
Pure and Applied Mathematics Quarterly
Volume 18, Number 4, 1723–1748, 2022

Hilbert schemes of K3 surfaces, generalized Kummer,
and cobordism classes of hyper-Kähler manifolds

Georg Oberdieck
∗
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Abstract: We prove that the complex cobordism class of any
hyper-Kähler manifold of dimension 2n is a unique combination
with rational coefficients of classes of products of punctual Hilbert
schemes of K3 surfaces. We also prove a similar result using the
generalized Kummer varieties instead of punctual Hilbert schemes.
As a key step, we establish a closed formula for the top Chern char-
acter of their tangent bundles.
Keywords: Chern numbers, hyper-Kähler manifolds.

1. Introduction

The cobordism ring denoted MU∗(pt) in [27] and Ω∗ in [13] has the follow-
ing easy description (which is not the original Milnor definition), see [25].
In degree i, consider the free abelian group Z i generated by i-dimensional
compact manifolds M equipped with a stable complex structure α, namely
a complex vector bundle structure on the real bundle TM ⊕ Rk, where Rk is
the trivial real vector bundle of rank k on M . It contains the subgroup Z i

b

generated by boundaries, namely, for any real i + 1-fold N with boundary
equipped with a stable complex structure α, as TN |∂N ∼= T∂N ⊕R, the stable
complex structure on N induces a stable complex structure on the boundary
∂N , defining the boundary ∂(N,α). The group MU∗(pt) is then defined as
the quotient Z i/Z i

b. The ring structure comes from the addition given by the
disjoint union, and the product is given by the geometric product. It is proved
in [13] that MU∗(pt) is trivial in odd degree ∗ and torsion free in even degree.
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Furthermore it is also known that the cobordism class of a pair (M,α), with
dimM = 2i is determined by the Chern numbers∫

M
PI(cl(M,α)),

where we use the orientation of M defined by α to compute the integral,
the Chern classes cl(M,α) are those of the complex vector bundle TM ⊕ Rk

equipped with the stable complex structure α, and the PI generate the space
of degree 2i weighted homogeneous polynomials in the cj where deg cj = 2j.
We will in fact work with the Q-vector space MU∗(pt) ⊗ Q that we will
denote MU∗(pt) for convenience. Note that, with Q-coefficients, the study of
the cobordism ring is much easier, and can be done by the methods of [26].

If we consider hyper-Kähler manifolds of dimension 2n, or more generally
compact complex 2n-folds X having an everywhere nondegenerate (2, 0)-form
σX (not necessarily closed, not necessarily holomorphic), the existence of the
isomorphism of complex vector bundles

T 1,0
X

∼= (T 1,0
X )∗

given by σX implies that cl(X) = 0 for l odd. It follows that the cobordism
classes of such complex manifolds are determined by the Chern numbers∫

X
P (c2l(X)),

where we use the complex orientation of X to compute the integrals, and
the polynomials P generate the space of degree 4n weighted homogeneous
polynomials in the c2l, where deg c2l = 4l. These polynomials are generated
by monomials MI indexed by partitions I of n, namely to a partition I given
by the decomposition n = n1 + . . . + nk, one associates the monomial

MI = c2n1 . . . c2nk
.

Starting with a K3 surface S, we can construct in each even dimension
2n the following set of symplectic holomorphic manifolds, also indexed by
partitions I of n, namely, to a partition I as above one associates

S[I] := S[n1] × . . .× S[nk].

Similarly, using the generalized Kummer varieties Kumi(A) associated with a
2-dimensional complex torus or abelian surface (see [1]) instead of the Hilbert
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schemes of K3 surfaces, we associate to a partition I as above the symplectic
holomorphic 2n-fold

KumI(A) := Kumn1(A) × . . .× Kumnk
(A).

The main result of this paper can be formulated as follows.

Theorem 1.1. (a) The complex cobordism class of any compact complex
manifold X with trivial odd Chern classes is a unique combination with ra-
tional coefficients of classes S[I], where S is a K3 surface.

(b) The same result holds if one replaces the varieties S[I] by the varieties
KumI(A).

In fact, the theorem that we will prove is even more general. Namely
our results apply to any compact complex manifold X or complex cobordism
class whose Chern numbers

∫
X MI(c1(X), . . . , cn(X)), for any monomial MI

involving nontrivially an odd Chern class, are zero. In this case, we will also
say that X has vanishing odd Chern numbers. For example, any complex
fourfold X with trivial first Chern class has vanishing odd Chern numbers,
while it can have c3(X) �= 0. Similarly, complex n-folds with no nonzero odd
degree Chern classes in degree ≤ n

2 satisfy this property. More generally, the
rational subalgebra MU∗(pt)even of MU∗(pt) consisting of cobordism classes
with “trivial odd Chern numbers” in the above sense is a free polynomial
algebra over Q with one generator in each even dimension, and Theorem 1.1
says that the cobordism classes of punctual Hilbert schemes of K3 surfaces,
or of the generalized Kummer varieties form a system of generators of this
algebra.

Remark 1.2. It is known by [3] that the cobordism class of S[I] for a compact
complex surface S depends only on the Chern numbers

∫
S c2(S),

∫
S c1(S)2.

Hence we can replace in Theorem 1.1 the K3 surface S by any surface S′ with∫
S′ c1(S′)2 = 0 and

∫
S′ c2(S′) �= 0, for example we can take for S′ the blow-up

of P2 in 9 points.

Theorem 1.1 is an analogue for complex manifolds with trivial odd Chern
classes of a theorem due to Milnor, stating that the CPr provide a multiplica-
tive basis for the algebra MU∗(pt), that is, the products

∏
il
CPil provide a

Q-additive basis for it. Theorem 1.1 even provides two multiplicative bases for
MU∗(pt)even, namely the hyper-Kähler 2k-folds K3[k] and the hyper-Kähler
2k-folds Kumk(A). This result, together with a number of Chern numbers
computations on K3[k] and Kumk(A), raises a number of questions that are
presented in Section 5. The general question of what can be the Chern num-
bers or equivalently the complex cobordism classes of hyper-Kähler manifolds
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is widely open, although some results are known (see for example [23], [7],
[9]). The formalism presented here provides some structure for these numbers
and we hope that it can be useful for this study.

