
Pure and Applied Mathematics Quarterly
Volume 18, Number 4, 1555–1597, 2022

Equivariant geometry of odd-dimensional complete
intersections of two quadrics

Brendan Hassett
∗

and Yuri Tschinkel
†

To Herb Clemens, with admiration

Abstract: Fix a finite group G. We seek to classify varieties with
G-action equivariantly birational to a representation of G on affine
or projective space. Our focus is odd-dimensional smooth complete
intersections of two quadrics, relating the equivariant rational-
ity problem with analogous Diophantine questions over nonclosed
fields. We explore how invariants – both classical cohomological
invariants and recent symbol constructions – control rationality in
some cases.
Keywords: Equivariant geometry, rationality constructions, com-
plete intersections of two quadrics.

1. Introduction

Let X ⊂ P2g+1 be a smooth complete intersection of two quadrics over an
algebraically closed field k of characteristic zero. We are particularly inter-
ested in these varieties because they have a rich birational structure, which
can be completely understood in small dimensions. They also have beauti-
ful connections to hyperelliptic curves and are key examples in the theory of
intermediate Jacobians.

In this paper, we study these varieties from the perspective of their equiv-
ariant geometry, for regular generically free actions of finite groups. The main
problem is to distinguish such actions up to equivariant birational equivalence,
and in particular, to determine which of these are linearizable, i.e., equivari-
antly birational to a linear action on P2g−1. This shares many similarities with
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the study of these varieties over nonclosed fields, but has important special
features.

To address this problem, we examine various canonical constructions:

• automorphism groups and their induced actions on geometric invari-
ants;

• the structure of varieties of linear subspaces on X and associated pencils
of quadric hypersurfaces;

• intermediate Jacobians and their principal homogeneous spaces.

We elaborate on constructions of Reid [36], Desale-Ramanan [13], Donagi
[15], and Bhargava-Gross-Wang [6, 37] from a functorial/moduli perspective
applicable to equivariant geometry. We also present a new connection with
hyperkähler geometry (see Section 5), extending Kummer-type constructions
to higher dimensions; connections between Fano and hyperkähler geometry
are in the focus of many recent studies, including [16].

Recent work [5, 23, 22, 4, 29] addresses rationality questions for geo-
metrically rational threefolds over nonclosed fields. Our principal theorem
(Theorem 24) demonstrates how these results translate into equivariant con-
texts: for smooth complete intersections of two quadrics in P5, rationality is
governed by the existence of lines.

In Section 2, we present fundamental notions of G-equivariant rationality
and related cohomological invariants. We summarize key geometric struc-
tures arising from odd-dimensional complete intersections of two quadrics
in Section 3. Equivariant constructions and results over nonclosed fields are
developed in parallel. The resulting principal homogeneous spaces and their
embeddings are explored in Section 4. Section 5 breaks from the main nar-
rative to make a connection with hyperkähler manifolds in small dimensions.
The rest of the paper focuses on rationality problems. Two key constructions
are presented in Section 6. Section 7 relates existence of fixed points to the
analogous questions on rational points over function fields. We close with de-
tailed analysis of the three-dimensional case in Section 8, highlighting both
generic behavior and the special properties of examples with large automor-
phism groups. This brings into sharp relief the similarities and differences
between equivariant geometry and geometry over nonclosed fields.

2. Actions and invariants

In this section, the base field k is algebraically closed of characteristic zero.
Let G be a finite group and X a smooth projective (connected) variety

with a regular G-action; we call such varieties G-varieties. We say that G-
varieties X, Y are G-birational if there exists a G-equivariant birational map
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X ��� Y ; stable G-birationality means G-birationality of X×Pn and Y ×Pm,
with trivial G-actions on the second factors. Of particular interest are cases
when Y = Pn is projective space, with linear G-action, which we describe
below.

2.1. Linear actions

An action of a finite group G on Pn is given by a representation G → PGL(V )
where V = An+1. A linear action on Pn may have at least two different
meanings:

• strictly linear action: the projectivization of a linear representation G →
GL(W ⊕ 1) where W = An and 1 is the trivial representation;

• linear action: the projectivization of a linear representation G → GL(V )
where V = An+1;

We record a few obvious facts:

• strictly linear actions admit fixed points;
• if L is a one-dimensional representation of G then the representations
V and V ⊗ L give rise to the same projective actions;

• using the exact sequence

1 → μn+1 → SLn+1 → PGLn+1 → 1

any projective action lifts to a linear action for a central extension

1 → μn+1 → G̃ → G → 1

and the exact sequence

1 → Gm → GLn+1 → PGLn+1 → 1

lifts any projective action to a representation on a central extension

1 → Gm → Ĝ → G → 1;

• given a projective representation ρ : G → PGLn+1, the resulting coho-
mology class

(1) α(ρ) ∈ H2(G, k×), (n + 1)α(ρ) = 0,

measures the obstruction to lifting ρ to a linear representation of G.
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One last observation: Suppose we are given a projective action of G with a
fixed point p ∈ Pn. We obtain a lift

G̃ → SL(V )

and the preimage of p gives a one-dimensional subspace L ⊂ V . The tensor
product V ⊗ L−1 is also a representation of G̃ on which μn+1 acts trivially,
thus descends to a representation of G. Thus we find:

Proposition 1. A projective representation with fixed point is strictly linear
and the class α vanishes.

If there is an equivariant embedding

X ↪→ PN

such that PN admits no fixed points then the same holds true for X.

2.2. Notions of rationality

We say that the G-action on X is projective if X admits a G-equivariant
birational map to Pn, n = dim(X); it is strictly linear or linear if the G-action
on Pn has the same properties. (We think of these as equivariant analogs of
rationality over nonclosed fields.) When G is abelian, the existence of a fixed
point is a birational invariant of smooth projective G-varieties [35, Appendix].
Thus for abelian actions, the existence of a fixed point is a necessary condition
for strict linearity.

The classification of rational G-varieties has been essentially settled in
dimension two [14], but is largely open in higher dimensions. The birational
classification of finite group actions on projective space remains a challenging
and interesting problem [27].

Two strictly linear and generically-free actions of G on projective space
need not be G-birational but we shall see that they are necessarily stably
G-birational. The key ingredient is:

Proposition 2. Suppose X and Y are smooth varieties with generically-free
G-actions. If there exist G-equivariant vector bundles E → X and F → Y
such that E and F are equivariantly birational then X and Y are equivariantly
stably birational.

This is a corollary of the ‘No-name Lemma’ [11, §4.3]: E is G-equivariantly
birational to Arank(E) × X over X, where the affine factor has trivial G-
action. One can find examples of X and Y that are not G-birational using
the invariants of [34].
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As a corollary, the following notions of G-equivariant stable birational
equivalence coincide:

• X × Am and Y × An are G-equivariantly birational, where the affine
spaces have trivial G-actions;

• X × V and Y ×W are G-equivariantly birational, where V and W are
linear representations of G;

• X × Pm and Y × Pn are G-equivariantly birational, where the actions
on the projective spaces are strictly linear or admit a fixed point.

The last statement follows from Proposition 1.

2.3. Picard and Brauer groups

We continue to assume that G is a finite group acting regularly on a smooth
projective variety X. We refer the reader to [10], [25] and [24] for background
on line bundles and group actions.

A G-linearized line bundle L → X consists of a line bundle L over X and
an action of G on L, compatible with the action on X, such that the induced
action on the fibers is linear. It follows that Γ(X,L⊗N ), N ∈ Z, is naturally
a representation of G. Conversely, if X ↪→ Pn is G-equivariant with G acting
linearly on Pn then L = OPn(−1)|X – the restriction of the universal line
subbundle on Pn to X – has a natural linearization. The equivariant Picard
group PicG(X) parametrizes G-linearized line bundles on X, up to equivariant
isomorphism. We have an exact sequence cf. [17, Th. 1]

(2) 0 → G∨ → PicG(X) → Pic(X)G → H2(G, k×)

where G∨ = Hom(G, k×). Given a G-equivariant X ↪→ Pn with G acting
projectively on Pn, the final coboundary morphism applied to OPn(−1)|X
vanishes precisely when the class α = 0 (see (1)). In particular, for L ∈
Pic(X)G some power L⊗N , N �= 0, admits a linearization because H2(G, k×)
is a torsion group.

