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Twisted composition algebras and Arthur packets for
triality Spin(8)

Wee Teck Gan and Gordan Savin

1. Introduction

The purpose of this paper is to construct and analyze certain square-integrable
automorphic forms on the quasi-split simply-connected groups Spin8 of type
D4 over a number field F . Since the outer automorphism group of Spin8 is S3,
these quasi-split groups are parametrised by étale cubic F -algebras E and we
denote them by SpinE

8 (to indicate the dependence on E). We shall specialize
to the case when E is a cubic field: this gives the so-called triality Spin8.

The square-integrable automorphic forms we construct are associated to
a family of discrete Arthur parameters ψ which are quite degenerate. Indeed,
apart from the A-parameters of the trivial representation and the minimal
representation of SpinE

8 , the A-parameters we consider here are the most
degenerate among the rest. These A-parameters are analogs of the cubic
unipotent A-parameters for the exceptional group G2 studied in [GGJ]. In
particular, the component groups associated to these A-parameters can be
the non-abelian group S3, leading to high multiplicities in the automorphic
discrete spectrum, as in [GGJ].

For each such A-parameter, we shall give a construction of the local A-
packets and establish the global Arthur multiplicity formula. Both the local
and global constructions are achieved using exceptional theta correspondences
for a family of dual pairs HC ×SpinE

8 in an ambient adjoint group of type E6
(considered with its outer automorphisms); these dual pairs are associated to
E-twisted composition algebras of dimension 2 over E. We shall in particu-
lar determine the local and global theta lifting completely. The automorphic
forms constructed via these theta correspondences, though quite degenerate,
can be cuspidal and have some special properties. For example, when one
considers their Fourier coefficients along the Heisenberg maximal parabolic
subgroup of SpinE

8 (corresponding to the branch vertex in the Dynkin dia-
gram), one sees that these automorphic forms support only one orbit of generic
Fourier coefficients: they are distinguished in the sense of Piatetski-Shapiro.
The relevant Fourier coefficients are parametrised by E-twisted composition
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algebras of E-rank 2, as shown in our earlier work [GS2] on twisted Bhar-
gava cubes. Such properties allow us to determine their multiplicity in the
automorphic discrete spectrum completely.

Because the objects mentioned above may be unfamiliar to the typical
reader, and the precise results require a substantial amount of notation and
language to state, we will leave the precise formulation of the results to the
main body of the paper and content ourselves with the rather cursory overview
above.

We would however like to emphasize the pivotal role played by the notion
of a twisted composition algebra (of rank 2) and its relation to embeddings
of the cubic algebra E into a degree 3 Jordan algebra (of dimension 9). This
algebraic theory was created and developed by T. Springer (see [SV, Chap.
4] and [KMRT, §36]). Its relation with SpinE

8 has been explored in our ear-
lier paper [GS2] and we shall apply the algebraic results of [GS2] to the
study of automorphic forms here. In addition, we also need arithmetic results
about twisted composition algebras and their automorphism groups, such as
local and global Tate dualities, weak approximation and Hasse principles.
These arithmetic results are supplied by the papers of Tate [T], Voskresen-
skii [V1, V2] and Prasad-Rapinchuk [PR]. These algebraic and arithmetic
results, together with the representation theoretic results from exceptional
theta correspondence, combine in rather intricate and (to these authors) ut-
terly amazing ways to give the elegant Arthur multiplicity formula.

Given the length of the paper, it will be pertinent to provide a brief
summary as a roadmap for the reader:

– We introduce in §2 the group GE = SpinE
8 and its relevant structures,

and give a description of its A-parameters in §3, reviewing Arthur’s
conjecture in the process.

– The theory of twisted composition algebras is introduced in §4. Though
this theory is due to Springer, we have needed to supplement it with
some observations of our own. In particular, Proposition 4.20 plays an
important role in the interpretation of our results in the framework
of Arthur’s conjecture. We then recall in §5 our results from [GS2]
concerning nondegenerate twisted Bhargava cubes and supplement the
discussion with results about degenerate cubes.

– §6 is devoted to the construction of the various dual pairs that will
be studied in this paper. It is followed by a detailed description of the
Levi subgroup (of type A5) of the Heisenberg parabolic subgroup of the
adjoint group of type E6 in §7.

– The minimal representation of the adjoint group of type E6 is intro-
duced in §8 and its Jacquet module for the Heisenberg parabolic sub-
group is determined in §9,
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– In the spirit of the tower property of classical theta correspondence, we
determine the mini-theta correspondence for the Heisenberg Levi sub-
group in §10. This is based on relating it to a classical similitude theta
correspondence for unitary groups. It is needed for the study of the theta
correspondence in E6 which is carried out in §12, after introducing some
notations for representations of GE in §11. In particular, Theorem 12.1
is the main local result of this paper in the nonarchimedean case. We re-
call in §13 the analogous result in the archimedean case, but the proofs
of Theorems 13.1, 13.2 and 13.3 there will be deferred to a joint paper
with J. Adams, H.Y. Loke and A. Paul.

– After this, we move to the global setting, starting with §14 which is de-
voted to the study of global theta correspondence. Here, we first need to
understand the space of automorphic forms of the disconnected group
HC = AutE(C), where C is a twisted composition algebra of rank 2.
Not surprisingly, the automorphic multiplicity for HC can be 1 or 2. In
§15, we relate the relevant A-parameters to the theory of twisted com-
position algebras. The important ingredients here are the local-global
principles in Lemma 15.5, the consequence of local Tate-Nakayama du-
ality in Proposition 15.12 and the global Poitou-Tate duality in Propo-
sition 15.16. After this preparation, we interpret the space of global
theta liftings in the framework of Arthur’s conjecture in §16. More pre-
cisely, we construct the local A-packets as well as their bijection with
characters of the local component groups, and then establish the Arthur
multiplicity formula (AMF) for the space of global theta liftings in The-
orem 16.6. Finally, we show in Theorem 16.8 that the number provided
by the AMF is in fact the true discrete multiplicity of the relevant repre-
sentation in the automorphic discrete spectrum of GE . For the interest
of the reader, the following are some examples of numbers which arise
as such multiplicities:

2n, 2n + 2(−1)n

3 ,
2n + (−1)n+1

3 for n ≥ 0.

In particular, the multiplicities in the automorphic discrete spectrum
are unbounded. The main source of these high multiplicities comes from
the failure of Hasse principle for twisted composition algebras of E-
dimension 2, or alternatively, the failure of Hasse principle for Jordan
algebras of dimension 9.

– We have included two appendices. In Appendix A, we consider an anal-
ogous theta correspondence for a dual pair SL2(E)/μ2 × GE in E7,
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associated to a rank 4 twisted composition algebra. This theta corre-
spondence can be used to construct another family of Arthur packets
for GE , but we do not pursue this here. Instead, we only determine the
theta lift of the trivial representation of SL2(E)/μ2 in Corollary A.6;
this result is used in our paper [GS3]. The long Appendix B is devoted
to the study of unramified degenerate principal series representations of
GE for the various maximal parabolic subgroups and the various possi-
bilities of E. Our approach is via the Iwahori Hecke algebra, and in each
case, we determine the points of reducibility and the module structure
at each such point. This allows us to introduce various interesting rep-
resentations of GE with nonzero Iwahori-fixed vectors which intervene
in the theta correspondence studied in the paper. In particular, we shall
refer to the terminology and results of Appendix B in the description
of theta lifting, for example in Theorem 12.1.

We wrap up this introduction by mentioning some recent papers which
are devoted to the (automorphic) representation theory of triality Spin8:

• the paper [L] of C.H. Luo on determining the unitary dual of the adjoint
form of GE over p-adic fields;

• the papers [Se1] and [Se2] of A. Segal on the structure of degenerate
principal series representations (which builds upon and complements
our results in Appendix B) and poles of degenerate Eisenstein series of
GE ;

• the paper [La] of J.F. Lau on the determination of the residual spectrum
of GE .

It is interesting to relate the local and global A-packets we construct here
with the results of these other papers.

2. Structure theory of SpinE
8

2.1. Étale cubic algebras

Let F be a field of characteristic 0 and with absolute Galois group Gal(F/F ).
An étale cubic algebra is an F -algebra E such that E ⊗F F ∼= F

3. More
concretely, an étale cubic F -algebra is of the form:

E =

⎧⎪⎪⎨⎪⎪⎩
F × F × F ;
F ×K, where K is a quadratic field extension of F ;
a cubic field.
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Since the split algebra F ×F ×F has automorphism group S3 (the symmetric
group on 3 letters), the isomorphism classes of étale cubic algebras E over F
are naturally classified by the set of conjugacy classes of homomorphisms

ρE : Gal(F/F ) −→ S3.

By composing the homomorphism ρE with the sign character of S3, we
obtain a quadratic character (possibly trivial) of Gal(F/F ) which corresponds
to an étale quadratic algebra KE . We call KE the discriminant algebra of E.
To be concrete,

KE =

⎧⎪⎪⎨⎪⎪⎩
F × F, if E = F 3 or a cyclic cubic field;
K, if E = F ×K;
the unique quadratic subfield in the Galois closure of E otherwise.

We shall let χKE denote the quadratic idele class character associated to KE .
The étale cubic F -algebra E possesses a natural cubic form NE/F : E →

F known as its norm form: for a ∈ E, NE/F (a) is the determinant of the
multiplication-by-a map on the F -vector space E. Then there is a natural
quadratic map

(2.1) (−)# : E −→ E

characterized by a · a# = NE/F (a) for all a ∈ E.

2.2. Twisted form of S3

Fix an étale cubic F -algebra E. Then, via the associated homomorphism ρE ,
Gal(F/F ) acts on S3 (by inner automorphisms) and thus defines a twisted
form SE of the finite constant group scheme S3. For any commutative F -
algebra A, we have

SE(A) = AutA(E ⊗F A).

2.3. D4 root system

Let Φ be a root system of type D4 with a set of simple roots Δ = {α0, α1, α2, α3}.
The highest root is β0 = α1 + α2 + α3 + 2α0. The corresponding Dynkin dia-
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gram is

α3

α0
��������

α2 α1

Hence the group Aut(Δ) of diagram automorphisms is identified with S3 (the
group of permutations of {1, 2, 3}).

2.4. Quasi-split groups of type D4

Let G = Spin8 be a split, simply connected Chevalley group of type D4. We
fix a maximal torus T contained in a Borel subgroup B defined over F . The
group G is then generated by root groups Uα

∼= Ga, where α ∈ Φ. Steinberg
showed that one can pick the isomorphisms xα : Ga → Uα such that

[xα(u), xα′(u′)] = xα+α′(±uu′)

whenever α+α′ is a root. Fixing such a system of isomorphisms for α ∈ Δ is
fixing an épinglage (or pinning) for G. By the discussion on page 40 in [FK],
commutators signs can be specified by choosing an orientation of the Dynkin
diagram. There is a short exact sequence:

1 −−−−→ Gad = Inn(G) −−−−→ Aut(G) −−−−→ Aut(Δ) = S3 −−−−→ 1.

As one can pick an orientation of the Dynkin diagram which is invariant under
Aut(Δ), one has a splitting S3 = Aut(Δ) −→ Aut(G), where the action of S3
permutes the root subgroups Uα and the isomorphisms xα.

Since S3 is also the automorphism group of the split étale cubic F -algebra
F 3, we see that every cubic étale algebra E defines a simply-connected quasi-
split form GE of G, whose outer automorphism group is the finite group
scheme SE . It comes equipped with a pair BE ⊃ TE consisting of a Borel
subgroup BE containing a maximal torus TE , both defined over F . Moreover,
we inherit a Chevalley-Steinberg system of épinglage relative to this pair and
a splitting of the outer automorphism group

SE ↪→ Aut(GE).
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If E is a cubic field, then Gal(F/F ) permutes the roots α1, α2 and α3 transi-
tively. If E = F ×K with K a quadratic field, then without loss of generality,
we assume that α1 is fixed, whereas α2 and α3 are exchanged by the Galois
action. If E is the split algebra, the Galois action on Φ is trivial.

2.5. Center

The center of the split group G is

Z = {(z1, z2, z3) ∈ μ2 × μ2 × μ2 : z1z2z3 = 1}.

By Galois descent, we deduce that the center of GE is

ZE = Res1E/F (μ2) = Ker(NE/F : ResE/F (μ2) −→ μ2).

In particular, from the short exact sequence

1 −−−−→ ZE −−−−→ GE
p−−−−→ Gad

E −−−−→ 1,

we deduce that

(2.2) Gad
E (F )/p(GE(F )) = Ker(H1(F,ZE) −→ H1(F,GE)).

The finite group scheme ZE will play an important role in this paper and we
will see several other incarnations of it later on.

2.6. L-group

The Langlands dual group of GE is the adjoint complex Lie group

G∨
E = PGSO8(C).

It inherits a pinning from that of GE . The L-group LGE is the semidirect
product of PGSO8(C) with Gal(F/F ), where the action of Gal(F/F ) on
PGSO8(C) is via the homomorphism ρE as pinned automorphisms. Thus
there is a natural map

LGE −→ PGSO8(C) � S3,

whose restriction to Gal(F/F ) is ρE .



1958 Wee Teck Gan and Gordan Savin

2.7. G2 root system

The subgroup of GE fixed pointwise by SE is isomorphic to the split excep-
tional group of type G2. Observe that B0 = G2 ∩ BE is a Borel subgroup of
G2 and T0 = TE ∩ G2 is a maximal split torus of G2. Via the adjoint action
of T0 on GE , we obtain the root system ΦG2 of G2, so that

ΦG2 = Φ|T0 .

We denote the short simple root of this G2 root system by α and the long
simple root by β, so that

β = α0|T0 and α = α1|T0 = α2|T0 = α3|T0 .

Thus, the short root spaces have dimension 3, whereas the long root spaces
have dimension 1. For each root γ ∈ ΦG2 , the associated root subgroup Uγ

is defined over F and the Chevalley-Steinberg system of épinglage gives iso-
morphisms:

Uγ
∼=
{

ResE/FGa, if γ is short;
Ga, if γ is long.

When E is a cubic field, T0 is in fact the maximal F -split torus of GE and
ΦG2 is the relative root system of GE .

For each γ ∈ ΨG2 , we shall also let Nγ denote the root subgroup of G2
corresponding to γ. In particular,

Nγ = Uγ ∩G2.

Because the highest root β0 of the D4-root system restricts to that of the
G2-root system, we shall let β0 denote the highest root of the G2-root system
also.

2.8. Two parabolic subgroups

The G2 root system gives rise to 2 parabolic subgroups of GE . One of these
is a maximal parabolic PE = MENE known as the Heisenberg parabolic.
Its unipotent radical NE is a Heisenberg group and its Levi subgroup ME is
spanned by the 3 satellite vertices in the Dynkin diagram. The other parabolic
QE = LEUE is a not-necessarily-maximal parabolic (it is not maximal over
F ); its Levi subgroup LE is spanned by the branch vertex α0 and its unipotent
radical UE is a 3-step unipotent group. We shall need to examine the structure
of these 2 parabolic subgroups more carefully.
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2.9. The Heisenberg parabolic PE

Let us begin with the Heisenberg parabolic P = MN of G. Its unipotent
radical N is a 2-step nilpotent group with the center Z = [N,N ] = Uβ0 . As
we explained in [GS2], The Levi factor M can be identified with

GL2(F 3)det = {g = (g1, g2, g3) | gi ∈ GL2(F ), det(g1) = det(g2) = det(g3)}.

We may also identify V = N/Z with F 2 ⊗ F 2 ⊗ F 2, so that the action
of M on V corresponds to the standard action of GL2(F 3)det twisted by
det(g)−1 := det(gi)−1 (for any i). Moreover, we can assume that the torus T ⊂
M corresponds to the subgroup of GL2(F 3)det consisting of g = (g1, g2, g3)
where gi are diagonal matrices, and the standard basis elements of F 2⊗F 2⊗
F 2 correspond to the basis of N/Z given by the fixed pinning.

Thus, an element v ∈ V can be conveniently represented by a cube

e3 f1

f2 b

�
��

�
��

a e2

e1 f3

�
��

�
��

where a, . . . , b ∈ F , and the vertices correspond to the standard basis in
F 2 ⊗ F 2 ⊗ F 2. We shall assume that the vertex marked by a corresponds
to α0, and that the vertex marked by b corresponds to β0 − α0. The group
Aut(Δ) acts as the group of symmetries of the cube fixing these two vertices.
We shall often write the cube as a quadruple

(a, e, f, b)

where e = (e1, e2, e3) and f = (f1, f2, f3) ∈ F 3.
The quasi-split group GE contains a maximal parabolic PE = MENE

which is a form of P . The structure of PE can be determined by Galois
descent. The highest root β0 is invariant under Aut(Δ), hence the center ZE

is equal to the center Z of P . The Levi factor ME can be identified with

GL2(E)det := {g ∈ GL2(E) : det(g) ∈ F×},
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and

VE := NE/ZE
∼= Uβ × Uβ+α × Uβ+2α × Uβ+3α ∼= F × E × E × F

can be identified with the space of “twisted cubes” i.e. quadruples (a, e, f, b)
where a, b ∈ F and e, f ∈ E. The cube

vE = (1, 0, 0,−1)

is called the distinguished cube. Its stabilizer in ME can be easily computed
using Galois descent:

StabME (vE) ∼= E1 � (Z/2Z)

where E1 denotes the group of norm one elements in E×. In this isomorphism,
α ∈ E1 corresponds to (

α
α−1

)
∈ GL2(E)det

and the nontrivial element in Z/2Z corresponds to

w =
(

0 1
1 0

)
.

Note that PE ∩ G2 is the Heisenberg maximal parabolic P0 = M0N0 of G2,
with

M0 = G2 ∩ME
∼= GL2 and N0 = G2 ∩NE .

2.10. The 3-step parabolic QE

Now we come to the parabolic QE . The unipotent radical UE has a filtration

{1} ⊂ U
(1)
E ⊂ U

(2)
E ⊂ UE

such that
U

(1)
E = Uβ0 × Uβ0−β

is the center of UE . Further,

U
(2)
E = [UE , UE ] = Uβ0 × Uβ0−β × U2α+β

is the commutator subgroup of UE and is abelian. In particular, UE is a
3-step unipotent group; hence we call QE the 3-step parabolic. Note that



Twisted composition algebra and triality 1961

Q0 = G2 ∩QE = L0 · U0 is the 3-step maximal parabolic of G2, with

L0 = G2 ∩ LE
∼= GL2 and U0 = G2 ∩ UE .

One has an isomorphism

LE
∼= (GL2 × ResE/FGm)det = {(g, e) : det(g) ·NE/F (e) = 1}.

2.11. Nilpotent orbits

Assume that E is a field. In this subsection, we shall describe the nilpotent
orbits of Lie(GE)(F ) = gE(F ) and the centralizers of the nilpotent elements.

Let tE(F ) = Lie(TE)(F ) be the maximal toral subalgebra in gE(F ). Let
e be a nilpotent element in gE(F ) belonging to a nilpotent GE(F̄ )-orbit Ω.
By the Jacobson-Morozov theorem, the element e is a member of an sl2-
triple (f, h, e) defined over F , so that h is a semi-simple element such that
[h, e] = 2e. We can assume that h ∈ tE(F̄ ) and lies in the positive chamber.
Then the values of the simple roots on h are nonnegative integers and give
a marking of the Dynkin diagram of type D4; this marking parameterizes
the orbit Ω. Note that the marking of the Dynkin diagram must necessarily
be invariant under Aut(Δ). In fact, this condition is necessary and sufficient
(see [Dj]) for a nilpotent orbit in gE(F̄ ) to be defined over F and to have an
F -rational point.

The semisimple element h gives a Z-grading gE =
⊕

gE,i, with e ∈ gE,2.
Let Pe = MeNe be the parabolic group such that the Lie algebra of Me is
gE,0. By a result of Kostant, the centralizer ZMe(e) of e in Me is the reductive
part of ZGE (e). Moreover, by Galois cohomology, the nilpotent GE(F )-orbits
contained in Ω(F ) are parametrized by

Ker(H1(F,ZMe(e)) → H1(F,GE)).

We now list all nilpotent orbits Ω defined over F and the corresponding
ZMe(e) (the reductive part of the centralizer ZGE (e)). First, we have three
Richardson orbits corresponding to the following diagrams:

�
��

2 � �2

�

�

�
��

�
��

2

2
�

��

2 � �0

�

�

�
��

�
��

2

2
�

��

0 � �2

�

�

�
��

�
��

0

0
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The first two diagrams correspond to the regular and the subregular orbit
respectively, and the reductive part of the centralizer is the center of GE

in each case. The third case is the most interesting. In this case ZMe(e) is
generally disconnected and its identity component is a 2-dimensional torus.
In fact, ZMe(e) = AutE(C) where C is an E-twisted composition algebra
of E-dimension 2 (see later for this notion). We also have the three orbits
corresponding to the following diagrams:

�
��

1 � �0

�

�

�
��

�
��

1

1
�

��

0 � �1

�

�

�
��

�
��

0

0
�

��

0 � �0

�

�

�
��

�
��

0

0

The first two orbits correspond to a short root ϕ : sl2(E) → gE(F )
embedding and a long root embedding ϕ : sl2(F ) → gE(F ) respectively. The
reductive part of the centralizer is isomorphic to SL2(F ) × Z and SL2(E),
respectively. The last diagram corresponds to the trivial orbit.

Summarizing our findings, if F is a local field, then Ω(F ) consists of
a single GE(F )-orbit, except in one case when GE(F )-orbits in Ω(F ) are
parameterized by E-isomorphism classes of E-twisted composition algebras
C of E-dimension 2.

2.12. Unipotent orbits of LGE

We also need a description of the conjugacy classes of maps

SL2(C) −→ LGE −→ G∨
E � S3

which are invariant under the S3-action. These correspond to unipotent con-
jugacy classes of G∨

E = PGSO8(C) which are stable under the action of S3.
As in the previous subsection, these unipotent conjugacy classes in turn cor-
respond to markings of the D4 Dynkin diagram which are invariant under the
S3-action. In particular, such markings have been enumerated in the previous
subsection.

3. Arthur parameters of SpinE
8

In this section, we shall enumerate the (elliptic) Arthur parameters for GE

and single out a particularly interesting family of Arthur parameters. Thus,
in this section, we assume that F is a number field and E is a cubic field
extension of F .
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3.1. A-parameters

An A-parameter for GE is a G∨
E-conjugacy class of homomorphism

ψ : LF × SL2(C) −→ LGE = G∨
E �ρE Gal(F/F ) −→ G∨

E � S3,

such that prS3 ◦ ψ|LF = ρE , where prS3 stands for the projection

prS3 : G∨
E � S3 −→ S3.

In particular, ψ|SL2(C) is of the type considered in Section 2.12.
For each place v of F , we have a conjugacy class of embeddings LFv ↪→ LF ,

from which we obtain by restriction a local A-parameter

ψv : LFv × SL2(C) −→ G∨
E � S3.

3.2. Component groups

For an A-parameter ψ, we set

Sψ = π0
(
ZG∨

E
(Im(ψ))

)
.

This is the global component group of ψ, and we say that ψ is elliptic if Sψ is
finite. Likewise, we have the local component group Sψv . There is a natural
diagonal map

Δ : Sψ −→ Sψ,A :=
∏
v

Sψv .

Hence there is an induced pullback map

Δ∗ : IrrSψ,A −→ R(Sψ),

where R(Sψ) denotes the (Grothendieck) representation ring of Sψ.

3.3. Arthur’s conjecture

We briefly recall Arthur’s conjecture. Associated to each elliptic A-parameter
ψ, one expects to have the following:

• for each place v of F , a finite packet

Πψv = {πηv : ηv ∈ IrrSψv}

of unitary representations of finite length (possibly zero), indexed by
the irreducible characters of the local component group Sψv .
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• set
Πψ = {πη =

⊗
v

πηv : η = ⊗vηv ∈ IrrSψ,A},

and
mη = 〈Δ∗(η), εψ〉Sψ

where εψ is a certain quadratic character of Sψ (whose definition we
won’t recall here). Then the automorphic discrete spectrum L2

disc of GE

contains a submodule isomorphic to

L2
ψ :=

⊕
η∈IrrSψ,A

mη · πη.

Moreover, we have:
L2
disc =

⊕
ψ

L2
ψ

where the sum runs over equivalence classes of elliptic A-parameters ψ.

3.4. Enumeration

In view of the above discussion, there are 6 families of A-parameters for
GE , according to the type of ψ|SL2(C). We list them below, together with the
component group Sψ:

(i) ψ|SL2(C) is the regular orbit: Sψ is trivial and the resulting A-packet
consists of the trivial representation (both locally and globally).

(ii) ψ|SL2(C) is the subregular orbit: Sψ is trivial and the resulting local
A-packet consists of the minimal representation.

(iii) ψ|SL2(C) is given by:

ψ : SL2(C) −→ SO3(C) ⊂ SL3(C) ⊂ G2(C) ⊂ G∨
E .

This is the case of interest in this paper and we shall give a more detailed
discussion in the next subsection.

(iv) ψ|SL2(C) is given by

ψ : SL2(C) ↪→ SL2(C) × SL2(C) × SL2(C) −→ M∨
E ⊂ G∨

E ,

where the first map is the diagonal embedding.
(v) ψ|SL2(C) is a root SL2: we shall discuss this case briefly as well.
(vi) ψ|SL2(C) is the trivial map: this is the tempered case.
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3.5. The case of interest

Now we examine the case of interest (case (iii) above) in greater detail. The
centralizer of ψ(SL2(C)) in G∨

E is isomorphic to the subgroup

S � S2 = {(a, b, c) ∈ (C×)3 : abc = 1}� S2,

where the nontrivial element of S2 acts on S by inverting. Moreover, the group
S3 = Aut(Δ) commutes with ψ(SL2(C)) and S2 and acts on S by permuting
the coordinates. Thus we have an embedding

S � (S2 × S3) −→ G∨
E � S3.

To give an A-parameter ψ of this type is thus equivalent to giving a map

ψ : LF −→ S � (S2 × S3).

The composition of ψ with the projection to S2 × S3 gives a homomorphism
LF → S2×S3 and thus determine an étale quadratic algebra K and the fixed
étale cubic algebra E. We shall say that ψ is of type (E,K).

To give an A-parameter of type (E,K) amounts to giving a L-homomor-
phism

LF −→ S �ρE×ρK WF .

Now the group S �ρE×ρK WF is the L-group of a torus

T̃E,K = {x ∈ (E ⊗F K)× : NE⊗K/E(x) ∈ F×}/K×.

As shown in [GS2], this torus is the identity component of the E-automorphism
group of any rank 2 E-twisted composition algebra C with quadratic invariant
KC satisfying

[KE ] · [K] · [KC ] = 1 ∈ F×/F×2.

By an exceptional Hilbert Theorem 90 [GS2, Theorem 11.1], one has

T̃E,K
∼= TE,KC := {x ∈ (E ⊗F KC)× : NE⊗KC/E(x) = 1 = NE⊗KC/KC

(x)}.

Thus to give an A-parameter of type (E,K) is to give a L-parameter for the
torus T̃E,K , taken up to conjugation by S � S2. In other words, it is to give
an automorphic character of T̃E,K up to inverse.
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This suggests that the A-packet Πψv or Πψ can be constructed as a “lift-
ing” from TE,K to GE . The goal of this paper is to carry out such a construc-
tion, using the fact that there is a dual pair

HC ×GE ⊂ Aut(EJ
6 )

where HC is the automorphism group of a rank 2 E-twisted composition
algebra (whose identity component is T̃E,K) and EJ

6 is an adjoint group of
type E6 (depending on a Freudenthal-Jordan algebra J with KJ = K; see
later).

3.6. An example

The simplest A-parameter of type (E,K) is determined by the natural map

LF
ρK×ρE−−−−→ S2 × S3 −−−−→ S � (S2 × S3) −−−−→ G∨

E � S3.

We denote this special A-parameter by ψE,K . Its global component group is
thus

SψE,K =
{
μ3 � S2 ∼= S3 if K = F × F ;
S2 if K is a field.

The local component groups SψE,K,v are a bit more involved to describe,
as they depend on the type of Ev and Kv. We list them in the following table.

Ev Kv SψEv,Kv

field field S2

field split S3

Fv ×KE,v Kv splits or Kv = KE,v S2

Fv ×KE,v K 
= KE,v is a field μ2 × S2

Fv × Fv × Fv field (μ2 × μ2) × S2

Fv × Fv × Fv split S2

Let’s see what Arthur’s conjecture implies for this particular A-parameter,
specialising to the case when K = F × F is split:
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• if Ev is a field, then

ΠψE,K,v = {π1,v, πr,v, πε,v}

• if Ev = Fv ×KE,v or F 3
v , then

ΠψE,K,v = {π1,v, πε,v}.

For appropriate disjoint finite subsets Σr and Σε of the set of places of F , we
thus have the representation

πΣr,Σε =

⎛⎝⊗
v∈Σr

πr,v

⎞⎠⊗

⎛⎝⊗
v∈Σε

πε,v

⎞⎠⊗

⎛⎝ ⊗
v/∈Σr∪Σε

π1

⎞⎠
in the global A-packet ΠψE,K . The multiplicity attached to this representation
is the multiplicity of the trivial representation of S3 in (r⊗|Σr|) ⊗ (ε⊗|Σε|). A
short computation using the character table of S3 shows that this multiplicity
is equal to {

1
6 · (2|Σr| + 2 · (−1)|Σr|), if Σr is nonempty;
1
2 · (1 + (−1)|Σε|), if Σr is empty.

We shall see later how to construct this many automorphic realisations of
πΣr,Σε , using exceptional theta correspondence.

3.7. Root SL2

We consider briefly the case when ψ|SL2(C) is a root SL2. We may assume that
ψ(SL2(C)) is the SL2 corresponding to the highest root which is S3-invariant.
Then the centralizer of ψ(SL2(C)) in LGE is

(LME)der ∼= (SL2(C) × SL2(C) × SL2(C)) /{(a, b, c) ∈ μ3
2 : abc = 1}.

This is the L-group of
H = GL2(E)det/F×.

Hence to give such an elliptic A-parameter is to give an L-parameter

φ : LF −→ LH

which corresponds to an L-packet of H = GL2(E)det/F×, or more simply to
a cuspidal representation of GL2(E) (with trivial restriction to F×).
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As we shall see in §4.11, the group H is the E-automorphism group of
a E-twisted composition algebra of E-rank 4. Indeed, given any E-twisted
composition algebra C of E-rank 4, its automorphism group HC is an inner
form of H above and there is a dual pair (see §6.6)

HC ×GE ⊂ EB
7 ,

where EB
7 is a group of type E7 (associated to a quaternion algebra B). This

suggests that the A-packets associated to ψ as above can be constructed via
exceptional theta lifting from HC . We do not discuss this construction in this
paper, but in Appendix A, we shall lay some algebraic and geometric ground-
work to facilitate the further study of this case. In particular, we determine
in Appendix A the theta lifting of the trivial representation of H to GE . This
is needed for our paper [GS3].

4. Twisted composition and Freudenthal-Jordan algebras

As we alluded to in the introduction and §3.5 above, the theory of twisted
composition algebras plays a fundamental role in this paper. In this section,
we shall briefly recall this notion and its relation with Freudenthal-Jordan
algebras. This theory is largely due to Springer, though we shall need to
supplement it with some results and observations of our own needed for our
application.

4.1. Twisted composition algebra

For a given étale cubic F -algebra E, an E-twisted composition algebra C is
a vector space over E, equipped with a pair of tensors (Q, β) where

• Q : C −→ E is a non-degenerate quadratic form on C, and
• β : C → C is a quadratic map

such that

β(e · x) = e#β(x), Q(β(x)) = Q(x)# and NC(x) := bQ(x, β(x)) ∈ F,

for all e ∈ E and x ∈ C, where bQ(x, y) = Q(x + y)−Q(x)−Q(y) and e# is
defined in (2.1).

Given two E-twisted composition algebras (C,Q, β) and (C ′, Q′, β′), an
E-morphism between them is an E-linear map φ : C −→ C ′ such that

Q′ ◦ φ = Q and β′ ◦ φ = φ ◦ β.
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The automorphism group AutE(C,Q, β) of a twisted composition algebra
(C,Q, β) is an algebraic group over F .

These algebras were introduced by Springer and it is a fact that dimE C =
1, 2, 4 or 8. In this paper, we shall chiefly be concerned with the case where
dimE C = 2, though the case where dimE C = 1 or 4 will also be considered.

4.2. Rank 1 case

When dimE C = 1, we may write C = E · v0 for a basis vector v0 ∈ C. It is
not difficult to see that the tensors (Q, β) are of the form

Qa(x · v0) = a# · x2 and βa(x · v0) = a · x# · v0

for some a ∈ E×. We shall denote this rank 1 E-twisted composition algebra
by Ca. Its automorphism group is

Aut(Ca) = Res1E/F (μ2) = Ker(NE/F : ResE/F (μ2) → μ2).

We have encountered this group before in §2.5, as the center of the quasi-
split group GE , whence it was denoted by ZE . The various interpretations of
ZE account for the intricate and sometimes surprising connections between
different objects we will encounter later on.

Lemma 4.1. The E-isomorphism classes of rank 1, E-twisted composition
algebras are parametrized by E×/F×E×2 under the construction a �→ Ca.

Proof. For a, b ∈ E×, Ca is isomorphic to Cb if and only if there exists λ ∈ E×

such that
Qb(λv0) = Qa(v0) and βb(λv0) = λ · βa(v0),

i.e.
a#/b# = λ2 and a/b = λ#/λ.

In fact, the first requirement above is implied by the second (on taking # on
both sides). Now observe that

λ#/λ = NE/F (λ)/λ2 ∈ F× · E×2

and conversely, for any e ∈ E× and f ∈ F×,

e2 · f = (e#f)#

e#f
.
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Hence, we deduce that

F× · E×2 = {λ#/λ : λ ∈ E×},

so that
Ca

∼= Cb ⇐⇒ a/b ∈ F× · E×2.

The lemma can also be shown via cohomological means. Namely, by con-
sidering the long exact sequence associated to the short exact sequence of
algebraic groups

1 −−−−→ ZE = Res1E/Fμ2 −−−−→ ResE/Fμ2
NE/F−−−−→ μ2 −−−−→ 1,

one sees that

H1(F,ZE) = Ker(NE/F : E×/E×2 −→ F×/F×2).

Then [KMRT, Prop. 18.34] shows that the map # gives an isomorphism of
E×/F×E×2 with the kernel above.

4.3. Rank 2 case

Every twisted composition algebra (E,C,Q, β) has a cubic invariant: the étale
cubic algebra E. On the other hand, when dimE C = 2, one can attach to
it a quadratic invariant, i.e. an étale quadratic F -algebra KC . Indeed, KC is
determined by the requirement that the discriminant quadratic algebra of Q
is E ⊗F KC . In fact, C can be realized on L := E ⊗KC with Q and β given
by

Q(x) = e ·NE⊗KC/E(x) and β(x) = x̄# · e−1 · ν̄
for some e ∈ E× and ν ∈ K×

C satisfying

NE/F (e) = NKC/F (ν).

Here x̄ and ν̄ refer to the action of the non-trivial automorphism of KC on
x and ν. We shall denote this rank 2 E-twisted composition algebra by Ce,ν .
For a more detailed discussion of this, see [GS2].

Given an E-twisted composition algebra C = Ce,ν as above, consider
its automorphism group HC = AutE(C) ⊂ GLE(L). One has a short exact
sequence

1 −−−−→ (AutEC)0 −−−−→ AutE(C) −−−−→ S2 −−−−→ 1
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with

AutE(C)0(F ) = TE,KC (F ) := {x ∈ L× : NL/E(x) = 1 and NL/KC
(x) = 1}.

The identity component H0
C = AutE(C)0 is a 2-dimensional torus over F

depending only on E and KC and as (e, ν) varies, the algebraic subgroups
H0

Ce,ν
⊂ GLE(L) are physically the same subgroup TE,KC . The conjugation

action of S2 on H0
C is by inversion. In particular, the center of HC is

(4.2) (H0
C)S2 = H0

C [2] = Res1E/Fμ2 = ZE .

Hence, we see yet another incarnation of the finite algebraic group ZE ; the
consequence of this incarnation will be explained in §4.9 and §4.10.

The torus H0
C = AutE(C)0 can be interpreted as the group AutL(C) of

L-linear automorphisms of C. It was observed in [GS2] that Ce,ν and Ce′,ν′

are L-linearly isomorphic if and only if there exists x ∈ L× such that

(4.3) e/e′ = NL/E(x) and ν/ν ′ = NL/KC
(x),

in which case, multiplication-by-x gives an L-linear isomorphism φx : Ce,ν −→
Ce′,ν′ . Moreover, the isomorphism φx induces an isomorphism

(4.4) Ad(φx) : AutE(Ce,ν) −→ AutE(Ce′,ν′)

It is easy to check that the restriction of this isomorphism to the identity
components is the identity map on TE,KC . In any case, we have shown:

Lemma 4.5. The L-isomorphism classes of E-twisted composition algebras
of rank 2 and quadratic invariant KC are parametrized by

(E× ×K×
C )0/Im(L×)

where

(E× ×K×
C )0 = {(e, ν) ∈ E× ×K×

C : NE/F (e) = NKC/F (ν)}

and the map L× −→ E× ×K×
C is given by

x �→ (NL/E(x), NL/KC
(x)).
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This lemma can also be seen cohomologically. As was observed in [GS2],
there is a short exact sequence of algebraic tori

TE,KC −−−−→ ResL/FGm

NL/E×NL/KC−−−−−−−−−→ (ResE/FGm × ResKC/FGm)0

giving rise to an associated long exact sequence

1 −→ TE,KC (F ) −→ L× −→ (E× ×K×
C )0 −→ H1(F, TE,KC ) −→ 1,

so that
H1(F, TE,KC ) ∼= (E× ×K×

C )0/Im(L×).

There is a natural action of Aut(KC/F ) (as group automorphisms) on
(E××K×

C )/Im(L×) with the action of the nontrivial element given by (e, ν) �→
(e, ν̄). The orbits under this action parametrize the E-isomorphism classes
of E-twisted composition algebras of rank 2 with quadratic invariant KC .
Observe that since NE/F (e) = ν · ν̄,

(e, ν̄) = (e−1, ν−1) ∈ (E× ×K×
C )0/Im(L×).

Hence, the action of S2 = Aut(KC/F ) on H1(F, TE,KC ) is by inversion, and
its fixed subgroup H1(F, TE,KC )S2 is the 2-torsion subgroup H1(F, TE,KC )[2].

Finally, note that the map

HC(F ) := AutE(C)(F ) −→ S2

need not be surjective. Indeed,

HC(F ) 
= H0
C(F ) ⇐⇒ [C] ∈ H1(F, TE,KC )[2],

that is, the L-isomorphism class of C is fixed by Aut(KC/F ).

4.4. Freudenthal-Jordan algebras

Twisted composition algebras are closely related to Freudenthal-Jordan al-
gebras; see [KMRT, Theorem 37.10] for a precise definition. Let J be a
Freudenthal-Jordan algebra; it is a cubic Jordan algebra, so that every el-
ement a ∈ J satisfies a characteristic polynomial

X3 − TJ(a)X2 + SJ(a)X −NJ(a) ∈ F [X].
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The maps TJ and NJ are called the trace and norm maps of J respectively.
The element

a# = a2 − TJ(a)a + SJ(a)

is called the adjoint of a and satisfies a · a# = NJ(a). The cross product of
two elements a, b ∈ J is defined by

a× b = (a + b)# − a# − b#.

The trace form TJ defines a nondegenerate bilinear form 〈x, y〉 = TJ(xy) on
J . We shall identify J and J∗ using this bilinear form. Let (x, y, z) be the
symmetric trilinear form associated to the norm form NJ , so that (x, x, x) =
6NJ(x). For any x, y ∈ J , one has

〈x× y, z〉 = (x, y, z).

An etalé cubic algebra E is an example of a Freudenthal-Jordan algebra.
In general, it is a fact that dimF J = 1, 3, 6, 9, 15 or 27. In this paper, we
shall largely be interested in the case where dimF J = 9, though the case
where dimF J = 15 will also be considered.

The split Freudenthal-Jordan algebra of dimension 9 is simply the Jordan
algebra M+

3 of 3 × 3-matrices. Its automorphism group is

Aut(M+
3 ) = PGL3 � S2,

with the nontrivial element of S2 acting by a �→ at. Hence, isomorphism
classes of Freudenthal-Jordan algebras are classified by H1(F,Aut(M+

3 )).
Since there is a natural homomorphism

H1(F,Aut(M3)+) −→ H1(F, S2),

one sees that to every Freudenthal-Jordan algebra J , one can attach an in-
variant which is an étale quadratic algebra KJ ; this quadratic invariant de-
termines the inner class of the group Aut(J)0 of type A2. More generally, if
J is a 9-dimensional Freudenthal-Jordan algebra, then Aut(J) sits in a short
exact

1 −−−−→ (AutJ)0 −−−−→ AutJ −−−−→ S2 −−−−→ 1

where Aut(J)0 is an adjoint group of type A2. Note that the map

HJ = Aut(J)(F ) −→ S2
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need not be surjective.
As explained in [KMRT, Prop. 37.6 and Theorem 37.12] and [GS2, §4.2],

a Freudenthal-Jordan algebra J of dimension 9 over F is obtained from a pair
(B, τ), where B is a central simple algebra over K = KJ of dimension 9 and
τ is an involution of second kind on B, as the subspace Bτ of τ -symmetric
elements, equipped with the Jordan product x ◦ y = (xy + yx)/2. For a fixed
étale quadratic algebra K, this construction gives an essentially surjective
faithful functor of groupoids:

{K-isomorphism classes of (B, τ)}⏐⏐�
{F -isomorphism classes of J with KJ = K}

(where dimK B = 9 = dimF J); it is fully faithful and thus an equivalence if
we allow F -linear isomorphisms on (B, τ) and not just K-linear ones. Thus
Aut(J)0 = AutK(B, τ) and there is an S2-action on the source given by

(B, τ) �→ (Bop, τ),

so that the fibers of the map are precisely the S2-orbits (and hence have size
1 or 2). Further, Aut(J)0(F ) = Aut(J)(F ) if and only if the fiber of J has
size 2, i.e. (B, τ) � (Bop, τ).

4.5. Springer decomposition

Twisted composition algebras are related to Freudenthal-Jordan algebras by
the Springer construction. Suppose we have an algebra embedding

i : E ↪→ J.

Then, with respect to the trace form TJ , we have an orthogonal decomposition

J = E ⊕ C

where C = E⊥. For e ∈ E and x ∈ C, one can check that e × x ∈ C. Thus,
setting

e · x := −e× x

equips C with the structure of an E-vector space. Moreover, for every x ∈ C,
write

x# = (−Q(x), β(x)) ∈ E ⊕ C = J
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where Q(x) ∈ E and β(x) ∈ C. In this way, we obtain a quadratic form Q on
C and a quadratic map β on C. Then, by [KMRT, Theorem 38.6], the triple
(C,Q, β) is an E-twisted composition algebra over F . Conversely, given an
E-twisted composition algebra C over F , the space E ⊕ C can be given the
structure of a Freudenthal-Jordan algebra over F , by [KMRT, Theorem 38.6]
again. We recall in particular that for (a, x) ∈ E ⊕ C,

(4.6) (a, x)# = (a# −Q(x), β(x) − a · x).