We will give a quick proof of Theorem 1.1 (a) in low dimension in Sec-
tion 2. In higher dimension, we will follow the following strategy, already used
by topologists. The Milnor genus of a complex or almost complex manifold
of complex dimension m is defined as

M(X) =
∫
X

chm(X),(1)

where ch(X) =
∑

i chi(X) is the Chern character of X (see [8]). As is classical
in complex cobordism theory (see [13], [10]) and will be recalled in Section 3,
Theorem 1.1 is equivalent to the following result concerning the Milnor genus
of K3[n] and Kumn(A).

Theorem 1.3. (a) The Milnor genus M(S[n]) is nonzero for all n.
(b) The Milnor genus M(Kumn(A)) is nonzero for all n.

Theorem 1.3 will be proved in Section 4, where an explicit formula for
M(S[n]) and M(Kumn(A)) will be established (see Theorems 4.1 and 4.2).
In Section 3, which is mostly introductory, we will explain the equivalence
between Theorems 1.1 and 1.3. In the last section of the paper, we will present
a few natural questions left open by our results.

2. Theorem 1.1 in small dimension

In complex dimensions 2n = 2, 4 and 6, the group MU4n(pt) is very simple.
Indeed, for n = 2, the only class to integrate is c2. In dimension 4, we get
only c4 and c22. Finally, in dimension 3, we get only c32, c2c4, c6. In all three
cases, the space has dimension n, which is not true anymore in higher dimen-
sions (for example, in dimension 8, there is an extra monomial c24). In this
situation, there are natural Chern numbers of S[k] that we can use to test the
independence of the classes S[ki] in MU∗(pt)even, namely the n numbers

χk(X) := χ(X,Ωk
X),

for k ≤ n, 2n = dimX. We observe that, by Serre duality, the other holomor-
phic Euler-Poincaré characteristics χ(X,Ωk

X) for k > n do not bring further
information. By the Hirzebruch-Riemann-Roch formula, χk(X) is a polyno-
mial of degree 2n in the Chern classes of X, hence a combination Pk of
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monomial Chern numbers of X. Hence, if we are able to prove that the ma-
trix giving the χk(X), k = 1, 2, for X = S × S, S[2], then Theorem 1.1
holds in dimension 4. Similarly, the independence of the numbers χk(X) for
k = 1, 2, 3, and X = S3, S × S[2], S[3] will imply Theorem 1.1 in dimension
6. This is done in the following

Proposition 2.1. (1) (dim 4) The matrix
(
χ(ΩS[2]) χ(ΩS×S)
χ(Ω2

S[2]) χ(Ω2
S×S)

)
has nonzero

determinant.
(2) (dim 6) The matrix⎛⎜⎝χ(ΩS[3]) χ(ΩS[2]×S) χ(ΩS3)

χ(Ω2
S[3]) χ(Ω2

S[2]×S
) χ(Ω2

S3)
χ(Ω3

S[3]) χ(Ω3
S[2]×S

) χ(Ω3
S3)

⎞⎟⎠
has nonzero determinant.

Proof. It is equivalent by Remark 1.2, and in fact easier, to prove the same
result for the surface Σ obtained as the blow-up of P2 in 9 points. Indeed, in
this case, the whole cohomology of the Hilbert scheme is of type (p, p) and
similarly for their products. Thus we have χ(X,Ωk

X) = (−1)kb2k(X) for these
varieties. The Betti numbers of Σ[2] and Σ[3] are computed by [2] or [4]. One
has

b2(Σ) = 10, b2(Σ[2]) = 11, b4(Σ[2]) = 66,

b2(Σ[3]) = 11, b4(Σ[3]) = 77, b6(Σ[3]) = 342.

By Künneth decomposition, our matrices are thus
(
−11 −20
66 102

)
in case (1),

and this matrix has nonzero determinant and⎛⎜⎝ −11 −21 −30
77 177 303

−342 −682 −1060

⎞⎟⎠
in case (2), and this matrix has nonzero determinant.

3. Reduction to Theorem 1.3

The Chern character ch(E) of a complex vector bundle of rank r on a topo-
logical space X is defined as

ch(E) =
r∑

i=1
expxi ∈ H2∗(X,Q),
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where the xi are the formal roots of the Chern polynomial of E (see [8]). Its
main properties are

ch(E ⊕ F ) = ch(E) + ch(F )(2)

and, when X is a manifold of real dimension k,

chi(E) = 0 for 2i > k.(3)

For a complex manifold X we will use the notation ch(X) = ch(TX). Let X
be a compact complex manifold of dimension n which is a product

X ∼= Y ×W

of complex manifolds of respective dimensions nY , nW < n. Then, as TX =
pr∗1TY ⊕ pr∗2TW , where pri denotes the projection on the i-th factor, we get
by (2) and (3)

chi(X) = pr∗1chi(Y ) + pr∗2chi(W ),(4)

hence
chi(X) = 0 for i > max(nY , nW ).

The Milnor genus M(X) defined in (1) thus satisfies the following property

Lemma 3.1. We have M(X) = 0 if X is a product of two complex manifolds
of dimension smaller than n.

The formal properties above give the following criterion

Proposition 3.2. For i ∈ {1, . . . , n} let Xi be a compact complex manifold
of dimension 2i with vanishing odd Chern classes: c2l+1(Xi) = 0. Then, λi :=
M(Xi) is nonzero for any i, if and only if any complex cobordism class of even
dimension ≤ 2n with vanishing odd Chern numbers can be written uniquely
as a rational combination of products

XI := Xi1 × . . .×Xik ,
∑
l

il ≤ n.

Proof. The “if” follows from Lemma 3.1 which says that ch2i can have a
nonzero integral on Xi1 × . . .×Xik only for I = {i}, that is, when Xi1 × . . .×
Xik = Xi.