Let BrG(X) denote the equivariant Brauer group of X, following Fröhlich
and Wall [17, 18]. It parametrizes Azumaya algebras A → X with G-action,
compatible with the action on X and linear over the fibers. (Azumaya algebras
over commutative rings are direct generalizations of central simple algebras
over fields.) We mod out by those of the form End(E), where E is a G-
equivariant locally-free sheaf on X. The group BrG(X) may be computed
with a Hochschild-Serre type spectral sequence cf. [18, §4], with graded pieces

coker
(
Pic(X)G → H2(G, k×)

)
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ker
(
H1(G,Pic(X)) → H3(G, k×)

)
ker

(
ker

(
Br(X)G → H2(G,Pic(X))

)
→ coker

(
H1(G,Pic(X)) → H3(G, k×)

))
.

Part of this is summarized in the extension to (2) [17, Th. 1]:

0 →G∨ → PicG(X) → Pic(X)G → H2(G, k×) →
ker(BrG(X) → Br(X)) → H1(G,Pic(X)) → H3(G, k×).

Proposition 3. Let V be a finite-dimensional linear representation of G over
k. Then the homomorphism

(3) H2(G, k×) = BrG(point) → BrG(P(V )),

induced by the structure morphism, is an isomorphism.
Suppose that ρ : G → PGL(V ) is a projective representation. Then the

kernel of (3) contains α(ρ).

Corollary 4. Let X be a smooth projective G-variety and E → X a G-
equivariant vector bundle. Then the induced homomorphism

BrG(X) → BrG(P(E))

is an isomorphism.

Proof of Proposition 3 and Corollary 4. The first statement of the proposi-
tion follows from applying the Hochschild-Serre formalism to P(V ). We are
applying Pic(P(V )) = Z (with trivial G-action), Br(P(V )) = 0, and exact
sequence (2). For the second, note that projection

P(V ) × P(V ) → P(V )

admits the diagonal section so Proposition 1 gives the vanishing of α(ρ) on
pullback to P(V ). The corollary follows by computing the étale Leray spectral
sequence for P(E) → X, using the vanishing underlying Proposition 3.

Proposition 5. BrG is an equivariant stable birational invariant of smooth
projective G-varieties.

The stable birational invariance of the Brauer group is well-known [12,
§5.2].



Complete intersections of two quadrics 1561

Proof. We first prove birational invariance. By weak factorization, it suffices
to prove the assertion for a blow up

BlZ(X) → X,

where Z ⊂ X is smooth and irreducible as a G-variety, i.e., G permutes the
connected components transitively. In this situation, we observe that

• The exceptional divisor E is G-invariant and irreducible, thus the bot-
tom graded piece of BrG is unchanged.

• The connected components of E generate a permutation module for G,
with trivial H1, thus the middle graded piece is unchanged.

• We have Br(BlZ(X)) = Br(X) thus the top graded piece is unchanged.

For the stable case, we need to verify that

BrG(X × Pn) = BrG(X)

provided the G-action on Pn is linear. We compute this using the Leray spec-
tral sequence associated with the projection X×Pn → X. The vanishing used
in the proof of Proposition 3 gives the desired equality.

Corollary 6. Let X be a smooth projective G-variety. Assume there is a
G-equivariant embedding

X ↪→ Pn

where the action of G on Pn is not linear. Then X is not equivariantly bira-
tional to projective space with a linear G-action.

Indeed, we can factor

BrG(point) → BrG(Pn) → BrG(X)

and it suffices to exhibit nonzero elements in the kernel of the first homo-
morphism. However, the class [OPn(1)] ∈ PicG(Pn) maps to a nontrivial
α ∈ H2(G, k×). The spectral sequence above shows that α is in the kernel
of BrG(point) → BrG(Pn).

Remark 7. The paper [8, §6] introduces similar ideas via the Amitsur sub-
group, defined as the image of Pic(X)G → H2(G, k×).

Much of this extends to a nonclosed field k, except for the interpretation
of BrG(Spec(k)) as the group cohomology for G. Moreover, we would have to
keep track of the Galois actions on μn and G̃.
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3. Algebraic geometry of pencils of quadrics

Here we assume that the ground field is algebraically closed of characteristic
zero and all objects are equivariant for the action of a finite group G. The
discussion below is valid, with minor changes, when the objects are defined
over a field of characteristic zero.

We start with a projective representation ρ : G → PGL2g+2 corresponding
to a G-action on P2g+1. Let ρ∗ be the dual representation, Sym2(ρ∗) the sym-
metric square, and ∧2(Sym2(ρ∗)) its second exterior power; note that tensor
powers of projective representations are well-defined as projective represen-
tations.

Consider a smooth complete intersection of two quadrics X ⊂ P2g+1. We
may write

X = {Q1 = Q2 = 0},
where Q1 and Q2 are basis elements for the distinguished two-dimensional
subrepresentation of Sym2(ρ∗) generating the ideal of X. (The elements Q1
and Q2 need not be invariant under the action of G.) Now ∧2(Sym2(ρ)) has
a fixed point – the pencil – so Proposition 1 gives

α(∧2(Sym2(ρ))) = 4α(ρ) = 0.

We write

Q = BlX(P2g+1) = {t1Q1 + t2Q2 = 0} ⊂ P2g+1 × P1

for the corresponding pencil and

q : Q → P1

for the projection onto the second factor, a fibration in quadric hypersurfaces.
We recall fundamental results from [36] and [15]. The singular members

of the pencil Q are given by the degeneracy locus

B = {det(t1Q1 + t2Q2) = 0} ⊂ P1,

which consists of 2g + 2 distinct points b1, . . . , b2g+2, each corresponding to a
nodal fiber Qbi . The action of G induces a permutation of the bi.

Let Fg(q) → P1 denote the relative variety of maximal isotropic subspaces
of q : Q → P1, with Stein factorization

Fg(q) → C → P1,
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where the first arrow is smooth. The double cover C → P1 encodes the two
connected components of the variety of maximal isotropic subspaces. The
pullback of the point class on P1 to C is written g1

2 , an element of (Pic2(C))G.
We have natural bijections between

• the branch points b1, . . . , b2g+2 of C → P1;
• the nodes of members of the pencil Qt.

The points bi – regarded as ramification points on C – generate a subgroup
of Pic(C) presented as follows:

• 2bi = 2bj = g1
2 for all i, j;

• b1 + · · · + b2g+2 = (g + 1)g1
2 .

The elements bi − bj generate J(C)[2], the two-torsion of the Jacobian of C.
The relative variety of maximal isotropic subspaces Fg(q) is isomorphic to

the variety parametrizing (g−1)-dimensional quadric hypersurfaces contained
in X, which is stratified by rank

K0(X) ⊂ K1(X) · · · ⊂ Kg(X) = Fg(q).

Consider the variety Fg−1(X) ⊂ Gr(g, 2g + 2) parametrizing (g − 1)-
dimensional linear subspaces contained in X. We have:

• Fg−1(X) is a principal homogeneous space over the Jacobian J(C).
• There is a correspondence

K̃1(X) → K1(X)
↓

Fg−1(X) × Fg−1(X)

where the horizontal arrow is the double cover reflecting the support of
elements of K1(X).

• The correspondence induces a morphism

(4) Sym2(Fg−1(X)) → Pic1(C)

taking K1(X) to C ⊂ Pic1(C), with fibers Kummer varieties singular
along the 22g points of K0(X) over each point of C. Work of X. Wang
[37] establishes the formula

(5) 2[Fg−1(X)] = [Pic1(C)],

as principal homogenous spaces over the Jacobian J(C) of C, i.e., as
elements of the Weil-Châtelet group of J(C).
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• K0(X) may be interpreted as a J(C)[2]-principal homogeneous space
over C. We have 22g(2g+2) distinguished points of K0(X) correspond-
ing to the elements lying over the Weierstrass points of C.

