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Enumerative geometry of the mirror quintic
Sheldon Katz and David R. Morrison

Abstract: We evaluate the enumerative invariants of low degree
on the mirror quintic threefold.

Mirror symmetry burst upon the mathematical scene with the famous compu-
tation made by Candelas, de la Ossa, Green, and Parkes [4] which in modern
language proposed to count the number of rational curves of fixed degree on
the quintic threefold using a technique from physics. In current language the
“counts” are evaluations of Gromov–Witten invariants or Gopakumar–Vafa
invariants, and the technique for counting these invariants has been expanded
and extended in numerous ways. From the physics point of view, the compu-
tation was made on a closely related algebraic variety – the mirror quintic.

In a recent physics paper [10], a new technique was proposed for explicitly
evaluating the Gromov–Witten or Gopakumar–Vafa invariants of the mirror
quintic itself, not just the quintic. Such explicit evaluations seem rather daunt-
ing, since the answer will be a function of 101 variables. One aspect of [10] is
to use two variables only and arrive at a more reasonable count.

Upon request of the authors of [10], the present authors worked out the
enumerative geometry of the mirror quintic. We have made a conjecture about
the Mori cone which comes with a plausibility argument rather than a proof.
However, independent of the truth of that conjecture, we are able to explicitly
evaluate the Gromov–Witten or Gopakumar–Vafa invariants of low degree for
the mirror quintic, involving all 101 variables.

It gives us great pleasure to dedicate this paper to our mentor and friend
Herb Clemens. Herb’s work on rational curves on Calabi–Yau threefolds [5, 6,
7] gave an inspiration and a foundation to much of our own work, including
this paper.

1. The mirror quintic, its curves, and its divisors

The standard description of the mirror quintic is as a quotient of a quintic
hypersurface in P4. Let t1, . . . , t5 be homogeneous coordinates. The standard
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equation is then

(1) t51 + t52 + t53 + t54 + t55 = 5ψt1t2t3t4t5.

We are taking the quotient of P4 by the coordinate-wise action of

(2) (Z5)4 = {(ζ1, ζ2, ζ3, ζ4, ζ5) ∈ (Z5)5 |
5∏

j=1
ζj = 1}.

The diagonal subgroup acts trivially on P4, so the effective action is by (Z5)3.
We will employ an alternate description (due to Batyrev [3]) of the mirror

quintic as a singular complete intersection in P5. For this purpose we begin by
describing a basis for monomials invariant under the finite group action. Our
choice of notation may appear awkward at first, but its utility will become
apparent later on.

Let

(3)
u = t1t2t3t4t5 v = t51

w = t52 x = t53

y = t54 z = t55.

Then the equations defining the mirror quintic can be written

v + w + x + y + z = 5ψu(4)
vwxyz = u5,(5)

which describes the mirror quintic as a (5, 1) complete intersection in P5.
We denote this singular model of the mirror quintic by Yψ, and refer to the
coordinates appearing in (4) and (5) as Batyrev coordinates. In fact, this
expresses the mirror quintic as a hypersurface (described by (4)) inside a
singular toric variety (described by (5)).

There are singularities along lines defined by the simultaneous vanishing
of u and two out of {v, w, x, y, z} (as well as eq. (4)); there are ten such lines.
The transverse singularity at a general point of such a line is A4.

There are more complicated singularities at the points defined by the si-
multaneous vanishing of u and three out of {v, w, x, y, z} (and again imposing
eq. (4)); there are ten such points. The singularity at each such point takes
the local form C3/(Z5)2, with non-isolated singularities propagating along the
coordinate axes in C3 having transverse singularity of the form C2/Z5 = A4.
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Figure 1: A triangulation specifying a crepant resolution of C3/(Z5)2, and the
corresponding dual graph.

We also observe the feature of five P2’s contained within the mirror quin-
tic: each is given by the simultaneous vanishing of u and one of the coordinates
{v, w, x, y, z}, as well as eq. (4).

A concrete procedure for blowing up the singularities was given in [13, Ap-
pendix B], but we will use a different birational model described in [14, Section
4].1 The singularity C3/(Z5)2 can be described torically, and we display the
toric data for the resolution we use in the left half of Figure 1. We will denote
the resulting Calabi-Yau threefold by Xψ. The fully-resolved mirror quintic
family is parametrized by z = ψ−5, and is smooth for z ∈ P1 − {0, 1,∞}.
The large radius point is given by z = 0, while z = 1 is the conifold point
and z = ∞ is the orbifold point. There is a birational contraction map
ρ : Xψ → Yψ.

The toric data is “dual” to a more geometric description involving curves
and surfaces, and we display the corresponding dual graph in the right half of
Figure 1. There are six complete divisors within the resolution, represented by
hexagons in the dual graph. There are also four incomplete divisors along each
edge which represent components of the resolutions of the one-dimensional
singular loci, and three incomplete divisors at the vertices of the figure which
represent the P2’s identified above.

