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Abstract: We try to understand which morphisms of complex
analytic spaces come from algebraic geometry. We start with a
series of conjectures, and then give some partial solutions.
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A proper, irreducible, reduced analytic space X is Moishezon if it is bimero-
morphic to a projective variety Xp, and a proper morphism of analytic spaces
g : X → S is Moishezon if it is bimeromorphic to a projective morphism
gp : Xp → S; see (7) and (10–11) for details.

The aim of this note is to discuss a series of questions about Moishezon
morphisms, and give partial solutions to some of them.

We start with a list of conjectures in Section 1. Sections 2–3 are mostly
review; new results are in Sections 4–6.

1. Open questions

The theory of Moishezon spaces can be viewed as a special chapter of the
theory of algebraic spaces (and later stacks). However, a deformation of a
Moishezon space need not be Moishezon, thus we get a theory that is not
algebraic. The question we consider is the following.
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• Which morphisms of complex analytic spaces come from algebraic ge-
ometry, up to bimeromorphism?

The main open problem may be Conjecture 1 and its special case Con-
jecture 2. I have very little evidence supporting them and several experts
thought that they are likely wrong.

Conjectures 3–4 about the deformation theory of Moishezon spaces go
back at least to Hironaka’s unpublished thesis.

Conjecture 5 can be viewed as a geometric form of deformation invariance
of plurigenera [RT20, Thm.1.2], see also (34).

Conjecture 1. A proper morphism of analytic spaces g : X → S is locally
Moishezon (11) iff every irreducible component of every fiber is Moishezon.

Comments 1.1. We check in (16) that the fibers of a Moishezon morphism
are Moishezon. If g is smooth, a positive answer is in [RT21, Thm.1.4] and
[RT20, Thm.1.2]; see (22).

If π1(S) is finite and S is either Stein or quasi-projective, then maybe g

is also globally Moishezon. Easy examples (13) show that finiteness of π1(S)
is necessary for the global variant.

Note that we do not assume that g is flat or that X,S are smooth. It is,
however, quite likely that the above generality does not matter. The semi-
stable reduction theorem [AK00] suggests that there is a projective, bimero-
morphic morphism S′ → S such that the main component of X ×S S′ is
bimeromorphic to a morphism g′ : X ′ → S′ such that g′ is flat, toroidal and
S′ is smooth.

A positive answer for g′ : X ′ → S′ does not automatically imply a positive
answer for g : X → S, but the method may generalize.

It is reasonable to start with the case when g is flat with mildly singular
fibers. The following may well be the key special case, where D denotes the
complex disc.

Conjecture 2. Let X be a smooth analytic space and g : X → D a proper
morphism. Assume that the fibers Xs are Moishezon for s �= 0, and X0 is a
simple normal crossing divisor whose irreducible components are Moishezon.
Then g is Moishezon.

The Clemens-Schmid sequence should be a key ingredient here; see [Cle69,
Cle77, Cle82] or the survey paper [GS75].

For an arbitrary smooth, proper morphism, the set of Moishezon fibers
need not be closed (25), but the following could be true.
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Conjecture 3. Let g : X → D be a flat, proper morphism. Assume that X0
is irreducible with rational singularities and Xs is Moishezon for s �= 0. Then
X0 is Moishezon.

Comments 3.1. There are 3 preprints [Pop09, Bar17, Pop19] claiming
a positive answer if X0 is smooth. These lie outside my expertise, but my
understanding is that not everyone is able to follow the arguments in them.
Several cases are proved in [Bar15].

The analogous question for surfaces with cusp singularities has a negative
answer; see (14). Cusps are the simplest non-rational surface singularities.
This suggested that either log terminal or rational singularities may be the
right class here.

Conjecture 4. Let X be a smooth analytic space and g : X → D a proper
morphism. Assume that one of the irreducible components of X0 is of general
type. Then g is Moishezon and all other fibers are of general type (over a
possibly smaller disc).

Comments 4.1. Smooth, projective K3 and elliptic surfaces have defor-
mations that are not even Moishezon, so general type may be the best one
can hope for. We can harmlessly assume that X0 is a reduced, simple normal
crossing divisor.

If X0 is irreducible and smooth, this is posed in [Sun80, p.201]; which in
turn builds on problems and conjectures in [Iit71, Moi71, Nak75, Uen75].

If X0 is irreducible, projective and has canonical singularities, a positive
answer is given in [Kol22]. Note, however, that smooth Moishezon spaces can
have unexpected deformations; see [Cam91, LP92].

Let g : X → S be a Moishezon morphism. By definition, it is bimero-
morphic to a projective morphism gp : Xp → S. Thus the fibers Xs and Xp

s

are bimeromorphic to each other for general s ∈ S, but may be quite dif-
ferent for special points s ∈ S. The following conjecture suggests that, over
1-dimensional bases, one can arrange Xs and Xp

s to be bimeromorphic to each
other for every s ∈ S.

Conjecture 5. Let g : X → D be a flat, proper, Moishezon morphism.
Assume that X0 has canonical (resp. log terminal) singularities. Then g is
fiberwise birational (26) to a flat, projective morphism gp : Xp → D such that

(1) Xp
0 has canonical (resp. log terminal) singularities,

(2) Xp
s has terminal singularities for s �= 0, and

(3) KXp is Q-Cartier.
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Comments 5.4. This is where singularities inevitably enter the picture.
Even if g is a smooth family of projective surfaces, Xp may need to be singular;
see for example [Kol22, Exmp.4].

If g is smooth and the fibers are of general type, then [RT20, Thm.1.2]
implies that the canonical models of the fibers give the optimal choice for
gp : Xp → D. (Here all fibers can have canonical singularities.)

We give a positive answer to the log terminal case, provided X0 is not
uniruled, see (28). The canonical case is discussed in (32).

Remark 6. My aim is to understand how much of the theory of Moishezon
spaces fits into algebraic geometry, and especially minimal model theory. The
paper [RT20] gave the impetus to try to organize this into a systematic series
of questions.

Campana pointed out that several of these questions have analogs for
compact spaces of Fujiki’s class C, and have a positive answer if we assume
that the total space is of class C; see [Cam81].