• The automorphisms of X act faithfully on K0(X) but automorphisms
lifting the hyperelliptic involution of C fix the 22g(2g+2) distinguished
points.

We summarize the implications of the discussion above for the automor-
phisms:

Proposition 8. We have an extension

1 → J(C)[2] → Aut(X) → Aut(X,C) → 1,

where Aut(X,C) is the image of Aut(X) → Aut(C). Moreover,

• Aut(X,C) contains the hyperelliptic involution ι in its center,
• Aut(X,C)/ 〈ι〉 ⊂ Aut(P1) acts via permutation on the 2g + 2 branch

points of the cover C → P1, and
• the induced action of Aut(X,C) on J(C)[2] is induced by this permuta-

tion action.

Remark 9. Suppose we diagonalize the forms

Q1 =
2g+2∑
i=1

x2
i , Q2 =

2g+2∑
i=1

λix
2
i .

The combinations Q2−λiQ1 correspond to the bi. The 2-elementary extension

(6) 1 → J(C)[2] → H → 〈ι〉 → 1

acts on P2g+1 via diagonal (2g + 2) × (2g + 2) matrices with ±1 as entries.
The image in the quotient 〈ι〉 encodes the determinant of the matrix.

4. Principal homogeneous spaces for the Jacobian

We maintain the assumptions of Section 3.

4.1. Abstracting the principal homogeneous space

Let C → P1 be a hyperelliptic curve of genus g; in the equivariant context,
we assume that the G-action on C descends to a linear action on P1. The
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hyperelliptic involution ι induces an involution

(7) ι : Pic1(C) → Pic1(C)
D �→ g1

2 −D.

Now suppose that F is a square root of Pic1(C), meaning a J(C) principal
homogeneous space satisfying Wang’s relation (5). The automorphisms of F
include translations by J(C)[2] and transformations

x �→ ι(x) + τ, τ ∈ Pic1(C), 2τ = g1
2 ,

encoded by the extension (6).
Given C, does there exist a smooth complete intersection of two quadrics

X ⊂ P2g+1 whose associated pencil yields C? A necessary condition is the
existence of a J(C)-principal homogeneous space F satisfying Wang’s relation
(5). However, this is not the only way such a variety may arise. Consider a
Brauer-Severi variety P ⊂ P(2g+3

2 )−1, realized geometrically as a 2-Veronese
reimbedding of P2g+1, and a pencil of hyperplane sections of P . The base locus
X is geometrically a complete intersection of two quadrics in P2g+1 and gives
rise to auxiliary varieties Fg−1(X) and C as above. However X is generally
not embeddable in P2g+1; in equivariant terms, a G-action

G×X → X

may not linearize to P2g+1. This is often the only obstruction:

Proposition 10. Let C → P1 be a hyperelliptic curve of genus g. In the
equivariant context, we assume the group acts with a fixed point outside the
branch locus.

A square root F → Pic1(C), as J(C) principal homogeneous spaces, exists
if and only if there exists a codimension-two linear section

X ⊂ P ⊂ P(2g+3
2 )−1,

where P is a form of P2g+1 realized as a Veronese variety. Thus there exists

X ⊂ P2g+1,

with the group acting linearly in P2g+1 in the equivariant context, if and only
if we may choose P such that [P ] = 0 ∈ H2(Gm).
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The cohomology group is H2(G, k×) in the G-equivariant context and
Br(k) over a nonclosed field k.

Proof. We follow [6]; the case of nonclosed fields is a corollary of their results.
Given p ∈ P1 (k-rational or G-fixed) that is not a branch point of C → P1,
write p′, p′′ ∈ C for the points over p. We have an exact sequence for the
generalized Jacobian of C with respect to {p′, p′′}

(8) 0 → T → Jm(C) → J(C) → 0

where the first term
T = (R{p′,p′′}/{p}Gm)/Gm.

Taking two-torsion gives

(9) 0 → μ2 → Jm(C)[2] → J(C)[2] → 0.

Suppose that L is an étale algebra of degree 2g+2 over k associated with the
branch points of C → P1. We have [6, Prop. 22] identifications

Jm(C)[2] ⇔ (RL/kμ2)N=1(10)
J(C)[2] ⇔ (RL/kμ2)N=1/μ2(11)

where N : RL/k → μ2 is the norm map from the restriction of scalars. These
act linearly and projectively on P2g+1 respectively. The existence of F is
controlled by

0 → J(C)[2] → J(C)[4] ×2→ J(C)[2] → 0;
given [Pic1(C)] ∈ H1(J(C)[2]), the obstruction to the existence of a square
root [F ] ∈ H1(J(C)[4]) sits in

H2(J(C)[2]) = H2((RL/kμ2)N=1/μ2),

i.e., the Steenrod square of [Pic1(C)]. The vanishing of this class means P2g+1

descends to a Brauer-Severi variety P . Moreover, the obstruction to producing
X ⊂ P2g+1 is controlled by [6, Th. 24]

0 → Jm(C)[2] → Jm(C)[4] ×2→ Jm(C)[2] → 0;

once F exists, this is controlled via (9) by a class

α ∈ coker(H1(J(C)[2]) → H2(μ2)),

where α ≡ [P ] by the identifications.
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Remark 11. What does this argument yield – in the equivariant context –
when there is no fixed point? Assume first that the cocycle in H2(G, J(C)[2])
vanishes. Write U ⊂ P1 for the complement of the branch points, with the
induced G-action. The generalized Jacobian Jm(C) may still be defined over
U using (8) with

T = (RC×
P1U/UGm)/Gm.

We obtain
X P

U

where the vertical arrow is a Brauer-Severi fibration of relative dimension
2g + 1. If the cocycle in H2(G, Jm(C)[2]) vanishes then the vertical arrow is
a linear P2g+1 fibration.

4.2. Projective geometry

For the moment, we ignore the group action or assume the base field is alge-
braically closed. Recalling the imbedding Fg−1(X) ⊂ Gr(g, 2g + 2), we have

OGr(g,2g+2)(1)|Fg−1(X) = OJ(C)(4Θ),

where Θ is the class of a theta divisor. Note however that the corresponding
embedding is not linearly normal as

4g = dim Γ(OJ(C)(4Θ)) > dim Γ(OGr(g,2g+2)(1)) =
(

2g + 2
g

)
, g > 1.

For small g, we have
g 4g

(2g+2
g

)
1 4 4
2 16 15
3 64 56
4 256 210

We explain the reason for this discrepancy. Suppose that (J,Θ) is a prin-
cipally polarized abelian variety and L is a line bundle on J representing Θ.
For each n ∈ N, the Heisenberg extension associated with nΘ

1 → Gm → G(Ln) → J [n] → 1
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acts on the space of global sections Γ(Ln). Recall that the extension data is
given by the commutator

J [n] × J [n] → μn ⊂ Gm

associated with the polarization form. Suppose that n = 4 and realize J [2] ⊂
J [4] in the standard way; the commutator pairing for 4Θ is isotropic on J [2],
i.e., we may regard

μ2 × J [2] ⊂ G(L4)
as an abelian subgroup. Thus it is reasonable to diagonalize the theta func-
tions for this group. Indeed, we have

Proposition 12. [7, Ex. 6.10.1] Let ϑ ∈ Γ(J, L) denote a generator and τ ∗xϑ
its translate under x ∈ J . Then the elements

{2∗ϑx : x ∈ J [2]}

form a basis for Γ(J, L4), naturally indexed by the 2-torsion elements of J .
(Here 2 : J → J is multiplication by two.)

Assume that either k is nonclosed or that all the varieties and construc-
tions are G-equivariant. For our application, we use the squaring map

Fg−1(X) → Pic1(C)

introduced in (4); thus Proposition 12 applies.
Consider the canonical theta divisor ϑ = Symg−1(C) ⊂ Picg−1(C). We

analyze the translates of ϑ by elements in

〈b1, . . . , b2g+2〉 ⊂ Pic(C)

contained in Pic1(C). These have the structure of a principal homogeneous
space for J(C)[2]. The Galois action on 〈b1, . . . , b2g+2〉 factors through the
permutation representation on the branch points.