There are also 30 compact curves within the resolution, represented by
segments in the dual graph which have both ends meeting a divisor. We can
also see portions of other curves which we will describe later.

1Note that our use of the term “the mirror quintic” is not quite correct – we must
specify the birational model, and different models will have different Kähler cones.
In this paper, we use the model corresponding to the resolution of singularities
specified in [14, Section 4].



1602 Sheldon Katz and David R. Morrison

Figure 2: Labeling the divisors with monomials.

In order to keep track of all of the divisors and curves, we introduce the
following notation. Each point with stabilizer C5/(Z5)2 is associated with
three of the variables {v, w, x, y, z} and we will use quintic monomials in
those three variables to label the corresponding divisors. This is illustrated
in Figure 2 for the variables x, y, z. For a given monomial m, we call the
corresponding divisor Dm.

Note that every monomial which involves at most three of {v, w, x, y, z}
corresponds to a divisor, and monomials involving fewer than three of those
variables will show up in more than one of the toric diagrams. There are 105
divisors of this form.

Each compact curve in our diagram is the intersection of precisely two
compact divisors Dm and Dn and we label the curve by2 γm,n. In addition
for each variable s from our set of variables {v, w, x, y, z}, we let �s denote a
line in Ds5 ∼= P2. (Note that �s is also represented by the curve Ds5 ∩Ds4t for
any variable t distinct from s.) Finally, given two variables s and t from the
set {v, w, x, y, z}, we let σs,t be the intersection of Ds3t2 and Ds2t3 . We will
conjecture below that the 315 curve classes of the form [γm,n], [�s], and [σs,t]
are precisely the generators of all extremal rays and collectively generate the
Mori cone of the mirror quintic.

There are a few more curves which should be discussed. For each pair of
variables such as {y, z}, resolving the corresponding one-dimensional singular
locus produces four divisors which in the example are Dy4z, Dy3z2 , Dy2z3 , and
Dyz4 . Each divisor appears over three of the C3/(Z5)2 points (corresponding

2Our convention is to only use the notation γm,n in case the two divisors Dm
and Dn are both compact in the inverse image of some C5/(Z5)2 point.
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Figure 3: A general dP3, and a particular dP3.

to the triples of variables which contain {y, z}) and they are labeled the same
way in each instance. These divisors are all ruled (by the exceptional curves
resolving the non-isolated singularities), and we label the fiber ϕ of the ruling
with the same monomial as that of the divisor (e.g., the ruling on Dy4z is
ϕy4z). There are also curves of intersection of adjacent pairs of such divisors,
labeled by a pair of monomials, e.g., the intersection of Dy4z and Dy3z2 . The
only extremal curves among those are the lines �s, �t and the “middle” sections
σs,t.

We determine the relations among the various curve classes by analyzing
the structure of the divisors. Each compact divisor of the form Dm where the
monomial m involves three variables (which is represented by a hexagon in the
dual graph) is isomorphic to dP3, i.e., the blowup of P2 in three non-collinear
points. Each of the six toric curves on the divisor has self-intersection −1, as
illustrated in the left half of Figure 3. In the right half of that same figure, we
have chosen a particular example so as to provide notation for the relations
on curve classes that we are about to describe.

A dP3 has three rulings, each having two singular fibers. Each singular
fiber in one of these rulings is the union of two adjacent −1 curves. For
example, the ruling whose general fibers run from southwest to northeast in
the right side of Figure 3 has special fibers γx4y,x3yz∪γx3y2,x3yz and γx3yz,x3z2∪
γx3yz,x2yz2 . This leads to a relation among the curve classes which we denote
by Rxy,z

x3yz, namely

(6) Rxy,z
x3yz = [γx4y,x3yz] + [γx3y2,x3yz] − [γx3yz,x3z2 ] − [γx3yz,x2yz2 ].

The subscript on R denotes the divisor which generated the relation. The
superscript identifies the ruling in the following way: the parameter space for
the ruling proceeds from the xy edge of the toric diagram to the z vertex
of the toric diagram. In this way, we can list all such relations in the xy, z
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direction, as follows:

(7)

Rxy,z
x3yz = [γx4y,x3yz] + [γx3y2,x3yz] − [γx3yz,x3z2 ] − [γx3yz,x2yz2 ]

Rxy,z
x2y2z = [γx3y2,x2y2z] + [γx23y3,x2y2z] − [γx1y2z,x2yz2 ] − [γx2y2z,xy2z2 ]
Rxy,z

xy3z = [γx2y3,xy3z] + [γxy4,xy3z] − [γxy3z,xy2z2 ] − [γxy3z,y3z2 ]
Rxy,z

x2yz2 = [γx3yz,x2yz2 ] + [γx2y2z,x2yz2 ] − [γx2yz2,x2z3 ] − [γx2yz2,xyz3 ]
Rxy,z

xy2z2 = [γx2y2z,xy2z2 ] + [γxy3z,xy2z2 ] − [γxy2z2,xyz3 ] − [γxy2z2,y2z3 ]
Rxy,z

xyz3 = [γx2yz2,xyz3 ] + [γxy2z2,xyz3 ] − [γxyz3,xz4 ] − [γxyz3,yz4 ]