A very different direction studies the place of the Moishezon property in
the theory of compact complex manifolds. Solutions of Conjectures 1–2 are
more likely to come from this approach. See [Pop11] for a survey.

2. Moishezon spaces

We give a quick review of the theory of Moishezon spaces.

Definition 7. A proper, irreducible, reduced analytic space X is Moishezon
if it is bimeromorphic to a projective variety Xp. That is, there is a closed,
analytic subspace Γ ⊂ X ×Xp such that the coordinate projections Γ → X
and Γ → Xp are isomorphisms on Zariski open dense sets.

By Chow’s theorem, any 2 such Xp are birational to each other, so X
acquires a unique algebraic structure.

A proper analytic space X is Moishezon iff the irreducible components of
redX are Moishezon1. Thus X is Moishezon iff every irreducible component
of its normalization is Moishezon.

8 (Basic theorems). Let X be a proper Moishezon space.

(1) There is a projective variety X ′ and a bimeromorphic morphism X ′ →
X (Chow lemma).

(2) For every x ∈ X there is a pointed quasi projective scheme (x′, X ′) and
an étale morphism (x′, X ′) → (x,X).

1This is not standard terminology.
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(3) If X is normal then there is a proper variety Y and a finite group G
acting on Y such that X ∼= Y/G. (Note that usually Y can not be
chosen projective.)

(4) If Z → X is finite, then Z is Moishezon.
(5) If X → Y is surjective, then Y is Moishezon.
(6) Assume that X is smooth. Then the usual Hodge decomposition

H i(X,C) = ⊕p+q=iH
p(X,Ωq

X) holds.
(7) Hilb(X) and Chow(X) are algebraic spaces whose irreducible compo-

nents are proper (but the connected components may have infinitely
many irreducible components). The connected components of the space
of divisors Chown−1(X) are proper.

(8) If X has rational singularities then it is projective iff it is Kähler.

Hints of proofs. Note that (1) is not obvious [Moi66]. It also follows from
the more general results of [Hir75], and one can easily modify the arguments
in [Sta15, Tag 088U]; the key step is probably [Sta15, Tag 0815].

(2) is quite hard; see [Art70].
For (3), cover X with finitely many X ′

i → X as in (2). Then normalize X
in the Galois closure of the field extensions C(X ′

i)/C(X). One can then use
this to get Z → X as a quotient of a finite morphism Z ′ → X ′ to obtain (4).

For (5), using (4) and (1) we may assume that X → Y is generically
finite, say of degree d, and X is projective. Then y �→ [g−1(y)] ∈ SdX gives a
bimeromorphic embedding of Y into the dth symmetric power of X.

By direct computation, the existence of a Hodge decomposition is invari-
ant under smooth blow ups, thus we get (6). A better argument is in [Uen83,
Prop.1.3].

For (7) see [Art69, Bar75, Cam80, Fuj82, Kol96] and the more complete
treatment [BM20].

The smooth case of (8) is proved in [Moi66], the singular one in [Nam02].
Remark. The complements of closed analytic subsets form the open sub-

sets of the Zariski topology. Note, however, that 2 open subsets can be bi-
holomorphic to each other even if they are not birational. This is the main
reason why one usually does not define ‘Moishezon’ for non-proper analytic
spaces.

3. Moishezon morphisms

Definition 9 (Projective morphisms). A proper morphism of analytic spaces
g : X → S is projective if X can be embedded into PS := PN × S → S for
some N . Note that some authors allow PS → S to be any (locally trivial)
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PN -bundle. The 2 versions are equivalent if S is Stein or quasi-projective (the
cases we are mostly interested in) but not in general.

Definition 10 (Moishezon morphisms). [Moi74, Fuj82] Assume now that S
is reduced. A proper morphism of analytic spaces g : X → S is Moishezon iff
the following equivalent conditions hold.

(1) g : X → S is bimeromorphic to a projective morphism gp : Xp →
S. That is, there is a closed subspace Y ⊂ X ×S Xp such that the
coordinate projections Y → X and Y → Xp are bimeromorphic.

(2) There is a projective morphism of algebraic varieties G : X → S and a
meromorphic φS : S ��� S such that X is bimeromorphic to X ×S S.

Here (2) ⇒ (1) is clear. To see the converse, note that gp : Xp → S is flat
over a dense, Zariski open subset S◦ ⊂ S, thus we get a meromorphic map
φ : S ��� Hilb(PN ). The pull-back of the universal family over Hilb(PN ) is
then bimeromorphic to X.

Comment. This is the right notion if S is Stein or quasi projective, but,
as with projectivity, there are different versions in general.

Assume that X is normal and the maps

(10.3) X
φ��� Xp ι

↪→ PS

show that X → S is Moishezon. Then ι ◦ φ : X ��� PS is defined outside a
codimension 2 closed subset, and (ι ◦φ)∗OPS (1) extends to a rank 1 reflexive
sheaf L on X. This L ‘certifies’ that X is Moishezon. This gives another
equivalent characterization (in case X is normal, and S is Stein or quasi
projective.)

(4) There is a rank 1, reflexive sheaf L on X such that the natural map
X ��� ProjS(g∗L) is bimeromorphic onto the closure of its image.

We call such a sheaf L very big (over S)2. L is big (over S) if L[m] is very
big for some m > 0, where L[m] denotes the reflexive hull of the mth tensor
power.

Note that L is big (resp. very big) on X → S iff it is big (resp. very big)
on X◦ → S◦ on some dense, Zariski open S◦ ⊂ S.

Warning. By contrast it can happen that X◦ → S◦ is Moishezon but
X → S is not, since the L◦ that certifies Moishezonness need not extend to
X; see (14).

2Very big is not standard terminology, but it matches very ample.
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Definition 11 (Locally Moishezon morphisms). [Moi74] A proper morphism
of analytic spaces g : X → S is locally Moishezon if S is covered by (Eu-
clidean) open sets Si ⊂ S such that each g−1(Si) → Si is Moishezon.