Suppose first that g is even; here the principal homogeneous space is
trivial with distinguished divisor

ϑ− g − 2
2 g1

2 ,

i.e., the canonical theta divisor translated by the g1
2 . Recall that J(C)[2]

corresponds to even partitions

S � Sc = {b1, . . . , b2g+2}, |S| = 2j.
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These are counted via the combinatorial identity for even g

4g =
(

2g + 2
g

)
+

g/2−1∑
j=0

(
2g + 2

2j

)
.

The sections of
Γ(Fg−1(X),OFg−1(X)(1))

correspond to translates associated with sums of g branch points b1, . . . , b2g+2.

Remark 13. For even g, any square root F of Pic1(C) admits a distinguished
polarization of type 4Θ. However, given a projective representation ρ : G →
PGL(V ) note that

α(∧gρ) = gα(ρ).

Thus two-torsion α(V ) ∈ H2(Gm) vanishes on passage from X ⊂ P(V ) to
Fg−1(X) ⊂ P(∧gV ).

Now take g odd. The odd-degree divisors in 〈b1, . . . , b2g+2〉 – a principal
homogeneous space of J(C)[2] – correspond to odd partitions

S � Sc = {b1, . . . , b2g+2}, |S| = 2j − 1.

These index translates of ϑ pulling back to our desired polarization on F1(X).
We have the combinatorial identity for odd g

4g =
(

2g + 2
g

)
+

(g−1)/2∑
j=1

(
2g + 2
2j − 1

)
.

Again, the sections correspond to translates associated with sums of g branch
points.

Remark 14. For odd g, any square root F of Pic1(C) has a (Galois or G)
invariant divisor class: the pull back of the divisors

ϑ−
∑
j∈J

bj −
g − 2j − 1

2 g1
2 ∈ Pic1(C), |J | = 2j − 1,

to F . However, there may be an obstruction to the existence of a line bundle
(defined over k or linearized for G) on X realizing this class. Nonzero two-
torsion α(V ) ∈ H2(Gm) remains nonzero on passage from X ⊂ P(V ) to
Fg−1(X) ⊂ P(∧gV ).
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5. Lagrangian interpretation in dimension three

In Section 4.1 we discussed how to recover a smooth complete intersection of
two quadrics X ⊂ P2g+1 from the associated hyperelliptic curve C, principal
homogeneous space J(C) × F → F , and additional cohomological data. We
present a geometric framework for these reconstruction results when g = 2.

The relationship between hyperkähler manifolds Y and Fano varieties
arising as Lagrangian submanifolds is rich and intricate. Lagrangian Pn ⊂ Y
can be characterized via intersection properties of the Hodge lattice of Y [2,
21]. Further subtle constructions have been studied in [16, §1.1]. For example,
cubic fourfolds arise as Lagrangian submanifolds of hyperkähler varieties of
dimension eight [31].

We saw in Section 3 that Kummer varieties arise naturally in the study
of X ⊂ P2g+1. For g = 2, Kummer surfaces take center stage but generalized
Kummer sixfolds are most relevant for recovering X. We realize X naturally
as a Lagrangian submanifold of a Kummer sixfold naturally arising from
the variety of lines F1(X). Recovering X from F = F1(X) boils down to
understanding certain Lagrangian subvarieties in this Kummer sixfold.

5.1. The basic construction

Assume that the ground field is algebraically closed.
Let X ⊂ P5 denote a smooth complete intersection of two quadrics,

F1(X) its variety of lines, and Alb(F1(X)) the associated principally polar-
ized abelian surface. The variety of conics on X equals the variety F2(q) in
Section 3. Thus it fibers over a genus two curve C, parametrizing connected
components of the varieties of maximal isotropic subspaces in the quadric
hypersurfaces cutting out X. We may interpret Alb(F1(X)) � J(C).

Consider the Hilbert scheme F1(X)[4] and the natural map

F1(X)[4] → J(C)
(	1, 	2, 	3, 	4) �→ 	1 + 	2 + 	3 + 	4 − h2,

where h is the hyperplane class. Here 0 is identified with cycles of lines ob-
tained as codimension-two linear sections of X. The preimage of 0 is a sub-
variety

Kum(X) ⊂ F1(X)[4],

a twist of the generalized Kummer sixfold KJ(C)(3) associated with J(C).
Regarding F1(X) as a twist of J(C) by a cocycle for J(C)[4], applying this
cocycle to KJ(C)(3) yields Kum(X).
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Consider the incidence variety

Z = {[x, 	] : x ∈ 	} ⊂ X × F1(X)

and the projection π : Z → X. This is generically finite of degree four.

Proposition 15. The projection π is flat over X.

Proof. Indeed, since Z and X are both smooth and projective it suffices to
show that π is equidimensional. But if a point x ∈ X were contained in a
positive dimensional family of lines then either

• X admits a ruled hyperplane section through x – a cone over an elliptic
quartic curve – which would force X to be singular at x;

• X admits a ruled surface of degree < 4 through x, violating the Lef-
schetz hyperplane theorem.

Since X is assumed to be smooth, we conclude the flatness of π.

As a corollary, we obtain

Proposition 16. There is an injective morphism

j : X ↪→ Kum(X)
x �→ π−1(x)

realizing X as a Lagrangian subvariety of Kum(X).

5.2. Numerical invariants

Assume that X is general in the sense that NS(J(C)) is of rank one, gener-
ated by [Θ]. Then the Néron-Severi group of KJ(C)(3) has rank two and is
generated by [3, p. 769]

• θ – subschemes with support along a theta divisor;
• e – where the nonreduced subschemes have class 2e.

Proposition 17. The restriction homomorphism

j∗ : NS(Kum(X)) → NS(X) � Zh

is given by
j∗(θ) = 5h, j∗(e) = 4h.
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Proof. For the purpose of this computation, we may ignore G-actions or work
over an algebraically closed field. The class θ on J(C) = F1(X) may be
realized as the locus W� ⊂ F1(X) of lines incident to a fixed line 	 ⊂ X,
which sweeps out a divisor on X. This divisor is the exceptional divisor of
the projection

π� : X ∼��� P3;
the center of the inverse map is a quintic space curve C of genus two so the
exceptional locus has degree 20. This yields the first equation.

The locus of nonreduced subschemes on Kum(X) restricts to the branch
locus of π : Z → X. Restricting to a line 	 ⊂ X, we see that

π−1(	) = 	 �W�,

where the latter component has genus two and is realized as a degree-three
cover of 	. Such a cover has eight branch points, so the branch locus has class
8h and we get the second equation.

5.3. Reversing the construction

For the moment, let A be an abelian surface over k, not necessarily principally
polarized.

• The group A[4] acts on A via translation.
• The semi-direct product A[4] � μ2, where μ2 acts on A[4] via ±1, acts

on A as well.
• Consider the addition map

α : A[4] → A

and the induced action of G on A[4]. Note that A[4] acts on the fibers
and the action of μ2 commutes with addition. Thus G acts on KA(3)
as well.

Note that G admits a distinguished normal 2-elementary subgroup

H = A[2] × μ2,

as −1 acts trivially on two-torsion elements. Now assume A = J(C) and
consider the various Lagrangian threefolds in KJ(C)(3). The subgroup H �
(Z/2Z)5 stabilizes each, acting via automorphisms. The full group G gives an
orbit of 16 components, with transitive action of

G/H � A[4]/A[2] � A[2].
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Remark 18. Assume that the base field k is arbitrary, of characteristic zero.
Let C be a smooth projective curve of genus two over k and F a principal
homogeneous space for J(C) such that 2[F ] = [Pic1(C)]. Let KF (3) ⊂ F [4]

denote the generalized Kummer variety lying over the divisor g1
2 ∈ Pic2(C).

We may realize F as the image of a cocycle for J(C)[4]; the 16 conju-
gate Lagrangian threefolds naturally form a principal homogeneous space
for J(C)[4]/J(C)[2] � J(C)[2]. However, even when this is trivial there is no
guarantee that the corresponding X can be defined over k – the obstruction
to descent is discussed in Proposition 10.

6. Rationality constructions

We continue to assume that X ⊂ P2g+1 is a smooth complete intersection of
two quadrics.

