible. The boundary
condition of higher dimensional Chern-Simons theory we discussed in Sec-
tion 5.4 gives rise to a factorization algebra of boundary observables ObsqL
on the boundary complex (2k + 1)-fold X. For now, denote this factorization
algebra by FX,κ. This factorization algebra is the enveloping factorization
algebra of JX twisted by the local cocycle μ(α, β) =

∫
X κ(α∂β).

On the (2k + 1)-fold X = Σ × CP 2k, there is the following relationship
between the factorization algebras FX,κ and FΣ,κ. Note that FΣ,κ is the fac-
torization algebra at the boundary of ordinary Chern-Simons theory on a
3-manifold with boundary Σ; that is, it is the U(1) Kac-Moody factorization
algebra at level κ.

Corollary 5.18. Let π : Σ × CP 2k → Σ. There is a map of factorization
algebras on Σ:

π∗FX,κ → FΣ,vol(CP 2k)κ.

What we have shown is that π∗FX,κ = FΣ,vol(CP 2k)κ ⊗ G where G is a
locally constant factorization algebra on Σ, which is independent of κ and
the volume of CP n.

Let’s briefly put these observations in the context of this paper. Let R≥0×
Σ×CP 2k be a 4k+3-dimensional manifold with boundary X, and equip it with
the higher abelian CS/WZW system we’ve just described. We can compactify
this whole system along CP 2k to get a bulk-boundary system on R≥0 × Σ.
We have just seen that the boundary observables look like a chiral current
algebra tensored with a locally constant factorization algebra that depends
on the topology of CP 2k. In more conventional terminology, it’s a chiral CFT
coupled trivially to a 2d TFT. The bulk observables behave similarly. For the
higher dimensional Chern-Simons theory on the bulk R>0 × Σ × CP 2k, the
factorization algebra of bulk observables pushes forward to R>0 × Σ. There,
it looks like the observables of a 3-dimensional abelian Chern-Simons theory
with values in the graded abelian Lie algebra H∗(CP 2k)[2k + 1].



Factorization algebras and abelian CS/WZW-type correspondences 1541

5.4.4. A Riemannian variation We briefly discuss the Riemannian
boundary condition of higher dimensional Chern–Simons that depends on a
Riemannian metric of Example 2.5. This Riemannian version of the boundary
condition can be used to treat the examples in Section 5.4.2 before performing
the holomorphic twist, i.e., with the original supersymmetric theory.

Recall that Ω•
∂M ⊗ A[2k + 1] has a subcomplex

L =
(

Ω2k+1
+ (N) ⊗ A

d−→ Ω2k+2(N) ⊗ A[−1] d−→ · · ·

· · · d−→ Ω4k+2(N) ⊗ A[−2k − 1]
)

by using the decomposition of the middle de Rham forms under the Hodge
� operator. The elliptic complex L ⊥ on N “perpendicular” to the boundary
condition L can be identified with

L ⊥ =
(

Ω0(N) ⊗ A[2k + 1] d−→ Ω1(N) ⊗ A[2k] → · · ·

· · · → Ω2k(N) ⊗ A[1] d−−→ Ω2k+1
− (N) ⊗ A

)

where d− : Ω2k(N) → Ω2k+1
− (N) denotes the de Rham differential followed

by the projection using the decomposition (4). In turn, we can read off the
factorization algebra of classical boundary observables ObsclL which assigns
to the open set U ⊂ N , the cochain complex Sym(L ⊥

c (U)).
The factorization algebra of quantum boundary observables ObsqL is the

enveloping factorization algebra of L ⊥
c [−1] twisted by a local cocycle μ whose

formula appears in equation (6). A similar calculation as in the complex case
reveals an explicit formula for μ:

μ(α1, α2) =
∫
U
κ(α1, dα2),

where α1, α2 ∈ L ⊥
c (U) for U ⊂ N an open set. This local cocycle defines

explicitly the factorization algebra of quantum boundary observables on N
that assigns the cochain complex(

Sym
(
L ⊥

c (U)
)

[�], d + d− + �μ
)

where d + d− denotes the differential in Equation (5).
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Appendix A. A lemma of Atiyah-Bott type

For an elliptic complex on a manifold without boundary, the complex of
compactly supported smooth sections embeds into the complex of compactly
supported distributional sections. The Atiyah-Bott lemma is that this embed-
ding is a continuous quasi-isomorphism (see Appendix D of [CG17]), and it
plays a role in constructing the observables of free BV theories. We wish to
prove an analog relevant to free bulk-boundary theories.

