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1. Durham

In July of 1983, I attended a conference on Modular Forms of One and Several
Variables, which was held at the University of Durham. Don Zagier was one
of the original invited speakers. Zagier and I had finished the proof of our
limit formula [35], relating the heights of Heegner divisors on modular curves
to the first derivatives of Rankin L-series, at s = 1 in the fall of 1982. Don
wrote to the organizers – Bryan Birch and Robert Rankin – to ask if I could
give one of his talks. I had been corresponding with Birch about this work
[9], and he arranged for both of us to speak on the first day of the meeting.

Don spoke for an hour, sketching the analytic computations necessary to
obtain a formula for the derivative, and I followed with an hour lecture sum-
marizing the calculation of local heights. After my talk, we were summoned to
the blackboard by an impromptu committee consisting of the two organizers
and Jean-Pierre Serre. Would we each be willing to lecture every day of the
meeting, giving all the details of the argument? Suffice it to say that it was
an exhausting week, giving lectures by day and preparing lecture notes and
a paper for Comptes Rendus by night [36].

At the end of the conference, there was an afternoon set aside for short
talks. I planned to skip these lectures, to rest up for the trip home. But Marie-
France Vignéras persuaded me to attend the talk of one of her recent doctoral
students.

That student was Jean-Loup Waldspurger.

2. Local epsilon factors and quaternion algebras

Waldspurger summarized the local and global results that would appear in
his great paper [64]. What was immediately apparent was that he was study-
ing the same Rankin L-functions that Zagier and I considered, at the same
central critical point. (We had normalized the L-function so that the central
point for the functional equation is s = 1, but in this paper I will follow his
normalization, where the central point is s = 1

2 .) Waldspurger was studying
the special value at s = 1

2 when the sign in the functional equation is +1, so
the order of vanishing is even. We were studying the first derivative when the
sign in the functional equation is −1, so the order of vanishing is odd.

What was completely new to me was the interpretation Waldspurger
had for the central value, using ideas from representation theory and auto-
morphic forms. We considered the Rankin L-function of the tensor product
f ⊗ g of two holomorphic modular forms: f was a newform of weight 2 for
the group Γ0(N) and g was a newform of weight 1 for the group Γ1(D),
induced from an unramified ring class character of an imaginary quadratic
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field of discriminant D. To construct Heegner points on the curve X0(N),
we needed the additional hypothesis that all primes dividing N are split in
the quadratic field K = Q(

√
D) [24]. Waldspurger worked in much greater

generality, replacing the holomorphic form f by an irreducible automorphic
cuspidal representation π of the group PGL2 over an arbitrary number field
k, and the ring class character by an irreducible automorphic representation
χ of the maximal torus T in PGL2 associated to an étale quadratic extension
K of k, with rational points T (k) = K∗/k∗. Let π(χ) be the associated auto-
morphic representation of GL2(k); this has central character α, the quadratic
character of K/k. Waldspurger’s study of the special value L(π ⊗ π(χ), 1

2)
involved a study of the restriction of the representation π to the torus T .

He first considered this restriction problem in the local case. Let kv be a
local field and let Kv an étale quadratic extension of kv, which corresponds to
the character αv : k∗v → {±1} by local class field theory. Let πv be an infinite
dimensional, irreducible representation of the group PGL2(kv) and let χv be
a character of the maximal torus T (kv) = K∗

v/k
∗
v . Then reinterpreting some

results of Tunnell [62], Waldspurger showed that the complex vector space of
T (kv)-invariant continuous linear maps

HomT (kv)(πv ⊗ χv,C)

has dimension zero or one. The dimension is one if and only if

εv(πv ⊗ π(χv)).αv(−1) = +1

where εv is the local epsilon factor associated to the tensor product of the
two representations of GL2(kv) by Jacquet [45]. Moreover, when

εv(πv ⊗ π(χv)).αv(−1) = −1

the representation πv is in the discrete series for PGL2 and the quadratic
algebra Kv is a field.

When πv is in the discrete series, there is a quaternion division algebra Dv

over kv, which is unique up to isomorphism. The compact group D∗
v/k

∗
v is an

inner form of PGL2(kv), and Jacquet and Langlands [46] showed that there
was a finite dimensional irreducible representation π∗

v of this inner form which
corresponds to the infinite dimensional representation πv in the following
sense. Let s be a regular semi-simple conjugacy class in the group D∗

v/k
∗
v .