6.1. Simple rational parametrizations

Fix a line 	 ⊂ X and consider the projection

π� : X ∼��� P2g−1,

a birational map, resolved by blowing up 	. The inverse map

P2g−1 → P2g+1

is obtained as follows: Consider a matrix⎛⎜⎝l00 l01
l10 l11
q0 q1

⎞⎟⎠ ,

where the lij are linear and and qi are quadratic. The 2 × 2 minors generate
an ideal IZ , where Z is the base locus of π−1

� . Cubic forms in IZ yield the
linear series inducing this map. The kernel of the matrix gives a rational map

φ : Z ��� P1,

which is regular for g = 2, 3. The generic fiber of φ is a quadric hypersurface
in P2g−3; we may interpret this as 	⊥/	, understood as a subquotient of the
generic fiber of the pencil q : Q → P1 (from Section 3), i.e., the generic fibers
of φ and q are equivalent in the Witt ring of k(P1).
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Much more can be said when g = 2; we refer the reader to the corre-
sponding case in Section 6.2.

For the g = 3 case, the fibration

φ : Z → P1

is a quadric surface fibration. We will denote by C the discriminant curve of
this fibration. Specifically, the relative variety of lines factors

F1(φ) �→ C → P1,

where  is a smooth conic fibration. The following conditions are equivalent:

• φ admits a section;
•  admits a section;
• q : Q → P1 admits an isotropic plane containing 	× P1.

These are elementary properties of quadratic forms. The Amer-Brumer The-
orem [30, §2] gives a fourth equivalent condition:

• there exists a plane P2 ⊂ X.

The fibration  admits a section if and only if we can express

F1(φ) = P(E)

for some rank-two vector bundle E → C. Desale-Ramanan [13] use such con-
structions to analyze rank-two vector bundles of odd degree on hyperelliptic
curves, relating automorphisms of X to natural tensor and duality operations
on the vector bundles.

Remark 19. Over nonclosed fields, e.g. k = C(s), and for g ≥ 2 (resp. g ≥ 3),
it is possible for X ⊂ P2g+1 (resp. F1(X) ⊂ Gr(2, 2g+2)) to admit a rational
point even when C admits no divisors of odd degree.

Consider a hyperelliptic curve C0 → P1 represented as a double cover
branched over g + 1 orbits for an involution on P1. For example, if the invo-
lution is

[1, t] �→ [1,−t]
we could take the branch points as the roots ±λ1, . . . ,±λg+1 of

∏g+1
i=1 (t2−ai)

with the ai distinct and nonzero. Write

X0 = {
2g+2∑
i=1

x2
i =

g+1∑
i=1

λi(x2
2i−1 − x2

2i) = 0},
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with involution given by

(x1, x2, x3, x4, . . . , x2g+1, x2g+2) �→ (x2, x1, x4, x3, . . . x2g+2, x2g+1);

the associated hyperelliptic curve C0 has the desired branch locus.
Choose a quadratic extension L/k and let X and C denote the associated

quadratic twists of X0 and C0. By construction, C admits no cycles of odd
degree. However, X is geometrically rationally connected. The same holds for
F1(X) provided g ≥ 3 – indeed, it has ample anticanonical class and thus is
geometrically rationally connected. Thus both varieties have k-rational points
by the Graber-Harris-Starr Theorem.

Note that [6, Th. 29] implies that Fg−1(X) admits no k-rational points.

6.2. Stable rationality constructions

Fix a (g − 1)-dimensional subspace L ⊂ X and look at the projection from
L:

π : X ��� Pg+1

with generic fiber a projective space Pg−2. We analyze the structure of this
bundle.

Suppose that L = {x0 = . . . = xg+1} so that the induced map on linear
spaces factors through

P(OPg+1(−1) ⊕Og
Pg+1)

so that y0, . . . , yg−1 are trivializing sections of the OPg+1 factors and the linear
series to P2g+1 is given by

y0, . . . , yg−1, zx0, . . . , zxg+1.

The proper transform of X has equations

A(xi; yj) + zQ(xj) = B(xi; yj) + zR(xj) = 0,

where A and B are bilinear and Q and R are quadratic. Eliminate z to get
the relation

z = −A/Q = −B/R,

which gives
AR−BQ = F0y0 + · · · + Fg−1yg−1 = 0,
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which is cubic in xi and linear in yj ; the Fj are cubic forms in x0, . . . , xg+1.
This is the formula for the Pg−2 bundle in the product

Pg+1
xi

× Pg−1
yj .

Look at the locus C where the morphism

BlL(X) → Pg+1

fails to be flat. The Fj are linear combinations of Q and R with linear coeffi-
cients. The locus C is the residual intersection to the locus

Z = {Q = R = 0}

in the intersection of cubics

{F0 = · · · = Fg−1 = 0}.

Proposition 20. The excess intersection contribution of Z to the intersec-
tion of cubics is 3g − (2g + 1) whence C has degree 2g + 1. The curve C is
hyperelliptic, embedded via a generic (2g + 1)-degree polarization D.

Proof. This is a computation with Fulton’s excess intersection formula, en-
coded by the exact sequence

0 → NZ/Pg+1 � OZ(2)2 → OZ(3)g → Q → 0,

where the equivalence of Z equals cg−2(Q). Note that

(1 + 3ht)g/(1 + 2ht)2 = 1 + (3g − 4)ht + · · · + 3g − 2g − 1
4 hg−2tg−2

using the identity

g−2∑
j+k=0

(
g

k

)
3k(j + 1)(−2)j = 3g − 2g − 1

4 .

Fixing (C,D), what are the constructions that arise? We analyze the
induced morphism

γ : F(g−1)(X) → Pic2g−1(C)
L �→ D.
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following [15] and [6]. First, translation by two-torsion in J(C)[2] corresponds
to an automorphism of X acting trivially on cohomology. Thus we have

γ([L] + τ) = γ([L]), τ ∈ J(C)[2].

Automorphisms with determinant −1 may be presented in the form

p �→ −p + β, β ∈ Pic1(C), 2β = g1
2 .

These act by −1 on middle cohomology whence

γ(−[L] + β) = (2g + 1)g1
2 −D.

Moreover, Wang’s formula 2[F1(X)] = [Pic1(C)] [37] implies these are the
only possible relations intertwining γ for a generic curve C.

To summarize our discussion:

Proposition 21. For each hyperelliptic curve C of genus g and unordered
pair of divisors

D,D′ ∈ Pic2g+1(C), D + D′ = (2g + 1)g1
2 ,

we obtain a group of stable birational equivalences of Pg+1 parametrized by
the group

(Z/2Z)2g+1 � 〈b1, . . . , b2g+2〉 /
〈
g1
2

〉
⊂ Pic(C)/

〈
g1
2

〉
.

Remark 22. When g = 2, we obtain birational equivalences of P3. This is the
subgroup of the Cremona group on P3 associated with an orbit of F1(X) under
the diagonalizable automorphisms of X. If 	 ⊂ X is a line and h ∈ Aut(X)
is a diagonalizable automorphism then the associated birational map is

P3 π���� X
h→ X

π���� P3.

7. Reduction to nonclosed fields

We are interested in translating rationality criteria for geometrically rational
threefolds over nonclosed fields to the equivariant context. For example, the
existence of points and subvarieties of prescribed type sometimes suffices to
characterize rationality over nonclosed fields. We hope that the corresponding
criteria for G-equivariant rationality are valid for varieties with G-action,
where G is a finite group. We focus on situations where principal homogeneous
spaces over abelian varieties control rationality.
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7.1. Representations and monodromy groups

We recall results of [19] on representations of monodromy groups for curves
with group action.

Let Σ denote a smooth projective complex curve of genus g ≥ 2 and fun-
damental group T . Consider a finite group G and a surjective homomorphism
p : T � G with kernel R. This is associated with a connected covering Σ̃ → Σ
with homology [19, Prop. 1.1]:

(12) H1(Σ̃,Q) � Q⊗Z R/[R,R] � Q2 ⊕Q[G]2g−2.

This is an equivariant refinement of the Hurwitz formula due to Chevalley-
Weil.