Comment. This follows standard usage of ‘locally’ in algebraic geome-
try and it works best for the purposes of Conjecture 1. However, it is not
equivalent to the definition in [Fuj82].

Example 12. Let g : X → S be a proper morphism of analytic spaces, S
Moishezon. Then g is Moishezon iff X is Moishezon.

Example 13. Let Z be a normal, projective variety with discrete automor-
phism group. Let g : X → S be a fiber bundle with fiber Z over a connected
base S. Then g is Moishezon ⇔ g is projective ⇔ the monodromy is finite.

There are rational and K3 surfaces with infinite, discrete automorphism
group. These lead to fiber bundles over the punctured disc D◦ that are locally
Moishezon but not globally Moishezon.

Example 14. [Loo81] studies flat, proper morphisms g : X → D where
X0 is an Inoue surface (which is not Moishezon) with a cusp (which is log
canonical), yet Xs is a smooth rational surface for s �= 0.

Next we look at fibers of Moishezon morphisms.

Lemma 15. Let g : X → S be a proper, generically finite, dominant mor-
phism of normal, complex, analytic spaces. Then Ex(g) → S is Moishezon.

Proof. We prove the special case when the smooth locus of S is dense in
g
(
Ex(g)

)
. This is a harmless assumption if S is Stein (or quasi-projective),

since we can compose g with a finite S → CdimS (or with a quasi-finite
S → PdimS). A more heavy handed approach, which works in general, is to
use a resolution S′ → S and replace X with the normalization of the main
component of X ×S S′.

Let E0 be a g-exceptional divisor. Set (g0 : X0 → S0) := (g : X → S)
and Z0 := g0(E0).

If gi : Xi → Si and Ei ⊂ Xi are already defined, we set Zi := gi(Ei). Let
Si+1 be the normalization of the blow-up BZiSi, and gi+1 : Xi+1 → Si+1 the
normalization of the graph of Xi → Si ��� Si+1. Let Ei+1 ⊂ Xi+1 denote the
bimeromorphic transform of Ei. (Note that Xi+1 → Xi is an isomorphism
over an open subset of Ei.)

Let a(Ei, Si) denote the vanishing order of the Jacobian of gi along Ei.
By an elementary computation we get that

a(Ei+1, Si+1) ≤ a(Ei, Si) + 1 − codim(Zi ⊂ Si).
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Thus eventually we reach the situation when codim(Zi ⊂ Si) = 1, hence
Ei → Zi is generically finite.

Note that each Zi+1 → Zi is projective, thus Ei → Z0 is Moishiezon by
(8.4), and so is E0 → S.

The following is the easy direction of Conjecture 1.

Corollary 16. The fibers of a proper, Moishezon morphism are Moishezon.

Proof. Let g : X → S be a proper, Moishezon morphism. It is bimeromorphic
to a projective morphism Xp → S. We may assume Xp to be normal. Let Y
be the normalization of the closure of the graph of X ��� Xp.

Fix now s ∈ S. Let Zs ⊂ Xs be an irreducible component and Ws ⊂ Ys

an irreducible component that dominates Zs. By (8.5) it is enough to show
that Ws is Moishezon.

If π : Y → Xp is generically an isomorphism along Ws, then Ws is
bimeromorphic to an irreducible component of Xp

s , hence Moishezon. Other-
wise Ws ⊂ Ex(π). Now Ex(π) → Xp is Moishezon by (15) and dim Ex(π) <
dim Y = dimX. So Ws is contained in a fiber of Ex(π) → S, hence Moishezon
by induction on the dimension.

Remark 17. More generally, if g : X → S is proper and Moishezon and
T → S is a morphism of analytic spaces then X×S T → T is also proper and
Moishezon.

The rest of this section is a study of the set of Moishezon fibers for arbi-
trary proper morphisms of analytic spaces. It is mostly a summary of some
of the results of [RT20], with occasional changes.

Definition 18. Let g : X → S be a proper morphism of normal analytic
spaces and L a line bundle on X. Set

(1) VBS(L) := {s ∈ S : Ls is very big on Xs} ⊂ S,
(2) GTS(X) := {s ∈ S : Xs is of general type} ⊂ S,
(3) MOS(X) := {s ∈ S : Xs is Moishezon} ⊂ S,
(4) PRS(X) := {s ∈ S : Xs is projective} ⊂ S.

Lemma 19. Let g : X → S be a proper morphism of normal, irreducible
analytic spaces and L a line bundle on X. Then VBS(L) ⊂ S is

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S, and g : X → S is Moishezon.
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Proof. By passing to an open subset of S, we may assume that g is flat, g∗L
is locally free and commutes with restriction to fibers. We get a meromorphic
map φ : X ��� PS(g∗L). There is thus a smooth, bimeromorphic model
π : X ′ → X such that φ ◦ π : X ′ → PS(g∗L) is a morphism.

After replacing X by X ′ and again passing to an open subset of S, we may
assume that g is flat, g∗L is locally free, commutes with restriction to fibers,
and φ : X → PS(g∗L) is a morphism. Let Y ⊂ PS(g∗L) denote its image and
W ⊂ X the Zariski closed set of points where π : X → Y is not smooth. Set
Y ◦ := Y \ φ(W ) and X◦ := X \ φ−1(φ(W )). The restriction φ◦ : X◦ → Y ◦ is
then smooth and proper.

We assume that φ−1(y) is a single point for a dense set in Y , hence for
a dense set in Y ◦. Since φ◦ is smooth and proper, it is then an isomorphism.
Thus φ is bimeromorphic on every irreducible fiber that has a nonempty
intersection with X◦.

Corollary 20. Let g : X → S be a proper morphism of normal, irreducible
analytic spaces. Then GTS(X) ⊂ S is

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S, and g : X → S is Moishezon.

Proof. Using resolution of singularities, we may assume that X is smooth. By
passing to an open subset of S, we may also assume that S and g are smooth.
By [HM06] there is an m (depending only on dimXs) such that |mKXs | is
very big whenever Xs is of general type. Thus (19) applies to L = mKX .

The following is essentially proved in [RT21, Thm.1.4] and [RT20, Thm.
1.2].