Let (E ,L ) be a free bulk-boundary system. We use the pairing 〈·, ·〉 to
view EL ,c[1] as a space of linear functionals on EL : each section e1 ∈ EL ,c[1]
gives a linear functional Φe1 by the formula

Φe1(e2) = 〈e1, e2〉 .

This embedding has the following property.

Proposition A.1. The map Φ· induces a quasi-isomorphism of complexes of
cosheaves

EL ,c[1] → E ∨
L ,

where E ∨
L is the cosheaf which assigns to the open U , the strong topological

dual to EL (U). More precisely, on each open U , this map is a continuous
linear map of topological vector spaces and a quasi-isomorphism.

Proof. The map is continuous because it is the composite

EL ,c[1] ↪→ Ec[1] → E ∨ → E ∨
L .

The map preserves the differential Q because

ΦQe1(e2) = 〈Qe1, e2〉 = ±〈e1, Qe2〉 = Φe1(Qe2);

this is only true because we have imposed the boundary condition L . It
manifestly respects the extension maps of cosheaves. It remains only to check
that it is a quasi-isomorphism. In the proof of Theorem 4.1, we show that
EL ,c[1] is a homotopy cosheaf; an almost identical argument shows that E ∨

L
is also a homotopy cosheaf. Hence, given any open U ⊂ ∂M , and any (locally
finite) cover U of U , we have the following commutative diagram

Č(EL ,c[1],U) EL ,c(U)[1]

Č(E ∨
L ,U) E ∨

L (U)

∼

∼

.



Factorization algebras and abelian CS/WZW-type correspondences 1543

We will show that the left-hand downward pointing map is a quasi-isomor-
phism.

Fix a tubular neighborhood N ∼= ∂M × [0, T ) of ∂M . Let us assume that
the cover U is “somewhat nice:” it consists of open subsets Uα such that either
Uα∩∂M = ∅ or Vα ⊂ N of the form Vα

∼= V ′
α× [0, T ′) where V ′

α is an open set
in ∂M . All finite intersections of somewhat nice sets are also somewhat nice,
so all the summands in the Čech complexes will be of the form EL ,c[1](U ′) or
E ∨

L (U ′) for U ′ somewhat nice. If we prove that the map EL ,c[1](U ′) → E ∨
L (U ′)

is a quasi-isomorphism for U ′ somewhat nice, then the proposition follows,
since the Čech complex has a filtration by degree of intersection (which is
preserved by the map Č(EL ,c[1],U) → Č(E ∨

L ,U)) and the induced map on
the associated graded spaces is a sum of maps EL ,c[1](U ′) → E ∨

L (U ′) for U ′

somewhat nice.
If U ′ ∩ ∂M = ∅, then the map EL ,c[1](U ′) → E ∨

L (U ′) is a quasi-isomor-
phism, by the Atiyah-Bott lemma (see Appendix D of [CG17]). Otherwise,
suppose U ′ = V × [0, T ′), and let L′ := E∂/L. Denote by L ⊥ the sheaf of
sections of L′. We saw in the proof of Theorem 4.1 that there is a deforma-
tion retraction of EL ,c[1](U ′) onto L ⊥(V ). Similarly, there is a deformation
retraction of EL (U ′) onto L (V ), and hence of L ∨(V ) onto E ∨

L (U ′). The
map E ∨

L (U ′) → L ∨(V ) in this deformation retraction is dual to the inclusion
L (V ) → EL (U ′) of the L fields as constants in the normal direction. From
the characterization of the map L ⊥

c (V ) → EL ,c[1](U ′) in Theorem 4.1, it
follows that the composite

L ⊥
c (V ) → EL ,c[1](U ′) → E ∨

L (U ′) → L ∨(V )

is the Atiyah-Bott quasi-isomorphism (using the pairing 〈·, ·〉∂ to identify L′

with L!). It follows that the map EL ,c(U ′) → E ∨
L (U ′) is a quasi-isomorphism,

whence the proposition.

Appendix B. Topological tensor products in the presence of
boundary conditions

How to find the correct “natural” tensor product of topological vector spaces
is a notoriously subtle question. In some situations there are options that are
appealing for several reasons. For instance, given two vector bundles V1 → M1
and V2 → M2, let V1 and V2 denote the locally convex topological vector
spaces consisting of the smooth global sections of V1 and V2, respectively.
There is a standard isomorphism (of topological vector spaces)

V1⊗̂πV2 ∼= C∞(M1 ×M2, V1 � V2),
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where V1 � V2 is the external tensor product of the bundles V1 and V2 and
⊗̂π is the completed projective tensor product of locally convex topological
vector spaces. In this case the geometrically attractive answer matches a
completion that is natural from functional analysis. We use that fact—and a
compactly supported analog—in defining the observables of a free BV theory
on a manifold without boundary (see Section 3.1). Its main technical role is
in the proof that the observables form a factorization algebra.