We decompose Q[G] using the theory of semisimple algebras [19, §3.2]:

Q[G] � Q×
�∏

i=1
Ai,

where each Ai � Matmi(Di), matrices over a division algebra. Moreover,
let Li denote the center of Di, a number field. The index i for the product
encodes types of nontrivial representations of G that are irreducible over Q.
The formula (12) therefore yields

(13) H1(Σ̃,Q) � Q2g ⊕
�⊕

i=1
A2g−2

i .

Each of the summands A2g−2
i comes with a natural skew-Hermitian struc-

ture with respect to an explicit subfield Ki ⊂ Li of index ≤ 2 [19, §3]. For
each index i, there is a distinguished algebraic group GG,i, defined over Ki,
parametrizing the automorphisms of A2g−2

i preserving this skew-Hermitian
structure. (We abuse notation, using the same notation for this group and its
restriction of scalars to Q.) The complex groups that may arise are listed in
[19, Thm. 1.7]:

(14) Sp(2g−2)n(C),O(2g−2)n(C),GL(2g−2)n(C)

for some n ∈ N.
Let Di ⊂ Ai denote the order arising as the image of Z[G], GG,i(Di) the

resulting arithmetic group. Note that this arithmetic group depends only on
the structure of G and its action on the symplectic form. Write ΓG,p for the
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mapping class group of G-coverings Σ̃ → Σ [19, p. 1494]. For each i = 1, . . . , 	,
it admits a representation

ρG,p,i : ΓG,p → GG,i ⊂ AutAi(A
2g+2
i ).

We use G1
G,i to denote the elements of GG,i of reduced norm one over Li;

G1
G,i(Di) has finite index in GG,i(Di) [19, Prop. 3.9] as the reduced norm

takes values in roots of unity.
To summarize, we obtain natural representations of a finite-index sub-

group of the mapping class group ΓG,p into the arithmetic groups GG,i(Di)
[19, p. 1528]. Fortunately, there are sufficient conditions guaranteeing that
the image of ρG,p,i contains a finite-index subgroup of our arithmetic group.
Assume further that g ≥ 3 and p factors

p : T ϕ→ Fg
p′→ G,

where

• Fg is a free group on g generators;
• ϕ is surjective;
• the kernel of p′ contains one of the free generators of Fg.

Whenever G can be generated by g − 1 elements we can find p satisfying
these conditions. Under these assumptions, the image of ρG,p,i contains a
finite-index subgroup of G1

G,i(Di) [19, Thm. 1.6].
Observe that G1

G,i(Di) ⊂ G1
G,i is Zariski dense by the Borel density theo-

rem [33, 4.5.6, 5.1.11]. Borel’s Theorem requires that associated real Lie group
has no compact factors; indeed, the assumption g ≥ 3 guarantees the factors
have Q-rank at least two [19, p. 1529]. (Information about the real forms
arising from these groups may be found in [19, § 4].)

The fact that the monodromy is large has implications for the structure
of H1(Σ̃,Q). The decomposition (13) cannot be refined; any summand of
H1(Σ̃,Q) stable under the action of ΓG,p is a direct sum of the Q2g (coming
from H1(Σ,Q)) and the A2g−2

i . Using the classification (14), we find that for
a very general covering Σ̃ → Σ associated with p : T → G, the Jacobian J(Σ̃)
admits no factor of dimension less than g − 1.

We summarize this, following [19, Thm. 1.8]:
Fix a finite group G and an integer g ≥ 3 such that G can be generated by
g − 1 elements. There exists a family of pairs

(Σ, Σ̃ → Σ),
where Σ is a smooth complex projective curve of genus g and Σ̃ → Σ is a
connected G-covering, with the following property: For a very general Σ̃, the
Jacobian J(Σ̃) admits no factors over Q of dimension less that g − 1.
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7.2. Statement and proof of results

Let G be a finite group acting generically freely from the right on P , an
abelian variety. We do not assume that G has a fixed point on P . We write
Alb(P ) for the Albanese of P , the G-equivariant abelian variety parametrizing
the group of translations on P . In other words, P is a G-equivariant principal
homogeneous space for Alb(P ).

Fix a base curve B, smooth and projective of genus g ≥ 3 over k. Let
f : B̃ → B be a connected G covering space, with G acting from the left.
Consider the projection

P × B̃ → B̃,

where the left-hand-side has induced left G-action

γ · (p, b̃) = (pγ−1, γb̃),

with quotient P ×G B̃. Consider the induced morphism

πf : P ×G B̃ → B

whose fibers, away from the branch locus of f , are geometrically isomorphic
to P .

Proposition 23. Assume that g > dim(P ) + 1, g ≥ 3, and B is of general
moduli.

Suppose that for every f as above, πf has a section. Then the action of
G on P has a fixed point.

Proof. The existence of a section for πf is equivalent to a G-equivariant mor-
phism

φf : B̃ → P

which factors
B̃ ↪→ Pic1(B̃) → P.

Our assumption – that dim(P ) < g − 1 – allows us to apply the results
of Section 7.1 to deduce J(B̃) has no factors of dimension dim(P ). It follows
that there is no nontrivial G-equivariant homomorphism

J(B̃) → Alb(P ).

This forces φf to be constant, which forces the triviality of Pic1(B̃).
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8. Applications in dimension three

In this section, we present parametrizations arising from the existence of G-
invariant linear subspaces

L ⊂ X ⊂ P2g+1.

The geometry here is both simpler and richer than the geometry over non-
closed fields. There are more possible Galois actions than actions via auto-
morphisms; not every subgroup of S2g+2 arises as the automorphisms of a
configuration of 2g + 2 points. On the other hand, if one can find a linear
subspace

L � Pr ⊂ X

defined over k, one automatically has subspaces Ps ⊂ X for all s ≤ r. This is
not the case in the equivariant context, as the underlying representation may
be irreducible.

Throughout this section, k is algebraically closed of characteristic zero.

8.1. Review of surface case

We review the classification of G-actions on smooth intersections of two
quadrics in dimension 2. The general strategy for attacking this question uses
the G-equivariant minimal model program; the most systematic description
may be found in [14].

Let X ⊂ P4 be a smooth quartic del Pezzo surface with a generically free
action of a finite group G. There are 16 lines on X, which are permuted by
G. If there exists a G-equivariant collection of disjoint lines, it may be blown
down to obtain a del Pezzo surface of larger degree. Del Pezzo surfaces of
degree 7, 8, or 9 are equivariantly birational to P2 or P1 × P1. In degrees 5
and 6 there are actions not birational to actions on homogeneous spaces as
above; see Section 8 of [14] for more details.

For our purposes – to illustrate the aspects common to all dimensions
– we focus on examples with generic automorphism group. Any quartic del
Pezzo surface may be written in diagonal form

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = a0x

2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = 0

which admits a diagonal action of H = μ5
2/μ2. Generically, these are the only

automorphisms. Hence we focus on subgroups of

H � (Z/2Z)4
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acting via sign changes on coordinates of diagonal quadrics defining X. Con-
sider involutions ι ∈ H; we present one representative for each conjugacy
class:

(1, 1, 1, 1,−1):

Here X is a double cover of the quadric surface in P3

(a4 − a0)x2
0 + (a4 − a1)x2

1 + (a4 − a2)x2
2 + (a4 − a3)x2

3

branched over the elliptic curve E cut out by

x2
0 + x2

1 + x2
2 + x2

3 = 0.

This surface has no fixed lines and has nontrivial cohomology H1(G,Pic(X))
(from the curve E, cf. [9]) and thus is not G-rational or even stably rational.
It is clearly minimal as the orbits of lines consist of eight pairs meeting at
points. (These are rulings of the quadric surface tangent to E.) Any G-action
on a quartic del Pezzo surface containing this involution is G-irrational.

(1, 1, 1,−1,−1):

Here we have four fixed points given by {x3 = x4 = 0} and eight orbits of
disjoint lines. Thus X is birational to a sextic del Pezzo surface, admitting
three conic bundle structures. One of these must be fixed under the involution,
thus X is equivariantly birational to P1 × P1 with linear action.