This construction gives a bijection

{E- isomorphism classes of E-twisted composition algebras}
�

{HJ -conjugacy classes of pairs (J, i : E ↪→ J)}

where J is a Freudenthal-Jordan algebra of dimension 9 and i : E ↪→ J is an
algebra embedding. Moreover, this bijection induces an isomorphism

HC := AutE(C) ∼= Aut(i : E ↪→ J),

where the latter group is the pointwise stabilizer in Aut(J) of i(E) ⊂ J . In
other words, the Springer construction is an equivalence of groupoids. If an
E-twisted composition algebra C corresponds to an embedding i : E ↪→ J
under this equivalence, then one has:

(4.7) [KE ] · [KC ] · [KJ ] = 1 ∈ F×/F×2.

One consequence of the Springer construction is that it gives us an alter-
native description of the torus TE,KC . It was shown in [GS2] that there is an
isomorphism (an exceptional Hilbert Theorem 90),

AutE(Ce,ν)0 = TE,KC
∼= T̃E,KJ = {x ∈ (E⊗FKJ)× : NE⊗KJ/E(x) ∈ F×}/K×

J

when J = E ⊕ Ce,ν . We will next recall how this isomorphism arises.

4.6. An isomorphism of tori

Given an E-twisted composition algebra C corresponding to an embedding
ι : E ↪→ J , let us pick a pair (B, τ) over KJ such that J = Bτ . The embedding
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ι gives rise to an embedding of KJ -algebras compatible with involutions of
second kind:

ι̃ : E ⊗F KJ −→ B,

where we have used the involution on E ⊗ KJ induced by the nontrivial
automorphism of KJ/F . This induces an embedding of algebraic groups

ι̃∗ : (E ⊗KJ)×/K×
J −→ PB× = AutKJ (B)

whose image is precisely the pointwise stabilizer of ι̃ in AutKJ (B). The map
ι̃∗ restricts to give an isomorphism

T̃E,KJ
∼= AutKJ (B, τ, ι̃) ⊂ AutKJ (B, τ).

where
T̃E,KJ = Ker

(
NKJ/F : (E ⊗KJ)×/K×

J −→ E×/F×
)
.

Since
AutKJ (B, τ, ι̃) = AutF (J, ι)0 = AutE(C)0,

we see that the choice of a (B, τ) with J = Bτ gives an isomorphism of
algebraic groups

T̃E,KJ −→ H0
C = AutE(C)0.

If one had chosen (Bop, τ) instead, the resulting isomorphism is the composite
of the one for (B, τ) with the inversion map. If it turns out that (B, τ) ∼=
(Bop, τ), then these two isomorphisms are conjugate by an element of HC(F )\
H0

C(F ). Thus, each E-twisted composition algebra C with quadratic invariant
KC comes equipped with a pair of isomorphisms of algebraic groups

ιC , ι
−1
C : H0

C −→ T̃E,KJ ,

where [KE ] · [KC ] · [KJ ] = 1 ∈ F×/F×2. This gives a canonical isomorphism

[ιC ] : H0
C(F )/H0

C(F )2 ∼= T̃E,KJ (F )/T̃E,KJ (F )2.

In particular, if we consider C = Ce,ν and J = E ⊕ Ce,ν , then we obtain
a pair of isomorphisms of algebraic tori

(4.8) ιe,ν , ι
−1
e,ν : TE,KC

∼= T̃E,KJ .

We have:
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Lemma 4.9. The pair of isomorphisms in (4.8) is independent of the choice
of (e, ν).

Proof. Suppose first that Ce,ν and Ce′,ν′ are L-isomorphic, with an L-isomor-
phism given by a multiplication-by-x map φx as in (4.3) and (4.4). Then it
follows by the functoriality of Springer’s construction that

ιe,ν = ι±1
e′,ν′ ◦ Ad(φx)|TE,KC

.

Here the sign ± arises because of the possibility of using a central simple
algebra B or Bop in the construction of ι. We have observed after (4.4) that
Ad(φx) is the identity map on TE,KC , so that ιE,ν = ι±1

e′,ν′ .
Now given any two Ce,ν and Ce′,ν′ , one knows that they become L⊗F F̃ -

isomorphic over a finite Galois extension F̃ of F . Hence the two pairs of
isomorphisms ι±e,ν and ι±e′,ν′ of algebraic tori become equal after a base change
to F̃ . But then they are already equal over F .

Thus we have a canonical pair of isomorphisms

(4.10) ι, ι−1 : TE,KC
∼= T̃E,KJ .

This is the exceptional Hilbert 90 Theorem from [GS2]. It gives a canonical
isomorphism

[ι] : TE,KC (F )/TE,KC (F )2 ∼= T̃E,KJ (F )/T̃E,KJ (F )2.

One consequence of this alternative description of H0
C is that its gives an

alternative computation of H1(F,H0
C). In particular, it follows from [GS2,

Prop. 11.2] that

(4.11) H1(F, T̃E,KJ )[2] = E×/F×NE⊗KJ/E((E ⊗KJ)×).

This description of H1(F, TE,KC )[2] = H1(F, T̃E,KJ )[2] will be very helpful
later on.

4.7. Examples

As an example, consider the case where E = F 3, and J = M3(F ) is the
Jordan algebra of 3 × 3 matrices. We have a natural embedding of F 3 into
M3(F ) where (a1, a2, a3) ∈ F 3 maps to the diagonal matrix with a1, a2, a3 on
the diagonal. If x ∈ M3(F ), then x# is the adjoint matrix. Thus it is easy to
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describe the structure of the twisted composition algebra C in this case. An
element x in C is given by a matrix

x =

⎛⎜⎝ 0 x3 y2
y3 0 x1
x2 y1 0

⎞⎟⎠ .

If we write x = ((x1, y1), (x2, y2), (x3, y3)) then the structure of F 3-space on
C is given by

(a1, a2, a3)·((x1, y1), (x2, y2), (x3, y3)) = ((a1x1, a1y1), (a2x2, a2y2), (a3x3, a3y3))

for all (a1, a2, a3) ∈ F 3. The structure of the twisted composition algebra on
C is given by

Q((x1, y1), (x2, y2), (x3, y3)) = (x1y1, x2y2, x3y3)

and

β((x1, y1), (x2, y2), (x3, y3)) = ((y2y3, x2x3), (y3y1, x3x1), (y1y2, x1x2)).

This twisted composition algebra (C,Q, β) has cubic invariant F 3 and qua-
dratic invariant F 2.

Here is another example. Assume that E is a cyclic cubic field extension
of F , with Galois group generated by σ. Let D be a degree 3 central simple
algebra over F containing E as a subalgebra. Then as a vector space over
E, D has a basis 1, �,�2, for some element � ∈ D satisfying �x = σ(x)�,
for all x ∈ E, and �3 = λ ∈ F×. The corresponding E-twisted composition
algebra is isomorphic to C(λ) = E ⊕ E, with

Q(x, y) = xy and β(x, y) = (λ−1y#, λx#).

Moreover, C(λ) has cubic invariant E and quadratic invariant F 2 and is
associated to (e, ν) = (1, (λ, λ−1)). The algebra D is split if and only if λ is a
norm of an element in E×. The group of E-automorphisms of C(1) is

AutE(C(1)) = E1 � (Z/2Z)

where α ∈ E1 acts on C(1) by (x, y) �→ (αx, αy), and the nontrivial element
in Z/2Z by (x, y) �→ (y, x), for all (x, y) ∈ C(1).
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4.8. When is J division?

Following up on the last example above, one may consider the question: under
what conditions on (e, ν) is Je,ν = E ⊕ Ce,ν associated to a division algebra?
An answer for the general case is provided by [KMRT, Thm. 38.8], but we
provide an alternative treatment adapted to the rank 2 case here.

Proposition 4.12. Fix (e, ν) ∈ (E× ×K×
C )0, so that NE/F (e) = NKC/F (ν).

Then the following are equivalent:

(i) ν ∈ NL/KJ
(L×) (where L = E ⊗KC);

(ii) (e, ν) = (e′, 1) ∈ (E× ×K×
C )0/Im(L×);

(iii) (e, ν) = (e′, ν ′) ∈ (E× ×K×
C )0/Im(L×), with ν ′ ∈ F×;

(iv) [(e, ν)] ∈ H1(F, TE,KC )[2];
(v) J = E ⊕ Ce,ν is not a division Jordan algebra.

When these equivalent conditions hold for C, HC(F ) ∼= H0
C(F ) � Z/2Z. In-

deed, for any C = Ce,ν with ν ∈ F×,

AutE(Ce,ν) = TE,KC � Aut(KC/F ) ⊂ GLE(L).

In other words, these automorphism groups are physically the same subgroup
of GLE(L).

Proof. We first show the equivalence of the first four statements. The impli-
cations (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) are clear. Assume that (iv) holds, so that
[(e, ν)] = [(e, ν̄)]. Then there exists x ∈ L× such that

NL/E(x) = x · x̄ = 1 and ν = ν̄ · x · x#.

Now the first condition implies that x = z̄/z for some z ∈ L×, which when
substituted into the second gives ν ·NL/KC

(z) ∈ F×. Hence, replacing (e, ν)
by an equivalent pair, we may assume that ν ∈ F×, so that NE/F (e) = ν2.
But then

(e, ν) = (e ·NL/E(e), ν ·NL/KC
(e)) = (e3, ν3) ∈ (E× ×K×

C )0/Im(L×).

Since ν3 = NL/KC
(ν), we conclude that (i) holds.

We note that the equivalent conditions (i)-(iv) always hold when E is not
a field, for then the norm map NL/KC

: L× −→ K×
C is surjective.

Finally, to check the equivalence with (v), note that J = E ⊕ Ce,ν is not
a division Jordan algebra if and only if there exists nonzero (a, x) ∈ E ⊕Ce,ν
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such that (a, x)# = 0. By (4.6), this is equivalent to

(4.13) a# = Q(x) = e ·NL/E(x) and a · x = β(x) = e−1 · ν̄ · x̄#.

When E is not a field, we can always take nonzero (a, 0) with a# = 0, so that
J is never a division algebra in this case.

We may henceforth assume that E is a field. Suppose that (ii) holds, so
that ν = 1 and NE/F (e) = 1. Then we may take (a, x) = (e, e#); one checks
that this satisfies the two equations in (4.13) and hence J is not division. We
have thus shown (ii) =⇒ (v).

Conversely, we shall show (v) implies (i) (when E is a field). Assume that
there is a nonzero (a, x) such that the two equations in (4.13) hold. Then x
must be nonzero (otherwise, we deduce by the first equation that a# = 0 and
hence a = 0 since E is a field). Multiplying the two equations in (4.13), we
obtain

NE/F (a) · x = ν̄ ·NL/KC
(x̄) · x,

so that

(4.14) x · (NE/F (a) − ν̄ ·NL/KC
(x̄)) = 0.

Hence, if KC is a field, so that L is a field also, then we may cancel x (noting
that x 
= 0) to deduce that

ν = NE/F (a) ·NL/KC
(x)−1 ∈ NL/KC

(L×).

On the other hand, if KC = F × F , then let

x = (x1, x2) ∈ E × E = L and ν = (ν1, ν2) ∈ F× × F×.

The two equations in (4.13) becomes:

a# = e · x1x2 and (ax1, ax2) = e−1 · (ν2 · x#
2 , ν1 · x#

1 ).

From this, we see that a 
= 0 (otherwise, the second equation would give
x1 = x2 = 0 also), and hence x1, x2 ∈ E×. Hence, we may cancel x in (4.14)
as before and conclude that ν ∈ NL/KJ

(L×), as desired.

4.9. Embeddings

We record here some results that we will need later, concerning embeddings
of rank 1 twisted composition algebras into rank 2 ones.
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Lemma 4.15. Let us fix

• a ∈ E× with corresponding rank 1 E-twisted composition algebra Ca =
E and

• an E-twisted composition algebra C = Ce,ν of rank 2, corresponding to
an embedding E ↪→ J , with resulting Springer decomposition J = E⊕C.

There are natural equivariant bijections between the following three AutE(C)-
sets (possibly empty)

(a) the set of E-morphisms f : Ca −→ C;
(b) the set of rank 1 elements x ∈ J (i.e. x# = 0 but x 
= 0) of the form

x = (a, v) ∈ E ⊕ C = J ;
(c) the set Xa,C(F ) = Xa,e,ν(F )

= {x ∈ L := E⊗KC : NL/E(x) = e−1a# andNL/KC
(x) = NE/F (a)·ν−1}.

The bijection between (a) and (b) is given by f �→ (a, f(1)), whereas that
between (b) and (c) is given by x = (a, v) �→ v.

Note that the 3 sets are possibly all empty. For example, if J is associated
with a cubic division algebra, then there are no rank 1 elements in J , so that
the set in (b) is empty, and hence so are the other 2 sets. On the other hand,
we note:

Lemma 4.16. For any a ∈ E×, there exists a unique E ⊗KC-isomorphism
class [C] such that Xa,C(F ) is nonempty. This unique E ⊗KC-isomorphism
class is represented by Ca#,NE/F (a). Hence we have a group homomorphism

f : E×/F×E×2 −→ (E× ×K×
C )0/Im(L×)

given by
f(a) = (a#, NE/F (a))

and characterized by the requirement that Ca embeds into Ce,ν if and only if
(e, ν) = f(a) ∈ H1(F, TE,KC ). The image of f is equal to H1(F, TE,KC )[2],
i.e. consists precisely of those twisted composition algebras C whose associated
Jordan algebra is not division, whereas

Ker(f) = {x#/x̄ : x ∈ L× and NL/KC (x) ∈ F×}/F×E×2.

Proof. It is clear that if C = Ca#,NE/F (a), then 1 ∈ Xa,C(F ); this shows the
existence of C and that it has the desired form. For the uniqueness, suppose
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that Xa,e,ν(F ) and Xa,e′,ν′(F ) are both nonempty. Then there exist x, x′ ∈ L×

such that

NL/E(x) = e−1a# and NL/K(x) = NE/F (a) · ν−1

and
NL/E(x′) = e′

−1
a# and NL/K(x′) = NE/F (a) · ν ′−1

.

On dividing one equation by the other, we see that

NL/E(x′/x) = e/e′ and NL/K(x′/x) = ν/ν ′.

This implies that (e, ν) = (e′, ν ′) ∈ H1(F, TE,KC ), as desired.
By Proposition 4.12, the image of f consists of twisted composition al-

gebras associated to non-division Jordan algebras J . On the other hand, to
prove that any such C is in the image of f , it suffices by Proposition 4.12 to
consider C = Ce,1, with NE/F (e) = 1. We claim that f(e) = [(e, 1)]. Indeed,

f(e) = (e#, NE/F (e)) = (e−1, 1) = (e, 1) ∈ H1(F, TE,KC ).

We leave the statement about Ker(f) to the reader.

Since the image of the map f in the above lemma is H1(F, TE,KC )[2], we
deduce from (4.11) that f can be simply interpreted as the natural map

(4.17) f : E×/F×E×2 −→ E×/F×NE⊗KJ/E((E ⊗KJ)×).

Finally, we note that Xa,C = Xa,e,ν is an algebraic variety which is ev-
idently a torsor for the torus H0

C = TE,KC . If Xa,e,ν(F ) is nonempty, then
H0

C(F ) = TE,KC (F ) acts simply transitively on it. Thus, the action of HC(F )
on Xa,e,ν(F ) is transitive and the stabilizer of a point x ∈ Xa,e,ν(F ) has or-
der 2, with the nontrivial element hx ∈ HC(F ) \ H0

C(F ). For example, the
stabilizer of 1 ∈ Xa,C

a#,N(a)
(F ) is Aut(KC/F ). Indeed, hx is the map on

Ce,ν = E ⊗KC given by

hx : z �→ x

x
· z.

If x′ ∈ Xa,e,ν(F ) is another element, then x′ = t · x for a unique t ∈ H0
C(F )

and
hx′ = t · hx · t−1 = t2 · hx.

Thus the element hx gives a well-defined class in (HC(F ) \H0
C(F ))/H0

C(F )2
as x ∈ Xa,e,ν(F ) varies. We record this as a lemma.
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Lemma 4.18. Suppose that f(a) = [C] ∈ H1(F, TE,KC )[2] so that Xa,C(F )
is nonempty. Then one obtains a class

gC(a) ∈ (HC(F ) \H0
C(F ))/H0

C(F )2

consisting of elements which stabilize some points in Xa,C(F ).

4.10. Cohomological interpretation

The embedding problem studied in the previous subsection can be given a
rather transparent cohomological treatment. The map f in Lemma 4.16 is
a surjective homomorphism H1(F,ZE) −→ H1(F, TE,KC )[2]. This map can
be obtained from our observation in (4.2) that TE,KC [2] = ZE . From the
Kummer exact sequence

1 −−−−→ ZE −−−−→ TE,KC

2−−−−→ TE,KC −−−−→ 1,

one deduces the following fundamental short exact sequence

(4.19) TE,KC (F )2\TE,KC (F ) b−−−−→ H1(F,ZE) f−−−−→ H1(F, TE,KC )[2].

The map f here is precisely the one described in Lemma 4.16. This cohomo-
logical discussion also gives us a more conceptual description of Ker(f):

Ker(f) = TE,KC (F )2\TE,KC (F ).

The map b can be described explicitly as follows. Given t ∈ TE,KC (F ) ⊂ L×,
since NL/E(t) = 1, we can write

t = ȳ/y with NL/KC
(y) ∈ F× (since NL/KC

(t) = 1).

Then
b(t) = y#/ȳ ∈ E×/F×E×2,

The reader can easily verify that b(t) is independent of the choice of y and is
trivial if t ∈ TE,KC (F )2.

Here is another interesting observation arising from (4.19) and Lemma 4.18.
Let us fix [C] ∈ H1(F, TE,KC )[2] and consider the fiber f−1([C]) which is a
TE,KC (F )/TE,KC (F )2-torsor. Then we have:
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Proposition 4.20. The map a �→ gC(a) (with gC(a) defined in Lemma 4.18)
gives an isomorphism

f−1([C]) −→ (HC(F ) \H0
C(F ))/TE,KC (F )2

of TE,KC (F )/TE,KC (F )2-torsor.

Proof. Assume without loss of generality that C = Ce,ν . Since both f−1([C])
and (HC(F ) \H0

C(F ))/TE,KC (F )2 are torsors under TE,KC (F )/TE,KC (F )2, it
suffices to show that if

a′ = b(t) · a ∈ f−1([C]),

then
gC(a′) = t · gC(a) ∈ (HC(F ) \H0

C(F ))/TE,KC (F )2.

Write
t = ȳ/y with NL/KC

(y) ∈ F×,

so that
b(t) = y#/ȳ and hence a′ = a · y#/ȳ.

This implies in particular that

NE/F (a′) = NE/F (a) ·NL/KC
(y) and a′

# = a# ·NL/E(y).

Now suppose that x ∈ Xa,e,ν(F ) ⊂ L×, so that

NL/E(x) = e−1a# and NL/KC
(x) = NE/F (a) · ν−1.

Then one checks that x′ := xy ∈ Xa′,C(F ). Hence, if hx and hx′ are the
nontrivial elements stabilizing x and x′ respectively, then for any z ∈ C,

hx′(z) = x′

x̄′
· z̄ = xy

x̄ȳ
· z̄ = t−1hx(z).

Thus we have

hx′ = t · hx ∈ (HC(F ) \H0
C(F ))/TE,KC (F )2.
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Indeed, if [C] is a nontrivial element of H1(F, TE,KC )[2], then [C] generates
a subgroup of order 2 and we have a short exact sequence of abelian groups

(4.21) TE,KC (F )/TE,KC (F )2 −−−−→ f−1(〈[C]〉) −−−−→ 〈[C]〉.

On the other hand, with C = Ce,1 (without loss of generality), one has another
short exact sequence:

(4.22) TE,KC (F )/TE,KC (F )2 −−−−→ HC(F )/TE,KC (F )2 −−−−→ S2

Then the following is a consequence of Proposition 4.20:

Proposition 4.23. The two extensions (4.21) and (4.22) are isomorphic
via a canonical isomorphism of extensions defined as follows. For any a ∈
E×/F×E×2 = H1(F,ZE) with f(a) = [C], the isomorphism sends a to gC(a).

4.11. Rank 4 and 8 cases

We conclude with a brief sketch of the rank 4 and 8 cases. The case dimE C =
4 corresponds to embeddings of Jordan algebras E −→ J with dimF J =
15. Examples of such J are of the form H3(B), the Jordan algebra of 3 ×
3-Hermitian matrices with entries in a quaternion algebra B. This case is
discussed in some detail in Appendix A below. We simply note here that the
automorphism group of such a C is

AutE(C) ∼=
(
ResE/F (B ⊗F E)×

)det
/F×

where the RHS consists of elements in (B ⊗E)× whose norm lies in F×. See
§6.6 below.

Finally, when dimE C = 8, one has dimF J = 27, so that J is an ex-
ceptional Jordan algebra. An example is J = H3(O), the Jordan algebra of
3 × 3-Hermitian matrices with entries in an octonion algebra O. When the
octonion algebra is split, the automorphism group of such a C is isomorphic
to the group

GE = SpinE
8 .

Moreover, the action of GE on C is (the Galois descent of) the sum of the
3 irreducible 8-dimensional representations of Spin8 over F . It is no wonder
that the structure of the group GE is intimately connected with the theory
of twisted composition algebras.
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5. Twisted Bhargava cubes

To connect the theory of twisted composition algebras with our earlier dis-
cussion on GE = SpinE

8 , let us recall the main result of [GS2].

5.1. Nondegenerate cubes

Recall the Heisenberg parabolic subgroup PE = ME · NE ⊂ GE and the
natural action of ME

∼= GL2(E)det on the space VE = NE/[NE , NE ] of E-
twisted cubes. Now we have [GS2, Prop. 10.4]:

Proposition 5.1. The nondegenerate ME(F )-orbits on VE(F ) are in natural
bijection with E-isomorphism classes of E-twisted composition algebras of
rank 2. More precisely, to every nondegenerate E-twisted cube Σ, we attached
in [GS2] a pair (QΣ, βΣ) giving a structure of E-twisted composition algebra
on E ⊕ E, with an isomorphism

StabME(F )(Σ) ∼= AutE(QΣ, βΣ).

If g ∈ ME(F ) = GL2(E)det and Σ′ = g(Σ), then the pair (QΣ′ , βΣ′) attached
to Σ′ is obtained from (QΣ, βΣ) by the change of variables given by the matrix
g, i.e.

QΣ′ = QΣ ◦ tg and βΣ′ = tg−1 ◦ βΣ ◦ tg.

Hence,

g ∈ StabGL2(E)det(Σ) ⊂ GL2(E)det ⇐⇒ tg−1 ∈ AutE(E2, QΣ, βΣ).

In particular, if F is a local field, then the ME(F )-orbits of generic unitary
characters of NE(F ) are parametrized by E-twisted composition algebras
(modulo E-isomorphisms). Likewise, when F is a number field, the ME(F )-
orbits of (abelian) Fourier coefficients along NE are parametrised by E-twisted
composition algebras (modulo E-isomorphisms).

We shall not need the general procedure to pass from Σ to (QΣ, βΣ), but
only for the so-called reduced cubes:

Proposition 5.2. (i) If Σ = (1, 0, f, b) ∈ VE(F ) (such a Σ is called a reduced
cube), then its associated pair (QΣ, βΣ) is given by:

QΣ(x, y) = −fx2 − bxy + f#y2

and
βΣ(x, y) = (−by# − (fx) × y, x# + fy#)

so that βΣ(1, 0) = (0, 1).
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(ii) Conversely, let (C,Q, β) be an E-twisted composition algebra of E-dimen-
sion 2. For v ∈ C, set Δ(v) := NC(v)2 − 4NE/F (Q(v)) ∈ F . Then there
exists v ∈ C such that Δ(v) 
= 0. Moreover, the set {v, β(v)} is an E-basis
of C if and only if Δ(v) 
= 0. Given such a v ∈ C and identifying C with
E ⊕ E using the basis {v, β(v)}, the pair (Q, β) corresponds to the reduced
cube (1, 0,−Q(v),−NC(v)) under the recipe in (i).

We record a corollary which will be used later, concerning isomorphisms
between rank 2 twisted composition algebras:

Corollary 5.3. Let (C,Q, β) be an E-twisted composition algebra of E-
dimension 2. Let f ∈ E and b ∈ F , such that b2 + 4NE/F (f) 
= 0. Then
the set of

ΩC,f,b := {v ∈ C : Q(v) = −f and NC(v) = −b}
is a principal homogeneous space for AutE(C), which contains an F -rational
point if and only if (C,Q, β) is isomorphic to the E-twisted composition al-
gebra CΣ = (E2, QΣ, βΣ) defined by the reduced cube Σ = (1, 0, f, b). Indeed,
there is an AutE(C)-equivariant isomorphism

IsomE(CΣ, C) −→ ΩC,f,b

defined by
φ �→ φ(1, 0).

Proof. An E-linear isomorphism φ : CΣ −→ C is determined by v = φ(1, 0)
(for φ(0, 1) has no choice but to be equal to β(v)) and this v ∈ C must satisfy

Q(v) = −f , and NC(v) = −b.

Conversely, when v ∈ C satisfies these two conditions, one checks using [GS2,
§3.1 and Lemma 3.2, eqn. (3.4)] that the map φ given by φ(1, 0) = v and
φ(0, 1) = β(v) is an isomorphism of twisted composition algebras.

Observe that IsomE(CΣ, C) has an action of AutE(CΣ) × AutE(C) for
which it is a torsor for each of the two factors. Hence, assuming IsomE(CΣ, C)
is nonempty and after fixing a base point φ0 ∈ IsomE(CΣ, C), one obtains an
isomorphism

Ad(φ0) : AutE(CΣ) ∼= AutE(C).

By transport of structure, we also see that ΩC,f,b carries an action of
AutE(CΣ) × AutE(C). Let us describe the action of AutE(CΣ) ∼=
StabGL2(E)det(Σ) on ΩC,f,b concretely.
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Lemma 5.4. Given

g =
(

p q
r s

)
∈ StabGL2(E)det(Σ),

so that tg−1 ∈ AutE(E2, QΣ, βΣ), and v ∈ ΩC,f,b associated to φ ∈
IsomE(CΣ, C), one has

g · v = φ
(tg · (1, 0)

)
= φ(p, q) = pv + qβ(v) ∈ ΩC,f,b.

5.2. Degenerate cubes

It will be useful to have an understanding of the degenerate ME(F )-orbits on
VE(F ) = NE(F )/Z(F ). The nontrivial degenerate orbits correspond to the
nilpotent GE-orbits which are denoted by A1, 2A1 and 3A1 in the Bala-Carter
classification. Accordingly, we shall say that the corresponding elements in
VE(F ) are of rank 1, 2 or 3. We may refer to generic elements (non-degenerate
cubes) as rank 4 elements. The set of elements in VE of rank ≤ k is a Zariski
closed subset. For example, the elements of rank 1 are precisely the highest
weight vectors, and the set of elements of rank ≤ 1 can be described by
a system of equations given in Proposition 8.1 below (see also [GS1, Prop.
11.2]).

We shall now describe the ME(F )-orbits of elements of rank 2 and 3.

Proposition 5.5. 1. Every ME(F )-orbit of rank 3 elements in VE = F ⊕
E ⊕ E ⊕ F contains an element (0, 0, e, 0) where e ∈ E×. Two rank 3
elements (0, 0, e, 0) and (0, 0, f, 0) belong to the same orbit if and only
if e/f ∈ F×E×2.

2. Every ME(F )-orbit of rank 2 elements in VE = F ⊕E⊕E⊕F contains
an element (1, 0, e, 0) where e ∈ E such that e 
= 0 and e# = 0. Two
rank 2 elements (1, 0, e, 0) and (1, 0, f, 0) belong to the same orbit if and
only if e/f ∈ (F×)2.

Proof. (1) Consider Σ = (0, 0, 1, 0). This element has rank 3 since, over F̄ ,
1 = (1, 1, 1) ∈ F̄ 3 sits across three orthogonal root spaces, hence the notation
3A1. A long but fascinating computation shows that the stabilizer SME (Σ) of
Σ in ME consists of all elements (

a 0
b d

)
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where ad ∈ F×, d/d# = 1 and TE/F (bd#) = 0. Let TE ⊂ ME be the maximal
torus of diagonal matrices in ME . The stabilizer STE (Σ) of Σ in TE consists
of matrices as above with b = 0. Since

H1(F, SME (C)) = H1(F, STE (C))

it suffices to classify the orbits of TE on elements of the type (0, 0, e, 0) where
e ∈ E×. On these elements, the diagonal matrices act by multiplication by
d/d#. Since the set of all d/d# is F×E×2, (1) follows. Statement (2) is proved
in the same way, and we leave details to the reader.

Remark. If E is a field, the set of e ∈ E such that e# = 0 consists only of
0, so that there are no rank 2 elements in VE . If E = F ×K with K a field,
the set of such e’s is one F -line, and it consists of three F -lines if E = F 3.
This reflects the fact that GE(F̄ ) has three orbits with Bala-Carter notation
3A1, permuted by the group of outer automorphisms.

6. Dual pairs

In this section, we introduce the various dual pairs which we will study in
this paper. In particular, we shall see that given a E-twisted composition
algebra C, with corresponding embedding i : E ↪→ J under the Springer
decomposition, one may construct a dual pair:

HC ×GE = AutE(C) × SpinE
8 ⊂ GJ ,

where GJ is a group we shall introduce in due course. We shall first construct
this dual pair on the level of Lie algebras.

6.1. Lie algebras

Let us begin with an arbitrary Freudenthal-Jordan algebra J (not necessarily
of dimension 9). Let lJ ⊂ End(J) be the Lie subalgebra preserving the trilin-
ear form (−,−,−) associated to the norm form NJ , i.e. a ∈ End(J) lies in lJ

if and only if
(a · x, y, z) + (x, a · y, z) + (x, y, a · z) = 0

for all x, y, z ∈ J . The trace form defines an involution a �→ a	 on lJ by

〈a · x, y〉 = 〈x, a	 · y〉

for all x, y ∈ J .
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With h = sl(V ) for V a 3-dimensional vector space, the space

gJ = h⊕ lJ ⊕ (V ⊗ J) ⊕ (V ∗ ⊗ J)

has the structure of a simple Lie algebra, such that the above decomposition
arises from a Z/3Z-grading. The brackets [h⊕ lJ , V ⊗ J ] and [h⊕ lJ , V

∗ ⊗ J ]
are given by the natural action of h⊕ lJ on V ⊗J and V ∗⊗J , with the action
of a ∈ lJ on the second factor of V ∗⊗J is given by that of −a	. The brackets

[V ⊗ J, V ⊗ J ] ⊆ V ∗ ⊗ J and [V ∗ ⊗ J, V ∗ ⊗ J ] ⊆ V ⊗ J

are defined by

[v ⊗ x, u⊗ y] = −(v ∧ u) ⊗ (x× y)
[v∗ ⊗ x, u∗ ⊗ y] = (v∗ ∧ u∗) ⊗ (x× y)

respectively.
The remaining bracket (between V ⊗J and V ∗⊗J) is determined by the

invariant Killing form. More precisely, the Killing form on gJ is an extension
of the Killing form on h⊕ lJ (we shall specify the normalization later), such
that

〈v ⊗ x, u∗ ⊗ y〉 = 〈v, u∗〉 · 〈x, y〉
if v⊗x ∈ V ⊗J and u∗⊗y ∈ V ∗⊗J , where 〈v, u∗〉 is the evaluation of u∗ on v
and 〈x, y〉 is the trace pairing on J . Then the bracket [V ⊗J, V ∗⊗J ] ⊆ h⊕ lJ
is completely determined by:

〈[x, y], z〉 = 〈[z, x], y〉

for any x, y, z ∈ gJ . We refer the reader to [Ru] for explicit formulae in this
case. However, if 〈v, u∗〉 = 0, the bracket of v⊗x ∈ V ⊗J and u∗⊗y ∈ V ∗⊗J
is contained in h, and is given by

[v ⊗ x, u∗ ⊗ y] = 〈x, y〉 · v ⊗ u∗ ∈ sl(V )

and/or
[u∗ ⊗ y, v ⊗ x] = 〈x, y〉 · u∗ ⊗ v ∈ sl(V ∗)

Explicitly, if i 
= j,

[ei ⊗ x, e∗j ⊗ y] = 〈x, y〉eij
[e∗j ⊗ y, ei ⊗ x] = 〈x, y〉e∗ji.

We highlight two cases here:
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(a) If J = F , considered as a cubic algebra, so that 1×1 = 2 and TF (1) = 3,
then this construction returns the simple split algebra g of type G2.

(b) If J = E is a cubic étale algebra, then lE = E0, the subspace of trace
0 elements in E. The action of x ∈ E0 on e ∈ E is x · e = −2xe. We
fix a symmetric bilinear form on lE by 〈x, x〉 = 2 ·TE(x2). Then the Lie
algebra gE is of type D4; it is the Lie algebra of the group GE = SpinE

8 .

6.2. Groups

In order to explain the two appearances of 2 in (b) above, let J = E ⊕ C,
where C is E-twisted composition algebra (of arbitrary rank). For α ∈ E×,
let cα : J → J be defined by

cα : (e, v) �→ (α#/α · e, α · v)

for all (e, v) ∈ E ⊕ C. By (38.6) in [KMRT], one has

NJ((e, v)) = NE(e) + NC(v) − TE(e ·Q(v)),

and it readily follows that

NJ(cα(e, v)) = NE(α) ·NJ(e, v),

so that cα is a similitude map of NJ with similitude factor NE(α). In par-
ticular, if α has norm 1, then cα preserves the norm NJ . Since α# = α−1 (if
NE(α) = 1), we can write cα(e, v) = (α−2e, αv). By passing to Lie algebras,
we get an embedding lE = E0 ⊆ lJ where x ∈ E0 acts on J = E ⊕ C by

x · (e, v) = (−2xe, v) + (e, xv).

By setting v = 0, we get the previously defined action of lE = E0 on E.
On the other hand, we fix the Aut(lJ)-invariant form on lJ so that the

restriction to lE is 2 · TE(x2). For example, suppose that J = M3(F ) and
E = F 3 is diagonally embedded in M3(F ). Then lJ = sl3 ⊕ sl3, so that an
element (x, z) ∈ sl3 ⊕ sl3 acts on y ∈ M3(F ) by xy − yz, and lE is the set of
trace zero diagonal matrices x embedded in sl3 ⊕ sl3 as (−x, x).

We embed AutE(C) ⊂ Aut(J) so that it acts trivially on E, the first
summand in J = E ⊕ C.

Proposition 6.1. Let J = E ⊕ C. Every F -rational similitude map of NJ

commuting with the algebraic group AutE(C) is equal to cα for some α ∈ E×.
Likewise, every F -rational similitude map of NJ commuting with the algebraic
group Aut(J) is equal to cα for α ∈ F×.
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Proof. Let g be a F -rational similitude of NJ commuting with AutE(C).
Then g preserves both summands E and C of J . The algebra of F -rational
endomorphisms of C commuting with the action of AutE(C) is E. Thus g = cα
on C, for some α ∈ E×. Let g′ = cα−1 ◦g. Clearly, g′ belongs to the similitude
group of NJ ; however, since g′(0, v) = (0, v) for all v ∈ C, the similitude
factor is 1, i.e. g′ preserves NJ .

Now fix e ∈ E. Then g′(e, v) = (e′, v) for all v ∈ C and some e′ ∈ E.
We want to show that e = e′. It suffices to do so over the algebraic closure
F̄ . Since g′ preserves NJ , use v = 0 to show first that NE(e) = NE(e′), and
then TE(e ·Q(v)) = TE(e′ ·Q(v)) for all v ∈ C. Since Q is surjective over F̄ ,
TE(ee′′) = TE(e′e′′) for all e′′ ∈ E ⊗ F̄ . Hence e = e′.

Finally, if g is a similitude that commutes with Aut(J), then it commutes
with AutE(C) ⊆ Aut(J), so g = cα. Since Aut(J) acts absolutely irreducibly
on J0, the space of trace 0 elements in J , α ∈ F×.

Let GJ = Aut(gJ). We note that GJ is not necessarily connected. From
the construction of the Lie algebra gJ , it is evident that Aut(J) ⊆ GJ . As-
sume, furthermore, that J = E⊕C and J 
= E. The natural action of AutE(C)
on C, extended trivially to E ⊂ J gives an embedding AutE(C) ⊂ Aut(J).
Hence we have a natural embeddings

AutE(C) ⊂ Aut(J) ⊂ GJ .

We have also constructed inclusions of g ⊆ gE ⊆ gJ of vector spaces.

Proposition 6.2. The inclusions g ⊆ gE ⊆ gJ are homomorphisms of Lie
algebras, thus giving rise to inclusion of algebraic groups

G2 ⊂ GE = SpinE
8 ⊂ GJ .

Proof. Let x, y ∈ E. The cross product x× y, computed in J , is the same as
the one computed in E. Hence the bracket [V ⊗ E, V ⊗ E] in gJ coincides
with the one in gE . The bracket [V ⊗E, V ∗ ⊗E], computed in gJ , is fixed by
AutE(C)(F̄ ) hence it is contained in h⊕ lE . Since the Killing form on h⊕ lE

is the restriction of the Killing form on h ⊕ lJ it follows, from the definition
of the Lie brackets, that the two Lie brackets coincide. This shows that the
inclusion gE ⊆ gJ is a homomorphism. A similar argument shows that the
inclusion gE ⊆ gJ . Indeed, the bracket [V ⊗ F, V ∗ ⊗ F ], computed in gJ , is
fixed by Aut(J) hence it is contained in h.

The inclusion of Lie algebras induce a corresponding inclusion of the cor-
responding connected algebraic subgroups of GJ , and we know what these
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algebraic subgroups are up to isogeny. It is clear that the algebraic subgroup
associated to g is G2. Over F̄ , under the adjoint action of gE , the algebra gJ

contains the three 8-dimensional fundamental representations of Spin8, each
occurring with multiplicity dimE(C). This shows that the connected algebraic
subgroup corresponding to gE is simply-connected and is thus isomorphic to
GE = SpinE

8 .

6.3. Relative root system

We fix a basis e1, e2, e3 of V and let t ⊂ h be the Cartan subalgebra consisting
of diagonal matrices, with respect to this basis of V . Under the adjoint action
of t,

gJ = gJ,0 ⊕ (
⊕
α∈Φ

gJ,α)

where Φ ⊂ t∗ is a root system of type G2. Note that

gJ,0 = t⊕ lJ .

The short root spaces are Fei ⊗ J or Fe∗i ⊗ J , so we have canonical identi-
fications with J given by x �→ e2 ⊗ x and x �→ e∗2 ⊗ x respectively. The long
root spaces are one-dimensional and contained in h. In particular, there are
two choices for the basis vector: eij or e∗ji (= −eij under the identifications
h = sl(V ) = sl(V ∗)).

In particular, when J = E, gE,0 = t ⊕ lE is a torus, and by choosing a
set of positive roots in Φ, we have constructed a Borel subalgebra in gE , so
that gE is quasi-split. Indeed, we have mentioned before that gE is the Lie
algebra of SpinE

8 . What we have done here is to give a direct construction of
this Lie algebra, recover some of the structure theory described in §2 from
this construction and show that this Lie algebra fits into a family of such Lie
algebras which is associated to a Freudenthal-Jordan algebra J .

6.4. Two step parabolic subalgebra

Let s ∈ sl(V ) be the diagonal matrix (1, 0,−1). The adjoint action of s on gJ

gives a Z-grading
gJ = ⊕n∈Z gJ(n).

Then gJ(n) 
= 0 only for n = −2,−1, 0, 1, 2. Let

m = gJ(0) and n = gJ(1) ⊕ gJ(2).
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Then p = m⊕ n is a maximal parabolic subalgebra, with Levi subalgebra m

and nilpotent radical n. Let us examine the structure of each of these parts
in turn.

The Levi subalgebra m has a decomposition

m = t⊕ lJ ⊕ e2 ⊗ J ⊕ e∗2 ⊗ J.

The derived algebra

[m,m] = lJ ⊕ e2 ⊗ J ⊕ e∗2 ⊗ J

is generated by short root spaces e2⊗J and e∗2⊗J . The above decomposition
also exhibits a (Siegel-type) parabolic subalgebra

s = (t⊕ lJ) ⊕ e2 ⊗ J ⊂ m

with abelian nilpotent radical e2 ⊗ J .
Considering now the nilradical n, the center of n is [n, n] = gJ(2) = Fe13.

As an m-module, the quotient n/[n, n] is isomorphic to

gJ(1) = Fe∗21 ⊕ Fe1 ⊗ J ⊕ Fe∗3 ⊗ J ⊕ Fe23 = F ⊕ J ⊕ J ⊕ F.

Henceforth, an element in gJ(1) is a quadruple (a, y, z, d) where a, d ∈ F and
y, z ∈ J . Using our formulae, we can describe this m-module. One sees that
the Lie bracket of e2 ⊗ x ∈ e2 ⊗ J and (a, y, z, d) is

[e2 ⊗ x, (a, y, z, d)] = (0, ax, x× y, 〈x, z〉)

and the Lie bracket of e∗2 ⊗ x ∈ e∗2 ⊗ J and (a, y, z, d) is

[e∗2 ⊗ x, (a, y, z, d)] = (〈x, y〉, x× z, dx, 0).

If J = E, a cubic etalé algebra, then gE(1) is the space of E-twisted
Bhargava cubes and [m,m] is identified with sl2(E) by(

0 x
0 0

)
�→ e2 ⊗ x and

(
0 0
x 0

)
�→ e∗2 ⊗ x

Let PJ = MJNJ be the parabolic subgroup associated to pJ . If we fix an em-
bedding E ↪→ J of Jordan algebras, then we have a corresponding embedding
pE ↪→ pJ of parabolic subalgebras such that

GE ∩ PJ = PE
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on the level of groups.

6.5. 3-step parabolic subalgebra

Now let s ∈ sl(V ) be the diagonal matrix (1, 1,−2). As above, the adjoint
action of s on gJ gives a Z-grading

gJ = ⊕n∈Z gJ(n).

Then gJ(n) 
= 0 only for n = −3, . . . , 3. Let

l = gJ(0) and u = gJ(1) ⊕ gJ(2) ⊕ gJ(3).

Then q = l⊕u is a parabolic subalgebra whose nilradical u is 3-step nilpotent.
Note that

gJ(1) = Fe1⊗J⊕Fe2⊗J, gJ(2) = Fe∗3⊗J and gJ(3) = Fe13⊕Fe23.

Let QJ = LJUJ be the corresponding parabolic subgroup in GJ . Thus, the
unipotent radical UJ has a filtration

U = U1 ⊃ U2 ⊃ U3 such that Ui/Ui+1 ∼= gJ(i) for all i.

If we fix an embedding E ↪→ J , then we have a corresponding embedding
qE ↪→ qJ of parabolic subalgebras such that

GE ∩QJ = QE .

on the level of groups.

6.6. See-saw dual pairs

To summarise the discussion in this section, relative to an embedding E ↪→ J ,
we have constructed the following see-saw of dual pairs in GJ :

G2 HC = AutE(C)
�

�
��

GE

�
�

��

HJ = Aut(J)

We highlight two cases:
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• The particular case of interest in this paper is the case when dimE C = 2
or equivalently dimF J = 9. In this case, GJ and AutE(C) are discon-
nected and we have a short exact sequence

1 −−−−→ G0
J −−−−→ GJ −−−−→ S2 −−−−→ 1

where the identity component G0
J is an adjoint group of type E6 and

whose inner class correspond to the quadratic algebra KJ . Note that
on taking F -points, we have a map

GJ = GJ(F ) −→ S2

which need not be surjective.
• When dimE C = 4 (i.e. dimF J = 15), then GJ is an adjoint group of

type E7 associated to a quaternion F -algebra B. In this case,

AutE(C) ∼=
(
ResE/F (B ⊗F E)×

)det
/F×

where the RHS consists of elements in (B⊗E)× whose norm lies in F×.