In the other direction, we have to prove that the products Xi1 × . . .×Xik

form a basis over Q of the subring MU∗(pt)even of the cobordism ring of
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classes α with vanishing odd Chern numbers
∫
αMI(ci), where the monomial

MI involves an odd Chern class. Equivalently, we have to show that for any
such class α ∈ MU4n(pt)even, there are unique rational coefficients αI indexed
by partitions of n, such that∫

α
P (c2, . . . , c2n) =

∑
I

αI

∫
XI

P (c2(XI), . . . , c2n(XI))

for any degree 2n weighted polynomial P in the variables c2l. Instead of using
the Chern classes c2i as generators, we can use the Chern characters classes
ch2i which are related to the Chern classes by the Newton formulas. We argue
by induction on the dimension and conclude that for any i < n, there exists
a combination

Yi = Xi +
∑

I,l(I)≥2
αIXI ∈ MU4i(pt),(5)

where, in the above sum, I runs through the partitions i =
∑k

l=1 il of i and
l(I) := k, with the following property: for any degree 2i monomial MK =
chk2

2 . . . chk2i
2i in the Chern characters chl with l even, one has with

MK(Yi) = 0 unless MK �= ch2i,(6)

with MK(Yi) = MK(Xi) +
∑

I,l(I)≥2 αI

∫
XI

MK(ch2(XI), . . . , ch2i(XI)). Fur-
thermore, equation (5), Lemma 3.1 and our assumptions show that M(Yi) =
λi �= 0. Formulas (4) and (6) then imply that for any product

YJ =
∏

j1+...+jk=i

Yjl

with k ≥ 2 (hence all js smaller than i), and any monomial MK as above of
weighted degree 2i, one has MK(YJ) = 0 for K �= J , MK(YK) �= 0. Finally,
we have by assumption ch2i(Xi) �= 0, so Xi and the YJ for the partitions J
of i such that l(J) ≥ 2 form a basis of MU4i(pt)even.

Remark 3.3. The same criterion (without assumption on the odd Chern
classes) was used by topologists to prove that the complex cobordism ring
with rational coefficients is generated in degree n by products of projective
spaces Pil with

∑
l il = n. It suffices to prove that M(Pr) �= 0, which is quite

easy using the Euler exact sequence which gives

ch(Pr) = (r + 1)exp(h) − 1,
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with h = c1(OPr(1)).

We now get in particular

Corollary 3.4. Theorem 1.3 is equivalent to Theorem 1.1.

4. Proof of Theorem 1.3

The proof of Theorem 1.3 will use the description of the cohomology of Hilbert
schemes of points of surfaces in terms of Nakajima operators. In particular,
we will use a result of Li, Qin and Wang [12] which for K-trivial surfaces
expresses the operator of multiplication by tautological classes in terms of
the Nakajima basis. We refer to [15] for an overview of the main definitions
in the subject, and for the conventions that we follow.

We will prove the following closed evaluations, which imply Theorem 1.3.

Theorem 4.1. For any surface S with c1(S) = 0 in H2(S,Q), we have for
all n ≥ 1: ∫

S[n]
ch2n(S[n]) = (−1)n e(S)

24
(2n + 2)!

n!4(2n− 1)
where e(S) =

∫
S c2(S) is the topological Euler characteristic of S.

Theorem 4.2. For any abelian surface A, we have for all n ≥ 1:∫
Kumn(A)

ch2n(Kumn(A)) = (−1)n (2n + 2)!
n!4 .

4.1. Combinatorial identities

Lemma 4.1. For k, n ∈ N, we have the following identities:

(1)
∑n

i=0
(n
i

)2 =
(2n
n

)
;

(2)
∑n

i=0 i
(n
i

)2 = n
2
(2n
n

)
;

(3)
∑n

i=0 i
2(n

i

)2 = n3

2(2n−1)
(2n
n

)
;

(4)
∑k

i=0(−1)i
(n
i

)
= (−1)k

(n−1
k

)
;

(5)
∑k

i=0(−1)ii
(n
i

)
= (−1)kn

(n−2
k−1

)
.

Proof. For (1), one can compare the degree-n coefficient of the polynomial
(1 + x)2n: the left hand side is obtained using the identity (1 + x)2n = (1 +
x)n(1 + x)n, while the right hand side is simply the binomial coefficient. For
(2) and (3), we consider the polynomials (1 + x)n · d

dx(1 + x)n and (1 + x)n ·(
d
dx

)2(1 + x)n, and follow the same idea as (1).
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For (4), we consider the degree-k coefficient of the polynomial (1−x)n−1:
the right hand side is again just the binomial coefficient, while the left hand
side is obtained using the Taylor expansion (1 − x)n−1 = 1

1−x · (1 − x)n =
(1 + x + x2 + · · · ) · (1 − x)n. Similarly, for (5) we consider −n(1 − x)n−2 =

1
1−x · d

dx(1 − x)n.

Proposition 4.2. We have the following identity

n∑
l=0

l−1∑
m=0

(−1)m+l+1 l −m

m! l! (n−m)! (n− l)! = n

2(2n− 1)
(2n)!
n!4 .

Proof. We rewrite the left hand side using the combinatorial identities from
Lemma 4.1

n∑
l=0

l−1∑
m=0

(−1)m+l+1 l −m

m!l!(n−m)!(n− l)!

= 1
n!2

n∑
l=0

l−1∑
m=0

(−1)m+l+1(l −m)
(
n

m

)(
n

l

)

(take out l) = 1
n!2

n∑
l=0

(−1)l
(
n

l

)(
l
l−1∑
m=0

(−1)m+1
(
n

m

)
+

l−1∑
m=0

(−1)mm
(
n

m

))
(

using Lemma 4.1
(4) and (5)

)
= 1

n!2
n∑

l=0
(−1)l

(
n

l

)(
(−1)ll

(
n− 1
l − 1

)
+ (−1)l−1n

(
n− 2
l − 2

))

= 1
n!2

n∑
l=0

(
n

l

)(
l2

n

(
n

l

)
− l2 − l

n− 1

(
n

l

))

= 1
n!2

⎛⎝ 1
n− 1

n∑
l=0

l

(
n

l

)2

− 1
n(n− 1)

n∑
l=0

l2
(
n

l

)2
⎞⎠

(
using Lemma 4.1

(2) and (3)

)
= n

2(2n− 1)
(2n)!
n!4 .