Similarly, we can relate the fiber in the ruling on one of the “edge” divisors
to a degenerate fiber within the toric diagram. The ones in the same xy, z
direction are:

(8)

Rxy,z
x4y = [ϕx4y] − [γx4y,x4z] − [γx4y,x3yz]

Rxy,z
x3y2 = [ϕx3y2 ] − [γx3y2,x3yz] − [γx3y2,x2y2z]

Rxy,z
x2y3 = [ϕx2y3 ] − [γx2y3,x2y2z] − [γx2y3,xy3z]

Rxy,z
xy4 = [ϕxy4 ] − [γxy4,xy3z] − [γxy4,y4z]

Other relations of the same type as in eqs. (7) and (8) can be generated by
substituting any three variables for x, y, z. This gives 30 versions of eq. (7).

The compact divisor Dx3yz also allows us to exhibit a relation among
relations, since the three specified relations among six −1 curves are not
linearly independent. The “syzygy” is easily seen to be

(9) Rxy,z
x3yz + Ryz,x

x3yz + Rzx,y
x3yz = 0.

A similar syzygy exists for each compact divisor. We thus conclude that of
the 180 relations of type (7) among the 300 γ curves, only 120 are linearly
independent.

We can implement these relations as illustrated in Figure 4. In that fig-
ure, we have selected a subset of the compact curves (marked with a purple
dash) which constitute 4 curves on each compact divisor. In addition, for the
unmarked compact curves, we have used a green arrow to designate which
divisor’s relations should be used to eliminate that curve from the spanning
set. Each compact divisor has two green arrows within it, indicating that two
of the relations belonging to that divisor are used in this elimination process.
Those relations are linearly independent.
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Figure 4: Basis for compact curves.

The divisors on the edges, such as Dx4y also give rise to relations among
the γ curves, since three expressions for [ϕx4y] are derived from relations of
the type in eq. (8). The ones for ϕx4y are

(10)

Rxy,v
x4y = [ϕx4y] − [γx4y,x4v] − [γx4y,x3yv]

Rxy,w
x4y = [ϕx4y] − [γx4y,x4w] − [γx4y,x3yw]

Rxy,z
x4y = [ϕx4y] − [γx4y,x4z] − [γx4y,x3yz]

and by subtraction we obtain two independent relations among the γ curves.
Since this can be done for each of 4 divisors along each of 10 edges, there are
80 relations in total of this type. These relations are independent.

Thus, we find a total of 200 linear relations among the 300 compact γ
curves, leaving 100 independent classes.

We now consider the divisors on the edges of the toric diagram, which
form the resolution of the A4 loci. We take as an example the sequence of
divisors Dy4z, Dy3z2 , Dy2z3 , Dyz4 . The first two divisors in any such sequence
are illustrated in Figure 5, in other words, the divisor on the left is Dy4z and
the divisor on the right is Dy3z2 . To the left of Dy4z is Dy5 and to the right
of Dy3z2 is Dy2z3 . (There is also a third singular fiber in the ruling on each
divisor; these are indicated with narrow lines.)

As we mentioned earlier, the divisors Dy5 and Dy4z meet on �y which has
self-intersection 1 on Dy5 . By the adjunction formula, the self-intersection of
this curve on Dy4z (where it is a section of the ruling) must be −3. It follows
that Dy4z is a blowup of the Hirzebruch surface F3, and since there are three
singular fibers, the disjoint section Dy4z ∩ Dy3z2 must have self-intersection
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Figure 5: Two adjacent components of the resolution of the A4 locus.

0 on Dy4z. In fact, we can say more: by the description as a blowup of a
Hirzebruch surface3

(11) [Dy4z ∩Dy3z2 ] = [�y] + 3[ϕy4z] − [γvy3z,y4z] − [γwy3z,y4z] − [γxy3z,y4z],

which can also be written

(12) [Dy4z ∩Dy3z2 ] = [�y] + [γvy4,y4z] + [γwy4,y4z] + [γxy4,y4z].

Using adjunction again, the self-intersection of Dy4z ∩ Dy3z2 on Dy3z2

must be −2, which tells us that Dy3z2 is the blowup of a Hirzebruch surface
F2 in three points. The disjoint section σy,z = Dy3z2 ∩Dy2z3 must thus have
self-intersection −1 on Dy3z2 , and again we get a relation among curve classes:

(13) [σy,z] = [Dy4z∩Dy3z2 ]+2[ϕy3z2 ]−[γvy2z2,y3z2 ]−[γwy2z2,y3z2 ]−[γxy2z2,y3z2 ],

which can also be written

(14) [σy,z] = [Dy4z ∩Dy3z2 ] + [γvy3z,y3z2 ] + [γwy3z,y3z2 ] − [γxy2z2,y3z2 ]

(a little less naturally this time, since we must single out one of the three
singular fibers). Combining these two gives

[σy,z] = [�y] + [γvy4,y4z] + [γwy4,y4z] + [γxy4,y4z](15)
+ [γvy3z,y3z2 ] + [γwy3z,y3z2 ] − [γxy2z2,y3z2 ].