Then s lifts to a regular semi-simple conjugacy class in PGL2(kv), which has
a well-defined trace on the representation πv. The representations correspond
in the sense that Tr(s|πv) + Tr(s|π∗

v) = 0.
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When Kv is a field, the torus T (kv) = K∗
v/k

∗
v embeds as a maximal torus

in the compact group D∗
v/k

∗
v . In this case, one can consider the complex vector

space
HomT (kv)(π∗

v ⊗ χv,C).
Waldspurger showed that its dimension is either zero or one, and is one if and
only if

εv(πv ⊗ π(χv)).αv(−1) = −1.
Hence the sign of the expression made from the local epsilon factor deter-
mines whether the character χ−1

v of T (kv) occurs in the representation πv or
π∗
v . By Jacquet’s work [45], εv(πv ⊗ π(χv)) is equal to the epsilon factor of

the four dimensional symplectic representation M ⊗ N , where M is the two
dimensional symplectic representation of the Weil-Deligne group of kv which
is the Langlands parameter of πv and N is the two dimensional orthogonal
representation which is the Langlands parameter of the representation π(χv),
with detN = αv.

The fact that this question in representation theory – whether the char-
acter χ−1

v of the torus occurs in the restriction of πv or π∗
v – was settled by

the symplectic epsilon factor εv(M ⊗N) was of great interest to me. Deligne
(cf. [61]) had generalized the results in Tate’s thesis to define local root num-
bers for higher dimensional representations W of the Weil-Deligne group,
and proved that they satisfied ε(W )ε(W∨) = detW (−1). Hence when the
representation W is self-dual and has trivial determinant, ε(W ) = ±1. In
the orthogonal case, Deligne had given an interpretation of the sign ε(W ) in
terms of the possible lifting of the representation from SO(W ) to Spin(W )
[14]. But in the symplectic case, the sign ε(W ) remained mysterious. Here was
an interesting interpretation, when W = M ⊗ N was four dimensional, and
was the tensor product of a symplectic representation M and an orthogonal
representation N , both of dimension 2.

Waldspurger then considered the global L-function L(π ⊗ π(χ), s) in the
automorphic case. Let S be the finite set of places v of k where the local
factor εv(πv ⊗ π(χv)).αv(−1) is equal to −1. Note that the set S contains no
complex places. Since

∏
v αv(−1) = +1 by global class field theory, the sign

in the functional equation of the global L-function is equal to

ε(π ⊗ π(χ)) =
∏
v

εv(πv ⊗ π(χv)) =
∏
v

εv(πv ⊗ π(χv)).αv(−1) = (−1)#S .

This sign determines the parity of the order of vanishing at the central point
s = 1

2 , so the only case when L(π ⊗ π(χ), 1
2) can be non-zero is when S

has even cardinality. In that case, there is a quaternion algebra D over k
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which ramifies precisely at the places of S: the local algebra Dv = D ⊗ kv
is a division algebra when v is in S and is a matrix algebra elsewhere. The
quaternion algebra D gives an inner form G∗ of the group PGL2 over the
number field k, with rational points G∗(k) = D∗/k∗. Jacquet and Langlands
[46] proved that there is an automorphic representation π∗ of the adelic points
G(A) with local components πv at places not in S and local components π∗

v

for places v in S. The adelic points T (A) of the torus embed in G∗(A), and
by the local theory, the complex vector space

HomT (A)(π∗ ⊗ π(χ),C)

has dimension one. Waldspurger observed that for functions φ on G∗(A)/G∗(k)
in the automorphic realization of π∗, the integral

∫
T (A)/T (k)

φ(t) χ(t) dt

defines an element in this complex vector space. He called this explicit linear
form a toric period. The main global result in this paper is that the toric
period of χ defines a non-zero T (A)-invariant linear form if and only if the
special value L(π ⊗ π(χ), 1

2) is non-zero [64, Thm 2]. In fact, Waldspurger
established an explicit formula, relating the product of the toric period of χ
and the toric period of the contragredient representation χ−1 to this special
value [64, Prop 7 ].

3. Shimura curves

Reconsidering our limit formula for the first derivative in the light of Wald-
spurger’s results, I realized that we were treating the global L-function in the
special case when k = Q, the quadratic extension K is imaginary quadratic,
and the finite set of places determined by the sign of the local factors is
S = {∞}. Indeed, the hypothesis that all primes p dividing the level N of f
are split in K, which is necessary to construct Heegner points on the curve
X0(N), forces εp(πp⊗π(χp)).αp(−1) = +1 [24], whereas the fact that π∞ is a
discrete series of weight 2 for PGL2(R) and χ∞ = 1 for C∗/R∗ implies that the
local factor ε∞(π∞ ⊗ π(χ∞)).α∞(−1) = −1. The local representation π∗

∞ is
just the trivial representation of the compact group H∗/R∗ = SO(3), where H
is Hamilton’s quaternion algebra, and for ring class characters χ of K, χ∞ = 1.