4.2. Hilbert schemes of points

Let Z ⊂ S[n] ×S be the universal subscheme and let π, πS be the projections
of S[n] × S to the factors. For any γ ∈ H∗(S) and d ∈ Z let

Gd(γ) : H∗(S[n]) → H∗(S[n])

be the operator of multiplication with the class π∗(chd(OZ−OS[n]×S) ·π∗
S(γ)).
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Let from now on S be a surface with c1(S) = 0 in H2(S,Q). Then by a
result of Li, Qin and Wang [12, Thm.4.6] we have that

(7) Gd(γ) = −
∑
|λ|=0
�(λ)=d

qλ

λ! (Δ∗(γ)) +
∑
|λ|=0

�(λ)=d−2

s(λ)
24 · λ!qλ(Δ∗(γ · c2(S)))

where qm(α) are the Nakajima Heisenberg operators; the other notations
follow [15, Sec.4].1

The tangent bundle of the Hilbert scheme can be expressed as a relative
Ext sheaf of the universal ideal sheaves [3, Prop.2.2]. This gives an expression
for the operator of multiplication with chk(S[n]) in terms of the G’s as follows

multchk(S[n]) =
∑

i+j=k+2
(−1)j+1GiGj(Δ) + e(S)

12
∑

i+j=k

(−1)j+1Gi(p)Gj(p)(8)

where k ≥ 1, we let p ∈ H4(S) be the class of a point on S; see also [15, 4.9].
Hence Theorem 4.1 is implied by the following two lemmas:

Lemma 4.3.

∑
i+j=2n

(−1)j+1
∫
S[n]

Gi(p)Gj(p)1S[n] = (−1)n+1 (2n)!
n!4

Proof. In the Nakajima basis the unit of H∗(S[n]) is 1
n!q1(1)n1S[0] where we

let 1S[0] denote the unit in the cohomology of S[0] = {∗} (the subscript S[0] is
usually dropped in what follows). We hence have to evaluate

∑
i+j=2n

(−1)j+1
∫
S[n]

Gi(p)Gj(p) 1
n!q1(1)n1 =(9)

∑
i+j=2n

(−1)j+1
∫
S[n]

⎛⎝ ∑
l(λ)=i,|λ|=0

qλ(Δ∗(p))
λ!

⎞⎠
⎛⎜⎝ ∑

l(λ̃)=j,|̃λ|=0

q
λ̃
(Δ∗(p))
λ̃!

⎞⎟⎠ q1(1)n

n! 1.

The (complex2) cohomological degree of a Nakajima cycle qk1(γ1) · · · qkr(γr)1
lying in H∗(S[n]) is n− r+

∑
i degC(γi). Hence for the integral of such a cycle

1There is one exception: our definition for Gd(γ) agrees with [15] in case d ≥ 1,
while for d = 0 we have G0(γ) = −

(∫
S
γ
)
id (instead of G0(γ) = 0 in [15]). The

advantage is that (7) holds now for all d ∈ Z.
2The complex degree degC(γ) is half the real degree, i.e. γ ∈ H2 deg

C
(γ).
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to be non-zero, we need ki = 1 and degC(γi) = 2 for all i. In particular, the
term q1(1)n appearing in the right hand side of (9) has to be transformed
into a multiple of q1(p)n under the operators Gi(p)Gj(p). Hence among the
qλ and qλ̃ we must have n operators of the form q−1 and n operators q1. Since
this accounts for all possible Nakajima operators which can appear, we need
that λ = (−1)a(1)a and λ̃ = (−1)b(1)b where i = 2a and j = 2b. The above
expression thus evaluates to

= (−1)
∑

a+b=n

1
a!2b!2

∫
S[n]

q1(p)aq−1(p)aq1(p)bq−1(p)b q1(1)n

n! 1

= (−1)
∑

a+b=n

1
a!2b!2 (−1)n

= (−1)n+1 (2n)!
n!4

where in the last equality we used the first part of Lemma 4.1.

Lemma 4.4.∑
i+j=2n+2

(−1)j+1
∫
S[n]

GiGj(Δ)1S[n] = e(S)(−1)n (2n)!
n!4

[
n

12 + n

2(2n− 1)

]

Proof. We insert the expansion (7) for Gi. The contribution from the sec-
ond term in (7) can be computed by the same methods which were used in
Lemma 4.3. The result is e(S)/24

∑
a+b=n(−1)n2a/(a!2b!2). The same applies

to the contribution from the second term in Gj . Inserting this and using part
(2) of Lemma 4.1 we find that:

∑
i+j=2n+2

(−1)j+1
∫
S[n]

GiGj(Δ)1S[n] = I + e(S)(−1)nn
2(2n− 1)!
6 · n!4

where I is the contribution from the first terms in Gi and Gj , that is,

I =
∑

i+j=2n+2
(−1)j+1

∫
S[n]

⎛⎝ ∑
l(λ)=i,|λ|=0

qλ(Δ∗(Δ1))
λ!

⎞⎠
⎛⎜⎝ ∑

l(λ̃)=j,|̃λ|=0

q
λ̃
(Δ∗(Δ2))

λ̃!

⎞⎟⎠ q1(1)n

n! 1

where Δ1,Δ2 stands for summing over the Künneth factors of the diagonal
in H∗(S × S). With similar reasoning as before (i.e. among the qλ and qλ̃ we
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need n operators q1 and q−1 each) we now compute:

I =
n∑

�=1

�−1∑
m=0

∫
S[n]

q
n−m
1 q

n−�
−1 q−(�−m)q�−mq

m
1 q�−1(Δ)

bm,�
(−1)m+� q1(1)n

n! 1

with

bm,� =
{
m!	!(n−m)!(n− 	)! if m < 	− 1
	!2(n− 	 + 1)!2 if m = 	− 1.

Commuting the negative Nakajima operators to the right and using the Naka-
jima commutation relations for cases m = 	− 1 and m < 	− 1 separately, we
get

I = e(S)(−1)n
n∑

�=1

�−1∑
m=0

(−1)m+�+1 (	−m)
m!	!(n−m)!(n− 	)! = e(S)(−1)nn

2(2n− 1)
(2n)!
n!4

where we applied Proposition 4.2 in the last step.