3If we blowup the Hirzebruch surface Fn at k points which are contained in a
section σ of the P1-fibration (with fiber ϕ) having (σ)2

Fn
= n ≥ 0, then the blowup

contains the proper transform ϕ of ϕ, the proper transform σ∞ of the section
σ∞ with (σ∞)2

Fn
= −n ≤ 0, the proper transform σ of σ, and the exceptional

divisors e1, . . . , ek. The basic homology relation [σ] = [σ∞] + n[ϕ] on Fn pulls back
to a homology relation [σ] + [e1] + · · · + [ek] = [σ∞] + n[ϕ] on the blowup. Note
that [ϕ] − [ej ] is represented by an effective (−1)-curve e′j , and that [ej ] + [e′j ] is
homologous to [ϕ].
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We thus get 20 additional relations among our 315 curves. However, at
most 14 of the 20 relations can be linearly independent, which can be seen
from Batyrev’s calculation of b4 of the quintic mirror [3].

The conclusion (from Batyrev’s calculation) is that there are precisely
101 independent curve classes generated by our explicit set of 315 curves.

We now consider relations among the divisors. First, for the divisors whose
monomials are chosen from {x, y, z}, we can determine some linear combina-
tions which have intersection number 0 with all 30 compact curves lying over
the corresponding singular point. There are three linearly independent combi-
nations, which we label as Dx,yz, Dy,xz, and Dz,xy, and which are described by
means of coefficient arrays whose shape matches that of Figure 2, as follows:

Dy,xz =

0
1 0

2 1 0
3 2 1 0

4 3 2 1 0
5 4 3 2 1 0

,

Dz,xy =

0
0 1

0 1 2
0 1 2 3

0 1 2 3 4
0 1 2 3 4 5

,

Dx,yz =

5
4 4

3 3 3
2 2 2 2

1 1 1 1 1
0 0 0 0 0 0

.

Note that �x meets Dx5 with intersection number −3, and also meets Dx4y

and Dx4z, each with intersection number 1. It follows that Dx,yz meets �x
with intersection number −7, meets �y once, and meets �z once.

This calculation suggests how to find a divisor which has intersection
number 0 with all curves γm1,m2 . Let

(16) Dx =
∑

monomials m with
at most three variables

νx(m)Dm,
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where νx(m) denotes the exponent of the variable x in the monomial m. Since
the coefficients of Dx in any triangle containing x have the same pattern as
Dx,yz, the intersection with all of the compact curves over such a point is 0.
And since the coefficients of Dx are all zero in any triangle not containing x,
the intersection number with each of the compact curves over such a point is
also 0.

Also, Dx meets �x at the components Dx5 and Dx4∗, so the total inter-
section number is

Dx · �x = 5 · (−3) + 4 · 4 · 1 = 1.

On the other hand, for any other variable such as y, the only component of
Dx with a nonzero coefficient which meets �y is Dx4y. Thus, Dx · �y = 1 as
well (and similarly for �v, �w, and �z).

It follows that Dx·γ = 0, Dx·� = 1 for all γ curves and lines �, respectively.
Now, the same thing happens for Dv, Dw, Dy, and Dz, so the difference

of any two is numerically trivial. This produces four linear relations among
the 105 divisors Dm, giving a space of dimension 101.

Note that Dx (and the others) can be identified with a hyperplane section
H of the original singular model of the mirror quintic.

We would like to write down one more divisor, which has intersection
number 1 with all γ curves, and intersection number 0 with all lines �. To
this end, we consider the following coefficient array

16
12 12

10 9 10
10 8 8 10

12 9 8 9 12
16 12 10 10 12 16

The corresponding divisor has intersection number 1 with each compact γm
where m involves the variables {x, y, z}. This is verified by checking total
intersection number in various sub-diamonds of the coefficient array, such as
16 + 9 − 12 − 12 which corresponds to intersections with γx4y,x4z.

To make a global version of this, we define a function a on monomials as
follows. The nonzero exponents in the monomial m determine a partition of
5 into at most three elements, and the value of the function only depends on
the partition, as follows:

Partition 5 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1
a(m) 16 12 10 9 8
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Then the divisor

D =
∑

monomials m with
at most three variables

a(m)Dm

has the property that D ·γ = 1 for all γ. Note that �x meets Dx5 of coefficient
16 with intersection number −3, and meets 4 divisors of the form Dx4∗ each
of coefficient 12 and with intersection number 1. Thus,

D · �x = 16 · (−3) + 4 · 12 · 1 = 0

and similarly for any of the D · �.
Having identified the curves �t and σs,t for s, t ∈ {w, v, x, y, z}, and the

curves γm1,m2 above, we conjecture that these generate the Mori cone of
numerical equivalence classes of effective curves on Xψ.