7. Levi factor

In this section, we investigate some further properties of the dual pair HC×GE

in GJ , with J = E ⊕ C and dimE C = 2. The group GJ has a (Heisenberg)
maximal parabolic subgroup PJ = MJNJ ⊃ P 0

J = M0
J ·NJ , whose Levi factor

M0
J is of type A5. Moreover,

(HC ×GE) ∩ PJ = HC × PE ,

so that
HC ×ME −→ MJ

is itself a dual pair in MJ . Indeed, if we intersect the seesaw diagram in §6.6
with MJ , we obtain the following seesaw diagram in MJ :

GL2(F ) HC = AutE(C)
�

�
��

GL2(E)det

�
�

��

HJ = Aut(J)
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For our purposes, when J is not a division algebra, we need to describe the
Levi subgroup MJ and the above embedding concretely. This is because of the
need to relate the theta correspondence associated to HC ×ME to a classical
similitude theta correspondence. We treat the various cases in turn.

7.1. Split case

Suppose first that J = M3(F ), so that G0
J is split. In this case,

M0
J = (GL1 × SL6)/μ6

where μ6 is viewed as a subgroup of GL1 × SL6 by the map

x �→ (x3, x).

A more convenient description is:

M0
J
∼= (GL1 × GL6)/GL1

where GL1 is viewed as a subgroup of GL1 × GL6 by the map x �→ (x3, x).
The character

χ(x, g) = det(g)/x2

of GL1 × GL6 descends to M0
J and is a generator of Hom(M0

J ,Gm). The
character χ arises naturally when M0

J acts by conjugation on the center of
NJ .

If we identify F 6 = E2 (by choosing an F -basis of E), then ME =
GLdet

2 (E) is naturally a subgroup of GL6. We define an embedding
GL2(E)det −→ MJ by the map

g �→ (det(g), g).

Note that χ(det(g), g) = det(g) since the determinant of g, viewed as an
element in GL6 is det(g)3. On the other hand, since KJ = F × F , one has
H0

C
∼= E×/F×. The right-multiplication action of e ∈ E× on E2 gives an

embedding E× −→ GL6, so that any element e ∈ E× can be viewed as an
element of GL6 denoted by the same letter. Thus we have a map E× →
GL1 × GL6 given by

e �→ (NE/F (e), e).
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If e ∈ F×, then the image is (e3, e). The map thus descends to an inclusion
of E×/F× −→ MJ and we have defined an embedding

H0
C ×ME = E×/F× × GL2(E)det ↪→ M0

J

when J = M3(F ). Note that the character χ of M0
J is trivial on E×/F×.

7.2. Quasi-split case

Consider now the case when J = J3(K), so that GJ is quasi-split but not
split. In this case,

M0
J
∼= (GL1 × SUK

6 )/Res1μ6,K

where Res1μ6,K = Ker(NK/F : ResK/Fμ6 → μ6) is viewed as a subgroup of
GL1 × SUK

6 by the map x �→ (x3, x).
Fix an involution g �→ g∗ of GL6(K) that defines the quasi-split form

UK
6 . In particular, det(g∗) = det(g)−1 and x∗ = x−1 for any scalar matrix

x ∈ GL6. Consider the involution

τ : (x, g) �→ (x det(g)−1, g∗)

of GL1 × GL6. Since τ(x3, x) = (x−3, x−1), for every x ∈ GL1, the involution
τ descends to the quotient (GL1 × GL6)/GL1.

Now M0
J is the subgroup of

ResK/F (M0
J ×F K) ∼= ResK/F (GL1 × GL6/GL1)

fixed under the Galois action twisted by τ . From our knowledge in the split
case, we deduce an exact sequence of algebraic groups,

1 → UK
1 → (ResK/FGm × UK

6 )† → M0
J → 1

where (ResK/FGm×UK
6 )† is the subgroup consisting of pairs (x, g) such that

x/σ(x) = det(g) with 1 
= σ ∈ Aut(K/F ).

On the level of F -points, one has

1 → K1 −→ (K× × UK
6 (F ))† −→ M0

J (F ) −→ H1(F,UK
1 ) ∼= F×/NK/F (K×).

Let
M0

J,K = (K× × UK
6 (F ))†/K1.
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so that M0
J (F )/M0

J,K ⊆ F×/NK/F (K×). We claim that this is an isomor-
phism. The condition x/σ(x) = det(g) implies that χ(x, g) ∈ NK/F (K×), for
all (x, g) ∈ M0

J,K . On the other hand, the character χ : M0
J (F ) → F× is sur-

jective, and the claim follows. Thus, we have an exact sequence of topological
groups

1 −−−−→ M0
J,K −−−−→ M0

J (F ) −−−−→ F×/NK/F (K×) −−−−→ 1.

We would now like to describe the embedding of AutE(C) × GL2(E)det

into MJ . While this can be done by writing down some explicit formulas, we
would like to view this embedding through the lens of a see-saw pair in the
classical similitude theta correspondence. For this, let us set up the relevant
notation and recall the relevant background.

7.3. Similitude dual pairs

Here is the general setup. For a ∈ E×, let

Wa = Ee1 ⊕ Ee2

be a 2-dimensional symplectic vector space over E equipped with the alter-
nating form

〈e1, e2〉a = −〈e2, e1〉a = a.

With respect to the basis {e1, e2}, we have an identification of the symplec-
tic similitude group GSp(Wa) with GL2(E). The subgroup GSp(Wa)det of
elements whose similitude factor lies in F× is then identified with ME =
GL2(E)det. For g ∈ GL2(E)det, the corresponding similitude factor is

λ(g) = detE(g),

where detE(g) refers to the determinant of g considered an element of GL2(E).
We write GL2(E)det

K for the index 2 subgroup of elements whose similitudes
lie in NK/F (K×). Hence, we set

ME,K = GL2(E)det
K = {g ∈ ME = GL2(E)det : detE(g) ∈ NK/F (K×)}.

From this symplectic space Wa, we deduce the following 3 other spaces and
groups:
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(a) By restriction of scalars from E to F , we obtain a 6-dimensional sym-
plectic space ResE/F (Wa) with alternating form TrE/F ◦ 〈−,−〉a. One
has a natural inclusion of similitude groups:

ME = GL2(E)det = GSp(Wa)det ↪→ GSp(ResE/F (Wa)) ∼= GSp6(F ).

We write GSp(ResE/FWa)K for the index 2 subgroup of elements whose
similitudes lie in NK/F (K×).

(b) With L = E ⊗K, the 2-dimensional L-vector space

Va = Wa ⊗E L

is naturally equipped with a skew-Hermitian form induced by the alter-
nating form on Wa, with 〈−,−〉a given by the same formula as above
on the basis {e1, e2}. Then we have

GL2(E)det = GSp(Wa)det ↪→ GU(Va)det

where the superscript det refers to those elements whose similitude
(which a priori lies in E×) belongs to F×.

(c) As above, by considering restriction of scalars from L to K, we see that
ResL/K(Va) is a 6-dimensional K-vector space equipped with the skew-
Hermitian form TrL/K ◦ 〈−,−〉a. This 6-dimensional skew-Hermitian
space over K is also the one naturally induced from the symplectic
space ResE/F (Wa) over F , in the same way as Va is obtained from Wa.
One has a natural inclusion of unitary similitude groups:

GU(Va)det ↪→ GU(ResL/K(Va)),

In fact, both similitude maps here have image equal to F×, but we
shall consider the index ≤ 2 topological subgroups of elements whose
similitude lies in NK/F (K×), denoted by:

GU(Va)det
K ↪→ GU(ResL/K(Va))K .

Observe that

GU(ResL/K(Va))K = (K× × U(ResL/K(Va)))/∇K1

with ∇K1 = {(z, z−1) : z ∈ K1}.
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Summarizing, starting with Wa, we have the following containment dia-
gram for the 4 groups we introduced:
(7.1)

GU(ResL/K(Va))K

GU(Va)det
K GSp(ResE/F (Wa))K

GSp(Wa)det
K = GL2(E)det

K

These groups appear in the classical similitude theta correspondence, and we
proceed next to describe the other member of the relevant dual pairs, namely
those lying on the other side of a seesaw diagram.

Regard K as a rank 1 Hermitian space (relative to K/F ) with the form
(x, y) �→ x · σ(y). Then GU(K) = K× and GU(ResL/K(Va))K form a simil-
itude dual pair. Here it is necessary to consider the index ≤ 2 subgroup
GU(ResL/K(Va))K as opposed to GU(ResL/K(Va)), because the similitude
map on GU(K) has image NK/F (K×). Starting from this rank 1 Hermitian
space, one deduces the following 3 spaces and groups:

(a’) By restriction of scalars from K to F , we regard K as a 2-dimensional
F -vector space with quadratic form NK/F , with similitude group

GO(K,NK/F ) ∼= K× � 〈τ〉,

with τ acting on K× as the unique nontrivial automorphism σ of K/F .
Then GO(K,NK/F ) × GSp(ResE/F (Wa))K is a similitude dual pair.

(b’) By base change from F to E, we obtained a rank 1 Hermitian space (rel-
ative to L/E) over L, so that GU(L)det ×GU(Va)det

K forms a similitude
dual pair.

(c’) By restriction of scalars ResE/F on the space in (b’) or the base change
from F to E of the space (K,NK/F ) in (a’), we obtain the quadratic
space (L,NL/E) of dimension 2 over E, with similitude group

GO(L,NL/E)det := GSO(L,NL/E)det � 〈τ〉 ∼= (L×)det � 〈τ〉.

This group form a similitude dual pair with ME,K = GL2(E)det
K =

GSp(Wa)det
K .
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Summarizing, starting from a rank 1 Hermitian space (relative to K/F ), one
have the following diagram

(7.2) GO(L,NL/E)det

GU(L) = L× GO(K,NK/F )

GU(K) = K×

As mentioned above, the groups in (7.2) form a seesaw diagram of dual pairs
with the corresponding group in (7.1). We shall only make use of the groups
at the top and bottom of the diagrams, so that we have a similitude seesaw
pair:

(7.3) GO(L,NL/E)det = (L×)det � 〈τ〉 GU(ResL/K(Va))K

GU(K) = K× ME,K = GL2(E)det
K

7.4. Embedding

We can now describe the embedding

AutE(C)0 × GL2(E)det ↪→ M0
J .

Recall that we are considering

[C] ∈ H1(F, T̃E,K)[2] ∼= E×/F×NL/E(L×) (by (4.11)).

Take any a ∈ E× representing the class of [C], so that we have the above
constructions of similitude dual pairs using a ∈ E×. Recall further that one
has a natural isomorphism of algebraic groups

M0
J
∼= (ResK/FGm × U(ResL/K(Va)))†/UK

1 .
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Now there is a natural map (with finite kernel) of algebraic groups

(7.4)

GU(ResL/K(Va)) = (K× × U(ResL/K(Va))K)/∇UK
1⏐⏐�f

(K× × U(ResL/K(Va))K)/UK
1 ,

given by
(z, g) �→ (z−3, g).

The restriction of this map to the subgroup ME (see (7.3)) gives the embed-
ding of algebraic groups

GL2(E)det ↪→ M0
J .

When restricted to the topological subgroup ME,K = GL2(E)det
K , the map f

is given by the formula
g �→ (z−3, gz−1),

where detE(g) = NK/F (z). Observe that this is clearly well defined, as z is
unique up to K1.

On the other hand, we have the natural isomorphism of algebraic groups

AutE(C) ∼= (L×)det � 〈τ〉/K× ∼= GO(L,NL/F )det/GU(K),

which is a quotient of the two algebraic groups appearing on the LHS of the
seesaw diagram in (7.3). Hence

(7.5) AutE(C)0 ∼= GU(L)det/GU(K) ∼= U(L)/U(K).

The embedding
AutE(C)0 ∼= U(L)/U(K) ↪→ M0

J

is given by
e �→ (NL/K(e), e),

where e ∈ U(L) acts on ResE/F (Va) through its scalar multiplication action
on Va = Le1 ⊕ Le2.

It is useful to note the following lemma which says that the last isomor-
phism in (7.5) continues to hold on the level of F -rational points.

Lemma 7.6. The inclusion L1 ⊂ (L×)det gives an isomorphism L1/K1 ∼=
(L×)det/K×.
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Proof. We have a long exact sequence

1 → K1 → L1 → (L×)det/K× → H1(F,U(K)) → H1(F,ResE/FU(L))

so we need to show that the last arrow is injective. To that end, the map

NL/K : ResE/FU(L) → U(K)

gives

H1(F,U(K)) → H1(F,ResE/FU(L)) → H1(F,U(K))

such that the composite is multiplication by 3. Since H1(F,U(K)) is a 2-
group, the composite is the identity. This proves the lemma.

The lemma implies that, for any x ∈ (L×)det, NL/E(x) ∈ NK/F (K×).
Thus, the embedding

(L×)det/K× ↪→ M0
J (F )

takes value in the index ≤ 2 subgroup M0
J,K and is given by the formula

x �→ (NL/K(x/z), x/z), where NL/E(x) = NK/F (z).

Again this is well-defined as z is determined up to an element of K1.
We have thus described the embedding of algebraic groups

H0
C ×ME ↪→ M0

J .

This embedding depends only on a ∈ E×/F×NL/E(L×) = H1(F, T̃E,K)[2].
On the level of points, it gives the embedding

H0
C(F ) ×ME,K = (L×)det/K× × GL2(E)det

K ↪→ M0
J,K .

Though the embedding could have been written down via formulas, without
mention of the framework of similitude dual pairs, this framework will help us
in §10 to relate the mini-theta correspondence associated to this commuting
pair of groups by reducing it to the classical similitude theta correspondence.
So we shall have occasion to return to the material in §7.3 later on.
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7.5. Siegel parabolic

Recall that the Lie algebra m has a Siegel parabolic subalgebra s. This gives
rise to a Siegel parabolic subgroup

SJ ⊂ MJ

whose Levi factor is of type A2 × A2 and whose unipotent radical can be
identified with J . Moreover, HC ⊂ SJ and the intersection of ME with SJ is
a Borel subgroup of ME . If we identify ME with GL2(E)det, we may assume
that SJ ∩ME is the Borel subgroup of upper triangular matrices.

8. Minimal representation

In this section, we assume that F is a non archimedean local field. Let Π be
the minimal representation of GJ(F ) (see [GS1]). In this section, we recall the
relevant properties of Π that we need. We first note that the algebraic group
GJ is not connected, but the minimal representation Π in [GS1] is a represen-
tation of the subgroup G0

J(F ) of GJ(F ). Thus there are two ways of extending
Π to GJ(F ) and we shall first need to specify the extension we use below.

8.1. Extending the minimal representation

Recall the Heisenberg parabolic subgroup PJ = MJNJ of GJ , with Z the
center of NJ and and let

χ : MJ → F×

be the character of MJ given by the action of MJ on Z. By composition with
χ, we may regard any character μ of F× as a character of MJ(F ). Henceforth,
we shall write μ in place of μ ◦ χ for a character of MJ(F ).

Now we consider the degenerate principal series representation of GJ(F ):

IJ(s0) := IndGJ
PJ

χJ = IndG0
J

P 0
J
χJ (unnormalized induction)

where
χJ = ωK/F · | − |sJ

with ωK/F the quadratic character associated to K = KJ by local class field
theory and sJ given by the following table:

GJ E6 E7 E8
sJ 2 3 5
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The minimal representation Π of G0
J(F ) is the unique irreducible subrepre-

sentation of IJ(s0), regarded as a representation of G0
J(F ). This unique irre-

ducible submodule is thus stable under the action of GJ(F ) and this defines
the extension of Π to GJ(F ). When we regard IJ(s0) as a space of functions
on G0

J(F ) transforming under (P 0
J (F ), χJ) on the left, the action of G0

J(F ) is
by right translation whereas the action of p ∈ PJ(F ) is given by:

(p · f)(h) = χJ(p) · f(p−1hp) for h ∈ G0
J(F ) and f ∈ IJ(s0).

This describes the action of GJ(F ) = PJ(F ) ·G0
J(F ).

8.2. Restriction of Π to P̄J

The restriction of Π to P̄J sits in a short exact sequence

0 → C∞
c (Ω) → ΠZ̄ → ΠN̄J

→ 0,

where Ω ⊂ NJ/Z is the minimal nontrivial (highest weight) MJ -orbit.
To describe the action of P̄J on C∞

c (Ω), let 〈n̄, n〉 be the natural pairing
of N̄J/Z̄ and NJ/Z and fix a non-trivial additive character ψ of F . Then the
action is given as follows. For f ∈ C∞

c (Ω),

• n̄ ∈ N̄J/Z acts by

Π(n̄)f(n) = ψ(〈n̄, n〉) · f(n).

• m ∈ MJ acts by

Π(m)f(n) = χJ(m) · f(m−1nm).

8.3. The minimal orbit Ω

Recall from 6.4 that we have an identification

NJ/ZJ = F ⊕ J ⊕ J ⊕ F.

By [GS1, Proposition 11.2], we have the following description of Ω:

Proposition 8.1. A non-zero element ω = (a, x, y, d) ∈ NJ/ZJ , with a 
= 0,
is in the minimal MJ -orbit Ω if and only if

x# = ay, y# = dx and l(x) · l∗(y) = ad for all l ∈ LJ
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where x · y is the product in J , LJ the group of linear transformations of
J preserving the norm form, and l∗ the dual action of LJ on J∗ ∼= J , with
the identification given by the trace pairing. In particular, if a = 1, then
ω = (1, x, x#, NJ(x)).

Erratum. In fact, [GS1, Proposition 11.2] asserts that it suffices to use x·y =
ad in place of the family of equations obtained by the LJ -action. This is
false. Writing WJ = NJ/ZJ , the MJ -module S2(W ∗

J ) is a direct sum of an
irreducible module whose highest weight is equal to twice the highest weight
of W ∗

J , and the adjoint representation of MJ . The quadratic equations given
here span the latter summand and hence give a complete set of generators.

Note however that in [GS1, Proposition 11.2], only the proof of the (cor-
rect) “only if” statement was given, as the other direction was not used in
[GS1]. Hence this error does not affect any result in [GS1].

8.4. The MJ -module ΠN̄J

A complete description of the Jacquet module ΠN̄J
is given in [GS1]. We have

ΠN̄J

∼= ωK/F · | − |−2 ⊕ | − |−3/2 · ΠMJ

for an MJ -module ΠMJ which is 0 if J is a division algebra and is a unitary
minimal representation of MJ otherwise. We will assume that J is not division
henceforth and describe the MJ -module ΠMJ in some detail.

Recall that M0
J (F ) contains a subgroup M0

J,K of index ≤ 2. We first
describe a representation of M0

J,K , using the classical theta correspondence
for the pair

U(K) × U(ResK/F (Va)) = U1(F ) × U6(F )

constructed in §7.3.
To give a Weil representation for this dual pair, we need to choose a char-

acter μ of K× whose restriction to F× is the quadratic character ωK/F , which
gives a splitting of the metaplectic cover over U6(F ). Then we may consider
the Weil representation ωμ,ψ for U1 × U6 associated to the pair of splitting
characters (1, μ) and a nontrivial additive character ψ of F . With respect to
the choice of (1, μ) and ψ, the associated Weil representation ωμ,ψ can be
realised on C∞

c (L), where L = Le2 is a polarization of Va = Le1 ⊕ Le2. The
action of U(K) = K1 and the Siegel parabolic subgroup of U(ResK/F (Va))
stabilizing Le1 is given by the usual formulas in the Schrodinger model:
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• The group U1 = K1 acts geometrically on C∞
c (Le2): for z ∈ K1,

(z · f)(v) = f(z−1v).

• If GLK(Le2) is the Levi subgroup that preserves the decomposition
Va = Le1 ⊕ Le2, the action of g ∈ GLK(Le2) is given by

(g · f)(v) = μ(det(g)) · |NK/F det(g)|− 1
2 · f(g−1v).

• An element u in the unipotent radical of the Siegel parabolic subgroup
stabilizing Le2 acts by:

(n · f)(v) = ψ(〈n, v〉a) · f(v).

In particular, we see the dependence on a ∈ E× in the last formula above. If
we replace μ by μ · β, where β is a character of K×/F×, then the splitting of
U6(F ) changes by α ◦ det, where α is a character of K1,determined by β via:
α(z/σ(z)) = β(z). Moreover, for a fixed μ, the Weil representation depends
only on the orbit of ψ under NK/F (K×).

We can now consider the classical theta lift θμ(1) of the trivial represen-
tation of U1, which is an irreducible representation of U6(F ) realized on the
subspace

C∞
c (Le2)K

1 ⊂ C∞
c (Le2).

Consider the representation of K× × UK
6 (F ) on C∞

c (Le2)K
1 given by

ΠMJ,K := μ−1 � θμ(1).

It is a simple check that the restriction of ΠMJ,K to the subgroup

{(x, g) ∈ K× × UK
6 (F ) : x/σ(x) = det(g)}

is independent of μ and that it descends to a representation of M0
J,K . We

extend this representation to MJ,K by letting τ act on f ∈ C∞
c (L)K1 via

(τ · f)(v) = f(σ(v)).

Thus we have a representation ΠMJ,K of MJ,K = M0
J,K � 〈τ〉 on C∞

c (Le2)K
1 ,

which depends on the orbit of ψ under NK/F (K×). Now we have:

(8.2) ΠMJ
∼= IndMJ

MJ,K
ΠMJ,K = IndMJ

MJ,K
μ−1 � θμ(1).

This representation is now independent of ψ and μ.
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8.5. Similitude theta lifting

It is in fact better to think of the representation ΠMJ,K from the viewpoint of
the similitude theta correspondence for the pair

GU(K) × GU(ResK/F (Va))K = K× × GU6(F )K .

In particular, we may consider the similitude theta lift θ̃μ(1) of the trivial
representation of K×; this representation is also realized on C∞

c (Le2)K
1 , and

is merely an extension of θμ(1) to GU6(F )K with the center K× acting by
the central character μ3. Recall from (7.4) the isogeny

f : GU(ResL/K(Va))K = (K× × U6(F ))/∇K1 −→ (K× × U6(F ))/K1

defined by
f(z, g) = (z−3, g).

Then we have;

θ̃μ(1) = (μ−1 � θμ(1)) ◦ f = ΠMJ,K ◦ f.

In other words, θ̃μ(1) factors through f and when restricted to (K××U6(F ))†
is independent of μ.

From this viewpoint, the restriction of the MJ,K-module ΠMJ,K to the
commuting pair HC(F ) × GL2(E)det can be transparently described using
the seesaw diagram (7.3). More precisely, we pick a ∈ E× so that its class in
E×/F×NL/E(L×) = H1(F, TE,KC )[2] (see (4.11) and (4.17)) corresponds to
[C]. From the seesaw identity arising from (7.3), the representation θ̃μ(1) is
naturally a representation of

((L×)det � 〈τ〉)/K× × GSp(Wa)det = AutE(C) × GL2(E)det.

This representation is precisely the restriction of ΠMJ,K to AutE(C)×GL2(E)det.

8.6. Some formulas

We write down some formulas for ΠMJ,K which are relevant to us.

• An element e ∈ L1/K1 = AutE(C)◦ acts on f ∈ C∞
c (Le2)K

1 by

(e · f)(v) = f(e−1v).
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• The element

t(x) =
(

x 0
0 1

)
∈ GL2(E)det,

with x = NK/F (z) for some z ∈ K×, acts on f ∈ C∞
c (Le2)K

1 by

(t(x) · f)(v) = |x|− 3
2 · f(z−1v).

• The element

u(b) =
(

1 b
0 1

)
∈ GL2(E)det,

acts by
(u(b)f)(v) = ψ(TrE/F (a ·NL/E(v) · b)) · f(v).

The dependence of the HC(F ) × GL2(E)det
K -module ΠMJ,K on a ∈ E× is

thus evident from the action of the unipotent radical of the upper triangular
matrices in GL2(E)det. In particular, one sees that the Whittaker support
(relative to ψ) of ΠMJ,K as an GL2(E)det

K -module is on the coset a·NL/E(L×) ⊂
E×. Thus, the Whittaker support of the GL2(E)det-module

ΠMJ = IndGL2(E)det

GL2(E)det
K

ΠMJ,K

is on the coset a · F×NL/E(L×). This is the coset corresponding to [C] ∈
H1(F, TE,KC )[2], by our choice of a.

8.7. Split case

If K = F 2. Then K1 = {(x, y) ∈ F 2 | xy = 1} ∼= F×, L = E2 and L1 ∼= E×.
In this case, we can simplify the description of ΠMJ .

If we apply a partial Fourier transform to C∞
c (L) = C∞

c (E2) with respect
to the second factor E of L, the action of K1 ∼= F× on C∞

c (L) becomes
the action by homotheties. The representation ΠMJ

∼= Π∨
MJ

is the maximal
F×-invariant quotient of C∞

c (L), and is isomorphic to the space of smooth
functions f on L \ {0} such that

f(xv) = |x|−3
F f(v) for all v ∈ L \ {0} and x ∈ F×.

The restriction of ΠMJ to ME×AutE(C) is given as follows. If g ∈ GL2(E)det

then
ΠMJ (g)f(v) = | det(g)|− 3

2 · f(g−1v),
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where g−1v is the natural action of g−1 ∈ GL2(E) on v ∈ E2 = L. If e ∈ E×

then
ΠMJ (e)f(v) = |NE/F (e)|−1 · f(e−1v),

where e−1v is the product of the scalar e−1 ∈ E× and the vector v ∈ E2.
The involution τ acts by the Fourier transform, viewing f as a distribution
on C∞

c (L).

8.8. Schrödinger model of ΠMJ

The description we have given above for ΠMJ allows one to relate the theta
correspondence arising from its restriction to the dual pair HC ×ME in MJ

to the classical theta correspondence. As a minimal representation, ΠMJ also
has a Schrödinger model adapted to the Siegel parabolic subgroup SJ ⊂ MJ ,
which we will describe next.

As a representation of SJ , ΠMJ sits in a short exact sequence

0 −−−−→ C∞
c (Jrk=1) −−−−→ ΠMJ −−−−→ rSJ (ΠMJ ) −−−−→ 0

where Jrk=1 denotes the set of rank 1 elements in J and rSJ (−) denotes the
(normalized) Jacquet module with respect to SJ . The action of some elements
of HC ×BE = (HC ×MC) ∩ SJ on C∞

c (Jrk=1) can be described as follows:

• For b ∈ E, the upper triangular unipotent element u(b) ∈ ME(F ) =
GL2(E)det acts by

(u(b) · f)(x) = ψ(TrJ(bx)) · f(x) = ψ(TrE/F (b · e)) · f(x)

where x = (e, v) ∈ E ⊕ C = J has rank 1 and ψ is a fixed nontrivial
additive character of F .

• For h ∈ HC(F ), h acts by

(h · f)(x) = f(h−1x)

where we have identified HC with the pointwise stabilizer of E ⊂ J , so
that HC ⊂ Aut(J).

Observe that by Lemma 4.15, and Lemma 4.16, x = (e, v) ∈ E ⊕ C has
rank 1 if and only if the map f in Lemma 4.16 sends e to

[C] ∈ H1(F, TE,KC )[2] = E×/F×NL/E(L×).

In view of (4.17), this is equivalent to the coset e · F×NL/K(L×) being equal
to that of [C]. So the Whittaker support of ΠMJ as a GL2(E)det-module is as
we had determined in §8.6 via the classical theta correspondence.
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The description of the minimal representation ΠMJ given here will be
used for the study of the theta correspondence for HC ×ME in §10. This is
necessary for the study of the theta correspondence for HC ×GE , which will
be carried out in §12.

9. Jacquet functors for E6

In this section, we continue to assume that F is a nonarchimedean local field.
The goal of this section is to describe the (un-normalized) Jacquet module
ΠN̄E

as a representation of ME ×AutE(C). Here, recall that PE = MENE =
PJ ∩ GE is the Heisenberg parabolic subgroup in GE and NJ and NE share
the center Z. Let

Ω⊥ = {x ∈ Ω : x is perpendicular to N̄E/Z̄}.

Then we have an exact sequence

0 → C∞
c (Ω⊥) → ΠN̄E

→ ΠN̄J
→ 0

Thus, we need to:

• determine the set Ω⊥ and describe C∞
c (Ω⊥) as a module for ME ×

AutE(C); we shall do this in this section.
• study the theta correspondence for ME×AutE(C) with respect to ΠMJ :

we shall study this in the next section.

Now as a GLdet
2 (E)-module, the orthogonal complement of N̄E/Z̄ in N/Z

is given by the natural action of GLdet
2 (E) on C⊕C = E2⊗E C via its action

on E2. Thus, an ω ∈ Ω⊥ is of the form (0, x, y, 0) where x, y ∈ C such that

x# = (−Q(x), β(x)) = 0 = y#, and x · y = 0 ∈ J.

Now we note the following proposition, which uses the structure theory of
twisted composition algebras:

Proposition 9.1. If x ∈ C is such that Q(x) = 0 and NC(x) = bQ(x, β(x)) =
0, then x = 0 except when

1. E = F 3 and J = M3(F ).
2. E = F ×K, where K is a field, and J = M3(F ).
3. E = F ×K, where K is a field, and J = J3(K).

Hence Ω⊥ is empty unless we are in the three cases above.
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Proof. It suffices to look at the cases when Q is isotropic. If KC is a field,
then the norm NE⊗KC/E is isotropic only when E = F × K and KC = K.
Since KE = K, it follows that KJ = F 2. Hence we are in the second case.
If KC = F 2, then Q is always isotropic. The cases E = F 3 and E = F ×K

correspond to the first and third cases, respectively, in the statement of the
proposition.

If E is a field, then C = E ⊗F 2 = E ⊕E and, up to an invertible scalar,
Q(y, z) = yz and β(y, z) = (z#, y#), for (y, z) ∈ C = E2. Here Q(y, z) = 0
implies y = 0 or z = 0. Assuming z = 0, we see that bQ((y, 0), (0, y#) =
yy# = NE/F (y) = 0, which implies that y = 0.

Hence, to explicate C∞
0 (Ω⊥), we need to treat the 3 cases highlighted in

the proposition, and we shall deal with them in turn.

9.1. Case 1: E = F 3 and J = M3(F )

In this case, C is a split twisted composition algebra. Write

x = ((x1, y1), (x2, y2), (x3, y3)), y = ((x′1, y′1), (x′2, y′2), (x′3, y′3))

and suppose that (x, y) ∈ Ω⊥. Let Xi, respectively Yi, be the 2-dimensional
F -subspace of C ⊕ C consisting of all pairs (x, y) such that all coordinates
except xi and x′i are trivial, respectively, all coordinates except yi and y′i are
trivial. On each Xi and Yi, two of the three SL2(F ) ⊂ ME act trivially, and the
quotient group, isomorphic to GL2(F ), acts via the standard representation.

The condition x# = 0 holds if and only if there exists a pair of indices
i 
= j such that all coordinates of x are 0 except possibly for xi and yj . An
analogous statement holds for y: all coordinates are 0 except possibly for x′a
and y′b for some a 
= b. The last condition, x · y = 0, implies that i = a and
j = b. This can be easily seen by writing x and y as matrices, say

x =

⎛⎜⎝ 0 x3 y2
y3 0 x1
x2 y1 0

⎞⎟⎠ and y =

⎛⎜⎝ 0 x′3 y′2
y′3 0 x′1
x′2 y′1 0

⎞⎟⎠ .

Hence, if (0, x, y, 0) ∈ Ω⊥, then (x, y) ∈ Xi ⊕ Yj for some i 
= j, and we have:

Ω⊥ ∪ {0} =
⋃
i�=j

Xi ⊕ Yj .



2014 Wee Teck Gan and Gordan Savin

Let X∗
i and Y ∗

i denote the corresponding punctured planes. As ME-module,
the space C∞

c (Ω⊥) has a 2-step filtration with submodule⊕
i�=j

C∞
c (X∗

i × Y ∗
j )

and quotient (via restriction)⊕
i

C∞
c (X∗

i ) ⊕
⊕
j

C∞
c (Y ∗

j ).

The action of ME is geometric, with the same twist χJ as the one-dimensional
summand of ΠN̄J

.

9.2. Case 2: E = F × K and J = M3(F )

In this case KC = K, so C = E ⊗K = K3. The structure of E-module on C
is given by

(f, e) · (z1, z2, z3) = (fz1, ez2, ēz3)

where (f, e) ∈ F × K and z = (z1, z2, z3) ∈ K3. The composition algebra
structure is given by

Q(z) = (NK(z1), z2z̄3)

and
β(z1, z2, z3) = (z̄2z̄3, z̄1z̄2, z̄3z̄1).

This algebra C can be obtained from the split algebra Cs by Galois descent
from Cs⊗K where the usual action of the Galois group of K over F is twisted
by

σ((x1, y1), (x2, y2), (x3, y3)) = ((y1, x1), (y3, x3), (y2, x2)).

Note that Q(z) = 0 implies that z1 = z2 = 0 or z1 = z3 = 0. For i = 2 or
3, let Zi be the two-dimensional K-plane in C ⊕ C consisting of pairs (z, z′)
such that zj = z′j = 0 for all j 
= i. Now Ω⊥ is the union of the punctured
planes Z∗

2 and Z∗
3 . This claim can be easily verified form the split case using

Galois descent. The group GL2(E)det acts on each plane via projection onto
GL2(K)det, with SL2(F ) as the kernel. As ME-module, the space C∞

c (Ω⊥) is
a direct sum

C∞
c (Z∗

2 ) ⊕ C∞
c (Z∗

3 ).

The action of ME is geometric, with the same twist χJ as the one-dimensional
summand of ΠN̄J

.
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9.3. Case 3: E = F × K and J = J3(K)

In this case KC = F 2, so E ⊗ C = F 2 ×K2. If z = ((x1, y1), (x2, y2)) ∈ C,
then

Q(z) = (x1x2, y1y2) and β(z) = ((NK(y2), NK(y1)), (y1ȳ2, x1x̄2)).

This algebra C can be obtained from the split algebra Cs by Galois descent
from Cs⊗K where the usual action of the Galois group of K over F is twisted
by

σ((x1, y1), (x2, y2), (x3, y3)) = ((x1, y1), (x3, y3), (x2, y2)).

In this case Q(z) = 0 and β(z) = 0 imply that x2 = y2 = 0 and x1 = 0
to x2 = 0. Let X1 (respectively Y1) be the plane in C ⊕ C consisting of all
elements (z, z′) such that all coordinates of z and z′ are 0 except x1 and x′1
(respectively, except y1 and y′1). Then Ω⊥ is the union of the punctured planes
X∗

1 and Y ∗
1 . Again, this claim can be easily verified form the split case using

Galois descent. The group GL2(E)det acts on each plane via projection onto
GL2(F ), with SL2(K) as the kernel. As ME-module, the space C∞

c (Ω⊥) is a
direct sum

C∞
c (X∗

1 ) ⊕ C∞
c (Y ∗

1 ).

The action of ME is geometric, with the same twist χJ as the one-dimensional
summand of ΠN̄J

.

10. Mini theta correspondence

In this section, we shall determine the local theta correspondence given by
the ME×AutE(C)-module ΠMJ when F is a nonarchimedean local field. This
is only relevant when J = E⊕C is not a division algebra. Understanding this
mini-theta correspondence is necessary for our main goal of understanding the
theta correspondence for GE × AutE(C) ⊂ GJ . We begin by introducing no-
tation for the irreducible representations of HC(F ) and ME(F ) = GL2(E)det.

10.1. Representations of AutE(C)

Since J = E ⊕ C is not a division algebra, we see by Proposition 4.12 that

HC(F ) ∼= H0
C(F ) � Z/2Z
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where the action of Z/2Z on AutE(C)0 is by inverting. Note however that
the above isomorphism is not canonical and amounts to choosing an element
(necessarily of order 2) in HC(F ) �H0

C(F ).
The irreducible representations of HC(F ) are not hard to classify:

(a) For every character χ of the torus H0
C(F ) such that χ2 
= 1, we have a

two dimensional representation

ρ(χ) = IndHC(F )
H0

C(F )χ = ρ(χ−1).

Note that ρ(χ) ∼= ρ(χ′) if and only if χ±1 = χ′.
(b) For each character χ such that χ2 = 1, there are two extensions of χ

to HC(F ). If χ = 1, these two representations are easily distinguishable
from each other: one is trivial whereas the other is not. We denote them
by 1 and ε = εC (the sign character of HC(F )) respectively.

(c) When χ2 = 1 but χ 
= 1, we can use the fixed isomorphism HC(F ) ∼=
H0

C(F ) � Z/2Z to distinguish the two extensions. Namely, we may de-
note the two extensions by ρ(χ)+ and ρ(χ)−, where the sign denotes
the action of the nontrivial element of Z/2Z.

Note however that the labelling in (c) above is not really canonical. We
shall see much later that one has a better parametrization. This is based on the
following canonical bijection of 2-element sets deduced from Proposition 4.20:

f−1([C])/b(Ker(χ)) ←→ (HC(F ) �H0
C(F ))/Ker(χ).

and the observation that any extension of χ is a nonconstant ±1-valued func-
tion on the RHS. For this section, the labelling provided by (c) above is
sufficient.

10.2. Induced representations of GL2(E)det

Writing E as a product
∏

i Ei of fields Ei, we have a similar product L =
E⊗K =

∏
i Li with Li = Ei⊗K. Let ωL/E be the quadratic character of E×

such that the restriction to each Ei is the quadratic character corresponding
to the extension Li.

Now let χ be a unitary character of E× and consider the induced repre-
sentation χ×ωL/E of GL2(E) in the notation of Bernstein and Zelevinski. We
shall need some simple results on the restriction of χ × ωL/E

∼= χ−1 × ωL/E

to GL2(E)det.
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Proposition 10.1. Let χ be a unitary character of E×/F×. In the following,
“the restriction” refers to the restriction of χ× ωL/E to GL2(E)det.

1. Assume that K = F 2, and χ is a character of E× trivial on F×. The
restriction is irreducible unless χ2 = 1 and χ 
= 1, in which case it is a
direct sum of 2 non-isomorphic irreducible representations.

2. Assume that K is a field and E = F × K. Let χ is a character of
F××K× trivial on F××K1. The restriction is irreducible unless χ2 =
1 and χ 
= 1, in which case it is a direct sum of 2 non-isomorphic
irreducible representations.

3. Assume that K is a field, but E 
= F × K. Let χ = 1. The restric-
tion of 1 × ωωL/E

is a direct sum of 2n−1 non-isomorphic irreducible
representations where n is the number of factors of E.

Proof. These statements can be deduced from the well known facts about
representations of GL2(E) and SL2(E). We provide the details in the case
when E is a field and K = F 2; the general case is treated by a similar
argument.

The representation χ × 1 is irreducible when restricted to SL2(E) (and
hence to GL2(E)det) unless χ2 = 1 and χ 
= 1. If χ2 = 1 and χ 
= 1, then
χ × 1 reduces to two non-isomorphic summands on SL2(E) and also on the
intermediate group consisting of elements g ∈ GL2(E) such that det(g) is in
the kernel of χ. Since, by our assumption, χ is trivial on F×, the character χ is
trivial on det(g) for g ∈ GL2(E)det. Thus χ×1 is a sum of two non-isomorphic
irreducible representations.

10.3. Theta lifting

For every irreducible representation ρ of HC(F ), let ΘM (ρ) be a representation
of ME such that ΘM (ρ)⊗ρ is the maximal ρ-isotypic quotient of ΠMJ . We shall
now give a description of ΘM (ρ) for unitary representations ρ. The results
are essentially a reformulation of the classical similitude theta correspondence
for the dual pair GO2(E) × GL2(E), together with an understanding of the
restriction of representations from GL2(E) to GL2(E)det (as we did in the
previous proposition).

Recall from (8.2) that

ΠMJ = IndMJ
MJ,K

ΠMJ,K ,

with ΠMJ,K equal to the restriction of the similitude theta lift of the trivial
representation of GU(K) = K×. From the seesaw diagram in (7.3), ΠMJ,K is
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naturally a module for

GO(L,NL/E)det × GSp(W )det = ((L×)det � 〈τ〉) × GL2(E)det
K

which factors through to the quotient

HC(F ) × GL2(E)det
K = ((L×)det � 〈τ〉)/K× × GL2(E)det

K .

Here we recall that (see Lemma 7.6) that

H0
C(F ) = (L×)det/K× = L1/K1

and
GL2(E)det

K = {g ∈ GL2(E)det : det(g) ∈ NK/F (K×)}.
Thus, we need to understand the theta correspondence for HC(F )×GL2(E)det

K

arising from MJ,K . Indeed, if we let ΘMK denote this theta correspondence,
then for any ρ ∈ Irr(HC(F )),

ΘM (ρ) = IndGL2(E)det

GL2(E)det
K

ΘMK (ρ).

We have thus explained the reduction of the determination of the mini-theta
correspondence to the similitude theta correspondence for

GO(L,NL/E) × GSp(W )+

together with the understanding of the restriction of the theta lifts to the
subgroup GSp(W )det. With our knowledge of the theta correspondence for
GO2 × GL+

2 , this interpretation immediately gives us the following:

Lemma 10.2. (i) For any ρ 
= ε (the sign character of HC(F )), ΘM (ρ) is
nonzero, whereas ΘM (ε) = 0.

(ii) For an irreducible representation ρ(χ) of HC(F ),where χ is a char-
acter of H0

C(F ) = (L×)det/K×, ΘM (ρ(χ)) is noncuspidal if and only if χ|L1

is trivial on all the anisotropic factors of L1 =
∏

i L
1
i .

In the context of (ii) of the Lemma, we note:

• if K = F 2, then H0
C(F ) = E×/F× and there are no anisotropic factors

of L1, so that ΘM (ρ) is noncuspidal (as long as ρ 
= ε).
• if K is a field and E = F × K, then H0

C(F ) ∼= K1 × K×/K1 ∼= K×,
and a character χ trivial on anisotropic factors can be identified with a
character of K×/K1.
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• if K is a field and E 
= F ×K, only ΘM (1) is noncuspidal.

It will turn out that the theta lifts in these cases are contained in the principal
series representations we considered in Proposition 10.1.

The following proposition continues our study of the mini-theta corre-
spondence by refining Lemma 10.2:

Proposition 10.3. For every irreducible unitary representation ρ 
= ε of
HC(F ), ΘM (ρ) is an irreducible nonzero representation of ME, whereas
ΘM (ε) = 0. Moreover, if ΘM (ρ) ∼= ΘM (ρ′) 
= 0, then ρ ∼= ρ′. More precisely:

1. ΘM (1) is an irreducible summand of 1 × ωL/E.
2. Let K = F 2 and χ be a character of H0

C(F ) ∼= E×/F×. Then

χ2 
= 1 =⇒ ΘM (ρ(χ)) ∼= χ× 1,

whereas

χ2 = 1 but χ 
= 1 =⇒ ΘM (ρ(χ)+) ⊕ ΘM (ρ(χ)−) ∼= χ× 1.

3. Let K be a field, E = F ×K and χ a character of H0
C(F ) ∼= K× trivial

on K1. Extend χ to a character χ̃ of F× ×K×, so that it is trivial on
the first factor. Then:

χ2 
= 1 =⇒ ΘM (ρ(χ)) ∼= χ̃× ωL/E ,

whereas

χ2 = 1 but χ 
= 1 =⇒ ΘM (ρ(χ)+) ⊕ ΘM (ρ(χ)−) ∼= χ̃× ωL/E .