When we work with free bulk-boundary theories, we would like a similar
geometric understanding of the completed bornological tensor product ⊗̂β .
From the point of view of the paper, this appendix is devoted to proving that
(EL ,c[1](U))⊗̂βk is isomorphic to the space of compactly-supported sections of
E�k over U×k whose jth tensor factor lies in L⊕E∂ dt when the corresponding
M coordinate lies on ∂M . But it is natural to treat several generalizations
and variants of this fact.

The discussion here is highly technical, and its main technical role is in
the proof that the bulk-boundary observables form a factorization algebra. This
section is not needed unless the reader wants a detailed understanding of the
vector spaces appearing in the bulk-boundary observables.

To state these generalizations, let M1, · · · ,Mk be manifolds with bound-
ary, V1 → M1, · · · , Vk → Mk be vector bundles on the Mi, and W1 ⊂
V1

∣∣
∂M1

, · · · ,Wk ⊂ Vk

∣∣
∂Mk

be subbundles of the indicated bundles. Break-
ing slightly with our usual notation, we will let Vi := C∞(M,Vi) and Wi :=
C∞(∂M,Wi), i.e. we use the script letters to denote the spaces of global
sections of vector bundles instead of the corresponding sheaves of sections.
Notation 2. Define

(Vi)Wi := {σ ∈ Vi | σ|∂Mi ∈ C∞(Mi,Wi)}.

The space (Vi)Wi is a closed subspace of Vi; since the latter space is nu-
clear Fréchet, the former is as well. More categorically, (Vi)Wi is the pull-
back

(Vi)Wi Vi

Wi C∞(∂M, Vi |∂M )

Notation 3. Define

V1,··· ,k := C∞(M1 × · · · ×Mk, V1 � · · · � Vk).



Factorization algebras and abelian CS/WZW-type correspondences 1545

Let (V1,··· ,k)W1,··· ,Wk
denote the subspace{

σ ∈ V1,··· ,k | σ(x1, . . . , xk) ∈ (V1)x1 ⊗· · ·⊗ (Wi)xi ⊗· · ·⊗ (Vk)xk
if xi ∈ ∂Mi

}
.

Here (Vj)xj denotes the fiber over the point xj of the bundle Vj → M , and
likewise for (Wi)xi . In other words, (V1,··· ,k)W1,··· ,Wk

consists of sections of
V1�· · ·�Vk whose ith tensor factor belongs to Wi whenever the corresponding
coordinate lies in ∂Mi. We endow (V1,··· ,k)W1,··· ,Wk

with the topology which it
inherits as a subspace of V1,··· ,k. The resulting locally convex topological vector
space (V1,··· ,k)W1,··· ,Wk

is nuclear Fréchet, since it is a closed subspace of V1,··· ,k.
(V1,··· ,k)W1,··· ,Wk

can be described as a limit in the category of topological
vector spaces. More precisely, it is the simultaneous limit of all the diagrams
of the form

C∞(M1 × · · · × ∂Mi × · · · ×Mk, V1 � · · · � Wi � · · · � Vk)

V1,··· ,k C∞(M1 × · · · × ∂Mi × · · · ×Mk, V1 � · · · � Vi|∂Mi � · · · � Vk).

as i ranges from 1 to k.
Note that the continuous multilinear map

V1 × · · · × Vk → V1,··· ,k,

when restricted to (V1)W1 × · · · × (Vk)Wk
, has image in (V1,··· ,k)W1,··· ,Wk

, so
there is a natural map

S : (V1)W1⊗̂π · · · ⊗̂π(Vk)Wk
→ (V1,··· ,k)W1,··· ,Wk

.

We can establish similar notations when we require compact support for
sections of the Vi. Let us choose compact subsets Ki ⊂ Mi. We choose to
use a calligraphic font for the Ki because the symbols Ki and Wi will both
appear in subscripts in our notation, and we want to make clear that the two
subscripts serve different purposes.
Notation 4. Let

1. (Vi)Ki denote the space of sections of Vi with compact support on Ki;
2. (Vi)Ki,Wi denote the space

(Vi)Ki ∩ (Vi)Wi ,

i.e. (Vi)Ki,Wi is the space of sections of Vi satisfying both a boundary
condition and a compact support condition;



1546 Owen Gwilliam et al.

3. (V1,··· ,k)K1×···×Kk
denote the subspace of V1,··· ,k consisting of sections

with compact support on K1 × · · · × Kk; and
4. (V1,··· ,k)W1,··· ,Wk,K1×···×Kk

denote the space

(V1,··· ,k)K1×···×Kk
∩ (V1,··· ,k)W1,··· ,Wk

.