Conjecture 1. The Mori cone M of Xψ is generated by the classes of the
curves �t, σs,t, and γm1,m2.

In the rest of this paper, we assume this conjecture whenever necessary.
If C is a curve on Xψ, we define the degree of C to be the degree of its

image C := ρ(C) ⊂ Yψ ⊂ P5. We will show presently in Lemma 2 that if
C ⊂ Xψ has degree zero, then its class [C] is in the cone generated by the
classes of the curves γm1,m2 . Furthermore, in Section 2 we will show that if
C ⊂ Xψ has degree 1, then its class [C] is in the cone generated by the classes
of the curves �t, σs,t, and γm1,m2 . In other words, the conjecture is true for
curves of degree at most 1.

Lemma 2. The class of any curve in an exceptional divisor for the birational
contraction ρ is in the cone generated by the classes of the curves �t, σs,t, and
γm1,m2.

In particular, the conjecture is true for curves of degree 0.

Proof. We give separate arguments for the exceptional divisors which contract
to a point and to a curve.

The exceptional divisors contracting to a point are all dP3s. It is well-
known that the Mori cone of dP3 is generated by the classes of its six excep-
tional curves of the first kind. But these exceptional curves are precisely the
γ curves contained in that dP3.

The exceptional divisors contracting to a curve are the components of one
of the A4 resolutions. By symmetry we need only analyze the curves in Dy4z

and Dy3z2 .
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Now Dy4z is identified with the blow up of the Hirzebruch surface F3 at
three general points, the exceptional curves being identified with the curves
γy4z,y3zs for s ∈ {v, w, x}. Using the blowup description, the Mori cone is
generated by the −3 section, the proper transform of any +3 section contain-
ing the points being blown up, the proper transform of the fibers, and the
exceptional curves. We need only check each curve in turn. The −3 section
is identified with the curve �y. We have already noted that the exceptional
curves are all γ curves. The proper transform of the fiber which meets γy4z,y3zs
is just γy4z,y4s, also a γ curve. The proper transform of a particular +3 section
is identified with Dy4z ∩ Dy3z2 , which is in the cone generated by �y and γ
curves by (12).

Next, we observe that Dy3z2 is similarly identified with the blow up of
the Hirzebruch surface F2 at three points on a +2 section, the exceptional
curves being identified with the curves γy3z2,y2z2s for s ∈ {v, w, x}. Using the
blowup description, the Mori cone is generated by the −2 section, the proper
transform of the unique +2 section containing the points being blown up, the
proper transform of the fibers, and the exceptional curves. We need only check
each curve in turn. The −2 section is identified with the curve Dy4z ∩Dy3z2

already considered above. We have already noted that the exceptional curves
are all γ curves. The proper transform of the fiber which meets γy4z,y3zs is just
γy4z,y4s, also a γ curve. The proper transform of the +2 section is identified
with σy,z.

We can give a plausibility argument in favor of our conjecture for arbitrary
degree as follows. Let C be any irreducible curve on the mirror quintic, and
let C be its image on the singular model as above. If C is contained in the
singular locus, then C must lie in one or more of the exceptional divisors
of the blowup. This case is handled by Lemma 2. If C is not contained in
the singular locus then it meets the singular locus in finitely many points.
We want to claim – and this is the gap in the argument – that C can be
deformed away from the singular locus. The family Ct, when lifted to the
smooth model, will have a limit C0 consisting of C together with some curves
which are contained in exceptional divisors. As mentioned earlier, those latter
curves are in the cone generated by known curves.

We next let H = Z2 = Z · �⊕ Z · γ and project curve classes to H via

(17) π : M → H, π(C) = (C ·Dx) � + (C · D) γ.

The notation for the basis for H has been chosen so that π(�t) = � and
π(γm1,m2) = γ. We also observe that if π(β) = m� + nγ, then ρ∗(β) is the
class of a degree m curve in Yψ ⊂ P5.
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We compute and record the following curve classes, which are computed
from (17) and the definitions of Dx and D.

π(γt5,t4u) = �(18)
π(γt4u,t3u2) = � + 3γ(19)

π(σt,u) = � + 4γ(20)

where t and u are distinct elements of {v, w, x, y, z}.
Our interest is in defining and computing Gopakumar-Vafa invariants of

classes in H in order to compare to the calculations of [10].

Lemma 3. Fix δ ∈ Z2. Then the set of curve classes β ∈ M with π(β) = δ
is finite.