4. For all other cases of the triple (E,K, χ) not covered above, ΘM (ρ(χ))
is cuspidal.

Proof. In view of Lemma 10.2, the main issue here is the irreducibility of
ΘM (ρ) for ρ ∈ Irr(HC(F )). We shall illustrate the argument in the case
where K is a field and E = F 3; the other cases are similar and sometimes
easier.

For the case under consideration, we have

AutE(C)0(F ) = (K× ×K× ×K×)det/K× � 〈σ〉,

where the superscript det refers to the subgroup of elements (x, y, z) with
NK/F (x) = NK/F (y) = NK/F (z). Ignoring the element σ for the moment, we
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are thus considering a triple similitude theta correspondence for GSOK
2 (F )×

GL2(F )K . We record the following known results concerning this similitude
theta correspondence:

(a) If χ is a unitary character of GSOK
2 (F ) = K× such that χ|K1 is not

quadratic, or equivalently χσ/χ does not factor through NK/F ), then

θ(χ) ∼= θ(χσ) ∈ Irr(GL2(E)det)

is supercuspidal. Indeed,

θ̃(χ) := IndGL2(F )
GL2(F )Kθ(χ)

is an irreducible supercuspidal representation which is dihedral with
respect to K/F and no other quadratic fields, so that θ(χ) remains
irreducible when restricted to SL2(F ).

(b) if χ|K1 is quadratic but nontrivial, or equivalently χσ/χ is nontrivial but
factors through NK/F , then θ(χ) = θ(χσ) is an irreducible supercuspidal
representation of GL2(E)det. Indeed,

θ̃(χ) := IndGL2(F )
GL2(F )Kθ(χ)

is an irreducible supercuspidal representation which is dihedral with
respect to K/F and two other quadratic fields. Hence, θ(χ) decom-
poses as the sum of two irreducible supercuspidal representations when
restricted to SL2(F ):

θ(χ)|SL2 = θ(χ|+K1) ⊕ θ(χ|−K1),

where the two summands are the theta lifts (to SL2(F )) of the two ex-
tensions of χ|K1 to OK

2 (F ). Indeed, if we consider the index 2 subgroup

GL2(F )χK = {g ∈ GL2(F )K : det(g) = NK/F (z), χ(z/σ(z)) = 1},

then each of the two summands θ(χ|±K1) is an irreducible GL2(F )χK-
module.

(c) If χ|K1 = 1, or equivalently χ = χσ, then χ = μ ◦ NK/F for some μ
(well-determined up to multiplication by ωK/F ) and θ(χ) is one of the
two irreducible summands of the restriction of μ×μ ·ωK/F to GL2(F )K .
Moreover, these two summands remain irreducible when restricted to
SL2(F ).

(d) θ(χ) ∼= θ(χ′) if and only if χ′ = χ or χσ.
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Now we are ready to analyze the triple similitude theta correspondence.
Let χ = (χ1, χ2, χ3) be a character of (K×)3 such that χ1 · χ2 · χ3 = 1. We
need to study the reduciblity of

θ(χ1, χ2, χ3) := θ(χ1) ⊗ θ(χ2) ⊗ θ(χ3)

when restricted to GL2(E)det
K . We shall consider several cases in turn:

(i) If χi|K1 is not quadratic nontrivial for all i, then by (a) and (c) above,
θ(χi) remains irreducible when restricted to SL2(F ). Hence θ(χ1, χ2, χ3)
is irreducible when restricted to GL2(E)det

K .
(ii) Assume now that exactly one of the χi|K1 is quadratic nontrivial. With-

out loss of generality, suppose that χ3|K1 is quadratic nontrivial but the
other two restrictions are not. Then θK(χ1) and θK(χ2) are irreducible
as SL2(F )-representations, while θK(χ3) is irreducible as GL2(F )K-
representation. It follows readily that θ(χ1, χ2, χ3) irreducible as an
GL2(E)K-representation.

(iii) Assume next that exactly two of the χi|K1 is quadratic nontrivial. With-
out loss of generality, we may suppose

χ1|K1 = χ2|K1 = μ and χ3|K1 = 1

for some quadratic character μ of K1. In this case, by (b) above, we
have

θ(χ1)|SL2 = θ(χ2)|SL2 = θ(μ+) ⊕ θ(μ−)

as SL2(F )-modules. Now it is easy to check that

[θ(μ+) ⊗ θ(μ+) ⊕ θ(μ−) ⊗ θ(μ−)] ⊗ θ(1)

and
[θ(μ+) ⊗ θ(μ−) ⊕ θ(μ−) ⊗ θ(μ+)] ⊗ θ(1)

are irreducible representations of GL2(E)K . In particular, θ(χ1, χ2, χ3)
is the sum of two irreducible representations as GL2(E)det

K -modules.
(iv) Finally, we consider the case when μi := χi|K1 is quadratic nontrivial

for all i; this case can only occur when the residue characteristic of F
is 2. In this case,

θ(χ1, χ2, χ3) = [θ(μ+
1 ) ⊕ θ(μ−

1 )] ⊗ [θ(μ+
2 ) ⊕ θ(μ−

2 )] ⊗ [θ(μ+
3 ) ⊕ θ(μ−

3 )]
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as SL2(F )3-modules. The key observation here is that each GL2(F )χi

K

acts irreducibly on θ(χj) = θ(μ+
j ) ⊕ θ(μ−

j ) if i 
= j, and preserves each
summand if i = j. Now it is easy to check that for every ε = ±1,

⊕ε1ε2ε3=εθ(με1
1 ) ⊗ θ(με2

2 ) ⊗ θ(με3
3 ).

is an irreducible representation of GL2(F 3)K . In particular, θ(χ1, χ2, χ3)
decomposes as the sum of two irreducible GL2(E)det

K -modules.

With the above results, we can now complete the proof of the proposition
when E = F 3 and K is a field. Note that we are only concerned with the
restriction of χ1 × χ2 × χ3 to the subgroup:

H0
C(F ) = ((K×)3)det/ΔK× = (K1)3/ΔK1.

So for example, we have:

• χ1 × χ2 × χ3 restricts to the trivial character if and only if χi|K1 = 1
for each i.

• The restriction χ of χ1 × χ2 × χ3 is a nontrivial quadratic character if
and only if χi|K1 is quadratic for all i and is nontrivial for some i.

In particular, we see that the latter case corresponds precisely to the cases (iii)
and (iv) analyzed above. In this case, there are thus two extensions χ± of χ
to HC(F ) and (in view of Lemma 10.2) ΘMK (χ±) are both nonzero and hence
are precisely the two irreducible summands of θ(χ1, χ2, χ3)|GL2(E)K described
in (iii) and (iv) above.

Finally, from the properties of the similitude theta correspondence, we
deduce that

χ′ = χ±1 on (K1)3 ⇐⇒ θ(χ) = θ(χ′) on GL2(E)det
K .

This concludes the proof of the proposition, at least in the case when E = F 3

and K is a field.

10.4. Whittaker models

For a fixed C, with associated Springer decomposition J = E ⊕ C, we have
obtained a subset

IrrC(ME(F )) := {ΘM,C(ρ) ∈ Irr(ME(F )) : ε 
= ρ ∈ Irrunit(HC(F ))}
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of Irr(ME(F )). Moreover, the representations in IrrC(ME(F )) are infinite-
dimensional and hence generic. In this subsection, we investigate the Whit-
taker models supported by the representations in IrrC(ME(F )). This serves to
complete our analysis of the mini-theta correspondence by specifying precisely
the irreducible representations ΘM,C(ρ).

We had briefly alluded to the Whittaker support of ΠM as an GL2(E)det-
module in §8.6 and §8.8, but let us be more precise here. Fix a nontrivial
additive character ψ of F . Then a generic character for the unipotent radical
of the upper triangular Borel subgroup BE of ME(F ) = GL2(E)det is of the
form

u(b) �→ ψ(TrE/F (ab)) for some a ∈ E×.
We denote this generic character by ψa. Two such generic characters ψa

and ψa′ are equivalent if they are conjugate by the action of the diagonal
torus and we call an equivalence class a Whittaker datum for ME(F ). A
short computation shows that the set of Whittaker data is parametrized
by E×/F×E×2 = H1(F,ZE). Hence we have yet another interpretation of
H1(F,ZE):

H1(F,ZE) {Whittaker datum for GL2(E)det}∥∥∥ ∥∥∥
Gad

E (F )/Im(G(E)) {rank 1 E-twisted composition algebras}

We are interested in computing the twisted Jacquet module

(ΠMJ )UE ,ψa as a HC(F )-module,

For this purpose, we shall make use of the Schrodinger model of ΠMJ intro-
duced in §8.8 and the results of §4.9. To formulate the result, let us recall
from Lemma 4.15 the HC(F )-set

Xa,C(F ) = {x ∈ C : Q(x) = a# and β(x) = ax}

which is in bijection with the set of embeddings Ca ↪→ C, where Ca is a
rank 1 E-twisted composition algebra defined in §4.2. Moreover, if Xa,C(F )
is nonempty, then it is a principal homogeneous space for H0

C(F ), so that the
stabilizer in HC(F ) of any point in Xa,C(F ) has order 2. Now we have:

Lemma 10.4. Fix an E-twisted composition algebra C of rank 2, with asso-
ciated Springer decomposition J = E ⊕ C. For each a ∈ E×, one has

(ΠMJ )UE ,ψa 
= 0 ⇐⇒ Xa,C(F ) 
= ∅,
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in which case
(ΠMJ )UE ,ψa

∼= IndHC(F )
HC,xa (F )1

where xa ∈ Xa,C(F ) and HC,xa(F ) ∼= Z/2Z is the stabilizer of xa in HC(F ).

Proof. From the Schrödinger model of ΠMJ discussed in §8.8 and the results
of Lemma 4.15, we see that

(ΠMJ )UE ,ψa = C∞
c (Jrk=1)UE ,ψa = C∞

c (Xa,C(F )),

as HC(F )-module. Since Xa,C(F ) = HC(F ) · xa ∼= HC(F )/HC,xa(F ), the
result follows.

Recall the map

f : H1(F,ZE) = E×/F×E×2 −→ H1(F, TE,KC )[2].

For each [C] ∈ H1(F, TE,KC )[2], we have

f−1([C]) = {a ∈ E× : Xa,C(F ) 
= ∅}.

Then the above lemma gives the following corollary:

Corollary 10.5. For any ρ = ρ(χ) ∈ Irr(HC(F )), ΘM,C(ρ)UE ,ψa = 0 if
f(a) 
= [C]. On the other hand, if f(a) = [C], then we have:

• If χ2 
= 1, dim Θ(ρ(χ))UE ,ψa = 1.
• If χ2 = 1, so that χ has two extensions χ̃ to HC(F ), then

dim ΘM,C(χ̃)UE ,ψa =
{

1 if χ̃(gC(a)) = 1;
0, if χ̃(gC(a)) = −1.

where gC(a) is the nontrivial element in HC,xa(F ) for some xa ∈ Xa,C(F )
(see Lemma 4.18).

10.5. As C varies

In this final subsection, we allow [C] to vary over H1(F, TE,KC )[2]. Then by
Lemma 4.16, we have a disjoint union

E×/F×E×2 =
⊔
[C]

f−1([C])

where each f−1([C]) is nonempty and is a TE,KC (F )/TE,KC (F )2-torsor. We
deduce:
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Corollary 10.6. The union⋃
[C]∈H1(F,TE,KC

)[2]
IrrC(ME(F )) ⊂ Irr(ME(F ))

is disjoint, since the representations in different subsets have different Whit-
taker support.

We can in fact refine this corollary. A character χ of TE,KC (F ) or T̃E,KJ (F )
gives rise to a character χC of each H0

C(F ). We then consider the ME(F )-
module

ΠME [χ] :=
⊕

[C]∈H1(F,TE,KC
)[2]

ΘM,C(ρ(χC))

with
ρ(χC) = IndHC(F )

H0
C(F )χC .

Then we have:

Corollary 10.7. For each a ∈ E×,

dim ΠME [χ]UE ,ψa = 1.

In particular, ⊕
[C]∈H1(F,TE,KC

)[2]
ΘM,C(1) = 1 ⊗ ωL/E .

Indeed, one can show in general that ΠME [χ] is the restriction to ME(F ) =
GL2(E)det of an irreducible generic representation of GL2(E). Together with
our knowledge of the Whittaker support of the mini-theta lifts. this has the
following nice consequence. If Mad

E denotes the Levi subgroup of the Heisen-
berg parabolic subgroup in the adjoint quotient Gad

E , recall that

Mad
E (F )/Im(ME(F )) ∼= Gad

E (F )/Im(GE(F )) = H1(F,ZE) = E×/F×E×2.

Hence, H1(F,ZE) acts naturally on Irr(ME(F )) and also on H1(F, TE,KC )[2]
(via the projection H1(F,ZE) � H1(F, TE,KC )). For an element α ∈ H1(F,ZE)
and a character χ of TE,KC (F ), we then have

ΘM,C(ρ(χC))α ∼= ΘM,Cα(ρ(χCα)),

where the superscript α denotes the two actions of α on the relevant objects
mentioned above.
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11. Langlands quotients of D4

The purpose of this section is to write down some representations of GE that
will appear in the theta lifting from HC = AutE(C) in terms of their Lang-
lands data, and to give explicit realizations of these representations in some
cases. It thus provides the language needed to express the answer for the
theta correspondence treated in the next section. In fact, in Appendix B be-
low, we consider the decomposition of unramified degenerate principal series
representations of GE and introduce notations for many irreducible repre-
sentations with nonzero Iwahori-fixed vectors, constructed via Hecke algebra
considerations. These representations will also appear in this section and the
next one.

11.1. Langlands quotient from PE

As previously, let PE = MENE be the Heisenberg maximal parabolic sub-
group. The modular character ρNE of ME is

ρNE = | det |5.

Let π be a tempered representation of ME . Using the normalized parabolic
induction, we induce π ⊗ | det |s from PE to GE , giving a standard module
if s > 0. Let J2(π, s) be the corresponding Langlands quotient when s > 0.
The representation J2(π, s) is also the unique submodule of the representation
obtained by inducing π ⊗ | det |s from the opposite parabolic P̄E = MEN̄E .
This point of view is more useful to us.

11.2. Langlands quotient from QE

We shall also need some Langlands quotients attached to the 3-step parabolic
subgroup QE = LEUE corresponding to the middle vertex of the Dynkin
diagram. Then

LE
∼= (GL2(F ) × E×)det = {(g, e) | det(g) = NE/F (e)}.

Let NE/F also denote the character of LE obtained by projecting LE to E×

followed by the norm on E. The modular character ρUE of LE is

ρUE = |NE/F |3.

For a tempered irreducible representation π of LE , consider the normalized
parabolic induction of π⊗|NE/F |s from QE to GE . If s > 0, this is a standard
module and we let J1(π, s) be the corresponding Langlands quotient.
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We shall need this parabolically induced representation when π is one of
the following representations:

• π = StE is the Steinberg representation of LE obtained by projecting
LE to GL2(F ) and pulling back the Steinberg representation of GL2(F ).

• If E = F × K, then we define a character of E× equal to χK on the
first factor F× and trivial on the second factor K×. We can pull this
character back to LE , and abusing notation, denote it by χK . Note that
χK is of course a nontempered representation of LE .

11.3. Degenerate principal series

We shall also need the structure and constituents of various unramfied de-
generate principal series representations induced from maximal parabolic sub-
groups. The necessary results are provided in Appendix B below. We provide
here a roadmap for where the various results are located there:

• when E is a field, the only maximal parabolic subgroups are PE and
QE . The degenerate principal series associated to PE is denoted by

I(s) = IndGE
PE

| det |s (normalized induction).

The points of reducibility and the module structure at those points
are given in Theorem B.1. On the other hand, the degenerate principal
series associated to QE is denoted by

J(s) = IndGE
QE

|NE/F |s (normalized induction).

Its reducibility points and module structure is described in Theorem B.2.
• when E = F ×K where K is a field, there are 3 families of degenerate

principal series: B(s) (associated with the B2-maximal parabolic), A(s)
(associated to the A2-maximal parabolic) and I(s) (associated to the
Heisenberg parabolic, which is the A1 × A1-parabolic). The points of
reducibility for these are given in Theorem B.3, Proposition B.4 and
Proposition B.5 respectively.

• when E = F 3 is split, the degenerate principal series has been stud-
ied to some extent in the literature, such as [BJ] and [We1]. We only
need the results concerning I(s) (associated to Heisenberg parabolic)
summarized in Proposition B.6.

11.4. A2-parabolic

We shall need an explicit description of the quotients J2(π, s) in certain cases.
Assume now that E = F 3. When writing Mder

E = SL2 × SL2 × SL2, we shall
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assume that the three SL2 correspond, respectively, to simple roots α1, α2 and
α3. Let π(χ) (or π(χ)±) be a representation (or two) of ME corresponding to
χ = (χ1, χ2, χ3), a character of E×, as §10.2. In particular, χ1 · χ2 · χ3 = 1.
We shall assume that χ is unitary, so that π(χ) is tempered. Consider the
parabolic subgroup in standard position corresponding to the A2 diagram,
containing the vertex corresponding to α1. The character χ defines a unitary
character μχ (temporary notation) of the Levi subgroup given by

μχ(α∨
2 (t)) = χ3(t) and μχ(α∨

3 (t)) = χ2(t).

Let D(χ) be the unitary representation of GE obtained by inducing (unitary
induction) the character μχ. Since D(χ) is unitary, it is completely reducible.
We now consider three cases:

• Suppose that χ2 
= 1. By working out exponents (there are 32 of these),
one sees that D(χ) has a unique irreducible subrepresentation and hence
is irreducible. Using exponents again, one may determine the Langlands
parameter of D(χ). It turns out that

D(χ) ∼= J2(π(χ), 1).

• Suppose that χ2 = 1 but χ 
= 1. Then D(χ) has two irreducible sum-
mands:

D(χ) = J2(π(χ)+, 1) ⊕ J2(π(χ)−, 1).

• Suppose that χ = 1. Then D(1) has two irreducible summands. The
unique spherical summand is isomorphic to J2(π(1), 1). The exponents
of the non-spherical summand can be determined. Indeed, the spherical
summand of D(1) is also the quotient of I(1/2), and the exponents of
this quotient are known by Prop B.6. Then, using the exponents, one can
determine the Langlands parameter of the non-spherical summand. It
turns out that the non-spherical summand is isomorphic to J1(StE , 1/2).
Hence

D(1) = J2(π(1), 1) ⊕ J1(StE , 1/2).

Remark. Despite the fact that D(χ) is defined by an arbitrary choice of
the A2 parabolic, the Langlands parameter of D(χ) is independent of this
choice. Hence the isomorphism class of D(χ) is, remarkably, independent of
the choice, i.e. the isomorphism class of D(χ) is invariant by the triality
automorphism.
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We need a similar discussion in the case E = F ×K. Let χ = (χF , χK)
be a character of E× trivial on the diagonally embedded F×. Consider the
(unique) parabolic subgroup in standard position corresponding to the A2
diagram. Now χ defines a character μχ of the Levi subgroup given by

μχ(α∨
2 (t)) = χK(t) for all t ∈ K×.

Let D(χ) be the unitary representation of GE obtained by parabolically in-
ducing the character μχ (unitary induction). The structure of D(χ) is similar
to that in the split case discussed above. The only difference is that the non-
spherical summand of D(1) is the representation V ′

1 (introduced in §B.5.1
and §B.5.3 of Appendix B below) with a one-dimensional space of Iwahori-
fixed vectors. It is a Langlands quotient of a standard module induced from
B2-parabolic.

We summarize both cases in the following proposition.

Proposition 11.1. Assume that E is not a field. Let χ be a unitary character
of E× trivial on F× and consider the representation D(χ) induced from a
parabolic subgroup of type A2 as defined above. Then

1. If χ2 
= 1, then D(χ) ∼= J2(π(χ), 1).
2. If χ2 = 1 but χ 
= 1, then D(χ) ∼= J2(π(χ)+, 1) ⊕ J2(π(χ)−, 1).
3. If E = F 3, then D(1) ∼= J2(π(1), 1) ⊕ J1(StE , 1/2).
4. If E = F ×K, then D(1) ∼= J2(π(1), 1)⊕ V ′

1 (where V ′
1 is introduced in

§B.5.1 and §B.5.3).

As we see from the above proposition, we shall need to refer to representa-
tions of GE(F ) which are constructed in Appendix B below, where we study
the decomposition of unramified degenerate principal series representations
of GE . Some of these representations will appear in the theta lifting from HC

which we shall consider next.

12. Theta correspondence for E6

In this section, we will study the theta correspondence for HC ×GE ⊂ GJ =
Aut(J), where J = E ⊕ C is a Freudenthal Jordan algebra of dimension 9.
The main goal is the following theorem, whose proof will occupy the rest of
this section.

Theorem 12.1. For every unitary irreducible representation ρ of HC(F ),
Θ(ρ) is non-zero and irreducible. If Θ(ρ) ∼= Θ(ρ′), for two irreducible repre-
sentations ρ and ρ′ of HC(F ), then ρ ∼= ρ′. More precisely:
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1. If J = D (a cubic division algebra), so that E is a field, then Θ(1) =
V ′

1 = J1(StE , 1/2) (see §B.2.1 and §B.2.4 for the definition of V ′
1 , as

well as Theorem B.1) and Θ(ρ) is supercuspidal for all ρ 
= 1.
2. If J 
= D and ρ 
= ε, then Θ(ρ) = J2(ΘM (ρ), 1/2).
3. If J 
= D and H0

C is anisotropic, then Θ(ε) is supercuspidal. Otherwise:
• If E = F 3 and J = M3(F ), then Θ(ε) = J1(StE , 1/2).
• If E = F × K and J = M3(F ), then Θ(ε) = V ′

1 (see §B.5.1 and
§B.5.3 for the definition of V ′

1).
• If E = F ×K and J = J3(K), then Θ(ε) = J1(StE ⊗ χK , 1/2).

12.1. E-twisted cubes

Recall from §5 that if PE = MENE is the Heisenberg parabolic subgroup of
GE , then the representation of ME = GL2(E)det on

NE/ZE = F ⊕ E ⊕ E ⊕ F

is the space of E-twisted Bhargava cubes. As we summarized in Propo-
sition 5.1, the ME-orbits of nondegenerate cubes are parametrized by E-
isomorphism classes of E-twisted composition algebra of dimension 2 over E.
Indeed, for any nondegenerate cube Σ, one attaches a twisted composition al-
gebra structure (QΣ, βΣ) on CΣ = E2, so that there is a natural isomorphism

(12.2) StabME (Σ) ∼= AutE(CΣ) given by g �→ tg−1.

If we fix a nontrivial additive character ψ of F , then the natural pairing
between NE/ZE and N̄E/Z̄E allows us to identify the unitary characters of
N̄E with elements of NE/ZE . In particular, an E-twisted cube Σ determines
a corresponding character ψΣ of N̄E .

12.2. Twisted Jacquet module

Let Π = ΠJ be the minimal representation of GJ . We have computed the
Jacquet module ΠN̄E

in §9. In this subsection, we determine the twisted
Jacquet module ΠN̄E ,ψΣ

for the character ψΣ of N̄E attached to a nondegen-
erate E-twisted cube Σ. Note that ΠN̄E ,ψΣ

is naturally a representation of
StabME (ψΣ) × AutE(C), and thus of AutE(C) × AutE(C) in view of (12.2).

In §8.2, we have seen that

C∞
c (Ω) ⊂ ΠZ̄E

⊂ C∞(Ω)
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where Ω is the minimal MJ -orbit on NJ/ZE , which can be identified with a
set of unitary characters of N̄J . It follows from the description of ΠZ̄E

given
in (8.2) that

ΠN̄E ,ψΣ
∼= C∞

c (ΩΣ)
where ΩΣ is the set of elements ω ∈ Ω such that ψω restricted to NE is ψΣ.
Based on our description of Ω in §8.3, the following proposition determines
the set ΩΣ concretely.

Proposition 12.3. Let J = E⊕C be a Freudenthal Jordan algebra of dimen-
sion 9. Let Σ be a nondegenerate E-twisted cube. Then ΠN̄E ,ψΣ

= 0 unless Σ
belongs to the ME-orbit corresponding to C (i.e. CΣ ∼= C). If CΣ ∼= C, then

ΠN̄E ,ψΣ
∼= μK ⊗ C∞

c (Isom(CΣ, C))

where

– μK is the restriction of χJ to StabME (Σ); in particular, μK is either triv-
ial or the sign character of StabME (Σ) ∼= HC(F ) depending on whether
ωK/F (−1) = +1 or −1;

– the action of StabME (Σ)×AutE(C) on C∞
c (Isom(CΣ, C)) is the regular

representation (via (12.2)).

Proof. Since every nondegenerate ME-orbit contains reduced cubes, we may
assume without loss of generality that Σ is reduced, i.e.

Σ = (1, 0, f, b),

The associated twisted composition algebra CΣ is then described in Proposi-
tion 5.2.

Now the projection map

NJ/ZJ = F ⊕ J ⊕ J ⊕ F −→ NE/ZE = F ⊕ E ⊕ E ⊕ F

induced by the restriction of characters is given by

(a, x, y, d) �→ (a,−ex, ey,−d)

where we have written

x = (ex, cx) and y = (ey, cy) ∈ E ⊕ C = J.

Hence, if ω = (a, x, y, d) ∈ ΩΣ, so that ψω restricts to ψΣ, then a = 1, so that

ω = (1, x, x#, NJ(x)) (by Proposition 8.1).
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Writing x = (e, v) ∈ E ⊕ C = J and noting that (0, v)# = (−Q(v), β(v)), we
then deduce that

e = 0 and Q(v) = −f.

Finally, since NJ(x) = NC(v), we also have

NC(v) = −b.

Hence, we have a natural StabME (Σ) × AutE(C)-equivariant identification

ΩΣ = {(v, β(v)) ∈ C2 : Q(v) = −f and NC(v) = −b} ⊂ C2 = E2 ⊗E C,

where the action of AutE(C) is componentwise, whereas that of StabME (Σ) ⊂
GL2(E)det is via the standard representation on E2. Thus, the StabME (Σ) ×
AutE(C)-set ΩΣ is nothing but the StabME (Σ) × AutE(C)-set ΩC,f,b studied
in Corollary 5.3 and Lemma 5.4. We thus deduce that ΩΣ = ∅, unless C
is isomorphic to CΣ, in which case ΩΣ is identified with Isom(CΣ, C) and
ΠN̄E ,ψΣ

= C∞
c (Isom(CΣ, C)) is the regular representation of StabME (Σ) ×

AutE(C) twisted by the quadratic character μK .

If we fix a base point φ0 ∈ Isom(CΣ, C), we get an isomorphism

StabME (Σ) ∼= AutE(C)

and with respect to this, ΠN̄E ,ψΣ
is the regular representation of AutE(C) ×

AutE(C). We assume that this isomorphism has been fixed henceforth. We
remark also that the quadratic character μK is trivial when K is not a field.
In any case, this extra twist will be quite innocuous for our purpose.

For later use, we shall now compute the twisted co-invariants for some
degenerate cubes in the case when AutE(C) is anisotropic. Consider

Σ = (1, 0, f, 0) with f# = 0.

We have:

• If f = 0, this cube belongs to the minimal GE-orbit (A1).
• If f 
= 0 and f# = 0, then E is not a field. We consider the two cases:

– If E = F + K with K a field, then f = (a, 0) and Σ belongs to a
GE-orbit denoted by 2A1.

– If E = F 3 then f = (a, 0, 0), (0, a, 0) or (0, 0, a), reflecting the fact
that GE has three orbits of type 2A1 over the algebraic closure,
permuted by the outer automorphism group S3.

The rational orbits of these types are parameterized by classes of squares,
and Σ belongs to the class of a.
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Proposition 12.4. Let J = E ⊕ C be a Freudenthal Jordan algebra of di-
mension 9. Assume that AutE(C) is anisotropic. Let Σ = (1, 0, f, 0) be an
E-twisted cube such that f# = 0. Then

(i) ΠN̄E ,ψΣ
∼= C∞

c (ΩΣ), with

ΩΣ = {v ∈ C | Q(v) = −f and bQ(v, β(v)) = 0}.

(ii) If f = 0, then ΩΣ = {0}.
(iii) If f 
= 0, then ΩΣ is compact (possibly empty) and AutE(C)0 acts

transitively on it.

Proof. The assertion (i) is clear. For (ii), since AutE(C) is anisotropic, Propo-
sition 9.1 implies that ΩΣ = 0 if f = 0.

The assertion (iii) can be checked by an explicit computation. There are
two cases to consider, depending on whether E = F 3 or E = F ×K with K
a field. We examine the case E = F 3 as an illustration.

When E = F 3, we have C = K3 for a quadratic field extension K of F .
Moreover, Q and β are of the form

Q(x, y, z) = (NK/F (x), NK/F (y), NK/F (z)) (up to an element in (F 3)×)

and β(x, y, z) = (yz, zx, xy). Then

AutE(C)0 = {(x, y, z) ∈ (K×)3 |NK/F (x) = NK/F (y) = NK/F (z) = xyz = 1}.

If f = (a, 0, 0) ∈ F 3, then ΩΣ = {(x, 0, 0) ∈ C | NK/F (x) = a}, which is
a principal homogeneous variety for the group of norm one elements in K×

(possibly with no F -rational points).

12.3. Nonvanishing and injectivity of theta lifts

Using the above results, we can now begin our determination of the theta
liftings from AutE(C) to GE .

Proposition 12.5. Fix an embedding E → J , so J = E ⊕ C. Let ρ be an
irreducible representation of AutE(C). Then

(i) Θ(ρ) 
= 0.
(ii) If ρ′ is another irreducible representation of AutE(C), then

Θ(ρ) ∼= Θ(ρ′) ⇐⇒ ρ′ ∼= ρ.
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Proof. Proposition 12.3 shows that as a module for StabME (Σ),

(12.6) Θ(ρ)N̄E ,ψΣ
=
{

0, if CΣ � C;
ρ∨ · μK , if CΣ ∼= C,

Thus Θ(ρ) 
= 0 and the second statement also follows.

12.4. Langlands parameters of theta lifts

We shall construct an explicit subquotient of Θ(ρ), for ρ = 1 if J = D and
all unitary ρ 
= ε if J 
= D, using the mini theta correspondence. Recall that
we have an exact sequence

0 → C∞
c (Ω⊥) → ΠN̄E

→ ΠN̄J
→ 0.

Furthermore, ΠN̄J
, as ME × AutE(C)-module decomposes as

(12.7) ΠN̄J
= | det |−2 ⊗ ωK/F ⊕ | det |− 3

2 ⊗ ΠMJ

where ωK/F is the quadratic character corresponding to K = KJ , viewed as a
character of ME by precomposing det, and ΠMJ is the minimal representation
of MJ that has been described in §8.4. The summand ΠMJ appears if and
only if J 
= D. The action of AutC(E) on the one-dimensional summand is
trivial.

Assume first that E is a field and J = D, which is the easiest case. Then

ΠN̄E
= ΠN̄J

= | det |−2

so Θ(ρ)N̄E
= 0 for all ρ 
= 1. We shall see later in §12.8 that this vanish-

ing implies the cuspidality of Θ(ρ); for now, we shall deal with Θ(1). By
Frobenius reciprocity, we have a map from Θ(1) into the degenerate princi-
pal series representation I(−1/2) (see §B.3.1) induced from the Heisenberg
parabolic subgroup. The image of this map must be V ′

1 = J1(StE , 1/2) since
(V ′

1)N̄E
= | det |−2 (and the other irreducible constituents of I(−1/2) have

2- or 3-dimensional space of N̄E-coinvariants, by Theorem B.1). Thus, Θ(1)
contains V ′

1 as an irreducible quotient and we shall see later that it is in fact
irreducible.

Now assume J 
= D. We have seen in (12.7) that there is an ME ×
AutE(C)-equivariant surjection

ΠN̄E
−→ | det |−3/2 · ΠMJ
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where ΠMJ is the minimal representation of MJ . We have also described in
Proposition 10.3 the theta correspondence for the pair ME ×AutE(C) acting
on ΠMJ . For any ρ ∈ Irr(AutE(C)) with ρ 
= ε, its theta lift ΘM (ρ) on ME

is nonzero irreducible. Hence by Frobenius reciprocity, we obtain a nonzero
equivariant map

Θ(ρ) −→ IndGE

P̄E
| det | ⊗ ΘM (ρ) (normalized induction),

with ΘM (ρ) as described in Proposition 10.3. Now the induced representation
is essentially the dual of a standard module and hence contains a unique
irreducible submodule τ , which is the Langlands quotient J2(ΘM (ρ), 1). This
Langlands quotient τ is thus an irreducible subquotient of Θ(ρ) when ρ 
= ε.

12.5. Irreducibility of Θ(ρ) I

We shall now complete the correspondence in the case when AutE(C)0 is
isotropic. In this case, there exists a non-trivial co-character λ : F× →
AutE(C)0. The centralizer of λ in GJ is a Levi subgroup. The restriction
of the minimal representation on any (maximal) Levi subgroup is fairly easy
to compute. Indeed, this is a standard technique in the theory of exceptional
theta correspondences. With that in hand, Θ(χ) is easy to compute for every
unitary character χ of AutE(C)0.

We shall execute this strategy in detail in the split case, where E = F 3

and J = M3(F ), so that GJ is a split group and GE is the derived group of
the D4-parabolic in E6. Then AutE(C)0 ∼= (F 3)×/ΔF× and we can fix this
isomorphism as follows. By extending the E6 diagram, we see that D4 sits
in three Levi subgroups G1, G2 and G3 in E6 of type D5. Let λi : F× → Gi

be the co-character generating the center of Gi. (These co-characters are
miniscule co-weights.) They are each unique up to inverse, but we can pick
them so that λ1(t)λ2(t)λ3(t) = 1 for every t ∈ F×. Now the map (t1, t2, t3) →
λ1(t1)λ2(t2)λ3(t3) gives the claimed isomorphism.

The restriction of the minimal representation Π to a D5 maximal parabolic
has been determined in [MS]. In particular, the restriction to G1 is given by
an exact sequence

0 → C∞
c (ω) → Π → Π1 ⊕ C → 0

where ω is the highest weight orbit in a 16-dimensional Spin module for G1,
the action of G1 is geometric, and Π1 is the minimal representation of G1,
twisted by an unramified character. More precisely, the action of λ1(t) on Π1
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and C is given by |t|s and |t|r for two non-zero real numbers. In particular,
since these characters are not unitary, the two terms will not contribute to
Θ(χ) for χ unitary. Thus we can concentrate on C∞

c (ω).
The group GE has three irreducible 8-dimensional representations V1, V2

and V3. We pick this numbering so that the restriction of the 16-dimensional
Spin module for G1 containing ω decomposes as V2 ⊕ V3. Let ωi ⊂ Vi be the
GE-orbit of highest weight vectors. Then it is a simple exercise, using the
Bruhat decomposition for G1, to see that ω decomposes into three GE-orbits:

• an open GE-orbit ω0 ⊂ ω, such that the stabilizer of a point in ω0 is
the derived group of an A2 parabolic subgroup,

• ω2 ⊂ V2 and
• ω3 ⊂ V3.

Thus we have an exact sequence of GE-modules:

0 → C∞
c (ω0) → C∞

c (ω) → C∞
c (ω2) ⊕ C∞

c (ω3) → 0.

Of course, by the S3-symmetry of the situation, C∞
c (ω1) must also contribute

in the restriction of Π. Indeed, it is contained in Π1, where λ1(t) acts by the
non-unitary character |t|s. Hence λi(t) acts on C∞

c (ωi) by the same character,
and these terms will not contribute to Θ(χ) if χ is unitary. In particular, we
have shown that for χ unitary, Θ(χ) arises from C∞

c (ω0), whence it is clear
that Θ(χ) = D(χ).

It is now easy to finish the argument. For example, for two characters 1
and ε of AutE(C), we have just proved that

D(1) = Θ(1) ⊕ Θ(ε).

On the other hand, recall from Proposition 11.1(3), that

D(1) = J1(StE , 1/2) ⊕ J2(π(1), 1).

Since Θ(1) ⊇ J2(π(1), 1) and Θ(ε) 
= 0, it follows that Θ(1) ∼= J2(π(1), 1) and
Θ(ε) ∼= J1(StE , 1/2)).

12.6. Subregular nilpotent orbit

Assume now that AutE(C) is anisotropic. We shall prove the irreducibility
of the theta lift Θ(ρ) by studying its restriction to NE in detail. However, in
order to make this strategy work, we need to eliminate subregular nilpotent
orbits as leading terms of the wave-front set of Θ(ρ).
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The subregular nilpotent orbit is the Richardson orbit for the 3-step
parabolic subgroup QE = LEUE corresponding to the the middle vertex of
the Dynkin diagram for D4, with [LE , LE ] = SL2(F ). Recall from (6.5) that
there is a parabolic subgroup QJ = LJUJ of GJ whose intersection with GE

is QE . The unipotent radical of its Lie algebra has a decomposition

uJ = gJ(1) ⊕ gJ(2) ⊕ gJ(3)

with

gJ(1) = Fe1 ⊗ J ⊕ Fe2 ⊗ J ∼= J2,

gJ(2) = Fe∗3 ⊗ J ∼= J

gJ(3) = Fe13 ⊕ Fe23 ∼= F 2

in the notation of (6.5). The unipotent radical UJ of QJ has a filtration

UJ = U1 ⊃ U2 ⊃ U3 such that Ui/Ui+1 ∼= gJ(i) for all i.

Hence, the minimal representation Π has a filtration

Π ⊃ Π1 ⊃ Π2 . . . such that Π/Πi = ΠŪi
.

In particular, each quotient Πi/Πi+1 is naturally a Ūi/Ūi+1-module. The group
Ūi/Ūi+1 is abelian and its characters are parameterized by gJ(i). The char-
acters of Ūi/Ūi+1 that appear as quotients of Πi/Πi+1 are in Ωmin(F )∩ gJ(i)
where Ωmin is the minimal orbit in gJ .

The embedding E ⊂ J gives rise to GE ⊂ GJ such that QJ ∩ GE =
QE = LE · UE . In particular, we have an analogue of the above sequence of
inclusions

gE(1) = Fe1 ⊗ E ⊕ Fe2 ⊗ E ∼= E2,

gE(2) = Fe∗3 ⊗ E ∼= E

gE(3) = Fe13 ⊕ Fe23 ∼= F 2.

Thus a character of ŪE is specified by a pair (a, b) ∈ E2 ∼= gE(1). We say
that the character is non degenerate if a and b are linearly independent over
F . We now have:

Lemma 12.8. Let J = E⊕C be a 9-dimensional Freudenthal Jordan algebra
such that AutE(C) is anisotropic. Let Π be the minimal representation of GJ

and ψ a non-degenerate character of ŪE. Then ΠŪE ,ψ = 0.
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Proof. The first step is to show that Π[ŪE ,ŪE ] = Π[ŪJ ,ŪJ ]. To that end, for
i = 3, 2, we need to show that there are no elements in Ωmin(F ) ∩ gJ(i)
perpendicular to gE(−i). If i = 3 there is nothing to prove, since gE(−3) =
gJ(−3).

If i = 2, then gJ(2) = Fe∗3 ⊗ J ∼= J and elements in Ωmin(F ) ∩ gJ(2)
perpendicular to gE(−2) are given by x ∈ C, x 
= 0, such that x# = 0. But
there are no such elements, since AutE(C) is anisotropic.

As the next step, we need to show that no character of ŪJ in the minimal
orbit restricts to a non-degenerate character of ŪE . A character of ŪJ is spec-
ified by (x, y) ∈ J2 ∼= gJ(1), and the restriction to ŪE is given by projecting
x and y on the first summand in the decomposition J = E ⊕ C. If (x, y) is
in Ωmin(F )∩ gJ(1) then x and y are linearly dependent over F , and hence so
are their E-components. This completes the proof of the lemma.

12.7. Irreduciblity of Θ(ρ) II

We assume that AutE(C) is anisotropic and note the following consequence
of Proposition 12.4:

Lemma 12.9. Let J = E ⊕C be a Freudenthal Jordan algebra of dimension
9. Assume that AutE(C) is anisotropic. Let Σ = (1, 0, f, 0) be an E-twisted
cube such that f# = 0. Then

(i) If f = 0, then

Θ(ρ)N̄E ,ψΣ
∼=
{
C, if ρ = 1;
0, if ρ 
= 1.

(ii) If f 
= 0, then Θ(ρ)N̄E ,ψΣ
is finite-dimensional for any ρ. Moreover,

Θ(ε)N̄E ,ψΣ
= 0.

We can now prove that Θ(ρ) is irreducible. The first step is to show that
Θ(ρ) has its wave-front set supported on the orbit A2, that is, the Richardson
orbit for the parabolic PE . There are three larger families of orbits: the regular
orbit, the subregular orbit and the Richardson orbits for parabolic subgroups
of the type 2A1 and we deal with each in turn:

• The subregular orbits are eliminated by Lemma 12.8.
• We now deal with the regular orbit. Assume that Θ(ρ) is Whittaker

generic, where we are using Whittaker characters of a maximal unipo-
tent subgroup containing N̄E . Observe that there are infinitely many
Whittaker characters which restrict to the character ψΣ0 of N̄E , where
Σ0 = (1, 0, 0, 0). This contradicts Lemma 12.9(i) which shows that
Θ(ρ)N̄E ,ψΣ

is finite-dimensional.
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• The last case, which concerns the Richardson orbit for parabolic sub-
groups of type 2A1 and thus does not occur if E is a field, is treated sim-
ilarly. In this case, there are infinitely many characters of the unipotent
radical of the 2A1 parabolic which restrict to ψΣ, where Σ = (1, 0, f, 0)
with f 
= 0 but f# = 0. This again contradicts the finite-dimensionality
in Lemma 12.9(ii).

This completes the first step of the argument.
The second step is to show that there are no irreducible subquotients of

Θ(ρ) supported on smaller orbits: 3A1, 2A1, A1 and the trivial orbit. The
orbit 3A1 is not special, so we can disregard it. We now consider the other
possibilities in turn:

• Lemma 12.9 and the finite-dimensionality of Θ(ρ)N̄E ,ψΣ
for nondegen-

erate Σ imply that Θ(ρ) has finite length. Together with the unitarity
of Θ(ρ), this implies that any irreducible subquotient of Θ(ρ) is a sum-
mand of the minimal representation Π. Hence, by the theorem of Howe
and Moore, the trivial representation of GE can not be a summand.

• The remaining possible small summands are eliminated using the
Fourier-Jacobi functor [We1] for the Heisenberg parabolic PE . The out-
put of this functor is a [ME ,ME ] = SL2(E)-module. It is easy to check
that the Fourier-Jacobi functor applied to Π gives the Weil representa-
tion C∞

c (C) of SL2(E)×O(Q), where O(Q) is the orthogonal group for
the quadratic form Q on C. On the other hand, the Fourier-Jacobi func-
tor applied to an irreducible representation of GE with the wave-front
set supported in 2A1 or A1 gives a representation of SL2(E) with the
trivial action of SL2(K) or SL2(E) respectively. Since the matrix coef-
ficients of the Weil representation decay, SL2(E) or any of its factors,
cannot fix a vector in C∞

c (C).

Now we can complete the proof of the irreducibility of Θ(ρ) when AutE(C)
is anisotropic. The wave-front set of every irreducible subquotient of Θ(ρ) is
supported on orbits of the type A2. However, we know that Θ(ρ)N̄E ,ψΣ

is non-
zero only for Σ in a single ME-orbit of non-degenerate cubes, in which case
this space is an irreducible StabME (Σ)-module. Thus there is room for only
one irreducible representation in Θ(ρ). This proves the desired irreducibility
of Θ(ρ) in all cases.