Thus, we had treated the simplest case of the first derivative, when #S is
odd and the L-function vanishes to odd order at s = 1

2 . What about the gen-
eral case? When #S is odd there is no global quaternion algebra over k which
ramifies precisely at S. But when S contains all infinite places, there is
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a reasonable arithmetic object to consider. This simple additional hypothesis
has a number of interesting implications. Since S contains no complex places,
the number field k must be totally real. Moreover the local representation πv
at each real place is in the discrete series of PGL2(kv) = PGL2(R) and the
étale quadratic extension Kv of kv = R is a field. Hence Kv = C and K is
a CM field. If πv is the discrete series representation of PGL2(R) of weight
2kv ≥ 2, then the character χv of C∗/R∗ has the form χv(z) = (z/z)mv , where
mv is an integer whose absolute value is less than kv. The automorphic repre-
sentation π corresponds to a holomorphic Hilbert modular form f of weight
(2k1, 2k2, . . . , 2kd), where d is the degree of k over Q, and χ is an algebraic
Hecke character of K with infinity type (m1,m2, . . . ,md). The simplest case
is when f has weight (2, 2, . . . , 2). Then mi = 0 for all i and the character χ
has finite order.

The right arithmetic object is a Shimura curve X over k, and its special
points over abelian extensions of K. Shimura had defined these curves starting
with a quaternion algebra D(v) over k which is split at one real place v and
ramified at all others. Let G be the algebraic group over k with rational points
D(v)∗/k∗, and let M be an open compact subgroup of the finite adelic points
G(Af ). The real group G(kv) ∼= PGL2(R) acts on the upper and lower half
planes H ±, and the orbit space

XM (C) = G(k)\H ± ×G(Af )/M

is a Riemann surface with a finite number of connected components. The
Riemann surface XM (C) is compact unless k = Q and D = M2(Q), when it
can be compactified with a finite number of cusps.

Shimura proved that the components of XM (C) descend canonically to
algebraic curves defined over abelian extensions of k [59], and Deligne inter-
preted his results to show that the complex curve XM descends canonically to
an algebraic curve over k, embedded in C via the place v [13]. If one embeds
k into C by another real place w, the curve XM is uniformized by arithmetic
subgroups of the group D(w)∗/k∗, where D(w) is the quaternion algebra ram-
ified at w, split at v, and otherwise locally isomorphic to D(v) [15]. Hence
the curve XM over k does not correspond to a single quaternion algebra,
but rather to the odd set S of places consisting of all the real places of k
and the finite places ramified in either D(v) or D(w). The projective limit
X = limM XM defines a pro-curve over k which has an action of the group
G(Af ) and depends only on S. It is this curve, or rather the Mordell-Weil
group of its Jacobian, that replaces the space of automorphic forms in Wald-
spurger’s argument. Indeed, the CM extension K of k gives a collection of
special points on the curve X, which are rational over abelian extensions of K
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which are “dihedral” over k. Using the character χ, viewed as a character of
the Galois group of the maximal abelian extension of K by class field theory,
one can construct zero cycles on X. These cycles have non-trivial class in
the Mordell-Weil group precisely when the first derivative of the Rankin L-
function is non-zero at the central point s = 1

2 , and the height pairing against
these special cycles is the analog of Waldspurger’s automorphic period. I pro-
posed this generalization of our limit formula in [26]; the full result was proved
by Shou-Wu Zhang and his students Xinyi Yuan and Wei Zhang [73].

4. Triple products

I arrived at Harvard in the fall of 1985 and gave a graduate course on quater-
nion algebras and their quadratic subfields, covering much of the above mate-
rial. One of my students, Dipendra Prasad, had just arrived from India with
a strong background in representation theory. He began to study an analog
of Tunnell’s and Waldspurger’s local results, relating the restriction of irre-
ducible representations to local epsilon factors. The case Prasad focused on
was triple products of irreducible representations of PGL2.

Let kv be a local field and let π1, π2, and π3 be three infinite dimensional
irreducible representations of the group PGL2(kv). Then the tensor product
π1 ⊗ π2 ⊗ π3 is an irreducible representation of the group PGL2(kv)3. Re-
stricting this representation to the subgroup PGL2(kv) diagonally embedded
in the triple product, Prasad showed that the complex vector space

HomPGL2(kv)(π1 ⊗ π2 ⊗ π3,C)

has dimension zero or one. Let Mi be the two dimensional representation
of the Weil-Deligne group which is the Langlands parameter of πi. Then
M1⊗M2⊗M3 is an eight dimensional symplectic representation, so has local
epsilon factor equal to +1 or −1. Prasad showed that the dimension of the
vector space of invariant trilinear forms is equal to one if and only if

ε(M1 ⊗M2 ⊗M3) = +1.