Proof. We write δ = m� + nγ and may assume m ≥ 0, n ≥ 0, and (m,n) �=
(0, 0), otherwise the statement of the lemma is trivial. We can write

(21) β =
∑

mt�
t +

∑
ni,jγm1,m2 +

∑
ps,tσs,t

with mt, ni,j , ps,t > 0, suppressing from the notation the implicit set of 3
variables needed to define γm1,m2 . In writing (21), we have adopted the con-
vention that we always use � in place of a class of the form γt5,t4u. Then
π(β) = δ implies

∑
mt +

∑
ni,j +

∑
ps,t = m and 3

∑
ni,j + 4

∑
ps,t = n,

which has only finitely many solutions for mt, ni,j and ps,t.
Lemma 3 ensures that the two parameter projection of [10] makes mathe-

matical sense: their invariants are simply a sum of finitely many Gopakumar-
Vafa invariants.

For δ ∈ H we define

(22) ng
m,n =

∑

π(β)=m�+nγ

ng
β ,

which is a finite sum by Lemma 3. In (22), ng
β is the genus g GV invariant

associated with the curve class β ∈ H2(Xψ,Z). The GV invariants will be
discussed in more detail in Section 2.

2. Enumerative geometry

In this section, we calculate some genus 0 Gromov-Witten invariants. In prin-
ciple we can algorithmically compute the genus 0 Gromov-Witten invariants
for the full 101 parameter model using the toric mirror theorem [8], but we
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leave that for future work. It is conceivable that there may be a way to modify
the toric mirror theorem to apply directly to our two-parameter family. That
would certainly be worth doing.

2.1. Generalities

In lieu of calculating genus 0 Gromov-Witten invariants, we calculate the
genus 0 Gopakumar-Vafa invariants [9], which is easier in examples. Let
β ∈ H2(Xψ,Z). Mathematically, we follow [11] by defining the genus 0
Gopakumar-Vafa invariant n0

β as the Donaldson-Thomas invariant of the
moduli space of stable sheaves F with [F ] = β (which is known to be indepen-
dent of the choice of polarization used to define stability). This definition is
consistent with the mathematical definition of higher genus Gopakumar-Vafa
invariants ng

β given later in [12].
The Gromov-Witten invariants N0

β are related to the n0
β by the Aspinwall-

Morrison formula [2, 15]4

(23) N0
β =

∑

k|β

n0
β/k

k3

so we content ourselves with the calculation of the n0
β.

Furthermore, in all of our cases, the stable sheaves are of the form OC

for rational curves C and so the moduli spaces of sheaves is just the moduli
space of curves. Even better, these moduli spaces Mβ are smooth, and the
Donaldson-Thomas invariant is simply

(24) n0
β = (−1)dim(Mβ) e (Mβ) ,

where e (Mβ) is the topological euler characteristic.

2.2. Degrees 0 and 1

We now record our results for Gopakumar-Vafa invariants in the classes m�+
nγ, with m = 0, 1. These are the classes which project to points or lines in

4A proof of the multiple cover formula has only been written down for isolated
curves. However, in our cases, it can be shown by symplectic techniques that the
∂̄ operator can be deformed so that there are only finitely many embedded pseu-
doholomorphic curves, all isolated, and the number is given by the associated GV
invariant, with signed counts corresponding to orientation choices. This is easy for
primitive curve classes since the moduli spaces are smooth and projective, but with
more care the case of 2γ below can also be handled.
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the singular model Yψ.

n0
γ = 300(25)

n0
2γ = −440(26)
n0
� = 15(27)

n0
�+γ = −60(28)

n0
�+2γ = 155(29)

We begin with the classes of the form nγ. By Lemma 2 and its proof, these
curves can be constructed from the γ curves and the fibers of the divisors of
the A4 resolution.

γ. The curves of class γ contained in each rational ruled surface are just
the components of the reducible fibers. The curves of class γ contained in
each dP3 are the 6 curves depicted in Figure 3. So we simply count all of
these curves.

Each 2-simplex depicted in Figure 1 corresponds to one of the 10 singular
points. We count 30 curves of class γ corresponding to each 2-simplex. Thus
n0
γ = 10 · 30 = 300.

2γ. Again inspecting Figure 3, we see that any intersecting conifiguration
of two curves of type γ must lie in exactly one of the dP3s or the ruled surfaces
lying over a singular curve. Since each curve γ has self-intersection −1 in the
surface just described, the union γ1 +γ2 is a rational curve of self-intersection
0 in a rational surface, hence it moves in a pencil. The corresponding contri-
bution to the GV invariant is (−1)1e(P1) = −2 by (24).

There are 3 such pairs of intersecting −1 curves for each of the 6 dP3’s
over each of the 10 singular points.

There are 4 ruled surfaces over each to the 10 singular curves.
Thus, n0

2γ = (−2)(10 · 3 · 6 + 10 · 4) = −440.
We now turn to the curves of the form � + nγ. Since all of these project

to lines in Yψ, we start by identifiying the lines in Yψ.