12.8. Cuspidality

It remains to prove that Θ(ρ) is supercuspidal if Θ(ρ)N̄E
= 0. This follows

from Lemma 12.9 combined with the following proposition.



2040 Wee Teck Gan and Gordan Savin

Proposition 12.10. Let π be an irreducible representation of GE such that
πN̄E

= 0 and πN̄E ,ψΣ
= 0 for all Σ = (1, 0, f, 0) such that f# = 0. Then π is

supercuspidal.

Proof. Consider the case E = F ×K. Let Q = L · U be a maximal parabolic
subgroup of GE such that πŪ 
= 0. Because πN̄E

= 0, there are two other
maximal parabolic subgroups to consider.

• If [L,L] ∼= SL3, then πŪ 
= 0 will admit a non-trivial functional for a
character of ŪL, the unipotent radical of a Borel subgroup of L. This
character can be inflated to Ū · ŪL and then restricted to N̄E . The
restriction is ψΣ where Σ = (a, 0, 0, 0) for some a ∈ F . This contradicts
the hypotheses of the proposition.

• If [L,L] ∼= SU2,2, then we take ŪL to be the unipotent radical of the
maximal parabolic subgroup whose (derived) Levi subgroup is SL2(K).
This is an abelian subgroup (it is the space of 2×2 hermitian matrices)
and πŪ will admit a non-trivial functional for a character of ŪL. The
rest of the argument goes in the same way as above, leading to ψΣ with
Σ = (1, 0, f, 0) for an f such that f# = 0.

We have thus dealt with the case E = F × K. The cases when E a field
or F 3 are similar and easier. Indeed, for these cases, it suffices to assume
that πN̄E

= 0 and πN̄E ,ψΣ
= 0 for Σ = (1, 0, 0, 0) to conclude the desired

cuspidality.

We have now completed the proof of Theorem 12.1. The following corol-
lary gives an alternative description of Θ(1) and will be used in [GS3].

Corollary 12.11. Let χ be a quadratic character of F×. Let I(χ, s) be the
degenerate principal series representation for GE associated to the Heisenberg
parabolic subgroup PE = MENE. Then the co-socle of I(χ, 1/2) is a direct sum
of the theta lifts ΘC(1) over all isomorphism classes of twisted composition
algebras C of E-dimension 2 with associated embedding E → J such that KJ

corresponds to χ by local class field theory.

Proof. Consider any embedding E ↪→ J such that χ corresponds to KJ by
local class field theory and write J = E + C. Then we have the dual pair
GE × AutE(C) −→ GJ , and we may consider the big theta lift ΘC(1) of the
trivial representation of AutE(C). By Theorem 12.1, we know that ΘC(1)
is irreducible. On the other hand, observe that ΘC(1) maps nontrivially to
I(χ,−1/2) (by using the one dimensional summand of ΠN̄J

), and thus it is
an irreducible submodule of I(χ,−1/2). Since N̄E spectra of ΘC(1) for non-
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conjugate embeddings E → J are different, we thus have a submodule⊕
C

ΘC(1) ↪→ I(χ,−1/2),

with the sum running over isomorphism classes of C’s considered here.
Now the corollary follows by counting: the number of classes of embed-

dings with E and KJ fixed, given by [GS2, Prop. 12.1], is equal to the number
of representations in the socle of I(χ,−1/2), which is given by [Se2, Thm 4.1].
For example, if χ 
= 1, and E = F +K, where K is a field, then we have one
class of embeddings if K ∼= KJ and two otherwise. These two cases can be
characterized by χ◦NK/F = 1 and χ◦NK/F 
= 1 respectively, and correspond
to the cases (6) and (7) in [Se2, Thm. 4.1]. However, the conditions were
mistakenly stated there as χ ◦ NE/F = 1 and χ ◦ NE/F 
= 1, when in fact it
was what we wrote here.

13. Archimedean theta correspondence

In this section, we consider the theta correspondence for HC × GE over
archimedean local fields and formulate the analog of Theorem 12.1. The main
theorems here are Theorems 13.1 and 13.3. The proofs of these theorems
will appear in a separate paper, joint with Jeff Adams, Hung Yean Loke and
Annegret Paul.

13.1. Real Freudenthal-Jordan algebras

Assume first that F = R; the case F = C will be dealt with at the end of
this section. Firstly, we enumerate the real Freudenthal-Jordan algebra J of
dimension 9:

• For KJ = R2, we have J = M3(R);
• For KJ = C, J is given as the set of fixed points of involutions of the

second kind on M3(C). Involutions of the second kind on M3(C) arise
from nondegenerate Hermitian forms h on C3, which we may assume to
be given by:

h = ε1z1z̄1 + ε2z2z̄2 + ε3z3z̄3, with εi = ±1.

There are 8 choices for signs, but we get only 4 different involutions,
since h and −h give the same involution. In this way, we get 4 Jor-
dan algebras Jε1,ε2,ε3 , but the 3 of them corresponding to {ε1, ε2, ε3} =
{+,−,−} are isomorphic. Hence, up to isomorphism, there are two such
J ’s:
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– J = J3,0(C) = J+++;
– J = J1,2(C) = J−+−

We shall sometimes denote the last two cases of J collectively as J3(C). The
group GJ depends only on KJ . It is the split group if KJ = R2, and quasi-split
if KJ = C [LS15].

13.2. Embeddings of cubic algebras

We shall next enumerate the E-twisted composition algebra of rank 2 over R
by describing embeddings of cubic etalé algebras E into J . Note that there
are 2 cubic etalé R-algebras:

E = R3 or E = R× C.

We consider the various cases in turn:

(a) J = M3(R): in this case, both R3 and R × C embeds into M3(R) and
these embeddings are unique up to conjugation.

(b) J = J3(C) and E = R3: in this case, we may work with the 4 Jordan
algebras J = Jε1,ε2,ε3 as described above. For each of these J ’s, there
is an embedding of R3 into J as diagonal matrices. Though 3 of these
Jordan algebras are isomorphic (to J1,2(C)), the three embeddings are
not isomorphic. To conclude, we get 4 classes of embeddings in all.

(c) J3(C) and E = R×C: in this case, E does not embed into J3,0(C) and
there is a unique embedding of E into J1,2(C).

We take this opportunity to correct a typo at the very end of [GS2], where
it was incorrectly asserted in [GS2, Pg. 1956] that in the context (b), there
are only 2 embeddings of R3 into J3(C), even though the table on [GS2, Pg
1954] clearly shows that this set of embeddings have 4 elements.

13.3. The torus AutE(C)0

For each embedding E ↪→ J , we have a decomposition J = E ⊕ C. The
corresponding HC = AutE(C) is always a semi-direct product AutE(C)0 �
Z/2Z such that the conjugation action of the non-trivial element in Z/2Z on
AutE(C)0 is the inverse involution. The possible cases of the two-dimensional
torus AutE(C)0 are tabulated in the following table, where T is the group of
complex numbers of norm one.

E = R3 E = R× C

K = R2 (R×)3/Δ(R×) (R× × C×)/Δ(R×)
K = C (T)3/Δ(T) (T× C×)/Δ(T)
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13.4. Characters of AutE(C)0

We introduce a refined notation for characters of these tori.

• A character χ of (R×)3/ΔR× is a triple of characters (χ1, χ2, χ3) of R×

such that χ1 · χ2 · χ3 = 1.
• A character of T is represented by an integer. Thus a character χ of

(T)3/ΔT is represented by a triple of integers (n1, n2, n3) such that
n1 + n2 + n3 = 0.

• In the remaining two cases a character of the torus is identified with a
pair of characters (χR, χC), such that χR · χC = 1 on ΔR×, and with a
pair (m,χC), where m ∈ Z, such that the restriction of χC to T is given
by z �→ z−m.

13.5. Representations of AutE(C)

Let χ be a character of AutE(C). If χ 
= χ−1, let ρ(χ) ∼= ρ(χ−1) be the unique
irreducible representation of AutE(C) such that the restriction to AutE(C)0
is χ ⊕ χ−1. If χ = χ−1, then χ extends to a character of AutE(C) in two
ways, denoted by ρ(χ)±. These two representations are indistinguishable un-
less χ = 1, in which case one extension is the trivial representation, denoted by
ρ(1), and the other the sign representation ε. Note that non-trivial quadratic
characters χ appear only in the split case (where E = R3 and KJ = R2),
since AutE(C)0(R) is connected as a real Lie group otherwise.

13.6. Some tempered representations of ME

To every unitary character χ of AutE(C)0, we shall attach a packet
P (E,KJ , χ) = P (E,KJ , χ

−1) of tempered representations of ME
∼=

GL2(E)det, obtained by restricting an irreducible representation of GL2(E).
We need additional notation.

• For a local field F and a pair of characters (μ1, μ2) of F×, let μ1 × μ2
be the unique infinite-dimensional subquotient of the principal series
representation of GL2(F ) obtained by normalized parabolic induction
from the pair of characters.

• Let ω : R× → {±1} be the sign character. It is the unique non-trivial
quadratic character of R×.

• Let ν : R× → R× be the identity character ν(x) = x, for all x ∈ R×.
• For n ∈ Z, the principal series representation νn×ω, when restricted to

SL2(R), contains a sum of two (limits of) discrete series representations
with the lowest SO2-types ±(|n| + 1).
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We can now describe the packet P (E,KJ , χ) = P (E,KJ , χ
−1) of tempered

representations of ME
∼= GL2(E)det.

Case E = R3 and KJ = R2. Let χ = (χ1, χ2, χ3) be a unitary character of
(R×)3/ΔR×. The packet P (E,KJ , χ) consists of representations appearing
in the restriction to GL2(R3)det of

(χ1 × 1) ⊗ (χ2 × 1) ⊗ (χ3 × 1).

This representation is irreducible when restricted to SL2(R3) unless χi = ω
for at least one i. The group GL2(R3)det is large enough so that the restriction
is still irreducible if precisely one χi is ω. In view of the relation χ1 ·χ2 ·χ3 =
1, at most two χi can be ω, and this is precisely when χ is a non-trivial
quadratic character. Then and only then the packet consists of two elements.
The standard intertwining operator provides an identification of P (E,KJ , χ)
and P (E,KJ , χ

−1).

Case E = R3 and KJ = C. Let χ = (n1, n2, n3) be a character of T3/ΔT. The
packet P (E,KJ , χ) consists of representations appearing in the restriction to
GL2(R3)det of

(νn1 × ω) ⊗ (νn2 × ω) ⊗ (νn3 × ω).

The restriction to SL2(R3) consists of 8 summands, hence the packet
P (E,KJ , χ) consists of 4 representations.

Case E = R× C and KJ = R2. The restriction from GL2(R×C) to GL2(R×
C)det is always irreducible, hence the packets are singletons. Let χ = (χR, χC)
be a unitary character of (R××C×)/Δ(R×). The packet P (E,KJ , χ) consists
of the restriction to GL2(R× C)det of

(χR × 1) ⊗ (χC × 1).

Case E = R× C and KJ = C. We are again restricting from GL2(R× C) to
GL2(R×C)det hence the packets are singletons. Let χ = (m,χC) be a unitary
character of (T×C×)/ΔT. The packet P (E,KJ , χ) consists of the restriction
to GL2(R× C)det of

(νm × ω) ⊗ (χC × 1).

Summarizing, we have 4 families of tempered packets P (E,KJ , χ) =
P (E,KJ , χ

−1) of GL2(E)det, parameterized by unitary characters χ of
AutE(C)0. If E = R3 and KJ = C, then |P (E,KJ , χ)| = 4. As a part of
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our correspondence result, we will see that the 4 members of this packet are
naturally parameterized by the 4 embeddings R3 → J3(C). If χ is a non-
trivial quadratic character (this happens only if E = R3 and KJ = R2)
then |P (E,KJ , χ)| = 2. Let π+(χ), π−(χ) be its constituents. Otherwise
|P (E,KJ , χ)| = 1 and its unique element will be denoted by π(χ).

13.7. Main result

Let V be the Harish-Chandra module of the minimal representation of GJ .
Consider the dual pair GE×AutE(C) corresponding to an embedding E → J .
For every irreducible representation ρ of AutE(C) let

Θ(ρ) = V/ ∩ϕ∈Hom(V,ρ) Ker(ϕ)

where ϕ are homomorphisms in the sense of Harish-Chandra modules. We
note that Θ(ρ) is naturally a (gE , KE)-module, where KE is the maximal
compact subgroup of GE . The following will be proved in a joint paper with
Jeff Adams, Hung Yean Loke and Annegret Paul, though we note that the
second bullet, when AutE(C) is compact, is contained in Loke’s thesis [Lo].

Theorem 13.1. Let GE×AutE(C) be the dual pair arising from an embedding
E → J . Let χ be a unitary character of AutE(C)0.

• If E → J is not one of the 4 embeddings R3 → J3(C), then Θ(ρ(χ)) ∼=
J2(π(χ), 1), unless χ is quadratic and non-trivial, in which case we have
Θ(ρ±(χ)) ∼= J2(π±(χ), 1).

• If E → J is one of the 4 embeddings R3 → J3(C), then Θ(ρ(χ)) ∼=
J2(π, 1), where π ∈ P (E,KJ , χ). As we run through all 4 embeddings
R3 → J3(C), π runs through the 4 representations in P (E,KJ , χ).

The representation Θ(ε) is always irreducible, and can be described as it
sits in a degenerate principal series representations, along with Θ(ρ(1)). Let
IE(s) denote the (normalized) degenerate principal series for GE where we
induce | det |s from PE . Let IE(ω, s) be the quadratic twist of this series, i.e.
we induce ω(det) · | det |s. (Recall that ω is the sign character of R×.) The
following result is due to Avner Segal [Se2, Appendix A], but formulated with
our interpretation in terms of theta lifts.

Theorem 13.2. Let ΘE→J(ρ) denote the theta lift of ρ in the correspondence
arising from the embedding E → J .

• For every E, we have an exact sequence

0 → ⊕ΘE→J3(C)(ε) → IE(1/2) → ΘE→M3(R)(ρ(1)) → 0.
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• For every E, we have an exact sequence

0 → ΘE→M3(R)(ε) → IE(ω, 1/2) → ⊕ΘE→J3(C)(ρ(1)) → 0.

Here J3(C) = J3,0(C) or J1,2(C) is any Jordan algebra with KJ = C, and
the sum in both sequences is over the isomorphism classes of embeddings of
E into J3,0(C) or J1,2(C) (recall that there is one class if E = R × C, and
four if E = R3).

13.8. Complex case

Assume now that F = C. In this case E = C3 is the only possible case. We
have:

Theorem 13.3. Let χ = (χ1, χ2, χ3) be a unitary character of (C×)3/ΔC×.
Let π(χ) be the tempered representation of ME = GL2(C3)det defined as in
the real split case. Then Θ(ρ(χ)) = J2(π(χ)) if χ 
= 1 and Θ(1)⊕Θ(ε) ∼= D(1)
is the degenerate principal series for an A2 parabolic subgroup,.

14. Global theta lifting

In this section, let E/F be a cubic field extension of number fields, so that GE

is a so-called triality Spin8. We shall consider the global theta correspondence
for the dual pair

HC ×GE = AutE(C) × SpinE
8 −→ GJ

associated to a twisted composition algebra C over F with dimE C = 2, corre-
sponding to an embedding of Jordan algebras E ↪→ J , for some Freudenthal-
Jordan algebra J of dimension 9 over F .

14.1. Hecke characters of T̃E,K

Recall from §4.6 that H0
C is isomorphic to the 2-dimensional torus

T̃E,K
∼= Ker

(
NK/F : (ResE⊗K/FGm)/(ResK/FGm) −→ (ResE/FGm)/Gm

)
,

so that

T̃E,K(F ) = Ker
(
NK/F : (E ⊗K)×/K× −→ E×/F×

)
.

Before describing the automorphic representation theory of HC = AutE(C),
let us record some relevant facts about automorphic characters of T̃E,K .
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Proposition 14.1. (i) The torus T̃E,K satisifies the weak approximation
property. As such, any two Hecke characters χ and χ′ of T̃E,K such that
χv = χ′

v for almost all v are equal.
(ii) Let χ and χ′ be two unitary Hecke characters of T̃E,K such that for

almost all v, either χ′
v = χv or χ′

v = χ−1
v . Then χ′ = χ or χ′ = χ−1.

Proof. (i) By a result of Voskresenskii [V2], any tori of dimension 2 over F

satisfies the weak approximation property.
(ii) Assume first that K = F×F is split. Then T̃E,K = (ResE/F (Gm)/Gm,

so that T̃ (F ) = E×/F×. We may thus regard χ and χ′ as Hecke characters
of E×. Consider now the principal series representations

πχ := π(χ, χ−1) and πχ′ := π(χ′, χ′ −1) of PGL2(AE).

These are irreducible automorphic representations which are nearly equivalent
to each other under our hypothesis. If these two principal series representa-
tions are locally equivalent for places of E outside a finite set S, then we have
an equality of partial Rankin-Selberg L-functions:

LS(s, πχ × πχ) = LS(s, πχ′ × πχ),

which is more explicitly written as:

ζS(s)2 · LS(s, χ2) · LS(s, χ−2)
= LS(s, χ′χ) · LS(χ′χ−1) · LS(s, χ′ −1χ) · LS(s, χ′ −1χ−1).

Now the LHS has a pole at s = 1 and hence so must the RHS. This implies
that χ′ = χ or χ−1, as desired.

Assume now that K is a field. We shall invoke the base change from F to
K. We claim that the norm maps

T̃E,K(Kv) −→ T̃E,K(Fv) and T̃E,K(AK) −→ T̃E,K(AF )

are surjective. Since

T̃E,K ×F K ∼= (E ⊗K)×/K×,

this surjectivity claim allows one to reduce to the case of split K treated
above, by composing χ and χ′ with the norm map.
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To show the surjectivity of the local norm map, we shall treat the most
nondegenerate case where Lv := Ev ⊗Kv is a field; the other cases are easier.
Then the norm map

T̃E,K(Kv) = L×
v /K

×
v −→ T̃E,K(Fv) = Ker

(
NLv/Ev

: L×
v /K

×
v −→ E×

v /F
×
v

)
is given by

x �→ x/σ(x) where σ ∈ Aut(Lv/Ev) = Aut(Kv/Fv).

We thus need to show that

{y ∈ L×
v : NLv/Ev

(y) ∈ F×
v } = K×

v · {z ∈ L×
v : NLv/Ev

(z) = 1}.

For this, we need to observe that if y ∈ L×
v satisfies NLv/Ev

(y) ∈ F×
v , then

in fact NLv/Ev
(y) ∈ NKv/Fv

(K×
v ). This in turn follows from the fact that the

natural map
F×
v /NKv/Fv

(K×
v ) −→ E×

v /NLv/Ev
(L×

v )

is an isomorphism (using the fact that Ev is an odd degree extension of Fv).
To deduce the surjectivity of the adelic norm map from the local ones,

it suffices to note that at places v of F unramified over L, the local norm
map remains surjective when all the local fields are replaced by their ring of
units.

14.2. Automorphic representations of AutE(C)

Recall that one has a short exact sequence of algebraic groups

1 −−−−→ H0
C −−−−→ HC −−−−→ μ2 −−−−→ 1

From this, one obtains:

1 −−−−→ H0
C(F ) −−−−→ HC(F ) −−−−→ μ2(F )⏐⏐� ⏐⏐� ⏐⏐�

1 −−−−→ H0
C(A) −−−−→ HC(A) −−−−→ μ2(A).

Because E is a field, the torus H0
C is anisotropic so that

[H0
C ] := H0

C(F )\H0
C(A) and [HC ] := HC(F )\HC(A)
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are compact. The automorphic representations of H0
C are unitary automorphic

characters which are classified by global class field theory. We will need to
discuss the automorphic representations of the disconnected algebraic group
HC .

Let A(H0
C) denote the space of automorphic forms on H0

C . Since HC(F )
acts naturally on H0

C(A) by conjugation (preserving H0
C(F )), we have a nat-

ural action of HC(F ) on A(H0
C) by

(γ · f)(t) = f(γ−1tγ) for γ ∈ HC(F ), t ∈ H0
C(A) and f ∈ A(H0

C).

Since H0
C is abelian, this action factors through the quotient HC(F )/H0

C(F ) ↪→
μ2(F ). We now consider two cases, depending on whether this last injection
is surjective or not.

(a) H0
C(F ) = HC(F ). In this case, C corresponds to an embedding E ↪→ J

with J a division algebra. At the nonempty finite set ΣC of places v
where J ⊗F Fv is division, we have H0

C(Fv) = HC(Fv).
Let χ = ⊗vχv be a unitary automorphic character of the torus H0

C , so
that

χ : [H0
C ] = HC(F )\HC(F ) ·H0

C(A) −→ S1,

and hence C · χ ⊂ A(H0
C). Consider the induced representation

VC(χ) := indHC(A)
HC(F )·H0

C(A)χ = indHC(A)
H0

C(A)χ.

Then an element in V (χ) is a smooth function

f : HC(F )\HC(A) −→ C

such that

f(tg) = χ(t) · f(g) for any t ∈ H0
C(A) and g ∈ HC(A).

Hence we have:
VC(χ) ↪→ A(HC).

As an abstract representation, VC(χ) is the multiplicity-free direct sum
of all irreducible representations of HC(A) whose abstract restriction to
H0

C(A) contains χ. Indeed, if one considers the restrictions of functions
from HC(A) to H0

C(A), the submodule VC(χ) is characterized as the
subspace of functions whose restrictions are contained in C·χ ⊂ A(H0

C).
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Thus one has the following description of A(HC):

A(HC) =
⊕
χ

VC(χ),

which is an orthogonal direct sum with χ running over the automorphic
characters of H0

C .
We note that A(HC) is not multiplicity-free as a representation of
HC(A). Indeed, if χ and χ′ are two distinct automorphic characters
of H0

C , then VC(χ) ∼= VC(χ′) as abstract representations if and only if
the following two conditions hold:

– for all v /∈ ΣC , χ′
v = χ±1

v ,
– for all v ∈ ΣC , χ′

v = χv.
By Proposition 14.1(ii), the first condition implies that χ′ = χ±1 and
hence χ′ = χ−1 (since we are assuming that χ and χ′ are distinct); this
then implies by the second condition that χ2

v = 1 for all v ∈ ΣC . Thus,
if χ is an automorphic character of H0

C = TE,K , with the property that
χ2
v = 1 for all v ∈ ΣC , but χ2 
= 1, then VC(χ) ∼= VC(χ−1) as abstract

representations, but VC(χ) and VC(χ−1) are orthogonal as subspaces
of A(HC); alternatively, one distinguishes them by their restriction as
functions to H0

C . Thus, A(HC) has multiplicity-at-most 2, but fails to
have multiplicity one. What is interesting, however, is that even if the
multiplicity of an irreducible representation ρ in A(HC) is 2, there is
a canonical decomposition of the ρ-isotypic submodule of A(HC) into
two irreducible summands. These summands are characterized by their
restriction (as functions) to H0

C belonging to C ·χ or C ·χ−1 for a special
χ as above.

(b) HC(F )/H0
C(F ) ∼= μ2(F ). Then for every place v, HC(Fv)/H0

C(Fv) =
μ2(Fv). In this case, the action of HC(F )/H0

C(F ) = μ2(F ) on A(H0
C)

needs to be taken into account.
As before, let χ = ⊗vχv be a unitary automorphic character of the torus
H0

C . The action of HC(F )/H0
C(F ) sends χ to its inverse χ−1. Hence, we

consider the equivalence relation on automorphic characters of H0
C given

by this action, i.e. modulo inversion. Denote the equivalence class of χ
by [χ].
There are now two subcases to consider:

(i) χ2 = 1, so that χ is fixed by HC(F ) as an abstract representation
and the equivalence class [χ] is a singleton. In this case, χ is fixed
by HC(F ) as a function on H0

C(A) and C · χ ⊂ A(H0
C) affords a
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representation χ∗ of HC(F ) ·H0
C(A) extending χ, characterized by

the requirement that χ∗ is trivial on HC(F ).
Consider the induced representation

VC [χ] := indHC(A)
HC(F )·H0

C(A)χ
∗.

Then an element in VC [χ] is a smooth function

f : HC(F )\HC(A) −→ C

such that

f(tg) = χ(t) · f(g) for any t ∈ H0
C(A) and g ∈ HC(A).

Hence we have:
VC [χ] ↪→ A(HC).

As an abstract representation, V [χ] is the multiplicity-free direct
sum of all irreducible representations of HC(A) whose abstract
restriction to HC(F ) ·H0

C(A) contains χ∗.
(ii) χ2 
= 1, so that χ is not fixed by HC(F ) as an abstract represen-

tation and [χ] = {χ, χ−1}. In this case, the span of γ · χ, for all
γ ∈ HC(F ), is the 2-dimensional subspace

W[χ] = C · χ⊕ C · χ−1 ⊂ A(H0
C)

such that
W[χ] ∼= indHC(F )·H0

C(A)
H0

C(A) χ

as HC(F ) ·H0
C(A)-module. Consider the induced representation

VC [χ] = indHC(A)
HC(F )·H0

C(A)W[χ] ∼= indHC(A)
H0

C(A)χ.

An element of VC [χ] is thus a function

φ : HC(A) −→ W[χ] = C · χ + C · χ−1 ⊂ A(HC).

Setting
fφ(h) = φ(h)(1),
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so that fφ is the composition of φ with evaluation at 1 ∈ HC(A),
we see that the map φ �→ fφ defines an embedding

VC [χ] ↪→ A(HC).

In this way, we shall regard VC [χ] as a submodule of A(HC) hence-
forth. As an abstract representation, VC [χ] is the multiplicity-free
direct sum of all irreducible representations of HC(A) whose re-
striction to H0

C(A) contains χ and χ−1.
Now we have:

A(HC) =
⊕
[χ]

VC [χ]

as [χ] runs over equivalence classes of automorphic characters χ of H0
C .

The subspace VC [χ] is characterized as the subspace of functions whose
restriction to H0

C is contained in W[χ] = C ·χ+C ·χ−1. We observe that
in this case, the representation A(HC) is multiplicity-free.

14.3. Global minimal representation

To carry out the global theta correspondence, we need another ingredient:
the global minimal representation of GJ(A). For each place v of F , we have a
local minimal representation Πv of GJ(Fv) which is unramified for almost all
v, so that we may set Π = ⊗vΠv. Using residues of Eisenstein series, it has
been shown that there is an (G0

J(A)-equivariant) automorphic realization

θ : Π ↪→ A(G0
J).

As before, the group GJ(F ) acts on A(G0
J) via

(γ · φ)(g) = φ(γ−1gγ) for γ ∈ GJ(F ) and g ∈ G0
J(A).

The embedding θ is easily checked to be GJ(F ) ·G0
J(A)-equivariant.

We now recall the main properties of the global minimal representation
we shall use. Recall the Heisenberg parabolic subgroup PJ = MJ ·NJ of GJ

with
VJ := Nab

J = F + J + J + F.

Using a fixed character ψ of F\A and the natural pairing between NJ and
its opposite NJ , the elements of VJ parametrizes automorphic characters of
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NJ(A) (trivial on NJ(F )). Let Ω ⊂ VJ be the minimal nonzero MJ -orbit in
VJ . For φ ∈ Π, one has the Fourier expansion

θ(φ)ZJ
(g) = θ(φ)NJ

(g) +
∑
x∈Ω

θ(φ)NJ ,ψx
(g),

where Z̄J is the 1-dimensional center of NJ . If MJ,x denotes the stabilizer
of x ∈ Ω in the Levi subgroup MJ , then the Fourier coefficient θ(φ)NJ ,ψx

is left-invariant under Mder
J,x (A) := MJ,x(A) ∩ Mder

J (A). On the other hand,
when restricted to MJ(A), the constant term θ(φ)NJ

is an automorphic form
on MJ . One has

θ(φ)NJ
∈ ωKJ/F | − |−2 ⊕ | − |−3/2 · ΠMJ ,

where ΠMJ = 0 unless GJ (or equivalently MJ) is quasi split, in which case
ΠMJ is the global minimal representation of MJ .

14.4. Global theta lifts

For any automorphic form f on HC , and φ ∈ Π, we consider the associated
global theta lift:

θ(φ, f)(g) =
∫

[HC ]
θ(h · φ)(g) · f(h) dh, with g ∈ GE(A).

Note that we have written θ(h · φ)(g) instead of θ(φ)(gh) in the integral
because θ(φ) is only defined as a function of G0

J(A). Observe however that
for γ ∈ HC(F ),

θ(γh · φ)(g) = θ(h · φ)(γ−1gγ) = θ(h · φ)(g) for g ∈ GE(A).

In any case, θ(φ, f) ∈ A(GE). For any irreducible summand ρ ⊂ V (χ), the
global theta lift Θ(ρ) of π is defined as the span of all θ(φ, f) with φ ∈ Π and
f ∈ ρ, so that

Θ(ρ) ⊂ A(GE).

14.5. Cuspidality

We first show the following analog of the tower property in classical theta
correspondence.
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Proposition 14.2. The global theta lift Θ(ρ) is contained in the space A2(GE)
of square-integrable automorphic forms of GE. Moreover, it is cuspidal if and
only if the (mini-)theta lift (via ΠMJ ) of π to ME is zero.

Proof. To detect if Θ(ρ) is square-integrable or cuspidal, we need to com-
pute the constant terms of a global theta lift θ(φ, f) along the two maximal
parabolic subgroups PE = ME · NE and QE = LE · UE of GE . Hence, we
first compute the constant term θ(φ, f)NE∩UE

along the unipotent subgroup
NE ∩ UE . We note that

NE/ZE = F ⊕ E ⊕ E ⊕ F ⊃ (NE ∩ UE)/ZE = 0 ⊕ E ⊕ E ⊕ F.

Recall that the Heisenberg parabolic subgroup PJ = MJ ·NJ of GJ satisfies
PJ ∩GE = PE , with NE ⊂ NJ such that

VE := NE/ZE ⊂ VJ := NJ/ZE = F ⊕ J ⊕ J ⊕ F,

where the embedding E ↪→ J is such that E⊥ = C. There is a natural
projection map

pr : VJ −→ VE .

which corresponds to the restriction of (automorphic) characters from NJ(A)
to NE(A).

For Ω ⊂ VJ the minimal MJ -orbit, let

Ω0 = {x ∈ Ω : pr(x) = (∗, 0, 0, 0) ∈ VE}.

Then one has
(14.3)

θ(φ, f)NE∩UE
(g) =

∫
[HC ]

f(h) ·

⎛⎝θ(φ)NJ
(hg) +

∑
x∈Ω0

θ(φ)NJ ,ψx
(hg)

⎞⎠ dh.

To proceed further, we need to understand the set Ω0. Clearly, we have Ω0 =
Ω1 ∪ Ω2 where

Ω1 = {x ∈ Ω : pr(x) = (0, 0, 0, 0) ∈ VE}

and
Ω2 = {x ∈ Ω : pr(x) = (t, 0, 0, 0), t 
= 0}.

By Proposition 8.1, and using the fact that E is a field, we see that Ω1 is
empty whereas Ω2 = {(t, 0, 0, 0) : t ∈ F×}.
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Hence, we see that

θ(φ, f)NE
(g) =

∫
[HC ]

f(h) · θ(φ)NJ
(hg) dh.

Since
ΠNE

= ωKJ/F · | − |−2 ⊕ | − |−3/2 · ΠMJ ,

with ΠMJ only present when J is not division, we deduce that the constant
term of Θ(ρ) along NE vanishes unless ρ is the trivial representation or if the
(mini-)theta lift of ρ to ME (via ΠMJ ) is nonzero. One may check that if ρ
is trivial, then it does have nonzero (mini-)theta lift to ME , so that we may
subsume the condition that ρ is trivial into the second condition.

On the other hand, if ψt is the automorphic character of NJ(A) corre-
sponding to (t, 0, 0, 0) ∈ Ω2(F ) with t 
= 0, then HC(F ) stabilizes ψt. This
implies that in (14.3),

(14.4) θ(φ)NJ ,ψt
(hg) = θ(φ)NJ ,ψt

(g),

so that the contribution of Ω2 to (14.3) vanishes if f is not a constant function.
We have thus shown that if the mini-theta lift of ρ to ME vanishes (so that
ρ is nontrivial in particular), then the constant term of Θ(ρ) along NE ∩UE

given in (14.3) vanishes, so that Θ(ρ) is cuspidal.
Conversely, it is clear from (14.3) and the above discussion that if the

mini-theta lift of ρ to ME is nonzero, then the constant term of Θ(ρ) along
NE is nonzero and hence Θ(ρ) is noncuspidal. To summarise, we have shown
that Θ(ρ) is cuspidal if and only if the mini-theta lift of π to ME (via ΠMJ )
vanishes. It remains to examine the case when Θ(ρ) is noncuspidal and show
that Θ(ρ) is square-integrable nonetheless.

Suppose then that Θ(ρ) is not cuspidal, so that ρ has nonzero (mini-)theta
lift to ME . For each parabolic subgroup R = PE , QE or BE = PE ∩ QE ,
we consider the normalized constant term of Θ(ρ) along R. Since the Levi
subgroup of R is a product of groups of GL-type, the strong multiplicity one
theorem for GLn implies that each of these normalized constant terms is a
direct sum of a cuspidal component and a noncuspidal component such that
the two components are spectrally disjoint (i.e. the system of spherical Hecke
eigenvalues supported by the two parts are different). By the standard square-
integrability criterion, we need to show that the (real parts of the) central
characters appearing in the cuspidal component lie in the interior of the cone
spanned by the positive simple roots which occur in the unipotent radical of
R.
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For the case R = PE , the cuspidal component of the normalized constant
term is contained in the mini-theta lift ΘMJ (ρ) of ρ to ME . Since the center
of ME is equal to the center of MJ , and the central character of ΠNJ

is of the
form z �→ |z|2, this gives the desired positivity for the cuspidal component
of ΘMJ (ρ). By the results of §9.3 and Proposition 9.2, ΘMJ (ρ) ⊗ | det |−1 is
a summand of a tempered principal series representation of ME . Thus, the
noncuspidal component of ΘMJ (ρ) ⊗ | det |−1 has normalised constant term
consisting of unitary characters. Since | det | corresponds to the highest root
3α+2β, we have the positivity of cuspidal exponents along the Borel subgroup
PE ∩QE .

Finally, for the constant term along QE , we claim that there are no cus-
pidal exponents. For if θ(φ, f)UE

has nonzero projection to the space of cusp
forms of LE , then θ(φ, f)UE

is in fact cuspidal and so has nonzero Whittaker-
Fourier coefficients. However, it follows from (14.4) that such Whittaker-
Fourier coefficients all vanish, unless f is a constant function. If f is constant,
then θ(φ, f) has nonzero constant term along BE (via our computation of the
constant term along PE) and so θ(φ, f)UE

cannot be nonzero cuspidal on LE .
Hence, we have shown that θ(φ, f) is square-integrable. This completes

the proof of Proposition 14.2.

14.6. Nonvanishing and disjointness

We now consider the question of nonvanishing of the global theta lifting. We
shall do this by computing the generic Fourier coefficients of θ(φ, f) along the
unipotent radical NE of the Heisenberg parabolic subgroup PE . These Fourier
coefficients are parametrised by generic cubes in VE(F ) = NE(F )ab. Recall
that the ME(F )-orbits of generic elements in VE(F ) are parametrised by E-
isomorphism classes of E-twisted composition algebras A. For each such A, we
let ψA denote a character of NE(A) trivial on NE(F ) in the corresponding
orbit; there is no loss of generality in assuming that ψA corresponds to a
reduced cube in VE(F ), and note that the stabilizer of ψA in ME is isomorphic
to HA = AutE(A).

Recall that if NJ denotes the unipotent radical of the Heisenberg parabolic
subgroup of GJ , then there is a natural projection map pr : VJ = Nab

J −→ VE .
This projection map corresponds to the restriction of characters from NJ(A)
to NE(A). Let Ω ⊂ VJ be the minimal nonzero MJ -orbit in VJ . Set

ΩA = pr−1(ψA) ∩ Ω.

Then Corollary 5.3 says that ΩA(F ) is empty unless A is E-isomorphic to
C, in which case, ΩA(F ) is a principal homogeneous space of HC(F ). Thus,
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when A ∼= C, we may fix an element ψ̃C ∈ ΩC(F ), so that ψ̃C restricts to ψC

on NE(A).
Now we have:

Proposition 14.5. For φ ∈ Π and f ∈ ρ ⊂ A(HC), θ(φ, f)NE ,ψA
vanishes

(as a function on GE(A)) unless A ∼= C, in which case

θ(φ, f)NE ,ψC
(g) =

∫
HC(A)

θ(h · φ)NJ ,ψ̃C
(g) · f(h) dh.

Moreover, there exist φ and f such that θ(φ, f)NE ,ψC
(1) 
= 0.

Proof. We have:

θ(φ, f)NE ,ψA
(g) =

∫
[VE ]

ψA(n) ·
(∫

[HC ]
θ(h · φ)ZJ

(ng) · f(h) dh
)

dn

=
∫

[HC ]

⎛⎝∫
[VE ]

ψA(n) ·
∑

ψ̃∈Ω(F )

θ(h · φ)NJ ,ψ̃
(ng) dn

⎞⎠ · f(h) dh

=
∫

[HC ]

⎛⎝ ∑
ψ̃∈ΩA(F )

θ(h · φ)NJ ,ψ̃
(g)

⎞⎠ · f(h) dh.

This gives the vanishing of θ(φ, f)NE ,ψA
when A � C since ΩA(F ) is empty

in that case. When A = C and ψ̃C ∈ ΩC(F ), then we have an identification
HC(F ) · ψ̃C

∼= ΩC(F ), in which case

θ(φ, f)NE ,ψC
(g) =

∫
[HC ]

∑
γ∈HC(F )

θ(γh · φ)NJ ,ψ̃C
(g) · f(h) dh

=
∫
HC(A)

θ(h · φ)NJ ,ψ̃C
(g) · f(h) dh,

as desired. This proves the first statement.
To show the second statement, we need to understand the function h �→

θ(h ·φ)NE ,ψ̃C
(1) as a function on HC(A). For a nonarchimedean place v of F ,

a property of the local minimal representation Πv is that

dim HomNJ (Fv)(Πv, ψ̃C,v) = 1.

Moreover, a nonzero element of this 1-dimensional space can be constructed
as follows. Recall that, at a nonarchimedean place v, one has [KP, Thm. 6.1.1]

C∞
c (Ω(Fv)) ↪→ ΠZE(Fv) ↪→ C∞(Ω(Fv)).
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Thus elements of Πv gives rise to functions on the cone Ω(Fv). Then the eval-
uation map at ψ̃C ∈ Ω(Fv) defines a nonzero element of HomNJ (Fv)(Πv, ψ̃C,v).
For v outside some sufficiently large set S of places of F , φv is the unramified
vector in Πv, in which case the corresponding function f0,v on the cone Ω(Fv)
has the following properties. The function f0,v is supported on the subset⋃

n≥0
�n

v · Ω(Ov),

is constant on each annulus �n ·Ω(Ov), and takes value 1 on Ω(Ov). Indeed,
[KP] gives an explicit formula for the value taken by f0,v on each annulus,
but we won’t need this here.

We need to understand the restriction of f0,v to the subset ΩC(Fv). Since
ΩC ⊂ Ω ⊂ VJ is a Zariski closed subset of VJ , we see that for v /∈ S (with S
containing all archimedean places and enlarged if necessary),⎛⎝⋃

n≥0
�n

v · Ω(Ov)

⎞⎠ ∩ ΩC(Fv) = ΩC(Ov) ⊂ Ω(Ov).

Hence, for v /∈ S, the restriction of f0,v to ΩC(Fv) = HC(Fv) · ψ̃C,v is the
characteristic function of Hc(Ov).

By the above discussion, we deduce that for S sufficiently large and with
FS :=

∏
v∈S Fv,

θ(φ, f)NE ,ψC
(1) =

∫
HC(FS)

θ(h · φ)NJ ,ψ̃C
(1) · f(h) dh.

We need to show that we can find some f and φ such that the above integral
is nonzero.

To this end, we start with a fixed pair of f and φ such that the integrand in
the above integral is nonzero as a function of h. Now we consider an arbitrary
Schwarz function ϕ on NJ(FS) and replace φ by the convolution ϕ ∗ φ in the
above formula. This gives:

θ(ϕ ∗ φ, f)NE ,ψC
(1) =

∫
HC(FS)

ϕ̂Z(h−1 · ψ̃C) · θ(h · φ)NJ ,ψ̃C
(1) · f(h) dh,

where ϕZ is the constant term of ϕ along Z ⊂ NJ (which is a Schwarz
function on VJ(FS) = NJ(FS)/Z(FS)) and ϕ̂Z is its Fourier transform. Since
HC(FS) · ψ̃C = ΩC(FS) ⊂ VJ(FS) is a Zariski-closed subset, and ϕ̂Z can be
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an arbitrary Schwarz function (as ϕ varies), we see that the above integral is
nonzero for some choice of ϕ.

This completes the proof of the second statement.

Corollary 14.6. (i) If ρ ⊂ A(HC), then Θ(ρ) ⊂ A2(GE) is a nonzero
irreducible square-integrable automorphic representation of GE. Moreover,
Θ(ρ) ∼= Θabs(ρ) := ⊗vθ(ρv), where θ(ρv) denotes the local theta lift of ρv
to GE(Fv) (which is nonzero irreducible).
(ii) For an abstract irreducible representation ρ of HC(A), we have

dim HomHC (ρ,A2(HC)) = dim HomGE (Θabs(ρ),Θ(A(HC)))

where
Θ(A(HC)) = 〈θ(φ, f) : φ ∈ ΠJ , f ∈ A(HC)〉 ⊂ A2(GE).

(iii) If ρ ⊂ A(HC) and ρ′ ⊂ A(HC′) satisfy Θ(ρ) = Θ(ρ′) as submodules of
A2(GE), then C is E-isomorphic to C ′ (so that HC

∼= HC′) and ρ = ρ′ as
subspaces of A(HC).

Proof. (i) This follows from Proposition 14.2 and Proposition 14.5.
(ii) This statement is often called the multiplicity-preservation of theta

correspondence and in fact follows from (i) and the local Howe duality theo-
rem we established in our local study, which says that:

dim HomHC×GE (ΠJ , ρ⊗ Θabs(ρ)) ≤ 1

and
dim HomGE (Θabs(ρ),Θabs(ρ′)) ≤ dim HomHC (ρ, ρ′) ≤ 1.

In view of (i) and the local Howe duality theorem, the statement here is only
interesting when A(HC) is not multiplicity-free. To prove (ii), we define a
pairing of finite-dimensional vector spaces:

HomHC (ρ,A2(HC)) × HomGE (Θabs(ρ),Θ(A(HC)))⏐⏐�B

HomHC×GE (ΠJ ⊗ ρ⊗ Θabs(ρ),C)

by

B(f, ι)(φ, v, w) =
∫

[GE ]
θ(φ, f(v))(g) · ι(w)(g) dg

for φ ∈ ΠJ , v ∈ ρ and w ∈ Θabs(ρ). The local Howe duality theorem says
that the target space is 1-dimensional (so we may identify it with C). Now
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(i) and the local Howe duality theorem imply that this C-valued pairing is
nondegenerate, giving us the desired equality of dimensions of the two Hom
spaces on the left.

(iii) It follows from Proposition 14.5 that for ρ ⊂ A(HC), Θ(ρ) supports
only one orbit of generic Fourier coefficients along N̄E , namely the orbit asso-
ciated to C. Thus, if Θ(ρ) = Θ(ρ′), then we must have C ∼= C ′. The equality
of ρ and ρ′ now follows by (ii).