Theorem 21. Let g : X → S be a smooth, proper morphism of normal,
irreducible analytic spaces. Then MOS(X) ⊂ S is

(1) either contained in a countable union ∪iZi, where Zi � S are Zariski
closed,

(2) or MOS(X) contains a dense, open subset of S.

Furthermore, if R2g∗OX is torsion free then (2) can be replaced by

(3) MOS(X) = S and g is locally Moishezon.

Remark 21.4. A positive answer to Conjecture 3 for smooth morphisms
would imply that in fact MOS(X) = S always holds in case (21.2); see (22).
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Proof. Assume first that R2g∗OX is torsion free.
As in [RT20, 3.15], the push-forward of the exponential sequence

0 → ZX → OX
exp−→ O×

X → 1

gives
R1g∗O×

X → R2g∗ZX
e2−→ R2g∗OX .

We may pass to the universal cover of S and assume that R2g∗ZX is a trivial
H2(Xs,Z)-bundle.

Let {�i} be those global sections of R2g∗ZX such that e2(�i) ∈ H0(S,
R2g∗OX) is identically 0, and {�′j} the other global sections. The �i then lift
back to global sections of R1g∗O×

X , hence to line bundles Li on X.
If there is an Li such that VBS(Li) contains a dense open subset of S,

then X → S is Moishezon by (19) and we are done. Otherwise, we claim that

(21.5) MOS(X) ⊂ ∪i VBS(Li)
⋃

∪j

(
e2(�′j) = 0

)
.

To see this assume that s /∈ ∪j

(
e2(�′j) = 0

)
. Then every line bundle on

Xs is numerically equivalent to some Li|Xs . Since being big is preserved by
numerical equivalence, we see that Xs has a big line bundle ⇔ Li|Xs is big for
some i ⇔ Li|Xs is very big for some i. This completes the case when R2g∗OX

is torsion free.
In general, the torsion subsheaf of R2g∗OX is supported on a Zariski

closed, proper subset, hence (21.2) gives that if (21.1) does not hold then
MOS(X) contains a Zariski dense open subset of S.

Corollary 22. Let g : X → S be a smooth, proper morphism of normal, irre-
ducible analytic spaces whose fibers are Moishezon. Then g is locally Moishe-
zon.

Proof. If Xs is Moishezon, then Hodge theory (8.6) tells us that H i(Xs,C) →
H i(Xs,OXs) is surjective for every i. Thus R2g∗OX is locally free by (24),
hence (21.3) applies.

There are many complex manifolds for which Hodge decomposition holds;
these are called cohomologically Kähler manifolds or ∂∂̄-manifolds. We also
get the following variant.

Corollary 23. Let g : X → S be a smooth, proper morphism of normal, irre-
ducible analytic spaces. Assume that MOS(X) contains a dense, open subset of
S and all fibers are cohomologically Kähler. Then g is locally Moishezon.
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We have used the following result of [DJ74]; see also [Nak87, 3.13] and
[Kol20, 2.64].

Theorem 24. Let g : X → S be a smooth, proper morphism of analytic
spaces. Assume that H i(Xs,C) → H i(Xs,OXs) is surjective for every i for
some s ∈ S. Then Rig∗OX is locally free in a neighborhood of s for ev-
ery i.

Example 25 (25.1). Let X → D20 be a universal family of K3 surfaces.
A smooth, compact surface is Moishezon iff it is projective. The projec-
tive fibers of X → D20 correspond to a countable union of hypersurfaces
H2g ⊂ D20.

(25.2) Let E ⊂ P2 be a smooth cubic. Fix m ≥ 10 and let X → D be
the universal family of surfaces obtained by blowing up m distinct points
pi ∈ E, and then contracting the birational transform of E. (So D is open
in Em.) If such a surface is projective then there are positive ni such that∑

i ni[pi] ∼ nH|E where H is the line class on P2 and n = 1
3
∑

i ni.
Here X → D is Moishezon and the projective fibers correspond to a count-

able union of hypersurfaces Hi ⊂ D. All fibers have log canonical singularities.

4. 1-parameter families

Definition 26. Let gi : X i → S be a proper morphisms. A bimeromorphic
map φ : X1 ��� X2 is fiberwise bimeromorphic if φ induces a bimeromorphic
map φs : X1

s ��� X2
s for every s ∈ S.

If X1, X2 are fiberwise bimeromorphic to each other then X1
s , X

2
s are

bimeromorphic to each other for every s ∈ S, but the latter is only a sufficient
condition in general.

We study whether a flat, proper, Moishezon morphism g : X → D is
fiberwise bimeromorphic to a flat, projective morphism gp : Xp → D. The
next examples suggest that the answer is

• negative if g is very singular,
• positive if g is mildly singular, and
• even if g is smooth, gp usually can not be chosen smooth.

Example 27. Let g : X → D be a smooth, projective morphism. Assume
that Pic(X) ∼= Z but rank Pic(X0) ≥ 2.

Let Z ⊂ X0 be a smooth, ample divisor whose class is not in the image
of Pic(X) → Pic(X0). Blow up Z to get g′ : X ′ → D. Here X ′

0
∼= X0 has

normal bundle OX0(−Z), hence it is contractible. We get a non-projective,
Moishezon morphism h : Y → D.
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Conjecture 27.1. In most cases, h : Y → D is not fiberwise birational to
a flat, projective morphism.

The next result is a positive answer to the log terminal case of (5), pro-
vided X0 is not uniruled. See (32) for a discussion of the canonical case.

Theorem 28. Let g : X → D be a flat, proper, Moishezon morphism. Assume
that

(1) X0 has log terminal singularities and
(2) X0 is not uniruled.

Then g is fiberwise birational to a flat, projective morphism gp : Xp → D

(possibly over a smaller disc) such that

(3) Xp
0 has log terminal singularities,

(4) Xp
s is not uniruled and has terminal singularities for s �= 0, and

(5) KXp is Q-Cartier.

Remark 28.6. Conjecturally we can also achieve that KXp is relatively nef.
The main obstacle is that (algebraic) minimal models are currently known to
exist only in the general type case.