Lemma 4. Any line in Yψ is contained in one of the five P2’s defined by the
simultaneous vanishing of u and one of the coordinates {v, w, x, y, z}, as well
as eq. (4).

Proof. The proof is inspired by an argument in [1]. Let � ⊂ Yψ be a line and
suppose that � is not contained in any of these P2’s. If � is not contained in
the hyperplane u = 0, then it intersects that hyperplane at a point p ∈ �. It
follows from (5) that each of the five hypersurfaces t = 0 must also contain p.
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This is a contradiction, since it would imply that 6 hyperplanes with empty
intersection all contain p.

Since u is identically 0 on �, it follows from (5) that at least one of the t
must vanish identically on �, which proves the lemma.

Now let C be any irreducible curve of degree 1, and we claim that its class
is in the cone generated by the classes of the curves �t, σs,t, and γm1,m2 . In this
case C = ρ(C) ⊂ Yψ is a line. It follows that C must either be contained in
one of the exceptional divisors forming an A4 resolution or one of the divisors
Ds5 . We have already shown the claim in the first case. In the second case,
[C] = [�s].

�. The classes β which contribute to n0
� project to a line in Yψ, which must

lie in at least one of the five P2’s described in Lemma 4. The divisor Dx5 is
the proper transform of one such P2, and the lines in such a P2 have class �.
The lines are parametrized by a dual P2 and so contribute +3. There are five
such P2, giving 5 · 3 = 15.

We claim that there are no other contributions. The only remaining pos-
sibility is for the projection to lie in more than one P2 and thus be a singular
line. In this case one component of the curve must be a section of one of the
4 ruled surfaces over the singular line. But from (18) and (19) we infer that
the Mori cone of Dx4y is generated by � and γ, while the only curve of class
� in Dx4y is γx5,x4y, which we have already considered as a line in Dx5  P2.
Similarly, the Mori cone of Dx3y2 is generated by � + 3γ and γ by (19) and
(20), so Dx3y2 contains no curves of class �. Hence, the final answer is n0

� = 15.
�+γ. As above, we must have a component which is a line in one of the 5

P2’s, and we look for all ways to attach a curve γ. A typically way is to take
the line in Dx5 passing through the point Dx5∩Dx4y∩Dx4z (there is a pencil of
such lines) and attach γx4y,x4z. All other cases are obtained by permutations
of the underlying data. Such curves are associated with a partial flag p ∈ P2,
where p is one of the 10 singular points and P2 is one of the 3 P2’s containing
a given singular point. This gives n0

�+γ = 10 · 3 · (−2) = −60.
� + 2γ. Again, we must have a component which is a line in one of the

5 P2’s. We look for all ways to attach two curves of class γ or one curve of
class 2γ. For the first case, we choose one of the five P2’s which we identify
with some Dt5 and a pair of the 6 singular points contained in that P2. This
specifies a line in Dt5 containing the two singular points. Then we glue the
curves of type γ which meet each of the singular points. This contributes
5 · 15 = 75.

We have already seen how the fibers of the ruled surfaces have class 2γ.
A typical example is to glue a line � ⊂ Dx5 containing a point p ∈ γx5,x4y
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to a fiber ϕx4y. All other cases are given by permutation. The data p ∈ � is
parametrized by the blowup of the dual P2 at the point γx5,x4y of this dual
P2. This blowup has euler characteristic 4 and contributes +4 to the GV
invariant. We have such a pencil for each choice of one of the 5 P2’s and one
of the 4 singular lines contained in each P2. This contributes 5 · 4 · 4 = 80.

Combining these cases, we get n0
�+2γ = 75 + 80 = 155.

2.3. Degree 2

Here we only have partial results, but we note that they already agree with
parallel calculations in [10]. We compute the invariants of those curves of
class 2� + nγ which lie inside the union of the toric divisors Dm, and denote
the contribution of these curves by n0,toric

2�+nγ . However, since we do not have an
analogue of Lemma 4 at our disposal, it is possible that n0,toric

2�+nγ �= n0
2�+nγ .

We record our results.

n0,toric
2� = −30(30)

n0,toric
2�+γ = 150(31)

n0,toric
2�+2γ = −500(32)

2�. In this class, we clearly have the conics in any of the five toric di-
visors Ds5 , each of which is a P2. Since conics are parametrized by P5, the
contribution is 5(−6) = −30.

The argument that we used in the case β = � shows that there are no
other curves in ∪Dm representing β = 2�.

2� + γ. Analogous to the case of � + γ, our curve must be a connected
union of one of the conics of class 2� and a curve γ, to which is associated
to one of 30 possible partial flags p ∈ P2. The linear system of conics in P2

containing a point p is a P4. So the invariant is 30 · 5 = 150.
2�+ 2γ. As in the situation of �+ 2γ, we must have a conic C ⊂ Ds5 as a

component. There are then two possibilities. Either C is glued to two distinct
γ curves, each meeting Ds5 in one of the 6 singular points that it contains, or
C is glued to a fiber of a ruled surface Ds4t.