4.3. Generalized Kummer varieties

We first compute the class of Kumn(A) in the Nakajima basis of A[n+1].

Lemma 4.5. In H4(A[n+1]) we have

[Kumn(A)] = G2(α)G2(β)G2(γ)G2(δ)1A[n+1]

for any α, β, γ, δ ∈ H1(A) such that
∫
A αβγδ = 1.

Proof. Let σ : A[n+1] → A be the sum map. We have

[Kumn(A)] = σ∗(p).

Hence it suffices to show that σ∗(α) = G2(α) for any α ∈ H1(A), where
we let G2(α) = G2(α)1A[n+1] . Consider x ∈ H3(A,Z) = H1(A,Z) and let
L(x) = q1(x)q1(p)n1. When x is represented by a singular chain, than L(x)
is represented by the chain obtained from the former by adding n−1 distinct
points to it. This shows that σ∗L(x) = x, and hence∫

A[n+1]
σ∗(α) · L(x) =

∫
A
α · σ∗L(x) =

∫
A
αx.

On the other hand, a direct calculation using the Nakajima operators also
shows

∫
A[n+1] G2(α) · L(x) =

∫
A αx. Since the L(x) generate H1(A[n+1]) this

yields the claim.
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Since [G2(x), q1(y)] = q1(xy) for all x, y ∈ H∗(S) one finds that

(10) [Kumn(A)] =
∑

π={πi}
σπ

1
(n + 1 − 	(π))!

∏
i

q1

(∏
x∈πi

x

)
q1(1)n+1−�(π)1

with the following notation:

• π runs over all set partitions of {α, β, γ, δ} with l(π) parts,
• σπ ∈ {±1} is the sign obtained from bringing

∏
i

∏
x∈πi

x into the order
αβγδ,

• in case n ≤ 2 we sum only over set partitions with l(π) ≤ n + 1.

The first terms read:

[Kumn(A)] = 1
n!q1(p)q1(1)n1 + 1

(n− 1)!q1(α)q1(βγδ)q1(1)n−11

+ . . . + 1
(n− 3)!q1(α)q1(β)q1(γ)q1(δ)q1(1)n−31.

Lemma 4.6. ∫
A[n+1]

q
n+1
1 q

n+1
−1 (Δ)[Kumn(A)] = (n + 1)4.

Proof. Using Lemma 4.5, equation (10) and the straightforward evaluation

σπ

∫
A[n+1]

q
n+1
1 q

n+1
−1 (Δ)

∏
i

q1

(∏
x∈πi

x

)
q1(1)n+1−�(π)1 = (−1)n+1(n + 1)!

for every π, we find that

∫
A[n+1]

q
n+1
1 q

n+1
−1 (Δ)[Kumn(A)] =

∑
π

(n + 1)!(−1)n+1

(n + 1 − l(π))!

= (−1)n+1(n + 1)
[
1 + 7n + 6n(n− 1) + n(n− 1)(n− 2)

]
= (−1)n+1(n + 1)4.

Proof of Theorem 4.2. We have the exact sequence

0 → TKumn(A) → TA[n+1] |Kumn(A) → σ∗(TA)|Kumn(A) → 0
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which together with (7) and (8) (using e(A) = 0) shows that∫
Kumn(A)

ch2n(TKumn(A)) =
∫
A[n+1]

ch2n(TA[n+1]) ∩ [Kumn(A)]

=
∑

i+j=2n+2
(−1)j+1

∫
A[n+1]

GiGj(Δ)[Kumn(A)].

Consider the expansion GiGj(Δ) =
∑

l(λ)=i,l(λ̃)=j qλqλ̃(Δ)/(λ!λ̃!). Since
qλ̃ acts on (10) which consists only of terms of the form

∏
i q1(xi) 1, for a

summand to contribute, λ̃ can only have negative parts equal to −1. Assume
λ̃ has a positive part k > 1. Then λ has to have a corresponding negative
part −k, and these two parts have to interact when commuting all negative
Nakajima operators to the right. However, this will yield the term

[q−k, qk]qλ′qλ̃′(π12∗(Δ12Δ12···(l(λ)+l(λ̃)))) = −kqλ′qλ̃′(c2(A)Δ) = 0

where π12 is the projection away from the first two factors and λ′, λ̃′ are
the partitions λ, λ̃ without the parts k,−k. We conclude that only the sum-
mands with λ = (−1)a(1)a and λ̃ = (−1)b(1)b where i = 2a and j = 2b can
contribute to the integral. Moreover, applying a similar argument we have
qa1q

a
−1q

b
1q

b
−1(Δ) = q

a+b
1 q

a+b
−1 (Δ).

We thus find the following expression:

=
∑

a+b=n+1

(−1)
a!2b!2

∫
A[n+1]

q
n+1
1 q

n+1
−1 (Δ)[Kumn(A)]

=
∑

a+b=n+1

(−1)
a!2b!2 (−1)n+1(n + 1)4

= (−1)n (2n + 2)!
n!4

where we used the first part of Lemma 4.1.

The computations above can be generalized to arbitrary products of
Chern characters. The following qualitative result is almost immediate:

Proposition 4.7. Let n ≥ 1. For any partition n = k1 + k2 + . . . + kr we
have

(−1)n
∫

Kumn(A)
ch2k1(Kumn(A)) · · · ch2kr(Kumn(A)) > 0.
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Proof. Let n− 1 = k1 + . . . + kr be a partition of n− 1. Then∫
Kumn−1(A)

ch2k1(Kumn−1(A)) · · · ch2kr(Kumn−1(A))

=
∑

i1+j1=2k1+2
...

ir+jr=2kr+2

(−1)j1+...+jr+r
∫
A[n]

Gi1Gj1(Δ) · · ·GirGjr(Δ)[Kumn−1(A)]

We express the Gd in terms of Nakajima operators via (7), which produces a
sum consisting of summands with precisely

r∑
s=1

is + js =
∑
s

(2ks + 2) = 2n + 2(r − 1)

Nakajima factors acting on the class of Kumn−1(A). When commuting all
negative Nakajima operators to the right, we see that for a term to contribute
there have to be at least r−1 Nakajima interactions between these 2n+2(r−1)
factors. Moreover, since e(A) = 0 (compare the proof of Theorem 4.2) only
the following is allowed:

(a) There can be no Nakajima interactions between factors belonging to
the same GisGjs(Δ).