29 (Proof of (28)). The basic plan is similar to the proof of properness of the
KSB moduli space; see [KSB88, Sec.5] or [Kol20, Sec.2.5].

We take a resolution of singularities Y → X such that Y → D is projec-
tive, and then take a relative minimal model of Y → D. We hope that it gives
what we want. There are, however, several obstacles. Next we discuss these,
and their solutions, but for all technical details we refer to later sections.

(29.1) We need to control the singularities of X. First (39) reduces us
to the case when KX is Q-Cartier. We assume this from now on. Then (30)
implies that the pair (X,X0) is plt.

(29.2) After a base change z �→ zr we get gr : Xr → D. For suitable r,
there is a semi-stable, projective resolution h : Y → D; we may also choose it
to be equivariant for the action of the cyclic group G ∼= Zr. All subsequent
steps will be G-equivariant. We denote by XY

0 the birational transform of X0
and by Ei the other irreducible components of Y0.

(29.3) We claim that Ys is not uniruled for s �= 0. Indeed, for smooth fam-
ilies being uniruled is a deformation invariant property, and by Matsusaka’s
theorem [Kol96, IV.1.7], we would get that XY

0 is uniruled. Thus KYs is
pseudo-effective by [BDPP13].

(29.4) The required relative minimal model theorem is known only when
the general fibers are of log general type. To achieve this, let H be an ample,
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G-equivariant divisor such that Y0 +H is snc. For ε > 0 we get a pair (Y, εH)
whose general fibers (Ys, εHs) are of log general type since KYs is pseudo-
effective. For such algebraic families, relative minimal models are known to
exist [BCHM10]. We also know that (Y, Y0 + εH) is dlt for 0 < ε � 1.

(29.5) Although our family is not algebraic, [KNX18] treats the relative
MMP for semi-stable, projective morphisms to a disc. The precise results are
recalled in (36). Thus we get a relative minimal model

φ : (Y, εH) ��� (Y m, εHm),

and (Y m, Y m
0 + εHm) is dlt. Here Hm is Q-Cartier for general choice of ε by

[Ale15, Lem.1.5.1], thus (Y m, Y m
0 ) is also dlt.

Remark. We have a choice here whether to take the minimal or the canon-
ical model. The minimal model has milder singularities, but it is not unique.
Conjecturally, the canonical model Y c is independent of 0 < ε � 1, but this
is known only in dimensions ≤ 3.

(29.6) We claim that φ contracts all the Ei. Since (Xr, X0) is plt, all
the Ei have discrepancy > −1. Thus the Ei are contained in the restricted,
relative base locus of KY + Y0 by (31.2). For ε small enough, the Ei are also
contained in the restricted, relative base locus of KY +Y0+εH by (31.1). Thus
any MMP contracts the Ei. On the other hand, XY

0 can not be contracted,
so X ��� Y m is fiberwise birational.

(29.7) Note that h is smooth away from Y0, thus (Ys, εHs) is terminal for
s �= 0 and 0 ≤ ε � 1. Since Hs is ample, we do not contract it, so (Y m

s , εHm
s )

is still terminal. Hence so is Y m
s , giving (4).

(29.8) As we noted, (Y m, Y m
0 ) is dlt, hence plt since Y m

0 is irreducible.
Thus Y m

0 is log terminal by the easy direction of (30).

The following results were also used in the proof of (28).

Proposition 30 (Inversion of adjunction I). Let X be a normal, complex
analytic space, X0 ⊂ X a Cartier divisor and Δ an effective R-divisor such
that KX + Δ is R-Cartier. Then (X,X0 + Δ) is plt in a neighborhood of X0
iff (X0,Δ|X0) is klt.

Proof. The proof given in [Kol92, Sec.17] or [KM98, Sec.5.4] applies with mi-
nor changes, using the complex analytic vanishing theorems proved in [Tak85]
and [Nak87].

31 (Divisorial restricted base locus). The basic theory is in [ELM+09, 1.12–
21] and an extension to the non-projective case is outlined in [FKL16, Sec.5].
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Let g : X → S be a proper, Moishezon morphism, X normal. The (rela-
tive) base locus of a Weil divisor F is

B(F ) := Supp coker
[
g∗g∗OX(F ) → OX(F )

]
.

Its divisorial part is denoted by Bdiv(F ); we think of it as a Weil divisor.
Let D be an R-divisor on X. Its stable divisorial base locus is the R-divisor

Bdiv(D) := lim
m→∞

1
mBdiv(�mD�),

and its restricted divisorial base locus is

Bdiv
− (D) := sup

A
Bdiv(D + A),

where A runs through all big R-divisors on X that satisfy Bdiv(A) = ∅. This
could be an infinite linear combination of prime divisors.

An important observation of [FKL16] is that all the projective theo-
rems on the divisorial restricted base locus carry over to proper schemes
and Moishezon varieties. We need 2 properties:

(31.1) Let X → S be a proper, Moishezon morphism, D an R-divisor on
X, and A a big R-divisor on X such that Bdiv(A) = ∅. Then, for every prime
divisor F ⊂ X,

coeffF Bdiv
− (D) = lim

ε→0
coeffF Bdiv

− (D + εA).

(31.2) Let Xi → S be proper, Moishezon morphisms, h : X1 → X2 a
proper, bimeromorhic morphism, D2 a pseudo-effective, R-Cartier divisor on
X2, and E an effective, h-exceptional divisor. Then

Bdiv
− (E + h∗D2) ≥ E.

32 (Canonical case of Conjecture 5). An argument similar to (29) should
prove the canonical case, but there are 3 difficulties.

The reduction to the case when KX is Q-Cartier again follows from (39).
Then we need to show that the pair (X,X0) is canonical. This is proved
(though not stated) in [Nak04, 5.2]. This is also a special case of the general
inversion of adjunction; a quite roundabout proof for Moishezon morphisms
is given in (40).