14.7. Canonical decomposition

To finish this section, let us examine the case when H0
C(F ) = HC(F ): this is

the case when A(HC) has multiplicity 2. In this case, we have an orthogonal
decomposition

A(HC) =
⊕
χ

VC(χ)

as χ runs over automorphic characters of H0
C = TE,K and VC(χ) is charac-

terised as the subspace of functions whose restriction to H0
C is contained in

C · χ. Each VC(χ) is multiplicity-free and the occurrence of multiplicity 2 is
due to isomorphisms VC(χ) ∼= VC(χ−1) for those χ satisfying

• χ2 
= 1 but
• χ2

v = 1 for the finitely many places v where HC(Fv) = H0
C(Fv).

For χ satisfying these two conditions, and ρ an abstract irreducible rep-
resentation of HC(A) which occurs in VC(χ) and VC(χ−1) and write ρχ for
the corresponding submodule ρχ ⊂ VC(χ). Then the ρ-isotypic summand of
A(HC) has the canonical decomposition:

A(HC)(ρ) = ρχ ⊕ ρχ−1 .

On considering the global theta lifting, Corollary 14.6 gives a direct sum

Θ(ρχ) ⊕ Θ(ρχ−1) ⊂ A2(GE)

of two irreducible summands. This gives a canonical decomposition of the
Θabs(ρ)-isotypic summand Θ(A(HC))[Θabs(ρ)]. One may ask how decompo-
sition can be characterized directly on the side of GE , i.e. without reference
to HC . We shall address this question in the remainder of this section.

We have seen in Proposition 14.5 the Fourier coefficient formula

θ(φ, f)NE ,ψC
(g) =

∫
HC(A)

θ(h · φ)NJ ,ψ̃C
(g) · f(h) dh.
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for φ ∈ ΠJ and f ∈ ρχ, where we recall that ψ̃C ∈ ΩψC . Let

SψC = StabME (ψC)

be the stabilizer of ψC in ME . Then we have an action of SψC ×HC on ΩψC for
which ΩψC is a torsor for each of the two factors. This gives an isomorphism

ι : SψC
∼= HC ,

characterized by
ι(t) · ψ̃C = t−1 · ψ̃C .

Now we may regard θ(φ, f)NE ,ψC
as a function on S0

ψC
(F )\S0

ψC
(A). The fol-

lowing proposition, which strengthens Proposition 14.5 and is the global ana-
log of (12.6), describes this function explicitly.

Proposition 14.7. For t ∈ S0
ψC

(A) ∼= H0
C(A) and f ∈ ρχ, we have

θ(φ, f)NE ,ψC
(t) = χ(ι(t))−1 · θ(φ, f)NE ,ψC

(1).

In other words,

θ(φ, f)NE .ψC
◦ ι−1 ∈ C · χ−1 ⊂ A(HC).

Proof. Write φ = φ∞ ⊗ φ∞ ∈ ΠJ,∞ ⊗ Π∞
J . With φ∞ fixed, we consider the

Fourier coefficient map
Π∞

J −→ C

given by
φ∞ �→ θ(φ∞ ⊗ φ∞)NJ ,ψ̃C

(1).

As we have noted in the proof of Proposition 14.5, there is a PJ(A∞)-equivar-
iant map

q : Π∞
J −→ C∞(ΩA∞)

so that
θ(φ)NJ ,ψ̃C

(1) = λ(φ∞) · q(φ∞)(ψ̃C).

for some λ(φ∞) ∈ C. Then for t ∈ S0
ψC

(A∞), we have:

θ(φ)NJ ,ψ̃C
(t) = λ(φ∞) · q(φ∞)(t−1 · ψ̃C)

= λ(φ∞) · q(φ∞)(ι(t) · ψ̃C)
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= θ(ι(t)−1 · φ)NJ ,ψ̃C
(1).

Hence,

θ(φ, f)NE ,ψC
(t) =

∫
HC(A)

θ(h · φ)NJ ,ψ̃C
(t) · f(h) dh

=
∫
HC(A)

θ(ι(t)−1h · φ)NJ ,ψ̃C
(1) · f(h) dh

=
∫
HC(A)

θ(h · φ)NJ ,ψ̃C
(1) · f(ι(t)h) dh

= χ(ι(t))−1 ·
∫
HC(A)

θ(h · φ)NJ ,ψ̃C
(1) · f(h) dh.

This proves the desired identity for t ∈ S0
ψC

(A∞). However, both sides of the
desired identity are automorphic functions of S0

ψC

∼= H0
C
∼= T̃E,K . The desired

identity then follows by the weak approximation theorem (Proposition 14.1(i))
for T̃E,K .

What the lemma says is that the consideration of the ψC-Fourier coeffi-
cient gives an (N̄E , ψC) × S0

ψC
-equivariant map

Θ(A(HC))[Θabs(ρ)] −→ C · χ⊕ C · χ−1 ⊂ A(S0
ψC

)

The canonical decomposition of the codomain is given by the irreducible
summands whose image is contained in C · χ or C · χ−1.

15. A-parameters and twisted composition algebras

In the next two sections, we relate the square-integrable automorphic rep-
resentations constructed in the previous section to Arthur’s conjecture for
GE . We begin by explicating the connections between twisted composition
algebras and the relevant class of A-parameters in this section.

15.1. A-parameters

We shall consider A-parameters

ψ : WF × SL2(C) −→ PGSO8(C) � S3.

such that the centralizer of ψ(SL2(C)) is isomorphic to the group

S � (S2 × S3) = (C× × C× × C×)1 � (S2 × S3).
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We fix the isomorphism

ZPGSO8�S3(ψ(SL2(C))) ∼= S � (S2 × S3)

throughout. Associated to such a ψ is thus a map

ρ = ρE × ρK : WF −→ S2 × S3,

i.e. a pair (E,K) consisting of an étale cubic F -algebra E and an étale
quadratic algebra K; we shall say that ψ is of type (E,K). With the étale
cubic algebra E fixed, ψ is an A-parameter for the group GE .

If we let WF act on S through the map ρ, then S �WF is the L-group of
the torus

T̃E,K = {x ∈ (E ⊗F K)× : NE⊗K/E(x) ∈ F×}/K×.

Hence, to give an A-parameter of type (E,K) is equivalent to giving an L-
parameter

φ : WF −→ LT̃∨
E,K � S � (S2 × S3)

modulo conjugacy by S�S2, or equivalently an automorphic character of the
torus T̃E,K up to inverse, i.e. a pair of automorphic characters [χ] = {χ, χ−1}.

To summarize, the A-parameters we are considering are determined by
the triple (E,K, [χ]). We had already highlighted and discussed these A-
parameters in §3.5.

15.2. Component groups

An important structure associated to an A-parameter ψ = ψE,K,[χ] as above
is its global and local component groups. The global component group is

Sψ = π0(ZPGSO8(ψ)) = π0(ZS�S2(φ)).

On the other hand, for each place v of F , one has the restriction ψv of ψ to
WFv × SL2(C) (the associated local A-parameter), and one has likewise the
local component group

Sψv = π0(ZPGSO8(ψv)) = π0(ZS�S2(φv)).

There is a natural diagonal map

Δ : Sψ −→
∏
v

Sψv =: Sψ,A.
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The following lemma gives a description of these component groups.

Lemma 15.1. Fix an A-parameter ψ = ψE,K,[χ] as above, with associated φ.
For each place v of F , one has an exact sequence

1 −−−−→ ZS(φv) −−−−→ ZS�S2(φv) −−−−→ S2

and this sequence is exact at the right if and only if the character χv associated
to φv satisfies χ2

v = 1. Moreover, the abelian group ZS(φv) depends only on
(Ev, Kv) (i.e. is independent of [χv]) and is given by

ZS(φv) = SWFv = (T̃∨
E,K)WFv .

where the action of WFv on S = T̃∨
E,K is via the map ρ : WFv −→ S2 × S3.

Hence, one has

1 −−−−→ π0(SWFv ) −−−−→ Sψv = π0(ZS�S2(φv)) −−−−→ S2

with exactness on the right if and only if χ2
v = 1, in which case

Sψv
∼= π0(SWFv ) � S2.

The analogous result holds for the global parameter φ. In §3.6, we had
considered an example of a family of such ψ’s and tabulated the corresponding
groups Sψv . To simplify notations, we will henceforth set

S0
ψ := π0(SWF ) and S0

ψv
:= π0(SWFv ).

15.3. From A-parameters to twisted composition algebras

As we observed in §4.6, the group T̃E,K is (canonically up to inverse) isomor-
phic to the identity component of the automorphism group of any E-twisted
composition algebra C with dimE(C) = 2 and quadratic invariant KC such
that [KE ] · [KC ] · [K] = 1. This motivates the following definition:

Definition 15.2. (i) Let ΣE,K denote the set of E-isomorphism classes of
rank 2 E-twisted composition algebras with quadratic invariant KC = [KE ] ·
[K].

(ii) Let Σ̃E,K denote the set of E ⊗F KC-isomorphism classes of rank 2
E-twisted composition algebras with quadratic invariant [KC ] = [KE ] · [K].
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Then any C ∈ ΣE,K corresponds under the Springer decomposition to
an algebra embedding E ↪→ J for some 9-dimensional Freudenthal-Jordan
algebra J with KJ = K.

The following long lemma summarizes the discussion in §4, especially
§4.3, §4.5, §4.6 and §4.8 (see also [GS2, §11.5 and §11.6]).

Lemma 15.3. (i) There is a natural commutative diagram

H1(F, T̃E,K) Σ̃E,K {isomorphism classes of triples (B, τ, ι)}⏐⏐� ⏐⏐� ⏐⏐�
H1(F, T̃E,K)/S2 ΣE,K {equivalence classes of ι : E ↪→ J}

where the horizontal arrows are natural bijections (and hence written as equal
signs). Moreover,

• in the first row, for the triple (B, τ, ι),

– B is a central simple K-algebra of degree 3;

– τ is an involution of second kind on B (relative to K/F )

– ι : E −→ Bτ is a Jordan algebra embedding.

Two such triples (B1, τ1, ι1) and (B2, τ2, ι2) are equivalent if there is a
K-algebra isomorphism f : B1 ∼= B2 such that τ2 ◦ f = f ◦ τ1 and
f ◦ ι1 = ι2.

• the group S2 acts on H1(F, T̃E,K) by inverting; this action is described
in terms of the other two sets in the row by

C �→ C ⊗KC ,σ KC on Σ̃E,K

where σ is the nontrivial element in Aut(KC/F ), and

(B, τ, ι) �→ (Bop, τ, ι) on the last set.

• in the second row, the second bijection is via the Springer decomposition,
so ι : E ↪→ J refers to an embedding of Jordan algebras;

• the first two vertical arrows are the natural ones whereas the last vertical
arrow is the forgetful map given by

(B, τ, ι) �→ ι.



2066 Wee Teck Gan and Gordan Savin

(ii) For any C ∈ ΣE,K , its preimage in Σ̃E,K is an S2-orbit and thus has
1 or 2 elements. Moreover, one has:

Fiber over C has 2 elements ⇐⇒ HC(F ) = H0
C(F ).

Thus, the restriction of the first vertical arrow gives a bijection from
H1(F, T̃E,K)[2] onto its image.

(iii) If we pick any triple (B, τ, ι) in the preimage of C, we obtain an
isomorphism of algebraic tori over F :

ιB,τ : H0
C −→ T̃E,K .

Hence, we have the following canonical bijection which gives another inter-
pretation of Σ̃E,K :

Σ̃E,K ←→ {equivalence classes of (C, i)}

where

• C is an E-twisted composition algebra with quadratic invariant KC =
[KE ] · [K] and automorphism group HC ;

• i : H0
C −→ T̃E,K is an isomorphism of F -tori, arising in the manner

above;
• two pairs (C, i) and (C ′, i′) are equivalent if and only if there is an

isomorphism j : C −→ C ′ of E-twisted composition algebras, inducing
an isomorphism Ad(j) : H0

C −→ H0
C′ , so that i′ ◦ Ad(j) = i.

15.4. Local fields

In particular, the above results apply to the case where F is a number field,
as well as the local completions Fv. In [GS2, §12], we have examined the case
of a local field Fv as an explicit example. Summarizing the results there, we
note:

Lemma 15.4. Assume that Fv is a local field. We have two cases:

(i) If (Ev, Kv) 
= (field, split), then H1(Fv, T̃Ev ,Kv) is an elementary abelian
2-group and the action of S2 on H1(Fv, T̃Ev ,Kv) is trivial, so that

ΣEv ,Kv ←→ Σ̃Ev ,Kv ←→ H1(Fv, T̃Ev ,Kv).

Hence, for any C ∈ ΣEv ,Kv , its fiber in Σ̃Ev ,Kv has 1 element and
HC(Fv) ∼= H0

C(Fv) � Z/2Z.
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(ii) If Ev is a field and Kv is split (so that Fv is nonarchimedean), one has
isomorphisms

Σ̃Ev ,Kv
∼= H1(Fv, T̃Ev ,Kv) ∼= Ker(H2(Fv,Gm) → H2(Ev,Gm)) ∼= Z/3Z

via
(B, τ, ι) �→ inv(B) (the invariant of B)

and the action of S2 on Z/3Z is by inverting. Hence ΣEv ,Kv has 2 ele-
ments, corresponding to

C+
v = (Ev ↪→ M3(Fv)) and C−

v = (Ev ↪→ D+
v )

where D+
v denotes the Jordan algebra attached to a cubic division algebra

Dv over Fv. The preimage of C−
v in Σ̃Ev ,Kv has two elements (associated

to Dv and Dop
v ) and in this case, HC−

v
(Fv) = H0

C−
v
(Fv). However, the

choice of Dv gives an isomorphism

ιDv : HC−
v
−→ T̃Ev ,Kv ,

with ιDop
v

(−) = ιDv(−)−1.

Hence, we have:

H1(Fv, T̃Ev ,Kv)[3] = 1 or Z/3Z

and H1(Fv, T̃Ev ,Kv)/H1(Fv, T̃Ev ,Kv)[3] is an elementary abelian 2-group.

15.5. Local-global principles

When F is a number field, there is a commutative diagram of localisation
maps

Σ̃E,K

˜loc−−−−→ ∏′
v Σ̃Ev ,Kv⏐⏐� ⏐⏐�

ΣE,K
loc−−−−→ ∏′

v ΣEv ,Kv .

It will be necessary to explicate the image of loc and to determine the size of
its fibers.

Lemma 15.5. (1) Assume that K = F × F is split.
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(i) One has a short exact sequence of abelian groups

0 −−−−→ Σ̃E,K

˜loc−−−−→ ⊕
v Σ̃E,v,Kv

⊕v invv−−−−→ Z/3Z −−−−→ 0

(ii) Let C = {Cv} be a collection of local twisted composition algebras, with
Cv = (Ev ↪→ B+

v ), where Bv is a central simple algebra of degree 3 over
Fv which is split for almost all v, and let SC denote the set of places
where Bv is a cubic division algebra. Then we have:

#loc−1(C) =
{

1 if SC is empty;(
2#SC + 2 · (−1)#SC

)
/6, if SC is nonempty.

In particular, C lies in the image of loc if and only if #SC 
= 1.

(2) Assume that K is a field.

(i) The map ˜loc is bijective and the map loc is surjective.
(ii) Given a collection of local twisted composition algebras C = {Cv}, let

SC denote the finite set of places of F where Ev is a field, Kv is split
and Cv = (Ev ↪→ D+

v ) with Dv a division algebra of degree 3 over Fv.
Then we have:

#loc−1(C) =
{

1, if SC is empty;
2#SC−1, if SC is nonempty.

In both cases, the restriction of ˜loc gives an isomorphism

H1(F, T̃E,K)[2] ∼=
∏′

v
H1(Fv, T̃E,K)[2].

Proof. (1i) Recalling that

Σ̃E,K = H1(F, T̃E,K) = Ker(H2(F,Gm) −→ H2(E,Gm)),

the short exact sequence in (1i) is a consequence of global class field theory.
(1ii) Given a set S of places of F , there are

2#S + 2 · (−1)#S

3

central simple F -algebras of degree 3 which are ramified precisely at S; this is
an interesting exercise which we leave to the reader. This number is thus the
cardinality of the fiber of ˜loc over a collection C with SC = S. The action of
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S2 on Σ̃E,K preserves this fiber and its action there is free, unless S is empty
(in which case the fiber is a singleton set and S2 acts trivially). This proves
(1ii).

(2i) The map ˜loc is injective by the Hasse principle for 2-dimensional
tori, proved by Voskresenskii [V1]. To show the surjectivity, we make use of
the moduli interpretation of Σ̃E,K as the set of tuples (B, τ, ι) provided by
Lemma 15.3. One has the local-global principle for odd degree division alge-
bras equipped with involutions of second kind, which says that any collection
{(Bv, τv)} of local pairs comes from a unique global pair (B, τ). Equivalently,
the natural map

H1(F,PUK
3 ) −→

⊕
v

H1(Fv,PUKv
3 )

is an isomorphism. In addition, for a fixed (B, τ) and a collection of local
embeddings

ιv : (Ev ⊗Kv, σv) −→ (Bv, τv), with 1 
= σv ∈ Aut(Kv/Fv),

a local-global principle of Prasad-Rapinchuk [PR] shows that there exists

ι : (E ⊗K, τ) −→ (B, τ),

which localizes to ιv for all v. This shows the surjectivity of ˜loc.
The surjectivity of loc follows by that of ˜loc and the surjectivity of the

two vertical arrows.
(2ii) Given a finite set S of finite places of F which split over K, there

are 2#S pairs (B, τ) of central simple K-algebras with an involution τ of the
second kind, with B ramified precisely at places of K lying over S. The S2
action on these is free unless S is empty (in which case the action is trivial).
This proves (ii).

In particular, the map loc is not injective: this is the failure of the Hasse
principle for twisted composition algebras which is ultimately responsible for
the high multiplicities in the automorphic discrete spectrum of GE .

15.6. Local Tate dualities

The connection between our A-parameters ψ and twisted composition alge-
bras is provided by the local and global Tate duality theorems. We first note
the local Tate-Nakayama duality theorem (see [K1, §2] and [Mi, Cor. 2.4]).
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Lemma 15.6. Let T be a torus over a local field Fv with character group
X(T ) = Hom(T,Gm). Then one has a commutative diagram:

H1(Fv, T ) −−−−→ Irr(H1(Fv, X(T )))

inj.

 ⏐⏐  ⏐⏐inj.

H1(Fv, T )[2] −−−−→ Irr(H1(Fv, X(T ))/2H1(Fv, X(T )))

surj.

 ⏐⏐f

 ⏐⏐surj.

H1(Fv, T [2]) −−−−→ Irr(H1(Fv, X(T )/2X(T )))

inj.

 ⏐⏐b

 ⏐⏐inj.

T (Fv)/T (Fv)2 −−−−→ Irr(H2(Fv, X(T ))[2]),

whose horizontal arrows are isomorphisms. Here, in the left column, the maps
f and b form a short exact sequence

1 −−−−→ T (Fv)/T (Fv)2
b−−−−→ H1(Fv, T [2]) f−−−−→ H1(Fv, , T )[2] −−−−→ 1

arising from the Kummer sequence

1 −−−−→ T [2] −−−−→ T
2−−−−→ T −−−−→ 1,

and the corresponding terms in the right column arises from the dual short
exact sequence

1 −−−−→ X(T ) 2−−−−→ X(T ) −−−−→ X(T )/2X(T ) −−−−→ 1.

We apply the above to our particular situation at hand. Fix an A-parameter
ψ = ψE,K,[χ] as above and let T = T̃E,K for ease of notation. Then for each
place v, we have the following canonical isomorphism [K2, §1]:

H1(Fv, X(T )) ∼= π0((T∨)WFv ) = S0
ψv
,

where T∨ is the complex dual torus of T . Hence, by Lemma 15.4, S0
ψv

[3] = 1
or μ3. Let us set

S̄0
ψv

= S0
ψv
/S0

ψv
[3] and S̄ψv = Sψv/Sψv [3].

These are elementary abelian 2-groups, and we have

H1(Fv, X(T ))/2H1(Fv, X(T )) ∼= S̄0
ψv
.
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Further,

T [2] = ZE , and H1(Fv, X(T )/2X(T )) = H1(Fv, Z(G∨
E
sc)),

where Z(G∨
E
sc) is the center of G∨

E
sc = Spin8(C). Replacing these terms, the

diagram in Lemma 15.6 now becomes:

(15.7)

H1(Fv, T ) Irr(S0
ψv

)

inj.

 ⏐⏐  ⏐⏐inj.

H1(Fv, T )[2] Irr(S̄0
ψv

)

surj.

 ⏐⏐f

 ⏐⏐surj.

H1(Fv, ZE) Irr(H1(Fv, Z(G∨
E
sc)))

inj.

 ⏐⏐b

 ⏐⏐inj.

T (Fv)/T (Fv)2 Irr(H2(Fv, X(T ))[2]),

Now, if χ2
v 
= 1, then Sψv = S0

ψv
and the first row of (15.7) already gives

a bijection

Irr(Sψv) ←→ H1(Fv, T̃Ev ,Kv).

Assume now that χ2
v = 1. In this case, Sψv

∼= S0
ψv

� S2 and we shall try to
understand Irr(Sψv), or rather the subset Irr(S̄ψv), in terms of Lemma 15.6
and (15.7).

To bring the component group Sψv into the picture, consider the projec-
tion

p : G∨
E
sc = Spin8(C) −→ G∨

E = PGSO8(C)

Taking the preimage of S � S2 ⊂ PGSO8(C), we obtain the following com-
mutative diagram of short exact sequences of WFv -modules:

1 −−−−→ Z(G∨
E
sc) −−−−→ p−1(S) −−−−→ S −−−−→ 1∥∥∥ ⏐⏐� ⏐⏐�

1 −−−−→ Z(G∨
E
sc) −−−−→ p−1(S � S2)

p−−−−→ S � S2 −−−−→ 1

where the action of WFv is by conjugation via the map φv : WFv −→ S �

(S2 × S3) associated to ψv. The coboundary map in the long exact sequence
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then gives:
S0
ψv

−−−−→ H1(Fv, Z(G∨
E
sc))⏐⏐� ∥∥∥

Sψv

δv−−−−→ H1(Fv, Z(G∨
E
sc))

Because the target of the map δv is an elementary abelian 2-group (since
H1(Fv, ZE) is so), the map δv factors through the quotient S̄ψv of Sψv .
Moreover, δv is injective on the index 2 subgroup S̄0

ψv
; indeed, the map

δv : S̄0
ψv

−→ H1(Fv, Z(G∨
E
sc)) is dual to the surjective map in the right

column of (15.7). Hence Ker(δv) ⊂ S̄ψv is either trivial or has order 2 and we
would like to determine precisely what it is.

Together with (15.7), the above gives rise to a group homomorphism

(15.8) δ∗v : H1(Fv, ZE) ∼= Irr(H1(Fv, Z(G∨
E
sc))) −→ Irr(S̄ψv) ⊂ Irr(Sψv).

Thus, the diagram (15.7) can now be enhanced to:

(15.9)

H1(Fv, T ) Irr(S0
ψv

)

inj.

 ⏐⏐  ⏐⏐inj.

H1(Fv, T )[2] Irr(S̄0
ψv

) Irr(S̄0
ψv

)

surj.

 ⏐⏐f

 ⏐⏐surj.

 ⏐⏐surj.

H1(Fv, ZE) Irr(H1(Fv, Z(G∨
E
sc))) δ∗v−−−−→ Irr(S̄ψv)

inj.

 ⏐⏐b

 ⏐⏐inj.

T (Fv)/T (Fv)2 Irr(H2(Fv, X(T ))[2]) ,

What is the kernel of δ∗v? Consider the fundamental short exact sequence
in the left column of (15.9):
(15.10)
1 −−−−→ T (Fv)/T (Fv)2

b−−−−→ H1(Fv, ZE) f−−−−→ H1(Fv, T )[2] −−−−→ 1.

We had first encountered this sequence in (4.19). Now χv is a character of the
first term in the short exact sequence. Pushing out this sequence by χv, one
obtains:
(15.11)
1 −−−−→ μ2 −−−−→ H1(Fv, ZE)/b(Ker(χv))

fχv−−−−→ H1(Fv, T )[2] −−−−→ 1

when χv 
= 1. Now we have:
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Proposition 15.12. Fix a local A-parameter ψv = ψEv ,Kv ,[χv ].

(i) There is a natural bijection

Irr
(
S0
ψv

)
←→ H1(Fv, T̃E,K).

(ii) Assume that χ2
v = 1, but χv 
= 1. The natural map

δv : S̄ψv −→ H1(Fv, Z(G∨
E
sc))

is injective and the dual map δ∗v in (15.8) is surjective with kernel
b(Ker(χv)), so that it induces an isomorphism

H1(Fv, ZE)/b(Ker(χv)) ∼= Irr(S̄ψv).

Moreover, one has a commutative diagram of short exact sequences:

μ2 −−−−→ H1(Fv, ZE)/b(Ker(χv))
fχv−−−−→ H1(Fv, T̃E,K)[2]∥∥∥ δ∗v

⏐⏐� ∥∥∥
μ2 −−−−→ Irr(S̄ψv)

rest−−−−→ Irr(S̄0
ψv

),

where the third vertical arrow is that given by (i).
(iii) If χv = 1, then Ker(δv) = 〈s0〉 has order 2 and hence one has a canonical

element s0 ∈ S̄ψv \ S̄0
ψv

. In this case, δ∗v induces an injection

δ∗v : H1(Fv, ZE)/b(T̃E,K(Fv)) = H1(Fv, T̃E,K)[2] = Irr(S̄0
ψv

) −→ Irr(S̄ψv)

which is a section to the restriction map Irr(S̄ψv) → Irr(S̄0
ψv

) and whose
image consists of those characters of S̄ψv which are trivial on s0.

15.7. Global Tate duality

We now consider the global analog of the above discussion. We shall fix a
global A-parameter ψ = ψE,K,[χ] with global component group Sψ containing
S0
ψ = π0(SWF ) of index ≤ 2. Because E is a field, we have

S0
ψ =

{
μ3, if K = F × F ;
1, if K is a field.
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So Sψ[3] = S0
ψ[3] = S0

ψ = 1 or μ3, and as in the local case, we set

S̄ψ = Sψ/Sψ[3]

which is an elementary abelian 2-group.
Our discussion of local Tate duality allows us to reformulate the results

of Lemma 15.5 in terms of characters of S0
ψ:

Lemma 15.13. Writing T = T̃E,K for ease of notation, we have the short
exact sequence:

1 −−−−→ H1(F, T ) −−−−→ ∏′
v H

1(Fv, T ) −−−−→ Irr(π0(SWF )) −−−−→ 1.∥∥∥ ∥∥∥ ∥∥∥
Σ̃E,K Irr(S0

ψ,A) Irr(S0
ψ)

In particular,

H1(F, T )[2] ∼=
∏
v

′
H1(Fv, T )[2] ∼= Irr(S̄0

ψ,A).

After this recollection, we consider the following commutative diagram of
short exact sequences.

T (A)/T (A)2 b−−−−→ ∏′
v H

1(Fv, ZE) f−−−−→ ∏′
v H

1(Fv, T )[2] ⏐⏐ s

 ⏐⏐ ∥∥∥
T (F )/T (F )2 −−−−→ H1(F,ZE) −−−−→ H1(F, T )[2]

This diagram gives rise to the short exact sequence:

T (F )\T (A)/T (A)2 b−−−−→ b(T (F ))\∏′
v H

1(Fv, ZE) f−−−−→ H1(F, T )[2].

This is the global analog of the fundamental short exact sequence (15.10) in
the local setting. Moreover, it is equipped with a canonical section: the map
s descends to give a section to f

s : H1(F, T )[2] −→ b(T (F ))\
∏′

v
H1(Fv, ZE).

Now suppose we have a global A-parameter ψ = ψE,K,[χ] as above. We
shall assume that χ2 = 1 but χ 
= 1, so that χ is a quadratic character of
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T (F )\T (A)/T (A)2. Pushing out the last short exact sequence by χ, we get a
short exact sequence

(15.14) μ2 −−−−→ b(Ker(χ))\∏′
v H

1(Fv, ZE) fχ−−−−→ H1(F, T )[2].

Moreover, the above short exact sequence is equipped with a section sχ of fχ.
We can also arrive at the above short exact sequence by using our local

discussion in the previous subsection. We have the short exact sequence:

⊕vμ2 −−−−→ ∏′
v bv(Ker(χv))\H1(Fv, ZE) −−−−→ H1(F, T )[2].

Pushing this out by the sum map ⊕vμ2 → μ2 and denoting its kernel by
(⊕vμ2)1, we obtain

μ2 −−−−→
(∏′

v bv(Ker(χv))\H1(Fv, ZE)
)
/(⊕vμ2)1 −−−−→ H1(F, T )[2],

which is the short exact sequence in (15.14).
To reformulate the above discussion in the language of characters of com-

ponent groups, let us introduce the following notions.

Definition 15.15. Fix a global A-parameter ψ = ψE,K,[χ] with χ2 = 1.
(i) For each place v, the sign character of Sψv is the nontrivial character

εv of Sψv/S
0
ψv

.
(ii) For any finite subset Σ of places of F , we set

εΣ =
∏
v∈Σ

εv ×
∏
v/∈Σ

1v

and call εΣ a global sign character of Sψ,A. We say that εΣ is automorphic if it
is trivial on Sψ. This holds if and only if |Σ| is even. The set of automorphic
sign characters is a subgroup of Irr(S̄ψ,A).

(iii) Set

[Irr(S̄ψ,A)] = Irr(S̄ψ,A)/{automorphic sign characters}.

Summarizing the above discussion and applying global Poitou-Tate dual-
ity [Mi, Thm. 4.10], we obtain:

Proposition 15.16. Fix a global A-parameter ψ = ψE,K,[χ] as above with
χ2 = 1.
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(i) If χ 
= 1, one has the following commutative diagram of short exact se-
quences:

1 −−−−→ μ2 −−−−→ b(Ker(χ))\∏′
v H

1(Fv, ZE) fχ−−−−→ H1(F, T )[2] −−−−→ 1∥∥∥ ⏐⏐�δ∗=
∏

v
δ∗v

∥∥∥
1 −−−−→ μ2 −−−−→ [Irr(S̄ψ,A)] −−−−→ Irr(S̄0

ψ,A) −−−−→ 1⏐⏐�rest

Irr(S̄ψ)

which are equipped with a canonical section sχ for fχ given by the image of
H1(F,ZE). Finally,

Ker(rest ◦ δ∗) = Im(s) = the image of H1(F,ZE).

Equivalently,
Ker(rest) = Im(δ∗ ◦ s).

(ii) If χ = 1, the map δ∗ =
∏

v δ
∗
v descends to give a section

δ∗ : H1(F, T )[2] −→ Irr(S̄ψ,A) −→ [Irr(S̄ψ,A)]

Then
Ker(rest) = Im(δ∗)

where rest : [Irr(S̄ψ,A)] −→ Irr(S̄ψ).

It is interesting to observe the following subtlety. When χ 
= 1 in the
above lemma. it is of course possible that χv = 1 for some places v. Let
Σχ be the set of places where χv = 1. Then for places v ∈ Σχ, recall by
Proposition 15.12(iii) that the map

δv : H1(Fv, ZE)/b(Ker(χv)) = H1(Fv, T )[2] −→ Irr(S̄ψv)

is only injective but not surjective: its image is a subgroup of index 2. Hence,
we only have an injection

∏
v

δ∗v :
′∏
v

H1(Fv, ZE)/bv(Ker(χv)) ↪→ Irr(S̄ψ,A).

However, the composite of this injection with the projection to [Irr(S̄ψ,A)] is
surjective. This amounts to seeing that given any η ∈ Irr(S̄ψ,A), one can twist
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η by an automorphic sign character to ensure that at all places v ∈ Σχ, ηv
belongs to the image of δv.

16. A-packets and multiplicity formula

After this long preparation, we are finally ready to define local and global
Arthur packets and establish the Arthur multiplicity formula for the A-
parameters ψ = ψE,K,[χ] considered above.

16.1. Near equivalence classes and Arthur’s conjectures

A global A-parameter ψ = ψE,K,[χ] as above (with E fixed) gives rise to a near
equivalence class of representations of GE(A). Namely, for almost all places,
ψv is unramified and

ψv

(
Frobv,

(
q
1/2
v

q
−1/2
v

))
∈ PGSO8(C) �E WF

gives a semisimple conjugacy class in PGSO8(C) · Frobv, which in turns de-
termines an unramified representation of GE(Fv). We denote the associated
near equivalence class in A2(GE) by A2,ψ(GE).

To a first approximation, Arthur’s conjectures describe the structure of
this submodule A2,ψ(GE). Though we have already discussed these conjec-
tures in §3.3, we highlight the two key points here for the convenience of the
reader:

• (Local) One expects to have a local A-packet Πψv , which is a finite
multi-set over Irr(GE(Fv)) equipped with a map

Πψv −→ Irr(Sψv).

We may thus view Πψv as a finite length representation of Sψv×GE(Fv):

Πψv =
⊕

ηv∈Irr(Sψv )
ηv ⊗ πηv .

• (Global) One has:

A2,ψ(GE) ∼=
⊕

η∈IrrSψ,A

dim HomSψ
(η ◦ Δ,C) · πη
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where

η = ⊗vηv ∈ Irr(Sψ,A) =
∏
v

′
Irr(Sψv) and πη := ⊗′

vπηv .

We shall see that the square-integrable automorphic representations we
have constructed by theta lifting in §14 verify the above conjectures of Arthur.

16.2. Theta lifts and near equivalence class

Given a global A-parameter ψ = ψE,K,[χ], we have the pair {χ, χ−1} of auto-
morphic characters of T̃E,K . For any C ∈ ΣE,K , we have noted in §4.6 that
there is a pair of isomorphisms

(16.1) ιC , ι
−1
C : H0

C
∼= T̃E,K

of algebraic tori over F (associated to the two choices of (B, τ, ι) with C
corresponding to E ↪→ Bτ ). Pulling back χ and χ−1 via ιC , we obtain a pair
of automorphic characters χ±1 ◦ ιC of H0

C = AutE(C)0. Set

VC [χ] ⊂ A(HC)

to be the submodule spanned by all irreducible summands whose restriction
to H0

C contains χ ◦ ιC or χ−1 ◦ ιC ; this submodule is thus independent of the
isomorphism ιC . In earlier sections, we have studied the theta lifting from
A(HC) to A2(GE). From our local results, one sees that the theta lift of the
submodule VC [χ] is contained in the near equivalence class A2,ψ(GE). More
precisely, Corollary 14.6 gives

Proposition 16.2. Given ψ = ψE,K,[χ],

V [ψ] :=
⊕

C∈ΣE,K

Θ(VC [χ]) ⊂ A2,ψ(GE).

Moreover, if VC([χ]) = ⊕ρmC(ρ) · ρ, then

Θ(VC [χ]) ∼=
⊕
ρ

mC(ρ) · Θabs(ρ).

16.3. Local A-packets

Our goal in the remainder of this section is to show that the submodule V [ψ]
in the above proposition can be described in the form dictated by Arthur’s
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conjectures. Let us first collect together all the local components of the con-
stituents of V (ψE,K,[χ]).

Definition 16.3. Given ψ = ψE,K,[χ], set

ΣEv ,Kv ,[χv ]

= {(Cv, ρv) ∈ ΣEv ,Kv × Irr(HCv(Fv)) : ρv|H0
Cv

(Fv) ⊃ χv ◦ ιCv or χ−1
v ◦ ιCv}

and
Πψv = {θCv(ρv) : (Cv, ρv) ∈ ΣEv ,Kv ,[χv ]} ⊂ Irr(GEv(Fv)).

We have shown in Theorems 12.1, 13.1, 13.2 and 13.3 that for (Cv, ρv) ∈
ΣEv ,Kv ,[χv ], the theta lift θCv(ρv) is nonzero irreducible. Moreover, Πψv is a set
(rather than a multiset). It is clear that the set Πψv contains all possible local
component at v of the constituents of V (ψE,K,[χ]); this will be our definition
of the local A-packet associated to ψv. Observe that, by definition, there is a
natural bijection

Πψv ←→ ΣEv ,Kv ,[χv ].

16.4. The bijection jψv

Our next task is to construct a natural bijection

Πψv −→ Irr(Sψv)

or equivalently a bijection

jψv : Irr(Sψv) ←→ ΣEv ,Kv ,[χv ],

which then induces the deisred bijection with Πψv . To do this, we shall exploit
Lemma 15.1, Lemma 15.4, Proposition 15.12 as well as Proposition 4.20.

Let us begin with some general observations:

(a) By restriction, one obtains (by Lemma 15.1 and Proposition 15.12(i))
a natural map

Irr(Sψv) −→ (Irr(S0
ψv

))/S2 ∼= H1(Fv, T̃E,K)/S2 = ΣEv ,Kv .

Hence, each ηv ∈ Irr(Sψv) gives rise to a Cηv ∈ ΣEv ,Kv .
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(b) Suppose that χ2
v = 1 but χv 
= 1. Then by Proposition 15.12(ii), we

have:
Irr(S̄ψv) H1(Fv, ZE)/b(Ker(χv)).⏐⏐� ⏐⏐�fχv

Irr(S̄0
ψv

) H1(Fv, T̃Ev ,Kv)[2]

For any given [Cv] ∈ H1(Fv, T̃Ev ,Kv)[2], write

IrrCv(S̄ψv) ←→ f−1
χv

([Cv]).

These are sets of size 2.
Now Proposition 4.20 gives a natural isomorphism of T̃Ev ,Kv(Fv)/
T̃Ev ,Kv(Fv)2-torsors

gCv : f−1([Cv]) −→ (HCv(Fv) �H0
Cv

(Fv))/T̃Ev ,Kv(Fv)2,

which induces a bijection

gCv ,χv : f−1([Cv])/b(Ker(χv)) −→ (HCv(Fv) �H0
Cv

(Fv))/Ker(χv).

Taken together, we thus have a canonical bijection

IrrCv(S̄ψv) ←→ (HCv(Fv) �H0
Cv

(Fv))/Ker(χv).

Hence, given ηv ∈ IrrCv(S̄ψv) (so that Cηv = Cv), ηv corresponds to an
element

aηv ∈ f−1([Cv])/b(Ker(χv))

and then an element

gCv ,χv(aηv) ∈ (HCv(Fv) �H0
Cv

(Fv))/Ker(χv).

On the other hand, the character χv ◦ ιCv of H0
Cv

(Fv) has two exten-
sions to HCv(Fv), which are distinguished by the value ±1 they take on
gCv(aηv). We define

ρηv = the extension of χv ◦ ιCv which takes value +1 on gCv(aηv)

and set
jψv(ηv) = (Cηv , ρηv) ∈ ΣEv ,Kv ,[χv ].
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By Corollary 10.5, ρηv is also characterized as the unique extension
of χv ◦ ιCηv

whose mini-theta lift to GL2(Ev)det is supported on the
Whittaker data in aηv · b(Ker(χv)).

(c) If χv = 1, then by Proposition 15.12(iii), there is a canonical section

δ∗v : H1(Fv, T̃Ev ,Kv)[2] = Irr(S̄0
ψv

) −→ Irr(S̄ψv).

So for the two extensions of a character η0
v of S̄0

ψv
, there is a distin-

guished one contained in the image of δ∗v . On the other hand, for any
[Cv] ∈ H1(Fv, T̃Ev ,Kv)[2], there is a distinguished extension of the trivial
character χv ◦ ιCv from H0

Cv
(Fv) to HCv(Fv), namely the trivial charac-

ter. Hence if ηv = δ∗v(Cηv), we set

ρηv = 1Cηv
and ρηv ·εv = εCηv

where εv is the sign character of Sψv and εCv is the nontrivial (sign)
character of HCv(Fv)/H0

Cv
(Fv).

Hence, when χ2
v = 1, we have defined in (b) and (c) above a canonical

bijection

(16.4) Irr(S̄ψv) ←→ Σ̄Ev ,Kv ,[χv ] = {(Cv, ρv) ∈ ΣEv ,Kv ,[χv ] : [Cv]2 = 1}.

To complete the construction of jψv , it will now be convenient to consider
different cases, depending on whether (Ev, Kv) = (field, split) or not, and
whether χ2

v = 1 or not.

(1) Suppose first that (Ev, Kv) 
= (field, split). Then Sψv = S̄ψv is an ele-
mentary abelian 2-group. If χ2

v = 1, the (16.4) already gives the con-
struction of jψv . On the other hand, when χ2

v 
= 1, then Sψv = S0
ψv

. For
ηv ∈ Irr(Sψv), we set

ρηv = IndHCηv
(Fv)

H0
Cηv (Fv)

χ±1 ◦ ιCηv
,

recalling that HCv(Fv) 
= H0
Cv

(Fv) for any [Cv] ∈ ΣEv ,Kv .
(2) Suppose now that (Ev, Kv) = (field, split), so that v is necessarily a non-

archimedean place of F . We fix the map ψv (as opposed to considering
it as a conjugacy class of maps) and suppose that ψv|WFv

corresponds to
the character χv (as opposed to χ−1

v ) of T̃Ev ,Kv . Then Proposition 15.12
and Lemma 15.4 give

Irr(S0
ψv

) = H1(Fv, T̃Ev ,Kv) = Σ̃Ev ,Kv = Br3(Fv) = Z/3Z.
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Thus, an element ηv ∈ Irr(S0
ψv

) gives rise to an Ev-twisted composition
algebra Cηv and then a central simple algebra Dηv ∈ Br3(Fv) with an
isomorphism

iηv = iDηv
: HCηv

(Fv) −→ T̃Ev ,Kv .

Explicitly, we have two possible twisted composition algebras

C+
v = (Ev ↪→ M3(Fv)) and C−

v = (Ev ↪→ D+
v ),

where Dv is any of the two cubic division F -algebras. Moreover, the
two isomorphisms iDv and iDop

v
differ from each other by composition

with inversion. We recall also that

[HC+
v
(Fv) : H0

C+
v
(Fv)] = 2, but HC−

v
(Fv) = H0

C−
v
(Fv).

We now consider two cases:
(a) χ2

v 
= 1. In this case, one has Sψv = S0
ψv

= μ3, so (16.4) tells us
nothing in this case. To specifiy the bijection

jψv : Irr(Sψv) = Z/3Z ←→ ΣEv ,Kv ,[χv ],

the trivial character of Sψv is sent to the element (C+
v , ρηv [χv]) ∈

ΣEv ,Kv ,[χv ], where ρηv [χv] is defined as in case (1a) above. For a
nontrivial character ηv of Sψv , we set

jψv(ηv) = (C−
v , χv ◦ iηv).

We note that the above recipe is independent of the choice of the
representative ψv in its conjugacy class. Indeed, if we had used the
map ψ−1

v (which corresponds to χ−1
v ), then one has an equality

of the component groups Sψv = Sψ−1
v

as subsets of S � (S2 ×
S3). However, an element of the latter which conjugates ψv to
ψ−1
v induces not the identity automorphism of Sψv but the inverse

automorphism. This implies that

jψv(ηv) = jψ−1
v

(η−1
v ),

so that the above recipe is independent of the choice of the repre-
sentative map ψv in its conjugacy class. A better language to ex-
press this is to work with the projective systems of [ψv] and [Sψv ],
as we did in [GS4, Prop. 3.2], where a similar situation arises.
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(b) χ2
v = 1. In this case, we have the short exact sequence

1 −−−−→ S0
ψv

= μ3 −−−−→ Sψv = S3 −−−−→ S2 −−−−→ 1,

so that Sψv is the nonabelian group S3. Let us denote the ir-
reducible representations of S3 by 1, ε (the sign character) and
r (the unique 2-dimensional irreducible representation). Because
S̄ψv = Sψv/S

0
ψv

= S2, (16.4) already determines for us jψv(1) and
jψv(ε). Hence we have no choice for jψv(r):

jψv(r) = (C−
v , χv ◦ ιC−

v
).