(b) There can be at most one Nakajima interaction between factors belong-
ing to GisGjs(Δ) and Gis′Gjs′ (Δ) for s �= s′.

This shows that there can be at most r− 1 Nakajima interactions. The total
sign contribution from these Nakajima interactions is (−1)r−1 and the out-
come will be a multiple of the operator qn1qn−1(Δ). By Lemma 4.6 the degree
of qn1qn−1(Δ)[Kumn−1(A)] yields a sign of (−1)n. Since there always is at least
one summand that contributes with a non-zero value, the claim now follows
as soon as we can prove that j1 + . . . + jr is even.

If λ =
(
. . . (−2)l2(−1)l1(1)l1(2)l2 . . .

)
is a generalized partition of size

|λ| =
∑

i ili = 0, then by considering this equality mod 2 we get that the
number of odd parts lodd :=

∑
j l2j+1 is even, and hence that l(λ) is equal

to the number of even parts leven(λ) :=
∑

j l2j modulo 2. Let λs, λ̃s be the
generalized partitions appearing in a given summand of GisGjs . We see

(−1)j1+...+jr = (−1)leven(λ1)+...+leven(λr).

Moreover, since is + js is even, for every s we have leven(λs) + leven(λ̃s)
is even. This shows that there is always an even number of even Nakajima
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factors in GisGjs(Δ). Let m be the number of s ∈ {1, . . . , r} such that there
exists even Nakajima factors in GisGjs(Δ). Since all even Nakajima factors
have to interact with each other, we see that there are at least m Nakajima
interactions between these m factors, This implies that either (a) or (b) above
is violated, and the corresponding contribution vanishes. Hence for any non-
zero summand contributing to the Chern character number, all Nakajima
factors are odd, so we have js ≡ 0(2) and therefore (−1)j1+...+jr even.

Remark 4.8. Arbitrary Chern character numbers of Kumn(A) can be com-
puted in a parallel manner, however the expressions become more compli-
cated. For example, the double Chern character numbers of the generalized
Kummer for 0 < k < n are given as∫

Kumn(A)
ch2k(Kumn(A))ch2n−2k(Kumn(A)) = 4(−1)n(n + 1)4

(2k + 1)!(2n− 2k + 1)!
k∑

i=0

2i + 1
((k − i)!(k + i + 1)!(n− k − i)!(n− k + i + 1)!)2 .

For k = 1 one gets∫
Kumn(A)

ch2(Kumn(A))ch2n−2(Kumn(A)) =

(−1)n (2n)!
n!4

(
4n(n + 1)2(n2 + n + 1)

)
.

5. Remarks and open questions

A first obvious question is the following

Question 5.1. Compute M(Σ[n]) for any smooth projective surface Σ.

More precisely, it is a consequence of [3] that we have a formula

M(Σ[n]) = αn

∫
Σ
c1(Σ)2 + βn

∫
Σ
c2(Σ),(11)

so the question is to compute αn and βn. Formula (11) follows from the main
result of [3] which says that M(Σ[n]) depends only on

∫
Σ c1(Σ)2 and

∫
Σ c2(Σ)

and from the formula
Σ[n] = �k+l=nΣ[k]

1 × Σ[l]
2

when Σ = Σ1 � Σ2, which by Lemma 3.1 gives

M(Σ[n]) = M(Σ[n]
1 ) + M(Σ[n]

2 ),
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proving that M(Σ[n]) is a linear function of
∫
Σ c1(Σ)2 and

∫
Σ c2(Σ). Equation

(11) suggests that another approach to Theorem 1.3 would be by computing
the Milnor genus of Σ[n] for two conveniently chosen surfaces Σ, in the spirit
of [28].

Theorem 4.1 shows that βn = (−1)n (2n+2)!
24(2n−1)(n!)4 . The Milnor genus of

(P2)[n] can be numerically computed using Bott’s residue formula for small
values of n, so we get the following list of αn.

n αn

1 1/2
2 −5/12
3 91/540
4 −67/1680
5 5599/907200
6 −8047/11975040
7 295381/5448643200
8 −17616097/5230697472000
9 797006281/4801780279296000
10 −404188861/60822550204416000
11 15479922001/70250045486100480000
12 −8942373821/1454175941562279936000

Turning to hyper-Kähler geometry, an obvious open question, that was
our original motivation for formulating Theorem 1.1, is

Question 5.2. What are the constraints on the complex cobordism classes of
hyper-Kähler manifolds?

In view of Theorem 1.1, we can rephrase this question in terms of in-
equalities or equalities between the coefficients αI(X) (resp. βI) given by
Theorem 1.1, expressing the class of X as a combination of classes of the
S[I] (resp. KumI(A)). One obvious restriction is the affine relation given
by the fact that χ(X,OX) = n + 1 for X hyper-Kähler of dimension 2n.
Using the Hirzebruch-Riemann-Roch formula, this gives a relation between
the Chern numbers of X, but we can express it more simply using the αI

since χ(S[I],OS[I]) = (n1 + 1) . . . (nk + 1) for the partition I of n given by
n = n1 + . . . + nk. The relation is thus

n + 1 =
∑
I

αI(n1 + 1) . . . (nk + 1)(12)
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and similarly for the βI . For example, in dimension 4, the Hirzebruch-Riemann-
Roch formula provides the relation (see [22])

3 = 1
240

(∫
X
c2(X)2 − 1

3

∫
X
c4(X)

)
,(13)

while in our setting, it writes

3α2 + 4α1,1 = 3.

In the case of dimension 4 we have two topological models, the Hilbert scheme
S[2] and the generalized Kummer variety Kum2(A) and they clearly have
independent classes, since otherwise by (12) their classes would be equal,
hence also their topological Euler-Poincaré characteristic c4, which is not the
case. In dimension 6, we have 3 topological models, namely S[3], Kum3(A)
and OG6 constructed in [20], and their classes are linearly independent, as
proves the following computation. The Chern numbers c32, c2c4, c6 of K3[3] are
computed in [3], those of Kum3(A) are computed in [17], and those of OG6
are computed in [14]. Thanks to these works, the matrix of Chern numbers for
these three varieties takes the form (where the first line indicates the Chern
numbers of K3[3], the second line those of Kum3(A), and the third line those
of OG6): ⎛⎜⎝36800 14720 3200

30208 6784 448
30720 7680 1920

⎞⎟⎠ .