If the local epsilon factor of the triple product is −1, then Prasad showed
that all three representations πi lie in the discrete series for PGL2(kv). Hence
they correspond to finite dimensional irreducible representations π∗

i of the
compact group D∗

v/k
∗
v , where Dv is the quaternion division algebra over kv.

For three irreducible representations of this compact group, Prasad showed
that the complex vector space

HomD∗
v/k

∗
v
(π∗

1 ⊗ π∗
2 ⊗ π∗

3 ,C)
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also has dimension zero or one. It has dimension one if and only if

ε(M1 ⊗M2 ⊗M3) = −1.

Hence the epsilon factor of the symplectic representation M1 ⊗ M2 ⊗ M3
determines whether there is a trilinear form invariant under PGL2 or its
compact inner form [55, Thm. 1.4].

Michael Harris and Steve Kudla obtained a result analogous to Wald-
spurger’s theorem on toric periods in this case [38], which had been con-
jectured by Jacquet. Let k be a number field and let π1, π2 and π3 be three
cuspidal automorphic representations of the adelic group PGL2(A). The triple
product L-function L(π1⊗π2⊗π3, s) has an analytic continuation and satisfies
a functional equation, via an integral representation found by Paul Garrett
[21]. Let S denote the finite set of places v of k where the local epsilon factor
of this triple product is equal to −1, so the sign in this functional equation is
equal to (−1)#S . When #S is even, so the order of vanishing at the central
critical point s = 1

2 is even, Jacquet conjectured that the central critical value
detected the non-vanishing of certain period integrals. Specifically, let D be
the quaternion algebra over k which is ramified at the places in S, and let π∗

1 ,
π∗

2 , and π∗
3 be the automorphic representations of the inner form G of PGL2

with rational points D∗/k∗, corresponding to π1, π2 and π3 by the results of
Jacquet and Langlands. By Prasad’s local results, the vector space

HomG(A)(π∗
1 ⊗ π∗

2 ⊗ π∗
3 ,C)

has dimension one. Harris and Kudla show that the invariant linear form
mapping automorphic functions on (G(A)/G(k))3 which lie in these repre-
sentations to the integral

∫
G(A)/G(k)

φ1(g)φ2(g)φ3(g)dg

is non-zero if and only if the central value L(π1⊗π2⊗π3,
1
2) is non-zero. Some

years later, Atsushi Ichino gave an explicit formula for the special value, in
terms of these period integrals [43].

The case when #S is odd is more difficult. Under the additional assump-
tion that S contains all infinite places of k, Kudla and I conjectured [28] that
the first derivative L′(π1 ⊗ π2 ⊗ π3,

1
2) was related to the height pairing of

the modified diagonal cycle [32] on the triple product of the Shimura curve
determined by S. Shouwu Zhang has investigated this conjecture, and shown
that it has surprising applications to the construction of k-rational points on
elliptic curves, when π1 = π2 [77, §5.3].
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5. A letter from India

This is where matters stood, when in the fall of 1990 I received a short
letter from Prasad. This letter was hand-written, and took three weeks to
travel from India to Boston. (I have included the first page in Figure 1, to
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give some idea of how mathematicians communicated thirty years ago.) It
concerned some recent results of Harris and Kudla [39] on the restriction of
discrete series representations from Sp4(R) to the subgroup SL2(R)×SL2(R)
fixing a decomposition of the symplectic spaces into a direct sum of two hy-
perbolic planes. The restriction of holomorphic and anti-holomorphic discrete
series was already known. Harris and Kudla used the theta correspondence
to completely work out which discrete series for SL2(R)×SL2(R) occurred as
quotients in the restriction of a generic discrete series for Sp4(R).