In (29) next we run the MMP for KY + εH, which is the same as MMP
for KY + Y0 + εH since Y0 is numerically relatively trivial.
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In the canonical case we would need to run the MMP for KY + XY
0 +

η
∑

Ei + εH, where we choose ε, η small, positive. The arguments of [KNX18]
do not cover this case, but I expect that a method similar to [KNX18] would
prove this. The forthcoming [LM21] should also cover this case.

If X0 is of general type, then the canonical model of (Y,XY
0 ) gives what

we want.
In general, arguing as in (36) we should get a minimal model gm : (Y m,

Y m
0 +εHm) → D. Here η

∑
Em

i is omitted since the Ei get contracted. General
theory tells us that

discrep(Y m
0 ) ≥ discrep(Y m

0 ,DiffY m
0
εHm) ≥ −ε.

We can choose ε arbitrarily small, but Y m
0 may depend on ε, so we can not

just take a limit as ε → 0. This is a problem that appears even if we start
with a projective, algebraic family.

At this point we could appeal to one of the ACC conjectures (33) which
says that, for ε small enough, we must have discrep(Y m

0 ) ≥ 0. That is, Y m
0 is

canonical.
The necessary result is known in dimensions ≤ 3, but it is likely to be

quite difficult in general. So an alternate approach to our situation would be
better.

33 (A gap conjecture). The following is a special case of [Sho96, Conj.4.2]

(1) For every n ≥ 1 there is an ε(n) > 0 such that if X is an n-dimensional
variety and discrepX > −ε(n), then in fact discrepX ≥ 0 (that is, X
has canonical singularities).

In dimension 2 this can be read off from the classifiation of log terminal
singularities (these have discrepX > −1). We get the optimal value ε(2) = 1

3
and equality holds for C2/1

3(1, 1).
The 3-dimensional case is much harder; see [Jia20]. The optimal value is

ε(3) = 1
13 and an extremal case is the cyclic quotient singularity C3/ 1

13(3, 4, 5).
Special cases (in all dimensions) are proved in [Nak16].

Remark 34. The deformation invariance of plurigenera for smooth, proper
morphisms with Moishezon fibers is proved in [RT20, Thm.1.2].

The canonical case of Conjecture 5 would show that the projective case
implies the Moishezon case. However, the hard part in [RT20] is to show that
g is Moishezon, so using Conjecture 5 would only yield a longer proof.
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5. Approximating Moishezon morphisms

We discuss 2 ways of approximating a projective (resp. Moishezon) morphism
g : X → D by morphisms between projective (resp. Moishezon) varieties. This
allows us to prove some results for Moishezon morphisms g : X → D.

35 (Algebraic approximation of projective morphisms). Let g : Y → D be a
projective morphism with relatively ample line bundle L. For later purposes
we also specify a finite set of relative Cartier divisors Ei ⊂ Y .

Then (Y0, L0 := L|Y0 , E
i
0 := Ei|Y0) is a projective, polarized scheme

marked with effective Cartier divisors. (For now Y0 can be even nonreduced.)
(Y0, L0, E

i
0) has a universal deformation space GS : (YS ,LS ,Ei

S) → S,
where S,YS are quasi-projective schemes, GS is flat and projective, LS is
GS-ample and the Ei

S are relative Cartier divisors.
The original family gives a holomorphic φS : D → S. Next we resolve

the singularities of the image, and then replace S first by the Zariski closure
of φS(D) and then by its resolution. Denote the latter by B. We obtain the
following data.

(1) A smooth C-variety B,
(2) a flat, projective morphism G : (Y,L,Ei) → B, where L is G-ample,

the Ei are relative Cartier divisors, and
(3) a holomorphic map φ : D → B(C),

such that,

(4)
(
(Y, L,Ei) → D

) ∼=
(
φ∗(Y,L,Ei) → D

)
and

(5) φ(D) is smooth and Zariski dense in B.

We call G : (Y,L,Ei) → B an algebraic envelope of g : (Y, L,Ei) → D.
Note that we have no control over the dimension of B. However, if Y is

smooth, then so is Y.
Since B is smooth, the holomorphic curve φ(D) ⊂ B can be approximated

by algebraic curves to any order. Thus, for any fixed m > 0 we get

(6) a smooth, pointed algebraic curve (c, C),
(7) a flat, projective morphism (YC , LC , E

i
C) → C, and

(8) an isomorphism (Y, L,Ei)m ∼= (YC , LC , E
i
C)m,

where the subscript m denotes the mth order infinitesimal neighborhood of
the central fibers.

If m = 0 then we only get that the central fibers Y0 and (YC)0 are isomor-
phic. The case m = 1 carries much more information: the smoothness of the
total space along the central fiber and the normal bundles of the irreducible
components of the central fiber are also preserved.
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As in [KNX18], algebraic envelopes can be used to show that MMP works
for projective morphism over Riemann surfaces.

Proposition 36. Let g : (Y,Δ) → D be projective, with irreducible, normal
general fibers. Assume in addition that (Y, Y0 + Δ) is dlt and KYs + Δs is klt
and big for almost every s ∈ D. Then

(1) there is a relative minimal model gm : (Y m,Δm) → D, and
(2) the relative canonical model gc : (Y c,Δc) → D exists.

Assume in addition that there is an irreducible divisor Y ∗
0 ⊂ Y0 such that

Y0 \ Y ∗
0 is contained in the stable, relative base locus of KY + Δ. Then

(3) Y ∗
0 ��� Y m

0 → Y c
0 are birational,

(4) (Y m, Y m
0 + Δm) and (Y c, Y c

0 + Δc) are plt, and
(5) (Y m

0 ,DiffY m
0

Δm) and (Y c
0 ,DiffY c

0
Δc) are klt.

(6) If Δ is R-Cartier then (Y m, Y m
0 ) is plt and Y m

0 is log terminal.
(7) If the coefficients in Δ are sufficiently general, then (Y c, Y c

0 ) is plt and
Y c

0 is log terminal.

Proof. Claims (1–2) are basically proved in [KNX18]. Unfortunately, the main
result [KNX18, Thm.2] is formulated to apply to the Calabi-Yau case. How-
ever, [KNX18, Props.8–14] contain a complete proof, though not a clear state-
ment.