The determinant of this matrix is nonzero, proving the independence of the
three classes. Thus, up to dimension 6, the classes of hyper-Kähler manifolds
generate the affine space defined by (12). It is likely that there are linear
relations in higher dimension.

Other contraints are given by inequalities. For example, the class c2 has
positivity properties related to the existence of Kähler-Einstein metrics. Pos-
itivity results for some Chern numbers have been also obtained by Jiang
[9] who proves that the coefficients of the Riemann-Roch polynomial of a
line bundle L on X, expressed as a polynomial in q(L), has positive coeffi-
cients. It is proved in [16] that for an adequate normalization of the Beauville-
Bogomolov form q, these coefficients are given by Chern numbers of X (de-
pending only on the dimension). In dimension 4, work of Guan [7] gives in-
equalities on

∫
X c4(X) that come from the study of the cohomology algebra

of X. In higher dimension 2n, work of [5] also predicts bounds on Betti num-
bers which in turn gives conjectural bounds on the topological Euler-Poincaré
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characteristic
∫
X c2n(X). It would be very interesting to have an idea of the

convex set generated by classes of hyper-Kähler manifolds. Let us now men-
tion three specific questions in this direction.

(a) The numbers χ(X,Ωi
X). In the case of the varieties S[n] and

Kumn(A), we have the following result.

Lemma 5.3. Let S be a K3 surface. Then the numbers (−1)iχ(S[n],Ωi
S[n])

are increasing in the range 0 ≤ i ≤ n.
Similarly, for n fixed, the numbers (−1)iχ(Kumn(A),Ωi

Kumn(A)) are in-
creasing.

Proof. We argue as in Section 2. As these numbers are Chern numbers by
the Hirzebruch-Riemann-Roch formula, we can replace by [3] the K3 surface
S by the disjoint union Σ of two copies of P2 blown-up in 9 points. Then
(−1)iχ(Σ[n],Ωi

Σ[n]) = b2i(Σ[n]) so the statement is that b2i(Σ[n]) is increasing
in the range 0 ≤ i ≤ n and this follows from the hard Lefschetz theorem since
dim Σ[n] = 2n.

For the second statement, the numbers (−1)iχ(Kumn(A),Ωi
Kumn(A)) are

computed in [6] which gives the following formula∑
i

(−1)iχ(Kumn(A),Ωi
Kumn(A))yi = n

∑
d|n

d3(1 + y + ... + yn/d−1)2yn−n/d.

It immediately follows that these numbers are increasing in the range 0 ≤ i ≤
n.

We also computed these numbers for OG6 and OG10 and got

(−1)iχ(OG6,Ωi
OG6) = 4, 24, 348, 1168

respectively for i = 0, 1, 2, 3 and

(−1)iχ(OG10,Ωi
OG10) = 6, 111, 1062, 7173, 33534, 93132,

respectively for i = 0, 1, 2, 3, 4, 5. In the two cases, these numbers are in-
creasing. This raises the following question.

Question 5.4. Is it true that the numbers (−1)iχ(X,Ωi
X) are increasing in

the range 0 ≤ i ≤ n for any hyper-Kähler manifold X of dimension 2n?

Remark 5.5. If i ≤ n, the cup-product map by σn−i
X gives an isomorphism

Ωi
X
∼= Ω2n−i

X , hence induces an isomorphism σn−i
X : Hj(X,Ωi

X)∼=Hj(X,Ω2n−i
X )

for any integer j. It follows that the wedge-product by σX is injective on
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Hj(X,Ωi
X) for i < n. This implies that, if X has no odd degree cohomology,

one has (−1)iχ(X,Ωi
X) ≤ (−1)iχ(X,Ωi+2

X ) for i < n, which gives a partial
answer to Question 5.4. (We thank one of the referees on this paper for this
remark.)

Remark 5.6. One has χtop(X) =
∑

i(−1)iχ(X,Ωi
X), using the fact that the

holomorphic de Rham complex gives a resolution of the constant sheaf C on
X. Using the isomorphisms Ωi

X
∼= Ω2n−i

X above, we can rewrite this as

χtop(X) = 2
i=n−1∑
i=0

(−1)iχ(X,Ωi
X) + (−1)nχ(X,Ωn

X).

If Question 5.4 had an affirmative answer, each term in the above sum
would be ≥ χ(X,OX) = n + 1 and we would thus have the inequality
χtop(X) ≥ (2n + 1)(n + 1). It is not even known in general if χtop(X) ≥ 0,
but the inequality χtop(X) =

∫
X c2n(X) ≥ 0 was already conjectured (see

Question 5.10).

(b) Chern character numbers. Theorems 4.1 and 4.2 prove that the
two numbers (−1)n

∫
S[n] ch2n(S[n]) and (−1)n

∫
Kumn(A) ch2n(Kumn(A)) are

positive for any n.
This suggests the following question.

Question 5.7. Is it true that (−1)nM(X) = (−1)n
∫
X ch2n(X) is positive

for any hyper-Kähler manifold X of dimension 2n?

The following lemma gives an affirmative answer in dimension 4.

Lemma 5.8. Let X be a hyper-Kähler fourfold. Then M(X) =
∫
X ch4(X) >

0.