This completes our construction of a canonical bijection

jψv : Irr(Sψv) ←→ ΣEv ,Kv ,[χv ],

For any ηv ∈ Irr(Sψv), if jψv(ηv) = (Cηv , ρηv), we write

πηv := θCηv
(ρηv) ∈ Irr(GE(Fv)).

16.5. Global A-packets

We come now to the global setting. Without loss of generality, fix a global
A-parameter, or more precisely a map

ψ = ψE,K,[χ] : WF −→ S � (S2 × S3) ⊂ PGSO8(C) � S3

and suppose that its restriction to WF corresponds to the Hecke character χ
of the torus T̃E,K . The PGSO8(C)-conjugacy class of ψ then corresponds to
the pair [χ] = {χ, χ−1} of Hecke characters of the torus T̃E,K .

As we explained in §16.4, the local A-packets Πψv are equipped with
canonical bijections

jψv : Irr(Sψv) ←→ ΣEv ,Kv ,[χv ] ←→ Πψv

The global A-packet Πψ associated to ψ is simply the restricted tensor product
of the local ones, so that

Πψ = {πη = ⊗′
vπηv : η = ⊗vηv ∈ Irr(Sψ,A)}.

The irreducible summands of V [ψ] ⊂ A2,ψ(GE) are isomorphic to elements
of Πψ.
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16.6. Multiplicity formula

Our remaining task is to verify that the Arthur multiplicity formula holds for
V [ψ]. In other words, for each η = ⊗vηv, we need to determine the multiplicity
of πη in V [ψ]. Now

πη ∼= ⊗vθCηv
(ρηv) where jψv(ηv) = (Cηv , ρηv) for each v.

To determine the multiplicity of πη in V [ψ], we consider the subset

ΣE,K,[χ],η ⊂ ΣE,K

consisting of those C’s satisfying:

• for each place v of F , there is an isomorphism

ιv : Cv := C ⊗F Fv
∼= Cηv .

Note that the isomorphism ιv is unique up to composition by elements
of HC(Fv), and so induces an isomorphism

ιv : HCv
∼= HCηv

which is well-determined up to conjugation. Hence, ρηv ◦ ιv is a well-
defined element of Irr(HCv(Fv)). In particular, we have a well-defined
abstract irreducible representation

ρη,C := ⊗′
vρηv ◦ ιv of HC(A)

such that

Θabs(ρη,C) ∼= πη as abstract representations.

• the representation ρη,C is automorphic and hence occurs in VC [χ].

To decide if ρη,C is automorphic, an important role is played by the fol-
lowing diagram:

H0
Cv

ιv

ιC,v

T̃Ev ,Kv

H0
Cηv

ιηv
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Here ιC,v is the localization of ιC at the place v and we recall that ιC is well-
determined up to conjugacy by HC(F ), and likewise ιv is well-determined up
to conjugacy by HCv(Fv). It is natural to ask if this diagram is commutative,
or can be rendered such. We have:

Lemma 16.5. The above diagram commutes up to inverting, i.e.

ιηv ◦ ιv = ιC,v or ι−1
C,v.

Hence, if HC(Fv) 
= H0
C(Fv), then the above diagram is commutative by re-

placing ιv by ι−1
v if necessary. In particular, if HC(F ) 
= H0

C(F ), then the
above diagram can be made commutative at all places v (by appropriate choices
of ιv at each v).

For C ∈ ΣE,K,[χ],η, the multiplicity mC(ρη,C) of ρη,C in VC [χ] is in fact
independent of C, by our discussion in §14.2. We thus denote this multiplicity
by m(ρη) > 0. Given this, we see that

Multiplicity of πη in V [ψ] = m(ρη) · #ΣE,K,[χ],η.

To establish the multiplicity formula, we need to show that the above number
is equal to

mη := 〈η ◦ Δ, 1〉Sψ
= 1

#Sψ
·
∑
S∈Sψ

tr (η(Δ(s))) .

We consider the different cases of ψ = ψE,K,[χ] in turn in the subsequent
subsections.

16.7. K is a field and χ2 �= 1

This is in some sense the most nondegenerate case, as all possible local sce-
narios we discussed in §16.4 can occur. However, it is also the least subtle
case because

Sψ = {1} so that mη = dim η.

Let Sη denote the finite set of places v of F where Cηv is associated with a
cubic division algebra; at these places, we have (Ev, Kv) = (field, split). We
have a decomposition

Sη = S′
η � S′′

η

where S′
η consists of those places v where χ2

v = 1. Then

dim ηv =
{

1, if v /∈ S′
η

2, if v ∈ S′
η
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so that

mη = dim η = 2#S′
η .

We now need to determine the size of ΣE,K,[χ],η. For C ∈ ΣE,K,[χ],η cor-
responding to E ↪→ Bτ (for a central simple algebra B over K of degree 3,
equipped with an involution τ of the second kind), B is ramified precisely at
v ∈ Sη. The number of possible C’s is, at this point,

{
2#Sη−1 if Sη is nonempty;
1, if Sη is empty.

However, we also need to impose the condition that ρη,C is automorphic.
Assume first that Sη is nonempty. For any C ∈ ΣE,K,[χ],η, we have HC(F ) =

H0
C(F ). From our discussion in §14.2, the abstract representation ρη,C is au-

tomorphic if and only if its abstract restriction to H0
C(A) contains χ ◦ ιC or

χ−1 ◦ ιC = χ ◦ ι−1
C . In other words, we need

ρηv |H0
Cηv

◦ ιv ⊃ χv ◦ ιC,v for all places v:

for one of the two choices of ιC .
Now

ρηv |H0
Cηv

=
{
χv ◦ ιηv + χ−1

v ◦ ιηv if v /∈ Sη and χ2
v 
= 1;

χv ◦ ιηv , otherwise.

From this and Lemma 16.5, we see that the desired containment holds for
any v /∈ S′′

η for both choices of ιC .
It remains to consider the places in S′′

η , where we need the following to
hold:

χv ◦ ιηv ◦ ιv = χv ◦ ιC,v.

This identity fixes ιC,v for every v ∈ S′′
η . In other words, if ιC is associated to

E ↪→ Bτ for a pair (B, τ), then the invariant of Bv for every v ∈ S′′
η is fixed,

and we only have the freedom to dictate the invariant of Bv at v ∈ S′
η.

Hence, the number of possible (B, τ)’s is 2#S′
η and

#ΣE,K,[χ],η =
{

2#S′
η , if S′′

η is nonempty;
2#S′

η−1, if S′′
η is empty.
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On the other hand, by our discussion in §14.2,

m(ρη) = mC(ρη,C) =
{

1, if S′′
η is nonempty;

2, if S′′
η is empty.

Taken together, we see that

m(ρη) · #ΣE,K,[χ],η = 2#S′
η = mη,

as desired.
The case when Sη is empty is dealt with similarly, with both quantities

equal to 1; we omit the details.

16.8. K is a field and χ2 = 1

In this case
Sψ = S2.

Given η = ⊗vηv ∈ Irr(Sψ,A), let Sη be the finite set of places v of F where
Cηv is associated with a cubic division algebra. Then ηv is the 2-dimensional
representation r of Sψv = S3 if v ∈ Sη, and ηv is 1-dimensional otherwise.
Then

mη = dim HomS2(r⊗#Sη ,⊗v/∈Sη
ηv) = 2#Sη−1

if Sη is nonempty. On the other hand, if Sη is empty, then

mη = 1
2(1 + (−1)b) =

{
1 if b is even;
0 if b is odd.

where b is the finite number of places v of F where ηv is nontrivial on Sψ.
Assume first that Sη is nonempty. For any C ∈ ΣE,K,[χ],η, HC(F ) =

H0
C(F ), and if C is associated with E ↪→ Bτ , then B is ramified precisely at

places in Sη. Further, for ρη,C to be automorphic, we need to verify that, for
one of the two choices of ιC , one has

ρηv ◦ ιv|HC(Fv) = χv ◦ ιC,v for all places v.

In fact, since χ2 = 1, it is immaterial which of the two ιC ’s we use. Now

ρηv |H0
Cηv

(Fv) = χv ◦ ιηv for all v.

Hence the desired equality follows from Lemma 16.5 and the hypothesis that
χ2 = 1. In other words, ρη,C is necessarily automorphic for any C ∈ ΣE,K,[χ],η,
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with mC(ρη,C) = 1. Hence,

#ΣE,K,[χ],η = 2#Sη−1

so that
m(ρη) · #ΣE,K,[χ],η = 2#Sη−1 = mη

as desired.
Consider now the case when Sη is empty, so that η is a character of

S̄ψ,A. In this case, Cηv ∈ H1(Fv, T̃Ev ,Kv)[2] for all v, and so by Lemma 15.5,
there is a unique Cη ∈ H1(F, T̃E,K)[2] so that Cη,v

∼= Cηv for all v, and we
need to determine if ρη is automorphic for HCη . For this, we shall appeal to
Proposition 15.16 and Proposition 4.20.

By Proposition 15.16, we see that [Irr(S̄ψ,A)] is divided into two equiv-
alence classes, depending on whether the restriction to S̄ψ = μ2 is trivial
or not. The distinguished class, with trivial restriction to S̄ψ, is thus the
one for which mη = 1 (instead of 0). Proposition 15.16 says that this dis-
tinguished class is precisely the one which contains the image of a section
H1(F, T̃E,K) → Irr(S̄ψ,A). Equivalently, it is the image of the natural map
H1(F,ZE) → ∏′

vH
1(Fv, ZE) → [Irr(S̄ψ,A)].

For η with mη = 1, there is thus an element aη ∈ H1(F,ZE) and an
automorphic sign character εΣ such that for all places v, ηv · εΣ,v corresponds
to aη under the bijection

H1(Fv, ZE)/b(Ker(χv)) ⊃ f−1
χv

([Cηv ]) ←→ Irr(S̄ψv)

in Proposition 15.12. Observe that mη·εΣ = 1 as well, and ρη·εΣ = ρη · εCη ,Σ,
where εCη ,Σ is the automorphic sign character of HCη nontrivial precisely at
places in Σ. Hence in deciding the automorphy of ρη, there is no harm in
assuming that Σ is empty, by replacing η by η · εΣ if necessary.

By Proposition 4.20, the element aη ∈ H1(F,ZE) gives rise to an element

g(aη) ∈ HCη(Fv) �H0
Cη

(Fv) for each place v.

Now ρη is automorphic if and only if ρη(g(aη)) = 1. But its local component
ρηv is characterized by the property that

χv(g(aη)) = 1 for all v.

In particular, ρη is automorphic when mη = 1, as desired.
On the other hand, if mη = 0, it is clear that ρη is not automorphic, since

ρη differs from an automorphic ρη′ by a twist of a global sign character of
HCη which is the local sign character at an odd number of places.
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16.9. K is split and χ2 �= 1

In this case,
Sψ = μ3,

For a given η ∈ Irr(Sψ,A), let Sη be the finite set of places where Cηv is
associated with a cubic division algebra. For v ∈ Sη, Ev is necessarily a field.
We have a decomposition

Sη = S′
η � S′′

η

where S′
η consists of those v where χ2

v = 1. Hence, for v ∈ S′
η, Sψv = S3 and

ηv is the 2-dimensional irreducible representation r of S3; at all other places,
ηv is 1-dimensional. For places v ∈ S′′

η , Sψv = μ3 and we further decomposes

S′′
η = S′′

η,1 ∪ S′′
η,2

where S′′
η,1 consists of those v such that ηv corresponds to the element 1/3 ∈

Z/3Z = Irr(μ3) and S′′
η,2 those v such that ηv corresponds to 2/3. For ease of

notation, let us set

a = #S′
η, b1 = #S′′

η,1 and b2 = #S′′
η,2.

Considering the pullback of ηv to Sψ, we have:

ηv|Sψ
=

⎧⎪⎪⎨⎪⎪⎩
1 if v /∈ Sη;
ηv, if v ∈ S′′

η ;
the sum of the two nontrivial characters of μ3, if v ∈ S′

η.

Hence,

mη = 1
3 ·

(
2a + (−1)a · ζb1−b2 + (−1)a · ζb2−b1

)
where ζ ∈ C× is a primitive cube root of 1. To further explicate the above
formula, we have

mη =
{

(2a + 2(−1)a)/3, if b1 − b2 = 0 mod 3;
(2a + (−1)a+1)/3, if b1 − b2 
= 0 mod 3.

In particular, if Sη is empty (so that a = b1 = b2 = 0), we see that mη = 1.
We now enumerate the set ΣE,K,[χ],η. Any C ∈ ΣE,K,[χ],η corresponds to

E ↪→ B+ for a central simple F -algebra B ramified precisely at Sη. Assume
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first that Sη is nonempty, so that HC(F ) = H0
C(F ) for any C ∈ ΣE,K,[χ],η. To

check if ρη,C is automorphic, we need to veify that, for one of the two choices
of ιC , we have

ρηv ◦ ιv|H0
C(Fv) ⊃ χv ◦ ιC,v for all places v.

Now

ρηv |H0
Cηv

(Fv) =
{
χv ◦ ιηv + χ−1

v ◦ ιηv , if v /∈ Sη and χ2
v 
= 1

χv ◦ ιηv , otherwise.

So the desired containment holds at all places outside S′′
η .

It remains to consider the places v ∈ S′′
η . For such a v, we need to verify

if
χv ◦ ιηv ◦ ιv = χv ◦ ιC,v.

This holds if and only if
ιC,v = ιηv ◦ ιv.

In other words, if ιC is associated to the associative algebra embedding E ↪→
B, then the invariants of B at v ∈ S′′

η are constrained by ηv as follows:

inv(Bv) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/3, if v ∈ S′′

η,1;
2/3, if v ∈ S′′

η,2;
±1/3, if v ∈ S′

η;
0, otherwise.

We leave it as an amusing exercise to verify that the number of B’s satisfying
these requirements is equal to mη (with mη computed above). It follows that

#ΣE,K,[χ],η =
{
mη, if S′′

η is nonempty;
mη/2, if S′′

η is empty.

However, from the discussion in §14.2, we have:

m(ρη) =
{

1, if S′′
η is nonempty;

2, if S′′
η is empty.

Taken together, we thus conclude that, when Sη is nonempty,

m(ρη) · #ΣE,K,[χ],η = mη,

as desired.
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Now consider the case when Sη is empty. In this case, the only possible
C ∈ ΣE,K,[χ],η is C+ corresponding to E ↪→ M3(F ), and HC+(F ) 
= H0

C+(F ).
By our discussion in §14.2, we see easily that ρη,C+ is automorphic with
mC+(ρη,C+) = 1. Hence

m(ρη) · #ΣE,K,[χ],η = 1 = mη

as desired.

16.10. K is split and χ2 = 1

In this case,
Sψ

∼= S3

and we fix an element s0 in S3 \ μ3, so that Sψ = μ3 � S2 and S̄ψ = 〈s0〉. For
all places v, we then have Sψv = π0(SWFv ) � μ2.

Given an η, let Sη be the finite set of places where Cηv is associated to a
cubic division algebra. Then for v ∈ Sη, Sψv = S3 and ηv is the 2-dimensional
irreducible representation r of S3. For all other v, ηv is 1-dimensional. On
pulling back to Sψ = S3, we have

ηv|Sψ
=

⎧⎪⎪⎨⎪⎪⎩
1, if v /∈ Sη and ηv(s0) = 1;
ε, if v /∈ Sη and ηv(s0) = −1;
r, if v ∈ Sη.

Hence,

mη = 1
6 ·

(
2#Sη + 2 · (−1)#Sη

)
if Sη is nonempty,

and if Sη is empty,

mη = 1
2 ·

(
1 + (−1)b

)
=
{

1, if b is even;
0, if b is odd.

where b is the cardinality of the set of places v where ηv(s0) = −1.
We now consider the set ΣE,K,[χ],η. For C ∈ ΣE,K,[χ],η, associated to E ↪→

B+ say, we see that B is ramified precisely at Sη. We know that

#{B ∈ Br3(F ) : B is ramified precisely at Sη} = 1
3 ·

(
2#Sη + 2 · (−1)#Sη

)
if Sη is nonempty, and is 1 if Sη is empty.
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Assume first that Sη is nonempty, so that HC(F ) = H0
C(F ) for any C ∈

ΣE,K,[χ],η. Then for ρη,C to be automorphic, we need

ρηv ◦ ιv|HC(Fv) ⊃ χv ◦ ιC,v for all v

for one of the two choices of ιC . Now

ρηv |H0
Cηv

(Fv) = χv ◦ ιηv ,

so that ρη,C is automorphic if and only if

χv ◦ ιηv ◦ ιv = χv ◦ ιC,v for all v.

By Lemma 16.5, this holds automatically since χ2 = 1. Hence ρη,C is always
automorphic, with mC(ρη,C) = 1 (by the discussion in §14.2), and

#ΣE,K,[χ],η == 1
6 ·

(
2#Sη + 2 · (−1)#Sη

)
= mη

as desired.
On the other hand, if Sη is empty, then the only possible C ∈ ΣE,K,[χ],η

is C+ corresponding to E ↪→ M3(F ). This is treated in exactly the same way
as the corresponding case when K is a field, using the global Poitou-Tate
duality summarized in Proposition 15.16. We omit the details.

To summarize, we have shown the following result which is one of the
main global theorems of this paper:

Theorem 16.6. Let ψ = ψE,K.,[χ] be a given global A-parameter of GE over
a number field F . Let η ∈ Irr(Sψ,A) be an irreducible character of its adelic
component group with associated representation πη in the global A-packet Πψ.
Then the multiplicity of πη in the submodule V [ψ] ⊆ A2,ψ(GE) is equal to

mη = dim HomSψ
(η ◦ Δ,C).

16.11. Main global theorem

If mdisc(π) denotes the multiplicity of an irreducible representation π in the
automorphic discrete spectrum A2(GE), then the last theorem shows that

mdisc(πη) ≥ mη for any η ∈ Irr(Sψ,A).

In this final subsection, we shall show the reverse inequality and hence
strengthen this inequality to an equality.
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The argument is analogous to that for the cubic unipotent A-packets of
G2 given in [G]. The proof will require two ingredients: one local and the
other global in nature. We begin by describing these two ingredients. Hence,
we fix a global A-parameter ψ = ψE,K,[χ] and η = ⊗vηv ∈ Irr(Sψ,A), so that
πη ∼= ⊗vπηv = ⊗vΘabs

Cηv
(ρηv).

• (Local) For each place v of F , and for each nondegenerate Ev-twisted
Bhargava cube Σv with associated character ψΣv of NEv(Fv), we have

(16.7) HomNEv (Fv)(πηv , ψΣv) ∼=
{
ρηv · μKv , if CΣv

∼= Cηv ;
0, otherwise,

as a module for the stabilizer MEv ,Σv(Fv) of Σv. Here, μKv is either
the trivial character or the sign character of MEv ,Σv(Fv) ∼= HCηv

(Fv)
depending on whether ωKv/Fv

(−1) = +1 or −1.
This result is Proposition 12.3 in the nonarchimedean case. For an
archimedean v, note that the Hom space here refers to the space of
continuous linear functionals of πηv (as a Casselman-Wallach represen-
tation). The result for archimedean v will be shown in a paper with
J. Adams and A. Paul, where we studied the archimedean theta corre-
spondence and prove the results in §13.

• (Global) Let

ΣE,K,η = {C ∈ ΣE,K : Cv
∼= Cηv for all places v}.

For any embedding f : πη ↪→ A(GE), there exists C ∈ ΣE,K,η such that
the ψC-Fourier coefficient of f(πη) is nonzero. We shall show this as a
consequence of Proposition 16.9 and Corollary 16.10 below.

Taking these two ingredients for granted, we proceed to show the reverse
inequality. By the consideration of Fourier coefficients, we have a natural map

HomGE(A)(πη,A(GE)) −→
⊕

C∈ΣE,K,η

HomNE(A)(πη, ψC)ME,ψC
(F )

The global ingredient shows that this map is injective, so that one has an
upper bound

mdisc(πη) ≤
∑

C∈ΣE,K,η

dim HomNE(A)(πη, ψC)ME,ψC
(F ).
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Here, we have used the fact that
∏

v μKv is an automorphic character and
hence is trivial on HC(F ). The local ingredient, on the other hand, shows
that for each C,

dim HomNE(A)(πη, ψC)ME,ψC
(F ) = dim ρHC(F )

η = dim HomHC(F )(ρ∨η ,C).

The latter dimension is simply the automorphic multiplicity of ρ∨η in A(HC).
We have seen that this automorphic multiplicity is independent of C ∈ ΣE,K,η

and have denoted it by m(ρ∨η ) = m(ρη). Hence, we obtain

mdisc(πη) ≤ m(ρ∨η ) · #ΣE,K,η = mη,

where the second equality is precisely what we showed when we verified the
Arthur multiplicity formula for the space of global theta liftings. Summa-
rizing, we have the following theorem which strengthens Theorem 16.6 and
which is the main global theorem of this paper.

Theorem 16.8. Let ψ = ψE,K.,[χ] be a given global A-parameter of GE over
a number field F . Let η ∈ Irr(Sψ,A) be an irreducible character of its adelic
component group with associated representation πη in the global A-packet Πψ.
Then

mdisc(πη) = dim HomSψ
(η ◦ Δ,C).

It remains to establish the global ingredient above. For this, we recall the
following notion from [GS1]: when Fv = R or C, we say that a representation
πv of GE(Fv) is weakly minimal if the associated variety of its annihilator in
the universal enveloping algebra is the minimal nilpotent orbit. Now we note:

Proposition 16.9. Let π 
= C be an irreducible automorphic subrepresenta-
tion of GE such that πv is not weakly minimal for at least one archimedean
place v. Then there exists a nondegenerate cube C ∈ VE(F ) and f ∈ π such
that fNE ,ψC


= 0.

Proof. Let f ∈ π and consider the Fourier expansion of the constant term fZ
along V E = NE/Z. If this expansion is supported on cubes of rank one, then
π is weakly minimal in the sense of Definition 4.6 in [GS1]. Then, by [GS1,
Thm. 5.4], πv is weakly minimal at all archimedean places, which contradicts
our assumption. Moreover, since E is a field, VE(F ) has no rank 2 elements.
Thus, fZ has a non-trivial Fourier coefficient for a cube C ′ of rank 3 or 4.

If C ′ is rank 3, then by Proposition 5.5, we can assume that C ′ = (0, 0, e, 0)
with e ∈ E×, Let UE be the unipotent radical of the 3-step maximal parabolic
subgroup QE in GE , with NE and UE in standard position, such that ψC′
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restricts to a non-trivial character of [UE , UE ]. The character of [UE , UE ]
thus obtained is associated to an sl2-triple corresponding to the non-special
nilpotent orbit 3A1 (see the introduction to [JLS]). By [JLS, Cor. 6.6] (the
conditions of Lemma 4.3 there are satisfied since the orbit 3A1 is not special)
there exists x ∈ F× such that, with C = (x, 0, e, 0), fNE ,ψC


= 0 for some
f ∈ π. This proves the proposition.

Corollary 16.10. For any embedding f : πη ↪→ A(GE), there exists C ∈
ΣE,K,η such that the ψC-Fourier coefficient of f(πη) is nonzero.

Proof. By the local ingredient (16.7), we see that the only possible nonzero
nondegenerate Fourier coefficients supported by f(πη) correspond to the
finitely many C ∈ ΣE,K,η. Hence the corollary follows from Proposition 16.9.

Appendix A. A theta correspondence for E7

In this section, we consider a dual pair GE × HC in the split adjoint group
of type E7, where HC = AutE(C) for a 4-dimensional E-twisted composition
algebra C. This theta correspondence (and its version for inner forms) can be
used to construct the A-packets corresponding to a root SL2, as we discussed
briefly in §3.7. We will not launch into this detailed study in this paper. The
main purpose of this appendix is simply to compute the theta lift of the trivial
representation of HC = SL2(E)/μ2; this result is needed in our paper [GS3].

A.1. Twisted composition

Assume that B is a composition algebra over F . Let N(x) = xx̄ and Tr(x) =
x+ x̄, be the norm and the trace on B. Then CB = B⊕B⊕B has a structure
of an F 3-twisted composition algebra, given by

Q(x1, x2, x3) = (N(x1), N(x2), N(x3))
β(x1, x2, x3) = (x̄2x̄3, x̄3x̄1, x̄1x̄2)
NC(x1, x2, x3) = Tr(x3x2x1).

The symmetric group S3 acts on CB as F -automorphisms by permuting the
three summands of CB, with the action of odd permutations twisted by the
map (x1, x2, x3) �→ (x̄1, x̄2, x̄3). Let E be a cubic etalé algebra over F . Since
Aut(E/F ) is isomorphic to a subgroup of S3, by fixing an embedding of
Aut(E/F ) into S3, we obtain an E-twisted composition algebra CE

B by Galois
descent.
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We shall now describe the group Aut(CE
B ) of automorphisms of CE

B for
B = M2(F ). In this case x̄ is defined as the adjoint of the matrix x,

x̄ =
(

d −b
−c a

)
if x =

(
a b
c d

)
.

Assume first that E = F 3. Let

GL2(F 3)det = {(g1, g2, g3)| det g1 = det g2 = det g3}

This group acts on CB = B ⊕B ⊕B by

g(x1, x2, x3) = (g3x1g
−1
2 , g1x2g

−1
3 , g2x3g

−1
1 ).

It is fairly straightforward to check that this action preserves Q and β.
An element g acts trivially if and only if it belongs to ΔF×. The group
GL2(F 3)det/ΔF× is the group of F -points of the algebraic group SL2(F 3)/μ2.
The action of S3 on CB normalizes that of SL2(F 3)/μ2, on which it acts by
permuting the 3 factors. Hence, for a general cubic etalé algebra E over F ,
the group of F -automorphisms of CE

B (with B = M2(F )) is

AutF (CE
B ) ∼= SL2(E)/μ2 � SE ,

and the group of E-automorphisms is its identity component

AutE(CE
B ) ∼= SL2(E)/μ2.

Since
H1(F, SL2(E)/μ2) ∼= H2(F, μ2) = Br2(F )

we see that the E-isomorphism classes of E-twisted composition algebras C of
E-dimension 4 correspond to isomorphism classes of quaternion algebras. In
particular, as B varies over quaternion F -algebras, the algebras CE

B exhaust
all E-isomorphism classes of E-twisted composition algebras of E-dimension
4.

Via the Springer decomposition, we may connect the above discussion
with the theory of Freudenthal-Jordan algebras of dimension 15. The split
Jordan algebra of dimension 15 is Js = F 3 ⊕ CM2(F ) and its automorphism
group is PGSp6 = Sp6(F )/μ2. Since

H1(F, Sp6(F )/μ2) ∼= H2(F, μ2) = Br2(F ),



Twisted composition algebra and triality 2097

we see that the isomorphism classes of Freudenthal Jordan algebras of di-
mension 15 are parametrized by isomorphism classes of quaternion algebras
as well. If J is a form of Js, let [J ] ∈ Br2(F ) denote the corresponding Brauer
class. Similarly, for B ∈ Br2(F ), let JB be the corresponding Freudenthal-
Jordan algebra. It is clear that [J ] = B if J = E ⊕ CB.

A.2. Some embedding problems

Let CB be an E-twisted composition algebra of E-dimension 4. Every element
x in CB satisfies the quadratic equation

β2(x) + Q(x)β(x) −NCB (x)x = 0.

If we fix e = Q(x) and d = NCB (x), such that the cube Σ = (1, 0,−e,−d)
is non-degenerate, then x and β(x) span an E-twisted subalgebra of E-
dimension 2, corresponding to the cube Σ. Thus, in order to understand
embeddings of the E-twisted composition algebras of E-dimension 2 into CB,
it suffices to understand solutions of the above equation.

Proposition A.1. Assume that E = F 3 and consider CB with B = M2(F ).
The group AutE(CB) = GL2(F 3)det/ΔF× acts transitively on the set of
elements x ∈ CB such that Q(x) = 0, and NC(x) = 1. The stabilizer
StabAutE(CB)(x0) of

x0 = (( 1 0
0 0 ) , ( 1 0

0 0 ) , ( 1 0
0 0 ))

is the quotient by ΔF× of the subgroup of GL2(F 3) consisting of elements

(( a 0
0 d ) , ( a 0

0 d ) , ( a 0
0 d )) .

In particular, StabAutE(CB)(x0) ∼= F×. The stabilizer of x0 in AutF (CB) =
AutE(CB) � S3 is a semi-direct product F× � S′

3, where S′
3 is a “quadratic

twist” of S3: we multiply any transposition in S3 by

w = (( 0 1
1 0 ) , ( 0 1

1 0 ) , ( 0 1
1 0 )) .

Proof. Let x = (x1, x2, x3) ∈ CB such that Q(x) = 0, and NCB (x) = 1. We
want to show that x is conjugated to x0 by an element in GL2(F 3)det. Since
Q(x) = 0, we have detxi = 0 for all i. Hence, we can write

x1 = v3 · w	
2 , x2 = v1 · w	

3 , x3 = v2 · w	
1
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for some column vectors vi and wi. Note that

NCB (x) = Tr(x3x2x1) = (w1 · v	1 ) · (w	
2 · v2) · (w	

3 · v3) = 1.

Hence, all vectors are non-zero, and we can pick g1, g2, g3 ∈ SL2(F ), so that
gi(vi) = (1, 0)	 for all i. Thus, we can assume that v1 = (1, 0)	 for all i.
Since (w2 · v	2 ) 
= 0, wi = (ai, bi) with ai 
= 0. Hence, using the unipotent gi
stabilizing (1, 0)	, we can arrange all bi = 0. Thus x is conjugate to

((
a2 0
0 0

)
,
(
a3 0
0 0

)
,
(
a1 0
0 0

))
such that a1a2a3 = 1. But this element is conjugated to x0 by a triple of
diagonal matrices.

The stabilizers can be computed directly.

Let CB be an E-twisted composition algebra of E-dimension 4. For a
nondegenerate E-twisted cube Σ = (1, 0 − f,−b), consider the set

ΩΣ = {v ∈ C | Q(v) = f,NC(v) = b}.

Recall that to Σ, we attach an E-twisted algebra CΣ of E-dimension 2,
equipped with a reduced basis {v, β(v)}. Any element x ∈ ΩΣ(F ) defines
an E-embedding of CΣ into CB, where v is sent to x. Hence ΩΣ is in bijection
with the set of embeddings CΣ ↪→ CB.

Corollary A.2. Assume that F is a local field, and CB is an E-twisted com-
position algebra of E-dimension 4. If ΩΣ(F ) is nonempty, then AutE(CB)
acts transitively on ΩΣ(F ).

Proof. Fix a point v0 ∈ ΩΣ(F ). By Proposition A.1, GL2(E)det acts tran-
sitively on ΩΣ(F ) (through its quotient GL2(E)det/F× = HCB (F )) and the
stabilizer of v0 ∈ ΩΣ(F ) is a maximal torus Tv0 in GL2(F ) ⊂ GL2(E)det.
Hence the F -rational orbits under GL2(E)det is parametrized by H1(F, Tv0),
which is trivial since Tv0 = ResK/FGm for some quadratic étale algebra K

over F . The corollary follows.

Next, we need to understand when ΩΣ(F ) is nonempty:

Proposition A.3. Let B = M2(F ). Let C be an E-twisted composition al-
gebra of E-dimension 2. Then C embeds into CE

B if and only if J = E⊕C is
not a division algebra.
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Proof. If J = E ⊕ C is not a division algebra, then by [KMRT, Thm 38.8],
J = J3(K) for a quadratic étale algebra K over F . Since K embeds into
B = M2(F ), we deduce that J embeds into J3(B) and hence C into CE

B ,
where J3(B) = E ⊕ CE

B .
Now assume that J = E ⊕C is a division algebra. By tensoring with KE

if necessary, we can assume without loss of generality that E is a cyclic field,
with the Galois group generated by σ of order 3. Then CE

B = M2(E), and we
have

Q(x) = det(x), β(x) = x̄σx̄σ
2
, and NCE

B
(x) = Tr(xσ2

xσx).

On the other hand, there exists λ ∈ F× such that C ∼= C(λ) = E ⊕ E, with

Q(a, b) = ab, β(a, b) = (λ−1b#, λa#) and NC(a, b) = λNE(a)+λ−1NE(b).

Moreover, since E ⊕ C is a division algebra, λ /∈ NE/F (E×).
Assume, for the sake of contradiction, that C(λ) embeds into CE

B . Let x
be the image of (1, 0). Since QCE

B
(x) = QC(λ)(1, 0) = 0, the determinant of x

is 0. Hence x = v ·w	 for two 2× 1 column vectors v and w, with coefficients
in E. One checks that

NCE
B
(x) = NE/F (w	 · vσ).

This implies that NC(λ)(1, 0) = λ = NCE
B
(x) is the norm of an element in E×,

a contradiction.

A.3. D4 geometry

Now let O be the 8-dimensional composition algebra of split octonions. The
automorphisms group of CO is a semi-direct product of the split simply con-
nected group G of type D4 with S3. We remind the reader that S3 acts on
CO = O⊕O⊕O is by permuting the three summands of CO, with a twist by
the map (x1, x2, x3) �→ (x̄1, x̄2, x̄3) for odd permutations. Tits [Ti] has given
a beautiful description of the flag varieties for G in terms of geometry of CO.
We follow the exposition of Weissman [We2].

Fix a triple (i, j, k) of integers 0 ≤ i, j, k ≤ 2. Let Fijk be the set of
subspaces

X ⊕ Y ⊕ Z ⊆ CO

where X, Y, Z are subspaces of O of dimensions i, j, k, respectively, such that
NO(X) = NO(Y ) = NO(Z) = 0 and XY = Y Z = ZX = 0. Then Fijk is a
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flag variety for G with respect to a parabolic P = MN , as indicated in the
following table, where ΔM is the subset of simple roots “contained” in M .

i, j, k ΔM

0, 0, 0 {α0, α1, α2, α3}
1, 0, 0 {α0, α2, α3}
1, 1, 0 {α0, α3}
1, 1, 1 {α0}
2, 1, 1 {α1}
2, 2, 1 {α1, α2}
2, 2, 2 {α1, α2, α3}

Consider now, CE
O , the E-twisted version of CO. As we noted in §4.11,

GE = AutE(CE
O ).

For i = 1 or 2, we define Fi to be the set of E-subspaces Vi ⊆ CE
O of dimension

i such that Vi ⊗ F̄ belongs to Fiii for CE
O ⊗ F̄ ∼= CO⊗F̄ . A pair V1 ⊂ V2 is a

full flag if E is a field. Let Pi = MiNi be the stabilizer of Vi in GE . Then

Mder
1

∼= SL2(F ) (long root), M1/M
der
1

∼= GL(V1) = E×

and
Mder

2
∼= SL2(E) (short root), M2 ∼= GL(V2)det.

These claims can be easily checked over F̄ . The modular characters are

ρU1 = |NE |3 and ρU2 = | det |5

We have degenerate principal series J(s) and I(s) corresponding to P1 and
P2, respectively.

A.4. Dual pair

Now let F be a nonarchimedean local field and E a cubic etalé algebra over
F . Let CB be the E-twisted composition algebra of dimension 4 associated
to B = M2(F ), with corresponding Springer decomposition JB = E ⊕ CB.
By our discussion in §6, this data gives rise to a dual pair

GE ×HCB −→ GB := GJB
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where GE = SpinE
8 , HCB = AutE(CB) ∼= SL2(E)/μ2 and GB is the split

adjoint group of type E7. Our goal is to determine the theta lift Θ(1), where
1 is the trivial representation of HCB (F ).

For this purpose, it will be more convenient to work with an alternative
construction or description of the above dual pair which is adapted to the
Siegel maximal parabolic subgroup in GB and which makes use of the inter-
pretation of GE as the automorphism group of an 8-dimensional E-twisted
composition algebra. We give this alternative description next.

Let S ∼= Gm be a maximal split torus in SL2(F )/μ2 ⊂ HC . The torus S
gives a short Z-grading of gB and hE :

gB = n̄⊕m⊕ n and hE = ū⊕ l⊕ u

Let P = MN and Q = LU be the corresponding maximal parabolic sub-
groups in GB and HC respectively. The unipotent radical N is commutative
and can be identified with an exceptional Jordan algebra J . The Levi sub-
group M can be identified with with the similitude group of the cubic form
NJ , with corresponding similitude character

iJ : M → F×.

Now the group GE is contained in M and J , and under its adjoint action on
N , one has the decomposition N = J = E ⊕ CE

O where CE
O is the E-twisted

composition algebra of E-dimension 8.
Note that the M -module N̄ is dual to N and hence can be identified with

J∗. Since J∗ is identified with J using the trace form TJ , we can identify both
N and N̄ with J . Under this identification, both U and Ū are identified with
E ⊂ J . The Levi factor L is the centralizer of GE in M . By Proposition 6.1,
L can be identified with E×. Indeed, for every α ∈ E×, let cα : J → J be
defined by

cα : (e, v) �→ (α#/α · e, α · v)
for all (e, v) ∈ E ⊕ CE

O . Then cα is a similitude of NJ with iJ(cα) = NE(α).
Henceforth, we fix an isomorphism L ∼= E× such that α ∈ E× acts on N̄ as
cα. Using this identification, iJ(α) = |NE(α)|−1 and the center of M consists
of α ∈ F×.

A.5. Theta lift

Let Π be the minimal representation of GB. Let Ω ⊂ N = J be the set of
elements of rank 1, i.e. x ∈ Ω if and only if x 
= 0 and x# = 0. As P̄ -modules,



2102 Wee Teck Gan and Gordan Savin

we have an exact sequence [MS]

0 −−−−→ C∞
c (Ω) −−−−→ Π −−−−→ ΠN̄ −−−−→ 0

where n̄ ∈ N̄ acts on f ∈ C∞
c (Ω) by

π(n̄)f(n) = ψ(〈n̄, n〉)f(n)

where 〈n̄, n〉 is the natural pairing of N̄ and N , and m ∈ M by

π(m)f(n) = |iJ(m)|−2f(m−1nm).

Moreover, ΠN̄ = ΠM ⊗ |iJ |−1 ⊕ |iJ |−2, where ΠM is a minimal representation
of M , trivial on the center. It follows that a central element α ∈ F× acts as
multiplication by |α|3 and |α|6 on the two summands.

Considering Ū -coinvariants, we have a short exact sequence of GE × L-
modules:

0 −−−−→ C∞
c (Ω⊥) −−−−→ ΠŪ −−−−→ ΠN̄ −−−−→ 0,

where Ω⊥ is the set of elements x ∈ Ω perpendicular to E, i.e. the set of
x = (0, v) ∈ E ⊕ CE

O such that

v 
= 0 and x# = (−Q(v), β(v)) = 0.

Assume, for simplicity, that E is a field. Then Ω⊥ is the set of v ∈ CE
O

spanning an E-line in F1. Recall that GE acts transitively on F1. Fix a line
V1 ∈ F1, and let P1 be the stabilizer of V1. Then P der

1 acts trivially on the
line, and we identify P1/P

der
1 with GL(V1) = E×. Summarizing, we have an

isomorphism of GE × L-modules,

C∞
c (Ω⊥) ∼= IndGE

P1
C∞

c (E×) ⊗ |NE |2

where the induction is not normalized and C∞
c (E×) is the regular represen-

tation of E××E× ∼= P1/P
der
1 ×L, twisted by the character |NE |2 of L ∼= E×

as indicated.

Proposition A.4. Let Θ(1) be the theta lift of the trivial representation of
HCB(F ) = GL2(E)det/ΔF×. Then Θ(1) is a quotient J(1/2), the degenerate
principal series representation associated to the parabolic P1.
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Proof. Assume, for simplicity, that E is a field. Since Θ(1)⊗1HCB
is a quotient

of Π, one sees by passing to Ū -coinvariants that Θ(1) ⊗ 1E× is a quotient of
ΠŪ . Let α ∈ F× be in the center of M . Then α acts trivially on 1E× , and as
|α|3 and |α|6 on the two summands of ΠN̄ . Hence Θ(1) ⊗ 1E× is a quotient
of IndGE

P1
C∞

c (E×) ⊗ |NE |2. Hence Θ(1) is a quotient of IndGE
P1

|NE |2. Since
ρ

1/2
N1

= |NE |3/2, it follows that IndGE
P1

|NE |2 = J(1/2).

Proposition A.5. Let Θ(1) be the theta lift of the trivial representation of
HCB (F ) = GL2(E)det/ΔF×. Let Σ be a non-degenerate E-twisted cube, with
associated E-twisted composition algebra CΣ. Then

• Θ(1)N̄2,ψΣ
= 0 if E ⊕ CΣ is a division algebra;

• Θ(1)N̄2,ψΣ
= C otherwise.

Proof. The space of twisted coinvariants ΠN̄2,ψΣ
is computed exactly as in

Proposition 12.3, giving

ΠN̄2,ψΣ
= C∞

c (ΩΣ(F ))

where ΩΣ is as in Corollary A.2. By the same corollary, if ΩΣ(F ) is nonempty,
then it is a single HC(F )-orbit, in which case Θ(1)N̄2,ψΣ

is one dimensional.
On the other hand, when ΩΣ(F ) is empty, Θ(1)N̄2,ψΣ

= 0. By Proposition A.3,
ΩΣ(F ) is empty precisely when E ⊕ CΣ is a division algebra.

Theorem A.6. Let Θ(1) be the theta lift of the trivial representation of
GL2(E)det/ΔF×. Then Θ(1) embeds as a submodule of the degenerate prin-
cipal series I(1/2). If E is a field, then I(1/2)/Θ(1) ∼= V ′

1 in the notation of
Theorem B.1. Otherwise Θ(1) ∼= I(1/2).

Proof. The minimal representation of GB is a submodule of a degenerate prin-
cipal series representation induced from the Heisenberg parabolic subgroup
of GB. Via restriction of functions to GE , one obtains a nonzero HC-invariant
and GE-equivariant map

Π � ΠHE = Θ(1) −→ I(1/2).

Since the spherical function restricts to a spherical function, the image must
contain the submodule generated by the non-zero spherical vector in I(1/2).
This is the whole I(1/2) unless E is a field, by Propositions B.5 and B.6. If
E is a field, the spherical vector generates the submodule whose quotient is
V ′

1 . Next, we need to use the fact that

I(1/2)N̄2,ψCΣ
∼= C
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for all nondegenerate cubes Σ, which is a simple consequence of the Bruhat
decomposition. Moreover, recall that V ′

1
∼= ΘD(1) is the theta lift via the

minimal representation of GD (the rank 2 E6). Hence (V ′
1)N̄2,ψCΣ

∼= C precisely
when E ⊕ CΣ is a division algebra. Combining with Proposition A.5, we see
that the image of the map Θ(1) −→ I(1/2) is exactly as predicted and the
kernel consists of small representations, i.e. those for which (N̄2, ψCΣ) co-
invariants vanish for all nondegenerate cubes Σ. Since we know that Θ(1) is a
quotient of J(1/2), to finish the proof, it suffices to show that any irreducible
constituent π of J(1/2) satisfies πN̄2,ψCΣ


= 0, for some nondegenerate Σ.
To that end, we claim that it suffices to check one of the following two

conditions:

(a) The Jacquet functor of π for any parabolic subgroup with Levi subgroup
of type A2 is Whittaker generic;

(b) The Jacquet functor of π with respect to N2 is a Whittaker generic
representation of the Levi subgroup M2.