The rest of the proof uses only the conclusions of (1–2).
Any MMP Y ��� Y m contracts the stable base locus of KY +Δ, thus Y m

0
is irreducible and Y ∗

0 ��� Y m
0 is thus bimeromorphic. Also (Y m, Y m

0 + Δc) is
dlt, hence plt since Y m

0 is irreducible. Since Y m → Y c does not contract Y m
0 ,

we see that (Y c, Y c
0 + Δc) is also plt. This is (4), and (5) follows by the easy

direction of adjunction [Kol13, 4.8].
If Δ is Q-Cartier then so is Δm, hence (6) follows from [KM98, 2.27].

A similar argument works for (7) using [Ale15, Lem.1.5.1].

37 (Algebraic approximation of Moishezon morphisms). Let f : X → D be
a proper, Moishezon morphism and h : Y → X a proper morphism such that
g := f ◦ h : Y → D is projective with relatively ample line bundle L. Also
choose relative Cartier divisors Ei on Y . Assume also that X0 is seminormal
(though this is probably ultimately not necessary).

We can apply (35.1–5) to get an algebraic envelope G : (Y,L,Ei) → B.
By [Art70], after an étale base change, we may assume that h0 : Y0 → X0
extends to H : Y → X where F : X → B is an algebraic space.
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Comment 37.1. General extension theory, as in [Art70, MR71], tells us
only that we have

H0 : Y0 = Y0
h0−→ X0

τ−→ X0,

where τ is a finite homeomorphism. Then we use that the functor of simul-
taneous seminormalizations is formally representable. The projective case is
discussed in [Kol11]; see [Kol20, 9.61] for algebraic spaces. By our assumption,
the identity is a simultaneous seminormalization over the completion of φ(D),
which is Zariski dense. Thus X → B has seminormal fibers, hence X0 ∼= X0,
as claimed.

Assume next that fibers of f over D◦ satisfy a property P that is Zariski
open in families (for example smooth, normal or reduced). Then general fibers
of F also satisfy P. As before, φ(D) ⊂ B can be approximated by algebraic
curves to any order. Thus, for any fixed m > 0 we get

(2) a smooth, pointed algebraic curve (c, C),
(3) morphisms hc : (YC , LC , E

i
C) → XC → C, where

(a) gC : (YC , LC) → C is flat, projective,
(b) fC : XC → C is a flat algebraic space,
(c) general fibers of fC satisfy P, and

(4) an isomorphism
(
(Y, L,Ei) → X

)
m
∼=

(
(YC , LC , E

i
C) → XC

)
m

,

where the subscript m denotes the mth order infinitesimal neighborhood of
the central fibers.

Corollary 38. Let f : X → D be a flat, proper, Moishezon morphism, X
normal. Assume that it has a resolution h : Y → X where g := f ◦ h :
Y → D is projective and Y0 a reduced, snc divisor. Then X has a canonical
modification π : Xc → X. (That is, Xc has canonical singularities and KXc

is π-ample.)

Proof. Let H : Y → X and F : X → B be an algebraic envelope as in (37).
Note that canonical modifications are unique and commute with étale

morphisms. They exist for quasi-projective varieties over C by [BCHM10],
hence every algebraic space of finite type over C has a canonical modification.

Let Π : Xc → X denote the canonical modification of X. Since Y → B is
locally stable, so is Xc → B; cf. [Kol20, Sec.4.8].

By pull-back we get a locally stable morphism π : Xc → X → D whose
general fibers are canonical. Since (Xc, Xc

0) is lc and Xc
0 is a Cartier divisor,

we see that Xc has canonical singularities.



Moishezon morphisms 1679

The following extends [KSB88, Sec.3] to Moishezon morphisms, see also
[Kol20, Sec.5.5].

Corollary 39. Let f : X → D be a flat, proper, Moishezon morphism.
Assume that X0 is log terminal. Then X has a canonical modification π :
Xc → X, Xc

0 is log terminal and π is fiberwise birational.

Proof. After a ramified base change D̃ → D with group G := Z/r, we can
apply (38) to X̃ → D̃ to get π̃ : X̃c → X̃.

As in [Kol20, 5.32] we get that X̃c
0 is log terminal and X̃c

0 → X̃0 is
birational. Set Xc := X̃c/G.

The base change group acts trivially on the central fiber X̃c
0 , hence Xc

0
∼=

X̃c
0 is also log terminal. Finally the pair

(
X̃c, X̃c

0
)

is log canonical, hence so
is

(
Xc, Xc

0
)

by [KM98, 5.20]. Thus Xc is canonical.

6. Inversion of adjunction

The proof of the general inversion of adjunction theorem given in [Kol13,
4.9] relies on the MMP. For our purposes we would need the relative MMP
for projective morphisms over an analytic base. This is currently not known.
However, [Nak87] discusses the first steps, [Kol22] some special cases, and
ongoing work of Lyu-Murayama [LM21] settles the general case.3

As a stopgap measure, we go around this problem for Moishezon mor-
phisms using approximations. While ultimately this will not be necessary,
the key Lemma 42 is of independent interest.

Theorem 40. Let g : X → D be a flat, proper, Moishezon morphism and Δ
an effective Q-divisor on X. Assume that KX + Δ is Q-Cartier. Then

discrep(X,X0 + Δ0) = totaldiscrep(X0,Δ0),

where on the left we use only those exceptional divisors whose centers on X
have nonempty intersection with X0.

Note that here the ≤ part is easy [Kol13, 4.8]. The known proofs of the
≥ part use the MMP, and the cases settled in [KNX18] do not seem enough.

We start the proof of (40) with a discussion on snc divisors and then with
a general result which says that discrepancies can be computed from the 1st
order neighborhood of the exceptional set.

3Added in proof: See also Osamu Fujino, Minimal model program for projective
morphisms between complex analytic spaces (2022)
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41 (Simple normal crossing divisors). It would be convenient to recognize
simple normal crossing divisors (abbreviated as snc) from an infinitesimal
neighborhood of the special fiber. At first sight, this seems impossible. Con-
sider for example the family

g :
(
C3, D := (xy = zm+1)

)
→ Cz,

where D is not an snc divisor. The mth order infinitesimal neighborhood of
the special fiber is defined by zm+1 = 0, hence isomorphic to the mth order
neighborhood of the snc family

g :
(
C3, B := (xy = 0)

)
→ Cz.