Proof. We have ch4(X) = 1
24(2c22(X) − 4c4(X)) so the statement is equiva-

lent to
∫
X(c22(X) − 2c4(X)) > 0. Formula (13) gives us

∫
X c2(X)2 = 720 +

1
3
∫
X c4(X), so the desired inequality is equivalent to∫

X
c4(X) = χtop(X) < 9 · 240

5 = 432.(14)

Inequality (14) now follows from work of Salamon [23] and Guan [7]. By [23],
b3(X)+b4(X) = 46+10b2(X), hence χtop(X) = b4(X)−2b3(X)+2b2(X)+2 ≤
48 + 12b2(X). Guan proves that b2(X) ≤ 23, so we get

χtop(X) ≤ 48 + 12 · 23 = 324,

proving (14).
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Proposition 4.7 shows that (−1)n
∫
Kumn(A) ch2k1 ....ch2kr > 0 for any choice

of partition n =
∑

i ki. This suggests the following question

Question 5.9. Is it true that (−1)n
∫
X ch2k1(X) · · · ch2kr(X) is positive for

any hyper-Kähler manifold X of dimension 2n and any choice of partition
n =

∑
i ki?

(c) Positivity of monomial Chern numbers. We recall here for com-
pleteness that positivity properties had been observed already in [18], [24] for
the monomial Chern numbers

∫
X c2k1(X) . . . c2kr(X) of known hyper-Kähler

manifolds. The following question was asked in [18]

Question 5.10. Is it true that
∫
X c2k1(X)....c2kr(X) is positive for any hyper-

Kähler manifold X of dimension 2n and any choice of partition n =
∑

i ki?

We note that, in the case of dimension 4, it is still unknown that e(X) =∫
X c4(X) > 0. The questions (b) and (c) look very similar but they lead to

very different convexity inequalities and, in dimension 4, the two inequalities∫
X c4(X) > 0 (conjectured above) and

∫
X ch4(X) > 0 proved in Lemma 5.8

imply together the finiteness of the complex cobordism classes of hyper-Kähler
fourfolds.

We finish with two questions more specifically related to our results,
concerning the comparison of the two systems of linear generators S[I] and
KumI(A). It would be interesting to know more about the matrix comparing
these two systems of linear generators in each dimension.

Question 5.11. Is there a geometric way of understanding and computing
this matrix?

Another intriguing fact concerns the shape of the coefficients of these
matrices. Since the Chern numbers of S[k] and Kumk(A) are known for small
values of k, and the Chern numbers of a product X × Y can be expressed
in terms of Chern numbers of X and Y , one gets consequently the Chern
numbers of S[I] and KumI(A) for all partitions I of k. One may then study
the linear relations among the classes of these manifolds. Below is the explicit
expression giving the class of S[k] as a Q-linear combination of the classes of
KumI(A) for k ≤ 5.

S[2] = 1
3Kum2(A) + 1

2Kum1,1(A)

(15)

S[3] = 1
5Kum3(A) + 14

45Kum2,1(A) + 1
6Kum1,1,1(A)
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S[4] = 1
7Kum4(A) + 7

40Kum3,1(A) + 1
21Kum2,2(A)

+ 47
315Kum2,1,1(A) + 1

24Kum1,1,1,1(A)

S[5] = 1
9Kum5(A) + 62

525Kum4,1(A) + 4
75Kum3,2(A) + 49

600Kum3,1,1(A)

+ 23
525Kum2,2,1(A) + 151

3150Kum2,1,1,1(A) + 1
120Kum1,1,1,1,1(A).

The leading coefficient being 1
2k−1 can be explained by the difference in the

expression of Milnor genus for the two infinite series, since the other terms
are products and do not contribute to the Milnor genus.

Similarly, we computed the class of Kumk(A) as a Q-linear combination
of the classes of S[I] for k ≤ 5.

(16)

Kum2(A) = 3S[2] − 3
2S

[1,1]

Kum3(A) = 5S[3] − 14
3 S[2,1] + 3

2S
[1,1,1]

Kum4(A) = 7S[4] − 49
8 S[3,1] − 3S[2,2] + 67

12S
[2,1,1] − 21

16S
[1,1,1,1]

Kum5(A) = 9S[5] − 186
25 S[4,1] − 36

5 S[3,2] + 1287
200 S[3,1,1]

+ 159
25 S[2,2,1] − 577

100S
[2,1,1,1] + 423

400S
[1,1,1,1,1].

Equations (15) strongly suggest the following question.

Question 5.12. Is it true that for any n, the class of S[n] is a linear combi-
nation with positive coefficients of the classes of KumI(A)?

There are only two known hyper-Kähler manifolds which do not belong
to the two infinite series discussed above, namely the 6-dimensional and 10-
dimensional O’Grady manifolds OG6 and OG10 (see [20], [21]). Their cobor-
dism classes are expressed as follows in the generalized Kummer basis (show-
ing in particular that not any hyper-Kähler manifold has its class in the
convex cone generated by products of generalized Kummer varieties).

OG6 = 6
5Kum3(A) − 16

45Kum2,1(A) + 1
6Kum1,1,1(A),

OG10 = 25
168Kum5(A) + 67

700Kum4,1(A) + 3
700Kum3,2(A)+ 163

1600Kum3,1,1(A)

+ 2617
37800Kum2,2,1(A) + 493

12600Kum2,1,1,1(A) + 17
1920Kum1,1,1,1,1(A).
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Our last observation is the following. There is a mysterious link (in fact
related to mirror symmetry) between hyper-Kähler manifolds of dimension 2n
and rational homology projective space CPn. It appears for example in [11]
where it is proved that the dual complex of the central fiber of a maximally
unipotent dlt degeneration of a hyper-Kähler 2n-fold is a rational homol-
ogy projective space CPn. There is another mysterious and more precise link
between K3[n] and projective space Pn, which comes from the study of the
Riemann-Roch polynomials. Indeed, one has the following result that can be
formulated using the Chern numbers of X by [16]. (This result is proved by
looking at the natural Lagrangian fibration of a variety S[n] where S is a K3
surface equipped with an elliptic fibration.)

Theorem 5.13. [3, Lem.5.1] Let X be a hyper-Kähler manifold of K3[n]-
deformation type and q be its Beauville-Bogomolov form. Then for any line
bundle L on X with q(c1(L)) = 2k, one has χ(X,L) = χ(Pn,OPn(k + 1)) =
h0(Pn,OPn(k + 1)).

The formalism used in the present paper proposes a further analogy be-
tween K3[n] and Pn. Namely the classical complex cobordism gives the pro-
jective spaces Pn as multiplicative rational generators of MU∗(pt) while we
proved that the K3[n] are multiplicative rational generators of MU∗(pt)even.
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