8.2. Reduction to the case of nonclosed fields

We turn to the case of dimension three. As a corollary of results in Section 7,
we have:

Theorem 24. Let X ⊂ P5 be a smooth complete intersection of two quadrics
with generically free action of a finite group G. Then X is G-equivariantly
birational to P3, with G acting projectively, if and only if there is a G-invariant
line on X.

Proof. The action of G on X admits a canonical linearization on ω−1
X =

OX(2). It follows that G acts projectively on Γ(OX(1)) and thus on P5. A
central extension

1 → μ2 → G̃ → G → 1
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acts linearly on P5.
An invariant line corresponds to a two-dimensional G̃-invariant subspace.

A complementary G̃-stable subspace induces a projection

π� : X ∼��� P3,

where P3 admits a linear action of G̃ and a projective action of G.
We turn to the converse statement: Suppose there is a G-equivariant

birational map
X

∼��� P3

with G acting projectively.
Let B be a curve of large genus satisfying the conditions of Proposition 23.

Construct an isotrivial family X → B, with generic fiber isomorphic to X,
split over a G-covering B̃ → B. (The G-action on X induces one on X × B̃;
we take quotients to obtain our isotrivial family.) It is birational over B to
a fibration P → B that is generically a P3-bundle. The Tsen-Lang Theorem
implies it is birational over B to P3 × B. The variety of lines F1(X/B) is
a principal homogeneous space over an abelian surface, over a dense open
subset of B. The main result of [22] implies that F1(X/B) → B admits a
rational section. Proposition 23 implies that the associated action of G on
F1(X) necessarily admits a fixed point, which yields a line 	 ⊂ X invariant
under the G-action.

Remark 25. Let X have a G-action as above; we do not assume the existence
of a fixed point or invariant line. Nevertheless, we can construct the isotrivial
fibration

X → B

which always admits a section by the Tsen-Lang (or Graber-Harris-Starr)
Theorem. Thus Proposition 23, stated for abelian varieties, is not valid for
other classes of varieties such as rationally-connected varieties.

8.3. Relations with the Burnside formalism

The Burnside group formalism is presented in [28]. Let G be a finite group
acting generically freely on a smooth projective variety Y . For each nontrivial
subgroup H ⊂ G, we record data

• the locus Z ⊂ Y fixed under H;
• the action of H on the normal bundle of each component of Z.
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The character for the action on the normal bundle is called a symbol. Consider
how this data changes as we blow up Y along a G-stable smooth subvariety.
To obtain a G-birational invariant, we impose equivalences on the possible
symbols that may arise, the blowup relations.

The simplest approach is to discard information about the components
of the fixed locus Z, recording only the representation on the normal bundle.
(Here we only retain the dimensions of the components.). See [20, Section 5]
for refinements via Grothendieck classes of varieties, and Section 6 of that
paper for applications to cubic fourfolds.

Proposition 26. Let G be a finite group acting generically freely on X ⊂ P5,
a smooth complete intersection of two quadrics. Suppose there exist

• an element g �= 1 fixing a hyperplane section S ⊂ X;
• a subgroup 〈g〉 ⊂ H ⊂ G acting on S.

Assume that S is not H-birational to either

1. P(V ), a projective representation of H; or
2. P(E) where E is an H-equivariant rank-two vector bundle over a curve.

Then X is not G-birational to P3 with a G-action.

The surface case is addressed in [27, Prop. 3.9].

Proof. Suppose we have a G-birational map

ρ : P3 ∼��� X

with G acting projectively on the source. By weak factorization, we may
assume it is a composition of blowups and blowdowns along smooth G-stable
centers.

Consider the center Z → P3 blown up to obtain S; it is irreducible, fixed
by g, and has an action of H. Since S ��� Z is birational, we conclude that
S is birational to a divisor in P3 with nontrivial stabilizer. The locus in P3

with nontrivial stabilizers is a union of linear subspaces, and we are in the
first case. If Z is a point then S is birational to the projectivization of the
tangent space at that point; again, we are in the first case. Finally, suppose
Z is a curve; then S is birational to the projectivization of the normal bundle
to Z, putting us in the second case.

We turn to other representative examples. We follow Avilov [1], who enu-
merated actions of finite groups on three-dimensional complete intersections
of two quadrics known to be equivariantly birational to projective space, a
quadric hypersurface, or a Mori fiber space.
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Example 27. Suppose that G admits a subgroup H � C2 ×C2 acting on X
via the diagonal matrices

diag(1, 1, 1, 1,±1,±1).

Take
g = diag(1, 1, 1, 1, 1,−1)

which fixes a del Pezzo surface S. The residual C2 action on S was considered
in Section 8.1. Since there is nontrivial cohomology, i.e. H1(C2,Pic(S)) �= 0,
the two possibilities from Proposition 26 are precluded. It follows that X is
not equivariantly rational for any group containing H.

We emphasize that Theorem 24 gives a stronger conclusion: If X is G-
birational to P3 then G acts on F1(X) with fixed points. In particular, ev-
ery element of G fixes a point of F1(X) so G has no elements conjugate
to ± diag(1, 1, 1, 1,−1,−1). Indeed, these correspond to translates by two-
torsion, which act freely. For instance, if G = 〈(1, 1, 1, 1,−1,−1)〉 the fixed
locus on X is an elliptic curve. There are no Burnside invariants available as
the relevant symbol groups for G = C2 are zero [20, Section 3.1], [26, Section
12].

Remark 28. It would be interesting to have a general theory – in the context
of G-equivariant birational geometry – encompassing both Burnside/symbol-
type invariants and obstructions arising from Chow-theoretic principal homo-
geneous spaces for intermediate Jacobians.

8.4. Rational complete intersections need not have points

Theorem 24 shows that equivariant rationality of X ⊂ P5 is governed by
the existence of invariant lines on X. When G is cyclic, the existence of a
G-invariant line guarantees a point on that line fixed by G. For noncyclic
groups, an invariant line need not have a fixed point. There are examples of
G-rational X ⊂ P5 with no fixed points.

Let C denote the complex curve

y2 = x6 + 1.

Its automorphism group contains G, a central extension

1 → μ2 = 〈ι〉 → G → D12 → 1
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of the dihedral group D12 of order twelve. We write

G =
〈
σ, τ, ι : σ6 = τ 2 = ι2 = 1, τστ−1σ = ι

〉
with action

σ · (x, y) = (ζx, y), τ · (x, y) = (y/x3, 1/x), ζ = e2πi/6,

where ι is the hyperelliptic involution. The induced action on the global sec-
tions Γ(ωC) is

σ �→
(
ζ 0
0 ζ2

)
, τ �→

(
0 −1
−1 0

)
, ι �→

(
−1 0
0 −1

)
.

Actually, Aut(C) = G; see [32, Genus two curve 2916.b.11664.1] for more
information.

Consider the quotient of C under the unique cyclic subgroup of order
three

〈
σ2〉, with invariants and equation

y, z = x3 y2 = z2 + 1.

Let ρ : C → R denote the corresponding degree-three morphism. The induced
action on R is generically free via the dihedral group of order eight.

The double cover and ρ give a morphism

C ↪→ P1 ×R.

While R is isomorphic to P1 as a variety, the action of G on R is not linear.
(The subgroup 〈τ, σ〉 acts on R as a Klein four-group, with no fixed points;
such actions are not linearizable.) However, we do have a central extension

1 → μ2 → G̃ → G → 1

and G̃-representations V = Γ(ωC) and W such that

C ↪→ P(V ) × P(W ) ↪→ P(V ⊗W ) � P3,

realizing our curve as a (2, 3) divisor. The linear series of cubic forms vanishing
on C gives a birational map

P3 ∼��� X ⊂ P5,

https://www.lmfdb.org/Genus2Curve/Q/2916/b/11664/1
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where X is a smooth complete intersection of two quadrics. This blows up
C and blows down P(V ) × P(W ) via projection to the first factor. The map
X

∼��� P3 is projection from a G-stable line 	 � P(V ).
We claim that X has no G-fixed points. We know that P(V ) has no fixed

points so it suffices to check that P3 = P(V ⊗W ) has no fixed points. Looking
at σ acting on V , any fixed points would necessarily lie on

[1, 0] ×W or [0, 1] ×W.