There is also the added problem that snc in the Euclidean topology is not the
same as snc in the Zariski topology. (For example, (y2 = x2 + x3 is snc in the
Euclidean topology but not in the Zariski topology.)

We can, however, solve both problems by a simple bookkeeping conven-
tion.

Let M be a complex manifold and {Ei : i ∈ I} (reduced) divisors on M .
We say that (M,Ei : i ∈ I) is a marked snc pair if for every p ∈ M there are

(1) local analytic coordinates z1, . . . , zn, and
(2) an injection σ : {1, . . . , r} ↪→ I for some 0 ≤ r ≤ m,

such that
(3) Eσ(i) = (zi = 0) near p, and
(4) the other Ej do not contain p.

With this definition we have the following.
Claim 41.5. Let E1, . . . , Er, Er+1, . . . , Em and E′

r+1, . . . , E
′
m be reduced

divisors on a complex manifold M . Assume that

(a) (M,E1 + · · · + Em) is a marked snc pair, and
(b) Ej and E′

j have the same restriction on E1 ∪ · · · ∪ Er for all j > r.

Then (M,E1 + · · · + Er + E′
r+1 + · · · + E′

m) is also a marked snc pair in a
neighborhood of E1 ∪ · · · ∪ Er.

Lemma 42. Let (X,Δ =
∑

djDj) be a normal, algebraic or analytic pair
such that KX + Δ is Q-Cartier. Let BX ⊂ X be a Cartier divisor. Let

p : (Y,
∑

iBi +
∑

jD̄j +
∑

�E�) → (X,BX + Supp Δ)

be a log resolution, where B :=
∑

i Bi = red p−1(BX), D̄j is the birational
transform of Dj and the E� are the other p-exceptional divisors.
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Then the discrepancies a(∗, X,Δ) of all p-exceptional divisors (whose cen-
ters have nonempty intersection with BX) can be computed from

(1) B(2) := SpecOY /OY (−2B), and
(2) the divisors D̄j |B and E�|B.

Proof. After replacing X by a smaller neighbood of BX , we may assume that
B is a deformation retract of Y . In particular, the centers of all p-exceptional
divisors have nonempty intersection with BX , and numerical equivalence of
divisors is determined by their restriction to B.

The discrepancies bi and e� are uniquely determined by the conditions

(42.3) KY +
∑′

ibiBi +
∑

jdjD̄j +
∑

�e�E� ≡p p
∗(KX + Δ),

where in
∑′

i we sum over the p-exceptional divisors in B. Restricting to B
and using adjunction we get

(42.4)
∑′

ibiBi|B +
∑

�e�E�|B ≡p B|B −KB −∑
jdjD̄j |B + (p|B)∗(KX + Δ).

Note that B(2) determines the Bi|B and hence B|B. Thus the right hand side
is known and the bi, e� are the unique solution to (42.4).

Corollary 43. Using the notation of (42), assume that there is another pair
with a log resolution

p′ : (Y ′,
∑

iB
′
i +

∑
jD̄

′
j +

∑
�E

′
� + F ′) → (X ′, B′

X′ + Supp Δ′)

such that there is an isomorphism

φ :
(
B′

(2) ←↩ B′ p′→ B′
X′

) ∼=
(
B(2) ←↩ B

p→ BX

)
,

that sends D̄′
j |B′ to D̄j |B and E′

�|B′ to E�|B for every j, �. Then

(1) corresponding divisors have the same discrepancies, and
(2) divisors in F ′ have discrepancy 0.

Proof. Note that (42.4) gives us that
∑′

ibiB
′
i|B′ +

∑
�e�E

′
�|B′ +0 ·F ′ ≡p′ B

′|B′−KB′−∑
jD̄

′
j |B′ +(p′|B′)∗(KX′ +Δ′).

Since this equation has a unique solution, bi, e� give the discrepancies over
X ′.

The following example illustrates the role of the divisor F ′ in (43).
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Example 44. Let X = (x2 − y2 + z2 = t4) ⊂ C4, B = (t = 0) and Y the
small resolution obtained by blowing up (x − y = z − t2 = 0). (Here Δ = 0
and E s empty.) Next set X ′ = (x2 − y2 + z2 = 0) ⊂ C4, B′ = (t = 0) and Y ′

the resolution obtained by blowing up (x = y = z = 0).
The 1st order neigborhoods are isomorphic, but on Y ′ we have an excep-

tional divisor F ′. Note that if we replace t4 by t2m+2, we have isomorphisms
of mth order infinitesimal neighborhoods as well.

Thus we can not tell whether a singularity is terminal or canonical by
looking at mth order infinitesimal neighborhoods for some fixed m.

45 (Proof of (40)). Write Δ =
∑

djDj .
Let h : Y → (X,

∑
Dj) be a log resolution such that Y → D is projective.

Let D̄j ⊂ Y denote the birational transform of Dj , and let Ei ⊂ Y be the
exceptional divisors that dominate D.

By (37.2–4) there are a smooth, pointed algebraic curve (c, C), a flat,
proper morphism of algebraic spaces Xa → C and a projective resolution
ha : Y a → Xa such that

(45.1)
(
ha : (Y a,

∑
D̄a

j +
∑
Ea

j ) → Xa)
1
∼=

(
h : (Y,

∑
Dj +

∑
Ei) → X

)
1.

Note that ha(Ea
j )∩Xa

0 = h(Ej)∩X0, thus the Ea
j are ha-exceptional. (As in

(44), there may be other ha-exceptional divisors.)
By (41), (Y a,

∑
D̄a

j +
∑
Ea

j ) is also an snc pair, we are thus in the situation
of (43). Since inversion of adjunction holds for the algebraic pair (Xa, Xa

0 +
Δa), it also holds for (X,X0 + Δ).
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