As with (Vi)Ki,Wi , the sections in (V1,··· ,k)W1,··· ,Wk,K1×···×Kk
satisfy both

a boundary condition and a compact support condition.

All four spaces are nuclear Fréchet spaces.
There is a map

Sc.s. : (V1)W1,K1⊗̂π · · · ⊗̂π(Vk)Wk,Kk
→ (V1,··· ,k)W1,··· ,Wk,K1×···×Kk

.

The aim of this appendix is to prove the following result.

Theorem B.1. The maps S and Sc.s. are isomorphisms for the topological
vector space structures.

Proof. The completed projective tensor product commutes with limits sepa-
rately in each variable. Hence,

(V1)W1⊗̂π · · · ⊗̂π(Vk)Wk

can be identified with the simultaneous limit of diagrams of the form

V1⊗̂π · · · ⊗̂πWi⊗̂π · · · ⊗̂πVk

V1⊗̂π · · · ⊗̂πVk V1⊗̂π · · · ⊗̂πC
∞(∂M, Vi|∂M )⊗̂π · · · ⊗̂πVk.

as i ranges from 1 to k. As we have seen, (V1,··· ,k)W1,··· ,Wk
is a similar limit.

The isomorphism V1⊗̂π · · · ⊗̂πVk → V1,··· ,k and its analogs for the other en-
tries of the diagrams induces an isomorphism between the diagram defining
V1⊗̂π · · · ⊗̂πWi⊗̂π · · · ⊗̂πVk and the one defining (V1,··· ,k)W1,··· ,Wk

. S is induced
from this isomorphism of diagrams, so is an isomorphism. The same exact ar-
gument applies for Sc.s.

We now describe a consequence of Theorem B.1 that is of more direct
relevance to the present context. Let us momentarily suppress the i subscripts
from our notation, letting V → M be a vector bundle and W a subbundle of
V |∂M . We define (V )W,c to be the space

colim ((V )W,K1 → (V )W,K2 → · · · ) ,
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with Kj ⊂ K(j+1) and ∪jKj = M , i.e. the Kj form a sequence of compact sub-
sets of M exhausting it. Equivalently, we can define (V )W,c via the pullback
diagram

(V )W,c (V )c

(V )W V

�
.

Here Vc is the space of compactly-supported sections of V endowed with
the inductive limit topology (when Vc is endowed with this topology, the
arrow on the right-hand side of the above diagram is not an embedding).
The completed projective tensor product does not commute with colimits;
hence Theorem B.1 does not help us to compute completed projective tensor
products of spaces of the form (V )W,c. We may, however, forget the topology of
all spaces involved, remembering only the bounded subsets. In other words, we
remember only the underlying bornological vector spaces. Once we do, a new
tensor product becomes available to us, namely the completed bornological
tensor product. The completed bornological tensor product does commute
with colimits. For nuclear Fréchet spaces, it coincides with the completed
projective tensor product. See §B.4-5 of [CG17] for details.

In the main body of the text, we always use the completed bornological
tensor product. Hence, we need to use Theorem B.1 to infer statements about
the bornological tensor products of interest to us. This task is undertaken in
the following corollary:

Corollary B.2. There are isomorphisms of bornological vector spaces

(V1)W1 ⊗̂β · · · ⊗̂β (Vk)Wk
∼= (V1,··· ,k)W1,··· ,Wk

and
(V1)W1,c ⊗̂β · · · ⊗̂β (Vk)Wk,c

∼= (V1,··· ,k)W1,··· ,Wk,c

where (V1,··· ,k)W1,··· ,Wk,c is defined analogously to (Vi)Wi,c.

Proof of Corollary. The isomorphism

(V1)W1 ⊗̂β · · · ⊗̂β (Vk)Wk
∼= (V1,··· ,k)W1,··· ,Wk

is a direct consequence of Theorem B.1, since the (Vi)Wi are nuclear Fréchet
spaces and the completed bornological tensor product coincides with the com-
pleted projective tensor product of such spaces, by Corollary 7.1.2 of [CG17].
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For the second isomorphism, the same argument as for (V1,··· ,k)W1,··· ,Wk

gives that

(V1)W1,K1 ⊗̂β · · · ⊗̂β (Vk)Wk,Kk
∼= (V1,··· ,k)W1,··· ,Wk,K1×···×Kk

;

since the completed bornological tensor product commutes with colimits, the
isomorphism

(V1)W1,c ⊗̂β · · · ⊗̂β (Vk)Wk,c
∼= (V1,··· ,k)W1,··· ,Wk,c

follows.
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