Indeed, if (a) holds, then πN̄2,ψCΣ

= 0 by [GGS, Thm. A], interpreted in our

setting for the nilpotent orbit A2. By the same result of [GGS], the condition
(b) implies that π[N̄1,N̄1],ψ 
= 0 for a generic character of ψ of [N̄1, N̄1], which
in turn implies the existence of a nondegenerate Σ such that πN̄2,ψCΣ


= 0,
by the main result in [JLS] and the fact that the nilpotent orbit 3A1 is not
special.

If E is a field, we have only one additional constituent V ′′
1 in J(1/2)

(see Theorem B.2). Its Jacquet functor with respect to N̄2 is a twist of the
Steinberg representation of M2, hence the condition (b) holds and we are
done in this case.

If E is not a field, then we have not analyzed J(1/2). In these remaining
cases, we shall treat all representations whose exponents lie in the Weyl group
orbit of the leading exponent of the spherical quotient of I(1/2), namely
(1, 1, 0, 0) if E = F 3 or (1, 1, 0) if E = F ×K for K a field. In both cases, we
have two tempered representations,

(A.7) D(St) = D(St)gen ⊕D(St)deg,

which are the generic and non-generic summands of the unitary representation
D(St) obtained by parabolic induction from the Steinberg representation of
the Levi group of type A2. There are three such parabolic groups if E = F 3,
but the resulting representation does not depend on this choice, just as in
the case of D(1), which is the Aubert involute of D(St). Observe that these
tempered representations satisfy the condition (a).
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In order to tabulate all possible standard modules, let us recall their prop-
erties, working with a general root system Δ = {α1, . . . , αn}. Let {λ1, . . . , λn}
be the corresponding fundamental weights. A parabolic subgroup in standard
position corresponds to a subset S ⊂ Δ. A standard module associated to
the parabolic subgroup has leading exponents

λ = (
∑
i∈S

xiαi) + (
∑
i/∈S

yiλi)

where xi ≤ 0, yi > 0 and the first summand is an exponent of the tempered
representation defining the standard module. Now it is easy to determine all
leading exponents in the cases at hand, and thus determine all irreducible
Langlands quotients in both cases:

Case E = F 3:
We have three Langlands quotients of GE for the three maximal parabolic

subgroups whose Levi subgroups are of type A3. The tempered representation
on the Levi subgroup is obtained by inducing the Steinberg representation
of the Levi subgroup of the type A1 × A1, that is, whose derived group is
SL2(F ) × SL2(F ). These Langlands quotients clearly satisfy the condition
(a).

There are three remaining representation: the spherical quotient of I(1/2),
the Langlands quotient J2(StE , 1/2) and the Langlands quotient J1(St, 1/2).
For these, we have complete control of their (N̄2, ψCΣ)-coinvariants, since
the spherical representation and J1(St, 1/2) are the theta lifts ΘM3(F )(1) and
ΘM3(F )(ε) respectively, and J2(StE , 1/2) is a submodule and the only other
constituent of I(1/2). This settles the case E = F 3.

Case E = F ×K:
Here we have an interesting twist, when compared to the split case: there

are two Langlands quotients of GE forming an L-packet which prove especially
challenging.

More precisely, instead of the three A3 maximal parabolic subgroups con-
sidered in the split case, we have a maximal parabolic subgroup in the stan-
dard position with Levi subgroup of the type B2, so that its derived group
is a quasi-split SU4(K). Inducing the Steinberg representation of the Levi
subgroup of SU4(K) whose derived group is SL2(K), gives a representation
of SU4(K) with two irreducible summands. They in turn give two Langlands
quotients of GE with the leading exponent (1, 0,−1). One of these two repre-
sentation is the summand of D(1), denoted by V ′

1 , with (1, 0,−1) as its only
exponent. The other representation V is the potentially troublesome one.
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Finally, we have three additional representations: the spherical quotient
of I(1/2) (which is the other summand of D(1) besides V ′

1 , by Proposi-
tion B.5(4)), the Langlands quotient J2(StE , 1/2) and the Langlands quo-
tient J1(St, 1/2). Clearly, J2(StE , 1/2) satisfies the condition (b) above. Now
J1(St, 1/2) is a submodule of I(1/2), while the spherical representation and
V ′

1 are the theta lifts ΘM3(F )(1) and ΘM3(F )(ε). For these representations, we
have a similar situation as in the split case, with complete control of their
(N̄2, ψCΣ)-coinvariants, and in particular non-vanishing for some Σ.

It remains to deal with the other representation V with leading exponent
(1, 0,−1). Recall that, counting two tempered representations in (A.7), we
have seven representations in all. Let us examine the effect of the Aubert
involution on this set of representations:

• The Aubert involution takes the two summands of D(St) to the two
summands of D(1).

• It takes the degenerate series I(1/2) to the generalized principal series
I(StE ,−1/2). It follows that the Aubert involution takes J1(St, 1/2) ⊂
I(1/2) to J2(StE , 1/2) ⊂ I(StE ,−1/2).

From this, one deduces that the involution fixes the remaining representation
V , and hence (−1, 0, 1) is also an exponent of V . But with respect to the A2
Levi subgroup, this is the exponent of the Steinberg representation and hence
condition (a) holds for V . This completes the proof in the case E = F×K.

This theorem is used in our paper [GS3].

Appendix B. Degenerate principal series

In this section, we analyze unramified degenerate principal series represen-
tations for GE (the quasi-split simply connected reductive group of absolute
type D4 determined by E). The results here are new if E is a field and a
mixture of new and known results if E = F ×K. We have used the results
and language introduced in this appendix for the description of theta lifting
in the main body of the paper.

B.1. Affine Weyl groups, when E a field

Let A = {(x, y, z) ∈ R3 | x+ y+ z = 0} be the 2-dimensional euclidean space
equipped with the usual dot product. Let Φ ⊆ A∗ (we identify A with A∗

using the dot product) be the root space of type G2 such that α1 = (1,−1, 0)
and α2 = (−1

3 ,
2
3 ,−

1
3) are the simple roots. Let W be the corresponding Weyl
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group. It is generated by the simple reflections s1 and s2 corresponding to
the simple roots.

Assume first that E is unramified.
Affine roots are the affine functions α + k on A where α ∈ Φ and k ∈ Z.

The affine Weyl group Wa is generated by reflections about the lines where
the affine roots vanish. Let αl ∈ Φ be the highest root. The fundamental cell
in A for Wa is given by the inequalities

0 < α1, 0 < α2 and αl < 1.

In particular, Wa is generated by s1, s2 and s0, the reflections about the three
lines bounding the fundamental cell. Let X ⊆ A be the lattice spanned by

ω1 = (1, 0,−1) and ω2 = (1, 1,−2).

Then Wa is a semi direct product of W and the group of translations tω where
ω ∈ X. We note the following relations in Wa:

tω1 = s0s1s2s1s2s1 and tω2 = (s0s1s2s1s0)(s2s1s2s1s2).

Assume now that E is ramified.
Affine roots are the affine functions α + k on A where α ∈ Φ and k ∈ Z,

if α is long, and k ∈ 1
3Z, if α is short. The affine Weyl group Wa is generated

by reflections about the lines where the affine roots vanish. Let αs ∈ Φ be
the highest short root. The fundamental cell in A for Wa is given by the
inequalities

0 < α1, 0 < α2 and αs < 1/3.
In particular, Wa is generated by s1, s2 and s0, the reflections about the three
lines bounding the fundamental cell. Let X ⊆ A be the lattice spanned by

ω1 = (1, 0,−1) and ω2 = (1
3 ,

1
3 ,−

2
3).

Then Wa is a semi direct product of W and the group of translations tω where
ω ∈ X. We note the following relations in Wa:

tω2 = s0s2s1s2s1s2 and tω1 = (s0s2s1s2s0)(s1s2s1s2s1).

Let GE be the simply connected quasi-split group of type D4 correspond-
ing to the cubic field E. Let I be the Iwahori subgroup corresponding to the



2108 Wee Teck Gan and Gordan Savin

fundamental cell. Let � : Wa → Z be the length function such that, for every
w ∈ Wa,

[IwI : I] = q�(w).

� � �

�
�hs

3

s0 s1 s2

� � �

�
�

s1 s2 s0

s

Let H be the Iwahori Hecke algebra. It is spanned by Tw, the characteris-
tic functions of IwI for all w ∈ Wa. As an abstract algebra, H is generated by
T0, T1 and T2 corresponding to simple reflections, modulo braid and quadratic
relations given by the diagrams in the above picture, where the left diagram
corresponds to the case when E is unramified. Let T̂w = q−

�(w)
2 Tw. The ele-

ments T̂ω for dominant ω = n1ω1 +n2ω2 (i.e. n1, n2 ≥ 0) form a commutative
semi-group

T̂ω · T̂ω′ = T̂ω+ω′ .

Let V be a finite-dimensional H-module. Since T̂ω, for dominant ω, com-
mute and are invertible, we can decompose

V = ⊕μVμ

where, for every μ ∈ A⊗R C,

Vμ = {v ∈ V | (T̂ω − qμ(ω))∞v = 0 for all dominant ω}.

Note that Vμ = Vμ+ 2πi
ln q

ν for any ν ∈ X∗, the lattice dual to X. Thus, we say
that μ, μ′ are congruent if μ − μ′ ∈ 2πi

ln qX
∗. The congruence class of μ such

that Vμ 
= 0 is called an exponent of V . A representation V is a discrete series
if

�(μ(ωi)) < 0
for i = 1, 2 for all exponents μ of V . Exponents represented by μ ∈ A are
called real. The exponent of the trivial representation (i.e. Tw �→ q�(w) for all
w ∈ Wa) is

(2, 1,−3).
The Iwahori-Matsumoto (IM) involution changes the exponents by the sign.
In particular, the exponent of the Steinberg representation is (−2,−1, 3). It
is a discrete series representation.
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B.2. Some representations, when E is a field

We shall now construct small dimensional representations of the Hecke algebra
H that will appear in the description of degenerate principal series.

Assume first that E is unramified.

B.2.1. One dimensional representations Let V be a one dimensional
complex vector space spanned by e. Let V ′

1 be the representation of H on V
defined by

T0e = −e, T1e = −e and T2e = q3e.

The exponent of V ′
1 is

(0, 1,−1).

Let V ′′
1 be be the representation of H on V defined by

T0e = qe, T1e = qe and T2e = −e.

Then V ′′
1 is the IM-involute of V ′

1 and is a discrete series representation.

B.2.2. Two dimensional representations The subalgebra generated by
T0 and T1 is isomorphic to the group algebra of S3. It is not too difficult to
see that any irreducible two dimensional representation of H, when restricted
to this sub algebra, must be isomorphic to the reflection representation of S3.
Thus let V be a two dimensional complex vector space spanned by e0 and e1
on which T0 and T1 act as matrices(

−1 q
1
2

0 q

)
and

(
q 0
q

1
2 −1

)
,

respectively. We can extend this representation to H in three different ways.
Two of these extensions are easy to construct. Let V ′

2 be the representation
of H on V such that T2 acts the scalar q3. The exponents of V ′

2 are

(1 − 2πi
3 ln q

, 1 + 2πi
3 ln q

,−2) and (1 + 2πi
3 ln q

, 1 − 2πi
3 ln q

,−2).

This is the minimal representation. Let V ′′
2 be the representation of H on V

such that T2 acts the scalar −1. Then V ′′
2 is the IM-involute of V ′

2 and is a
discrete series representation.
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These two representations do not have real exponents, however. We shall
be interested in the third extension such that T2 acts as the matrix(

−1 q
1
2 Φ6(q)

0 q3

)
,

where Φ6 is the characteristic polynomial (over Q of the primitive 6-th roots
of unity. This representation, henceforth denoted by V2, is invariant under
the involution. Its exponents are real and given by:

(1,−1, 0) and (−1, 1, 0).

B.2.3. Three dimensional representations Let V be a three dimen-
sional complex vector space spanned by e0, e1 and e2. Let V ′

3 be a represen-
tation of H on V such that T0, T1 and T2 act as matrices⎛⎜⎝ −1 q

1
2 0

0 q 0
0 0 q

⎞⎟⎠ ,

⎛⎜⎝ q 0 0
q

1
2 −1 q

1
2

0 0 q

⎞⎟⎠ and

⎛⎜⎝ q3 0 0
0 q3 0
0 q

1
2 Φ3(q) −1

⎞⎟⎠
respectively. This is the reflection representation. The exponents of V ′

3 , counted
with multiplicities, are

(0, 1,−1), (1, 0,−1) and (1, 0,−1).

Let V ′′
3 be the IM-involute of V ′

3 . It is a discrete series representation.

Assume now that E is ramified.

B.2.4. One dimensional representations Let V be a one dimensional
complex vector space spanned by e. Let V ′

1 be a representation of H on V
defined by

T0e = qe, T1e = −e and T2e = qe.

The exponent of V ′
1 is

(0, 1,−1).

Let V ′′
1 be be the representation of H on V defined by

T0e = −e, T1e = qe and T2e = −e.

Then V ′′
1 is the IM-involute of V ′

1 and is a discrete series representation.
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B.2.5. Two dimensional representations The subalgebra generated by
T0 and T2 is isomorphic to the group algebra of S3. It is not too difficult to
see that any irreducible two dimensional representation of H, when restricted
to the subalgebra, must be isomorphic to the reflection representation of S3.
Thus let V be a two dimensional complex vector space spanned by e0 and e2.
Then T0 and T2 act on V as matrices(

−1 q
1
2

0 q

)
and

(
q 0
q

1
2 −1

)
,

respectively. We can extend this representation to H in three different ways.
Two of these extensions are easy to construct. Let V ′

2 be the representation
of H on V such that T1 acts as the scalar q. The exponents of V ′

2 are

(1 − 2πi
3 ,

4πi
3 ln q

,−1 − 2πi
3 ln q

) and (1 + 2πi
3 ,− 4πi

3 ln q
,−1 + 2πi

3 ln q
).

This is not the minimal representation. Let V ′′
2 be the representation of H on

V such that T1 acts as the scalar −1. Then V ′′
2 is the IM-involute of V ′

2 and
is a discrete series representation. Again, these representations do not have
real exponents.

We shall be interested in the third extension such that T1 acts as T0. This
representation, henceforth denoted by V2, is invariant under the involution.
Its exponents are real and given by

(1,−1, 0) and (−1, 1, 0).

B.2.6. Three dimensional representations Let V be a three dimen-
sional complex vector space spanned by e1, e2 and e0. Let V ′

3 be a represen-
tation of H on V such that T0, T1 and T2 act as matrices⎛⎜⎝ −1 q

1
2 0

0 q 0
0 0 q

⎞⎟⎠ ,

⎛⎜⎝ q 0 0
3q 1

2 −1 q
1
2

0 0 q

⎞⎟⎠ and

⎛⎜⎝ q 0 0
0 q 0
0 q

1
2 −1

⎞⎟⎠
respectively. This is the reflection representation. The exponents of V ′

3 , counted
with multiplicities, are

(0, 1,−1), (1, 0,−1) and (1, 0,−1).

Let V ′′
3 be the involute of V ′

3 . It is a discrete series representation.
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B.3. Degenerate principal series, when E is a field

We now study the unramified degenerate principal series representation of
GE associated to the Heisenberg parabolic subgroup PE . Let e and f be the
ramification and inertia indices of E over F , so that e · f = 3. The simple
coroots are

α∨
1 = (1,−1, 0) and α∨

2 = (−1
e
,
2
e
,−1

e
).

Let V be an irreducible representation of H. Let μ ∈ A⊗C such that Vμ 
= 0
i.e. the class of μ is an exponent of V . Then, from the representation theory
of SL2(F ) and SL2(E),

• If μ(α∨
1 ) 
= ±1 + 2πi

ln qZ then s1(μ) is an exponent of V .
• If μ(α∨

2 ) 
= ±f + 2πi
ln qZ then s2(μ) is an exponent of V .

• If si(μ) is congruent to μ and μ(α∨
i ) = 0 then Vμ is at least two dimen-

sional.

Two exponents are equivalent if one is obtained from another by a repeated
use of the first two bullets.

In the following, we shall consider the decomposition of various unram-
ified degenerate principal series representations of GE . The representations
V of the affine Hecke algebra that we constructed above will occur in the
subspace of Iwahori-fixed vectors in these principal series representations So
as not to introduce more notation, we will use V to denote the corresponding
representation of GE(F ) (whose space of Iwahori-fixed vectors is V ) as well.

B.3.1. Degenerate series I(s) Let

μs = (s− 1
2 , 1,−s− 1

2)

where s ∈ C. Note that μs and μs′ are congruent if s − s′ ∈ 2πi
ln qZ. Since

μs(α∨
2 ) = f , the equivalence class of μs, for a generic s, contains the following

six elements

(s− 1
2 , 1,−s− 1

2),

(1, s− 1
2 ,−s− 1

2),

(s + 1
2 ,−s + 1

2 ,−1),

(−s + 1
2 , s + 1

2 ,−1),
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(1,−s− 1
2 , s−

1
2),

(−s− 1
2 , 1, s−

1
2).

These are the exponents of a degenerate principal series I(s), attached to the
Heisenberg maximal parabolic subgroup PE . Since the representations I(s)
form an algebraic family, these are the exponents for any s. The first exponent
(μs) is a leading exponent of I(s). The last exponents is a trailing exponent
of I(s). (It is a leading exponent of I(−s).) If V is a quotient of I(s) then the
leading exponent is an exponent of V . If V is a submodule of I(s), then the
trailing exponent of I(s) is also an exponent of V . We would like to determine
the points of reducibility of I(s).

We say that an exponent μ is regular, if the stabilizer of μ in the Weyl
group is trivial. A representation V of H is regular if the exponents of V are
regular. It is well known that irreducible regular representations correspond
to equivalence classes of regular exponents. One checks that I(s) is regular if

±s 
= 3
2 ,

1
2 , 0,

πi

ln q
and 1

2 ± 2πi
3 ln q

where the last possibility occurs only if E is unramified. If I(s) is regular, one
checks that all exponents are equivalent, and hence I(s) is irreducible, if

±s 
= 5
2 ,

1
2 + πi

ln q
and 3

2 ± 2πi
3 ln q

and reducibility in the last case occurs only when E is unramified. In partic-
ular, I(s) is irreducible unless s is on one of the two lists.

Theorem B.1. The representation I(s) ∼= I(−s)∗ is reducible only if

±s = 5
2 ,

1
2 ,

1
2 + πi

ln q
and 3

2 ± 2πi
3 ln q

and the last case occurs only if E is unramified. At the points of reducibility,
we have:

1. I(5
2) has length 2. The trivial representation is the unique irreducible

quotient.
2. I(1

2) has length 3. The representation V2 is the unique irreducible sub-
module. The representations V ′

1 and V ′
3 are irreducible quotients.

3. I(1
2 + πi

ln q ) has length 2. There is a unique irreducible submodule and a
unique irreducible quotient.
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4. I(3
2 ± 2πi

3 ln q ) has length 2. The minimal representation V ′
2 is the unique

irreducible quotient.

Proof. It remains to analyze the finite set of cases. We do so by considering
the space of Iwahori-fixed vectors in I(s), which is a H-module.

Case s = 5
2 . The exponents are

(2, 1,−3),
(1, 2,−3),

(3,−2,−1),
(−2, 3,−1),
(1,−3, 2),
(−3, 1, 2).

The leading exponent belongs to the trivial representation, the unique ir-
reducible quotient of I(5

2). The other five exponents are equivalent to the
trailing exponent. Thus I(5

2) has length 2.

Case s = 3
2 . The exponents are

(1, 1,−2),
(1, 1,−2),

(2,−1,−1),
(−1, 2,−1),
(1,−2, 1),
(−2, 1, 1).

The last four exponents are equivalent. Let V be an irreducible subquotient
such that V(1,1,−2) 
= 0. The third bullet implies that this space is 2 dimen-
sional. Thus, either I(3

2) is irreducible or it has a 2 dimensional irreducible
quotient. But the exponents of I(3

2) are different from the exponents of irre-
ducible 2 dimensional representations of H. Thus I(3

2) is irreducible.

Case s = 3
2 + 2πi

3 ln(q) . We assume that E is unramified. The exponents are

(1 + 2πi
3 ln(q) , 1,−2 − 2πi

3 ln(q)),

(1, 1 + 2πi
3 ln(q) ,−2 − 2πi

3 ln(q)),
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(2 + 2πi
3 ln(q) ,−1 − 2πi

3 ln(q) ,−1),

(−1 − 2πi
3 ln(q) , 2 + 2πi

3 ln(q) ,−1),

(1,−2 − 2πi
3 ln(q) , 1 + 2πi

3 ln(q)),

(−2 − 2πi
3 ln(q) , 1, 1 + 2πi

3 ln(q)).

All exponents are different. The first two are equivalent and so are the last
four. Since

(1 + 2πi
3 ln(q) , 1,−2− 2πi

3 ln(q))− (1− 2πi
3 ln q

, 1 + 2πi
3 ln q

,−2) = 2πi
ln q

· (2
3 ,−

1
3 ,−

1
3)

the first two are the exponents of the minimal representation V ′
2 . The induced

representation has length 2, with unique irreducible quotient V ′
2 .

Case s = 1
2 . The exponents are

(0, 1,−1),
(1, 0,−1),
(1, 0,−1),
(0, 1,−1),
(1,−1, 0),
(−1, 1, 0).

In this case, V2 is a unique irreducible submodule. The quotient is isomorphic
to a direct sum of V ′

1 and V ′
3 .

Case s = 1
2 + πi

ln(q) . The exponents are

( πi

ln(q) , 1,−1 − πi

ln(q)),

(1, πi

ln(q) ,−1 − πi

ln(q)),

(1 + πi

ln(q) ,−
πi

ln(q) ,−1),

(− πi

ln(q) , 1 + πi

ln(q) ,−1),
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(1,−1 − πi

ln(q) ,
πi

ln(q)),

(−1 − πi

ln(q) , 1,
πi

ln(q)).

All exponents are different. The first three are equivalent and so are the last
three exponents. In particular, I(1

2 + πi
ln(q)) has length 2.

Case s = 1
2 + 2πi

3 ln(q) . We assume that E is unramified. This representation is
irreducible. The argument is similar to the argument for s = 3

2 . We omit
details.

Case s = 0. The exponents are

(−1
2 , 1,−

1
2).

(1,−1
2 ,−

1
2),

(1
2 ,

1
2 ,−1),

(1
2 ,

1
2 ,−1),

(1,−1
2 ,−

1
2),

(−1
2 , 1,−

1
2).

We have three equivalent exponents each with multiplicity 2. Thus, either I(0)
is irreducible or it is a sum of two three dimensional representations with the
same exponents. However, if V( 1

2 ,
1
2 ,−1) 
= 0, then the third bullet implies that

this space is 2 dimensional. Thus I(0) is irreducible.

Case s = πi
ln q . This representation is irreducible. The argument is the same as

for s = 0. We omit details.

B.3.2. Degenerate series J(s) We now study the unramified degenerate
principal series associated to the 3-step parabolic subgroup QE of GE . Let

μs = (s + 1
2 , s−

1
2 ,−2s)

where s ∈ C. Note that μs and μs′ are congruent if s − s′ ∈ 2πi
f ln qZ. Since

μs(α∨
1 ) = 1, the equivalence class of μs, for a generic s, contains the following
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six elements

(s + 1
2 , s−

1
2 ,−2s),

(2s,−s + 1
2 ,−s− 1

2),

(−s + 1
2 , 2s,−s− 1

2),

(s + 1
2 ,−2s, s− 1

2),

(−2s, s + 1
2 , s−

1
2),

(−s + 1
2 ,−s− 1

2 , 2s).

These are the exponents of a degenerate principal series J(s), attached to the
3-step maximal parabolic subgroup QE . Since the representations J(s) form
an algebraic family, these are the exponents for any s. The first exponent
(μs) is a leading exponent of J(s). The last exponents is a trailing exponent
of J(s). (It is a leading exponent of J(−s).) If V is a quotient of J(s) then
the leading exponent is an exponent of V . If V is a submodule of J(s) then
the trailing exponent of J(s) is also an exponent of V .

We would like to determine points of reducibility of J(s). One checks that
J(s) is regular if

±s 
= 1
2 ,

1
6 , 0,

πi

ln q
and 1

6 ± 2πi
3 ln q

where the last possibility occurs only if E is ramified. If J(s) is regular, one
checks that all exponents are equivalent, and hence J(s) is irreducible, if

±s 
= 3
2 ,

1
2 + πi

ln q
and 1

2 ± 2πi
3 ln q

and reducibility in the last case occurs only when E is ramified. Hence, again,
J(s) is irreducible unless s is on the two finite lists.

Theorem B.2. The representation J(s) ∼= J(−s)∗ is reducible only if

±s 
= 3
2 ,

1
2 ,

1
2 + πi

ln q
and 1

2 ± 2πi
3 ln q

and the last case occurs occurs only if E is ramified. At the points of reducibil-
ity, we have:
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1. J(3
2) has length 2. The trivial representation is the unique irreducible

quotient.
2. J(1

2) has length 3. The representation V ′′
1 is the unique irreducible sub-

module. The representation V ′
3 is the unique irreducible quotient. The

remaining subquotient is V2.
3. J(1

2 + πi
ln q ) has length 2. There is a unique irreducible submodule and a

unique irreducible quotient.
4. J(1

2 ±
2πi

3 ln q ) has length 2. The representation V ′
2 is the unique irreducible

quotient.

Proof. We shall provide details for s = 1/2, which is the only case used in
the paper.

Case s = 1
2 . The exponents are

(1, 0,−1),
(1, 0,−1),
(0, 1,−1),
(1,−1, 0),
(−1, 1, 0),
(0,−1, 1).

We see that V ′′
1 is the unique irreducible submodule, V ′

3 is the unique irre-
ducible quotient, and V2 is the remaining subquotient.

B.4. Affine Weyl group, when K is a field

We now discuss the quasi split GE where E = F × K with K a quadratic
field. Let e and f be the ramification and inertia indices, so that e · f = 2.

Let A = R3 equipped with the usual dot product. Let Φ ⊆ A∗ (we identify
A with A∗ using the dot product) be the root space of type B2 such that

α1 = (1,−1, 0), α2 = (0, 1,−1) and α3 = (0, 0, 1)

are the simple roots. The co-roots are

α∨
1 = (1,−1, 0), α∨

2 = (0, 1,−1) and α∨
3 = (0, 0, 2

e
).

Let W be the corresponding Weyl group. It is generated by the simple reflec-
tions s1, s2 and s3 corresponding to the simple roots.
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Assume first that K is unramified.
Affine roots are the affine functions α + k on A where α ∈ Φ and k ∈ Z.

The affine Weyl group Wa is generated by reflections about the lines where
the affine roots vanish. Let αl = (1, 1, 0) ∈ Φ be the highest root. The funda-
mental cell in A for Wa is given by the inequalities 0 < α1, 0 < α2, 0 < α3
and αl < 1. In particular, Wa is generated by s1, s2, s3 and s0, the reflections
about the three planes bounding the fundamental cell.

Let X ⊆ A be the lattice consisting of (x, y, z) ∈ Z3 such that x + y + z
is even. Then Wa is a semi direct product of W and the group of translations
tω where ω ∈ X. It will be convenient to work with the extended affine Weyl
group W̃a = Wa ∪ τWa where τ is the involution defined by τ(x, y, z) =
(1 − x, y, z). Note that τs0 = s1τ and τ commutes with s2 and s3. The
extended affine Weyl group is a semi direct product of W and X̃ = Z3. Let

ω1 = (1, 0, 0), ω2 = (1, 1, 0) and ω3 = (1, 1, 1).

We note the following relations in W̃a:

tω1 = τs1s2s3s2s1, tω2 = s0s2s3s2s1s2s3s2 and tω3 = s0s2s3s1s2s3τs1s2s3.

Assume now that K is ramified.
Affine roots are the affine functions α+ k on A where α ∈ Φ and k ∈ 1

2Z,
but integral if α is long. The affine Weyl group Wa is generated by reflections
about the lines where the affine roots vanish. Let αs = (1, 0, 0) ∈ Φ be
the highest short root. The fundamental cell in A for Wa is given by the
inequalities 0 < α1, 0 < α2, 0 < α3 and αs < 1/2. In particular, Wa is
generated by s1, s2, s3 and s0, the reflections about the three planes bounding
the fundamental cell.

Let X = Z3 ⊆ A. Then Wa is a semi direct product of W and the group of
translations tω where ω ∈ X. The extended affine Weyl group is W̃a = Wa ∪
τWa where τ is the involution defined by τ(x, y, z) = (1/2−x, 1/2−y, 1/2−x).
Note that τs0 = s1τ and τs2 = s3τ . The extended affine Weyl group is a semi
direct product of W and X̃ generated by X and (1/2, 1/2, 1/2). Let

ω1 = (1, 0, 0), ω2 = (1, 1, 0) and ω3 = (1/2, 1/2, 1/2).

We note the following relations in W̃a:

tω1 = s0s1s2s3s2s1, tω2 = s0s1s2s3s2s0s1s2s3s2 and tω3 = τs3s2s1s3s2s3.
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For any E = F × K, the Iwahori Hecke algebra H of GE is generated
by the elements T0, T1, T2 and T3 corresponding to the simple reflections,
modulo braid and quadratic relations given by the following diagrams, with
the one on the left for the case of unramified K and the one on the right for
the case of ramified K.

�
�

�
�

� �

�

�

2

s3 s2

hs

hs

s0

s1

�
� � � � �

s

s3 s2 s1

s

s0�
�

�
�

B.5. Some representations, when K is a field

We shall now construct some small dimensional representations of the Hecke
algebra H that will appear in the description of the degenerate principal series
representations.

Assume that K is unramified.

B.5.1. One dimensional representations Let V be a one dimensional
complex vector space spanned by e. There are four representations of H on
V . We shall firstly describe two representations where

T0e = qe, T1e = qe and T2e = qe.

The remaining two are obtained by applying the IM-involution. If T3e = q2e,
this is the trivial representation. Its exponent is

(3, 2, 1).

Let V ′
1 be the representation of H on V such that T3e = −e. The exponent

of V ′
1 is

(1, 0,−1).
Let V ′′

1 be the IM-involute of V ′
1 . It is a tempered representation.

B.5.2. Two dimensional representations Let V be a two dimensional
complex vector space spanned by e0 and e1 on which T0, T1 and T2 act by

T0 = T1 =
(

−1 q
1
2

0 q

)
and T2 =

(
q 0
q

1
2 −1

)
.
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We can extend this representation to H in two ways. Let V ′
2 be the repre-

sentation of H on V such that T3 acts the scalar q2. The exponents of V ′
2

are
(2, 0, 1) and (0, 2, 1).

Let V ′′
2 be the representation of H on V such that T3 acts the scalar −1. Then

V ′′
2 is the IM-involute of V ′

2 and is a discrete series representation.

Assume that K is ramified.

B.5.3. One dimensional representations Let V be a one dimensional
complex vector space spanned by e. There are eight representations of H on V .
We shall firstly describe four representations where T1e = qe, T2e = qe. The
remaining four representations are obtain by the IM-involution. The trivial
representation is the one where T0e = qe and T3e = qe. Its exponent is

(3, 2, 1).

Next, we have two representations where T0 and T3 act by different eigen-
values. These two representations occur in a restriction of a 2-dimensional
representation of the extended affine Hecke algebra H̃. Their exponents are
the same,

(2 + πi

ln q
, 1 + πi

ln q
,
πi

ln q
).

Let V ′
1 be the representation of H on V such that T0e = −e and T3e = −e.

The exponent of V ′
1 is

(1, 0,−1).

Let V ′′
1 be the IM-involute of V ′

1 . It is a tempered representation.

B.5.4. Two dimensional representations Let V be a two dimensional
complex vector space spanned by e0 and e1 on which T1 and T2 act as matrices

T1 =
(

−1 q
1
2

0 q

)
and T2 =

(
q 0
q

1
2 −1

)
,

respectively. We can extend this representation to H in four ways. Let V ′
2 be

the representation of H on V such that T0 and T3 act as the scalar q. The
exponents of V ′

2 are
(2, 0, 1) and (0, 2, 1).
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Let V ′′
2 be the representation of H on V such that T0 and T3 act as the scalar

−1. Then V ′′
2 is the IM-involute of V ′

2 . It is a tempered representation. Finally,
we have two additional representations, one where T0 and T3 act by different
scalars. These two representations occur in a restriction of a 4-dimensional
representation of the extended affine Hecke algebra H̃. Their exponents are
the same and given by:

(1 + πi

ln q
,−1 + πi

ln q
,
πi

ln q
) and (−1 + πi

ln q
, 1 + πi

ln q
,
πi

ln q
).

The sum of these two representation is an irreducible representation of H̃,
the extended affine Hecke algebra.

B.6. Degenerate principal series, when K is a field

B.6.1. B2 parabolic Let λs = (s, 2, 1). We have a degenerate principal
series B(s) (associated to the B2-parabolic) whose exponents are

(s, 2, 1), (2, s, 1), (2, 1, s), (2, 1,−s), (2,−s, 1) (−s, 2, 1).

Here λs is a leading exponent and λ−s is the trailing exponent. In particular,
the trivial representation is the unique irreducible quotient of B(3).

Proposition B.3. The representation B(s) = B(−s)∗ is reducible only if

±s = 3, 1 + πi

ln q
, 0, and πi

ln q

where ±s = 1 + πi
ln q occurs if K is unramified and ±s = πi

ln q if K is ramified.
At the points of reducibility, we have

1. B(3) has length 2. The trivial representation is the unique irreducible
quotient.

2. B(1 + πi
ln q ) has length 2. The minimal representation is the unique irre-

ducible quotient.
3. B(0) is a direct sum of two non-isomorphic representations where one

is V ′
2 .

4. B( πi
ln q ) is a direct sum of two non-isomorphic representations.

Proof. This can be proved as in [We1]. Roughly speaking, off the unitary
axis, i.e. �(s) 
= 0, reducibility happens only if the trivial or the minimal
representations appear as subquotients. The case s = 1+ πi

ln q merits a special
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discussion, as it illustrates a difference between ramified and unramified cases.
In both cases, B(1 + πi

ln q ) is regular; however, the number of equivalence
classes is one, if K is unramified, and 2 otherwise. This is due to the fact that
μ = (2, 1, 1 + πi

ln q ) is equivalent to s3(μ) = (2, 1,−1 − πi
ln q ) if and only if K is

ramified.
On the unitary axis, all exponents are equivalent and B(s) is irreducible,

unless s = 0 or s = πi
ln q and K ramified. By the Frobenius reciprocity, V2 is

a summand of B(0), so (3) follows. Finally, B( πi
ln q ) must reduce, otherwise

B(s) with �(s) = πi
ln q would be all unitary, a contradiction.

B.6.2. A2 parabolic Let λs = (s + 1, s, s − 1). We have a degenerate
principal series A(s) (associated to the A2-parabolic) whose exponents are

(s + 1, s, s− 1), (s + 1, s,−s + 1), (s + 1,−s + 1, s),
(−s + 1, s + 1, s), (s + 1,−s + 1,−s), (−s + 1, s + 1,−s),

(−s + 1,−s, s + 1), (−s + 1,−s,−s− 1).

Here λs is a leading exponent and λ−s is the trailing exponent. In particular,
the trivial representation is the unique quotient of A(2). Note that λs is
congruent to λs+ πi

ln q
if K is unramified.

Proposition B.4. The degenerate principal series representation A(s) (with
Re(s) ≥ 0) is irreducible except in the following cases:

1. A(2) has length 2. The unique irreducible quotient is the trivial repre-
sentation.

2. A(1) has length 2. The unique irreducible quotient is the orthogonal
complement of V ′

2 in B(0).
3. when K is ramified, A(1 + πi

ln q ) has length 3. It has two irreducible
quotients, corresponding to two one-dimensional representations of H
with the exponent

(2 + πi

ln q
, 1 + πi

ln q
,
πi

ln q
).

4. A(0) is a direct sum of two non-isomorphic representations where one
of them is V ′

1 .

Proof. (1) is trivial. For (2), observe that the spherical summand of B(0) is
a unique irreducible quotient of A(1). The remaining sub quotients of A(1)
have four exponents. As these exponents are equivalent, the length of A(1)
is 2, as claimed. The statement (3) is proved similarly. For (4), observe that
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A(0) is semi-simple, and has at most two summands, since any summand
contributes the exponent (1, 0,−1). Since V ′

1 is a summand of A(0) by the
Frobenius reciprocity, we have two summands as claimed.

Note that the complement of V ′
1 in A(0) is spherical, and has seven expo-

nents. We shall use this fact shortly.

B.6.3. A1 × A1 parabolic Let λs = (s + 1
2 , s −

1
2 , 1). We have a degen-

erate principal series I(s) (associated to the A1 × A1-parabolic, which is the
Heisenberg parabolic), whose exponents are

(s + 1
2 , s−

1
2 , 1), (s + 1

2 , 1, s−
1
2), (1, s + 1

2 , s−
1
2),

(s + 1
2 , 1,−s + 1

2), (s + 1
2 ,−s + 1

2 , 1), (−s + 1
2 , s + 1

2 , 1),

(1, s + 1
2 ,−s + 1

2), (1,−s + 1
2 , s + 1

2), (−s + 1
2 , 1, s + 1

2),

(1,−s + 1
2 ,−s− 1

2), (−s + 1
2 , 1,−s− 1

2), (−s + 1
2 ,−s− 1

2 , 1).

Here λs is a leading exponent and λ−s is the trailing exponent. In par-
ticular, the trivial representation is the unique quotient of I(5/2). Points of
reducibility of I(s) and its co-socle if Re(s) ≥ 0 was determined by Segal,
Theorem 4.1 in [Se2]. Here we determine the complete composition series.

Proposition B.5. The points of reducibility of I(s) (with Re(s) ≥ 0) are
given as follows:

1. I(5/2) has length 2. The unique irreducible quotient is the trivial rep-
resentation.

2. I(3/2) has length 2. The unique irreducible quotient is B(1).
3. I(3/2 + πi

ln q ) has length 2 when K is unramfied, with the minimal rep-
resentation as its unique irreducible quotient.

4. I(1/2) has length 2. The unique irreducible quotient is the orthogonal
complement of V ′

1 in A(0).
5. I(1/2+ πi

ln q ) has length 2 when K is unramfied, and 3 with two irreducible
quotients if K is ramified.

Proof. (1) is trivial. For (2), we observe that B(1) is the unique irreducible
quotient of I(3/2). Since the remaining six exponents are equivalent, I(3/2)
has length 2. The case (3) is regular, so the irreducible subquotients are easily
determined by working out the equivalence classes of exponents. For (4), the
spherical summand of A(0) is the unique quotient of I(1/2). The remaining
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subquotients of I(1/2) have five exponents in total. Hence, if there are more
than two irreducible subquotients in I(1/2), there would be one with one
or two exponents. But, by inspection, these five exponents are not among
the exponents of one and two-dimensional H-modules. Hence, I(1/2) has
length 2, as asserted in (4). For the last case, by the result of A. Segal, the
representation has one, respectively two irreducible quotients. By working out
equivalence classes of exponents, it is seen that there are no more irreducible
subquotients than as stated.

B.7. Split D4

Assume now that E = F 3 is split, so that GE is the split Spin8. Let A = R4

and we identify A∗ with A using the usual dot product. Let Φ ⊂ A∗ be the
root system of type D4, so that the simple roots are

α1 = (1,−1, 0, 0), α2 = (0, 1,−1, 0), α3 = (0, 0, 1,−1), α4 = (0, 0, 1, 1).

Let W be the corresponding Weyl group. For every k ∈ Z and α ∈ Φ, we have
an affine root α + k. Let Wa be the corresponding affine Weyl group. It is a
semi-direct direct product of W and X = {(x, y, z, w) ∈ Z4 | x+y+z+w ≡ 0
(mod 2)}.

In this case, degenerate principal series representations have been well
studied, and there are references in the literature, such as [BJ] and [We1]. So
we shall be brief and put an emphasis on explaining, rather than giving the
details.

Let Ti, i = 0, . . . , 4 be the standard generators of the affine Hecke algebra
H, such that T2 corresponds to the branching point of the extended Dynkin
diagram. The algebra H has a 2-dimensional irreducible representation V2
such that

T0 = T1 = T3 = T4 =
(

−1 q
1
2

0 q

)
and T2 =

(
q 0
q

1
2 −1

)
.

The exponents of this representations are

(0, 1,−1, 0) and (0,−1, 1, 0).

The minimal representation corresponds to the reflection representation of H
and its exponents are (the superscript 2 means that the exponent appears
with multiplicity 2)

(2, 1, 1, 0)2, (1, 2, 1, 0), (2, 1, 0, 1), (2, 1, 0,−1).
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There are 3 maximal parabolic subgroups in standard position, of the
type A3, permuted by the group of outer automorphisms. Let A(s), B(s)
and C(s) be the degenerate principal series, corresponding to these parabolic
subgroups, normalized so that the trivial representation occurs as the unique
irreducible quotient for s = 3. For example, assuming that A(s) corresponds
to the maximal parabolic whose Levi does not have α1 as a root, the leading
exponent of A(s) is (s, 2, 1, 0). There are eight exponents:

(s, 2, 1, 0), (2, s, 1, 0), (2, 1, s, 0), (2, 1, 0, s),
(2, 1, 0,−s), (2, 1,−s, 0), (2,−s, 1, 0), (−s, 2, 1, 0).

By a result of Weissman [We1], A(1), B(1) and C(1) have length 2, and the
minimal representation is the unique irreducible quotient. Let V A

3 ⊂ A(1),
V B

3 ⊂ B(1) and V C
3 ⊂ C(1) be the unique irreducible submodules. These

representations are non-isomorphic, as they have different exponents.
Let I(s) be the principal series corresponding to the Heisenberg maximal

parabolic (i.e. the Levi factor is A3
1), normalized so that the trivial represen-

tation is the unique irreducible quotient for s = 5/2. The leading exponent is
(s + 1

2 , s −
1
2 , 1, 0). There are 24 exponents in all. They are in 4 groups of 6

exponents

(1, 0, x, y), (1, x, 0, y), (1, x, y, 0), (x, 1, 0, y), (x, 1, y, 0), (x, y, 1, 0)

where

(x, y) = (s + 1
2 , s−

1
2), (s + 1

2 ,−s + 1
2), (−s + 1

2 , s + 1
2), (−s + 1

2 ,−s− 1
2).

The only other reducibility points are s = ±1/2 and s = ±3/2, which we
examine in turn:

• s = 3/2: the minimal representation is the unique irreducible quotient
of I(3/2). Moreover, we have an intertwining map I(3/2) → A(1), ob-
tained by composing standard intertwining operators, which are non-
trivial on the spherical vector. Hence A(1) (and analogously B(1) and
C(1)) is a quotient of I(3/2). By removing these quotients, we are left
with an irreducible submodule since its 10 exponents are equivalent.

• s = 1/2: By the Frobenius reciprocity, V2 is the unique irreducible
submodule of I(1/2). The quotient is an irreducible spherical represen-
tation that appears as a summand of the representation induced from
the trivial representation of (any) parabolic subgroup of the type A2.
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Summarizing, we have:

Proposition B.6 (Theorems 5.3 and 5.5 in [BJ]).

• I(3/2) has a filtration of length 3, consisting of a unique irreducible sub-
module and a unique irreducible quotient (the minimal representation).
The intermediate subquotient is isomorphic to V A

3 ⊕ V B
3 ⊕ V C

3 .
• I(1/2) has length 2, and V2 is the unique irreducible submodule.
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