In the first case, we choose one of the five P2 and one of the 15 pairs of
the 6 singular points in that P2 at which we glue a γ curve. The linear system
of plane conics through a pair of points is a P3. So the net contribution is
5 · 15 · (−4) = −300.

In the second case, for each of the 5 divisors Ds5 , we pick one of the 4
singular lines γs5,s4t contained in it. We get a curve of class 2�+2γ by choosing
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a point p ∈ γs5,s4t, taking a conic C ⊂ Ds5 containing p, and gluing it to the
fiber φs4t containing p. This moduli space is a P4 bundle over P1, contributing
−10. So the total contribution is 5 · 4 · (−10) = −200.

Combining these two cases, we get n0,toric
2�+2γ = −300 − 200 = −500.

3. Five parameter projection

In this section, we prove Conjecture 1 in a five-parameter projection. Let us
first explain what this means.

It follows from Batyrev’s calculation [3] (which used toric constructions to
represent curve classes, as we have done) that the curves �t, σs,t, and γm1,m2

identified in Conjecture 1 span H2(Xψ,Q). Furthermore, the curves σs,t are
not needed by (15).

We let V be the Q-vector space with generators �t, σs,t, and γm1,m2 . Then
there is a natural surjective map r : V → H2(Xψ,Q). The kernel of r is
spanned by the relations (7)–(15) together with the analogous relations ob-
tained by substitutions of the variables, described in Section 1.

The group S5 acts on Yψ by permuting the coordinates, and this action
lifts naturally to an action on Xψ. Let W be the Q-vector space generated
by the set of S5-orbits of the �t, σs,t, and γm1,m2 . There is a natural map
n : V → W . Since the set of relations spanning ker(r) just described is
invariant under S5, we deduce a natural map

(33) ρ : H2(Xψ, Q) → N := W/ (n (ker r)) .

Let M ⊂ N ⊗ R be the cone spanned by the classes ρ(�t), ρ(σs,t), and
ρ(γm1,m2). Recall the Mori cone M ⊂ H2(Xψ,R).

Lemma 5. dim(N) = 5.

Proof. As noted above, we can ignore the ρ(σs,t). Clearly, all of the curves �s
are identified by the S5 action. There are six S5 orbits of curves γm1,m2 :

(34) γs4t,s4u, γs4t,s3tu, γs3t2,s3tu, γs3t2,s2t2u, γs3tu,s2t2u, γs2tu2,s2t2u.

However, the third relation in (7) gives ρ(γs4t,s3tu) = ρ(γs3tu,s2t2u) since
the first and last terms cancel in the projection, and similarly the fifth relation
in (7) gives γs3t2,s2t2u = γs2tu2,s2t2u, since the second and third terms cancel
in the projection. Thus the ρ(γm1,m2) span a 4-dimensional space. Including
the ρ(�s), we get dim(N) = 5.

Proposition 6. ρ(M) = M.
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Proof. Let τ ⊂ M be the simplicial cone spanned by the ρ(γm1,m2) and ρ(�s).
We compute the dual cone τ∨, expressing the edges in terms of S5-invariant
divisors on Xψ.

Claim. Each of these five S5-invariant divisors can be chosen to be effective.
We defer the calculation and complete the proof.

Let C be an irreducible curve in the mirror quintic. If C is contained in a
toric divisor, we already know that [C] is contained in the semigroup spanned
by �t, σs,t, and γm1,m2 by our previous calculation of the Mori cone of these
toric surfaces. So ρ([C]) ∈ M.

If C is not contained in any toric divisor, then its intersection with each
toric divisor is nonnegative, and in particular its intersection with each of the
five S5-invariant divisors is nonnegative. But these intersection numbers are
simply the coefficients of ρ(C) as it is expressed as a linear combination of
the edges of τ . Therefore ρ(C) ∈ τ ⊂ M.

It remains to compute the edges of τ∨. We can express the five generators
of τ as

(35) ρ(�s), ρ(γs4t,s4u), ρ(γs4t,s3tu), ρ(γs3t2,s3tu), ρ(γs3t2,s2t2u)

We have already constructed an effective toric divisor Dx with Dx · · · �s =
1 and having intersection number zero with each γ curve. Therefore, sym-
metrizing Dx gives an S5-invariant divisor which spans the edge of τ∨ dual
to the face of τ which does not contain ρ(�s).

4. Conclusions

We have studied the curves on the quintic mirror threefold, using toric con-
structions to obtain curves, and using toric surfaces to see the relations among
them. Those same toric surfaces allowed us to isolate some of these curves
as potentially extremal: they are extremal on the surface that contains them,
but not (yet) known to be extremal on the threefold itself. We hope that this
approach to studying curves will be useful in other contexts as well.
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