However, we have already seen that the dihedral group of order eight acts on
R without fixed points.

This analysis also shows that the G-action on X does not linearize to
the ambient P5. The map BrG(point) → BrG(X) is not an isomorphism; its
kernel contains 0 �= α(G,W ) ∈ H2(G,μ2) (see Proposition 3). This illustrates
the general obstruction analysis in Section 4.1.

This answers a question of Avilov [1, Rem. 2], who asked where X – Case
2(ii) of his Theorem 1 – fits in the equivariant birational classification.

8.5. Another special example

We return to another example highlighted by Avilov – Case 2(iv) of [1, Th. 1]
– where G fits into an exact sequence

1 → C5
2 → G → S4 → 1.

The associated binary sextic form is

T0T1(T 4
0 − T 4

1 ).

The hyperelliptic curve

C = {U2 = T0T1(T 4
0 − T 4

1 )}

has automorphism group
Aut(C) = 〈σ, τ〉 ,

where

σ(T0, T1, U) = (e3πi/4T0, e
πi/4T1, U)

τ(T0, T1, U) = ( 1√
2
(T1 − T0),

1√
2
(T0 + T1), U).
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The resulting group has relations

σ4 = ι, τ 2 = ι2 = 1, ιτ = τι, (στ)3 = ι,

where ι is the hyperelliptic involution. It sits in a central extension

1 → μ2 = 〈ι〉 → Aut(C) → S4 → 1.

This curve appears as [32, Genus two curve 4096.b.65536.1].
We analyze the induced action on the branch points, using coordinate

T0/T1:

b1 = {0}, b2 = {∞}, b3 = {1}, b4 = {i}, b5 = {−1}, b6 = {−i}.

The generators act via permutations

σ �→ (3456), τ �→ (13)(25)(46)

and the hyperelliptic involution acts trivially. Consider the induced action on

Pic1(C) ⊃ C

as in (7). Note that ι fixes only the solutions to L2 = g1
2 , the 16 points

(cf. Section 3)

b1, . . . , b6, b1+b2+b3−g1
2 = b4+b5+b6−g1

2 , . . . , b1+b5+b6−g1
2 = b2+b3+b4−g1

2 .

None of these is simultaneously fixed by σ and τ , so Pic1(C) admits no fixed
point for Aut(C).

As for the complete intersection, we may take equations

X = {Q1 = Q2 = 0} ⊂ P5,

where

Q1 = x2
0 + x2

1 + ix2
2 − x2

3 − ix2
4, Q2 = x2

1 + x2
2 + x2

3 + x2
4 + x2

5.

Proposition 29. Suppose that G acts on X so that the induced homomor-
phism

G → Aut(C)

is surjective. Then X is not G-equivariantly birational to P3.

https://www.lmfdb.org/Genus2Curve/Q/4096/b/65536/1
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This partly answers a question in [1, Rem. 2]; Avilov asked whether these
are equivariantly birational to P3.

Proof. By Theorem 24, if X is birational to P3 then F1(X) admits a fixed
point. But then Pic1(C) would admit one as well via the squaring map
F1(X) → Pic1(C). This would contradict the computation above.

The argument works under the weaker hypothesis that the image contains
the 2-Sylow subgroup 〈

σ, τσ2τ
〉
⊂ Aut(C)

as τσ2τ �→ (12)(46).

We may have rationality when smaller groups act. We restrict attention
to the automorphism of order eight acting on coordinates by

γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α 0 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, α = e3πi/4.

This is chosen so that γ ·Q2 = Q2 and

γ ·Q1 = α2x2
0 + x2

2 + ix2
3 − x2

4 − ix2
1 = −iQ1.

Thus we may interpret γ as a lift of σ−1.
What are the fixed points? The action on the underlying space via the

contragredient representation is:⎛⎜⎜⎜⎜⎜⎜⎜⎝

α7 0 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with eigenvectors

1 : [0, 0, 0, 0, 0, 1] �∈ X

α : p1 := [0, 1, α7, α6, α5, 0] ∈ X

α3 : [0, 1, α5, α2, α7, 0] �∈ X
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α5 : p2 := [0, 1, α3, α6, α, 0] ∈ X

α7 : [1, 0, 0, 0, 0, 0], [0, 1, α, α2, α3, 0] �∈ X.

The last eigenspace is isotropic for {Q2 = 0} and thus meets X in two points
p3, p4 := [±2i, 1, α, α2, α3, 0]. The span of p1 and p2 is also isotropic for {Q2 =
0}.
Proposition 30. The lines 	(p2, p3) and 	(p2, p4) are invariant under the
action.

Note however that

γ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
acts on the variety of lines on X with 16 fixed points, i.e., the lines on the
quartic del Pezzo surface X ∩ {x5 = 0}.

This example is instructive in that the group actions are not associated
with Weyl groups:

• W (D6) is realized as the signed permutation matrices with an even
number of (−1) signs, a semidirect product

W (D6) � S6 � C5
2 ,

where C5
2 is the diagonal matrices;

• the semidirect product

S6 � C6
2/Diagonal,

interpreted as a Weyl group for the projective orthogonal group.

These are not the same; the Weyl group has a nontrivial central element

(−1, . . . ,−1)

whereas the latter group has no nontrivial central elements.
However, neither of these actions coincide with our situation! Both lack an

element γ of order eight, sitting over a four-cycle of S6, with γ4 ∈ H ′ (the 2-
elementary group of diagonal automorphisms) having nontrivial determinant.
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The automorphism group Aut(X) is NOT a semidirect product of Aut(D ⊂
P1) and H ′, which admits NO element γ mapping to(

1 0
0 −i

)

and whose fourth power is diagonal with entries (−1,−1,−1,−1,−1, 1). In-
deed, the candidate in the Weyl group

γ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
induces

γ̃4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
which has the wrong diagonal entries.

The rationality of these specific examples may be deduced in terms of the
group actions:

Proposition 31. Let γ be an automorphism of order eight on X such that
γ4 fixes a smooth hyperplane section S ⊂ X and the induced action on S is by
an element acting on the degeneracy locus (of both X and S) as a four-cycle.
Then S admits a line invariant under γ.

Proof. The fixed locus of H ′ corresponds to a del Pezzo S of degree 4 with
action associated with the upper 5×5 matrix. Its lines correspond to weights
in the D5 root system:

−ei − ej − ek − el − em, ei + ej − ek − el − em, ei + ej + ek + el − em.

With respect to the standard basis of the Picard group {L,E1, E2, E3, E4, E5}
projected into Pic(S)/ZKS we have

L− Ei �→ ei, 2L− Ej − Ek − El − Em �→ −ei.
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The induced automorphism has order four. The only possible elements of
W (D5) of order four fix a line. For example, the signed permutations⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0. 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 −1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠
are all conjugate in W (D5) so it suffices to consider the first. This acts on
Pic(S) by

L �→ 2L− E1 − E3 − E4

E1 �→ L− E3 − E4

E2 �→ L− E1 − E4

E3 �→ L− E1 − E3

E4 �→ E2

E5 �→ E5

which leaves the lines E5 and 2L− E1 − E2 − E3 − E4 − E5 invariant.

The assumption that the induced permutation of the degeneracy locus is
a four-cycle is essential. The element

γ1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1
0 1 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠
acts via

L �→ 2L− E1 − E4 − E5

E1 �→ L− E4 − E5

E2 �→ L− E1 − E5

E3 �→ L− E1 − E4

E4 �→ E3

E5 �→ E2
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with orbits

E1 �→ L− E4 − E5 �→ 2L− E1 − E2 − E3 − E4 − E5 �→ L− E2 − E3

E2 �→ L− E1 − E5 �→ L− E1 − E2 �→ E5

E3 �→ L− E1 − E4 �→ L− E1 − E3 �→ E4

L− E2 − E4 �→ L− E3 − E4 �→ L− E3 − E5 �→ L− E2 − E5

However, γ1 maps to a product of two transposition in S6.
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