Prasad reformulated these results, for discrete series with trivial central
character, as a restriction problem for orthogonal groups. He observed that
the quotient Sp4(R)/〈±1〉 maps to a subgroup of index two in SO(3, 2) via
the second exterior power representation, and that the quotient of SL2(R) ×
SL2(R) by the diagonally embedded 〈±1〉 maps to a subgroup of index two in
SO(2, 2) via the tensor product of the two standard representations. The latter
orthogonal group is the subgroup of SO(3, 2) fixing a vector with positive
inner product. There are two discrete series representations of SO(3, 2) with
infinitesimal character α1 > α2 > 0 where the α lie in 1

2Z−Z, and two discrete
series of SO(2, 2) with infinitesimal character β1 > |β2|, where the β lie in
Z. The holomorphic discrete series of SO(3, 2) with infinitesimal character
α1 > α2 > 0 restricts to a Hilbert direct sum of holomorphic discrete series
for SO(2, 2) with infinitesimal characters satisfying the inequalities β1 > α1 >
α2 > |β2|. The generic discrete series does not have a discrete decomposition
when restricted to SO(2, 2), but this restriction has discrete series quotients
whose infinitesimal characters satisfy the inequalities β1 > |β2| > α1 > α2 > 0
and α1 > α2 > β1 > |β2|.

Prasad compared these restrictions with the restrictions from orthogonal
groups with the same rank and discriminant, which were not split. There is a
unique discrete series representation of the group SO(1, 4) with infinitesimal
character α1 > α2 > 0, and this restricts to the Hilbert direct sum of finite di-
mensional representations of the compact subgroup SO(0, 4) whose infinitesi-
mal characters satisfy β1 > α1 > |β2| > α2 > 0. Finally, the finite dimensional
representation of the compact group SO(5, 0) with infinitesimal character
α1 > α2 > 0 restricts to a direct sum of the finite dimensional representa-
tions of SO(4, 0) whose infinitesimal characters satisfy α1 > β1 > α2 > |β2|.
The latter is the classical branching formula for restriction of representations
of compact orthogonal groups.

These restriction results become much clearer if one puts the discrete se-
ries for all the different orthogonal groups with a given infinitesimal character
together, as David Vogan had suggested [63]. These collections of represen-
tations – of orthogonal groups SO(V ), as V ranges through the orthogonal
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spaces with a fixed dimension and discriminant – are now called a Vogan
L-packet. Considering the inequalities above, we can conclude that for each
pair of infinitesimal characters α1 > α2 > 0 and β1 > |β2| there is a unique
discrete series representation π of an orthogonal group G = SO(V5) in the Vo-
gan L-packet for SO(3, 2) and a unique discrete series representation σ of an
orthogonal group H = SO(W4) in the Vogan L-packet for SO(2, 2) such that
W4 embeds as a subspace of V5 and the complex vector space HomH(π⊗σ,C)
has dimension one. For all other pairs (π∗, σ∗) in the L-packets, either W4 does
not embed in V5 or the vector space HomH(π∗ ⊗ σ∗,C) has dimension zero.

What was even better was that, in the real case, the signs of the local
epsilon factors determine the branching of the infinitesimal characters. Hence
Prasad viewed these results on restriction of discrete series as a generaliza-
tion of the results of Tunnell on restriction from PGL2 = SO(V3) to a max-
imal torus T = SO(W2), and of his own results on invariant trilinear forms
for PGL2, which involves restriction from PGL2 ×PGL2 = SO(V4)/〈±1〉 to
PGL2 = SO(W3). He suggested that there might be a similar result on restric-
tion from SO(V ) to SO(W ), where W was an orthogonal space of codimension
one in the orthogonal space V over a local field k. There were already a number
of results in the literature suggesting that for any irreducible representation
π of G = SO(V ) and any irreducible representation σ of H = SO(W ), the
complex vector space HomH(π ⊗ σ,C) has dimension less than or equal to
one. We learned about these results from Joseph Bernstein, at the time I
wrote a general paper on Gelfand pairs [27]. Eventually, the full result on
multiplicities was established by his students Aizenbud and Gourevitch, and
by Rallis and Schiffmann in the p-adic case [1]. The real and complex cases
were settled by Sun and Zhu [60].

Dipendra’s letter suggested that the multiplicity might be equal to one
if one summed over a Vogan L-packet for the two groups, and the represen-
tations π and σ in the L-packet where HomH(π ⊗ σ,C) has dimension one
could somehow be distinguished by local epsilon factors.

6. The conjecture for local orthogonal groups

To formulate a precise conjecture I went over to MIT to speak with David
Vogan, to learn more about how he parametrized the different irreducible
representations in an L-packet. David had worked out the theory completely
for real and complex groups, and knew what to expect for p-adic groups
[63]. This was all based on the fundamental conjecture of Langlands, that
irreducible complex representations of a reductive group G(k) over a local field
k should be parametrized by equivalence classes of homomorphisms from the
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Weil group W (k) (or the Weil-Deligne group WD(k) in the non-Archimedean
case) to the L-group of G. The L-group is a semi-direct product of the dual
group by the Galois group of a finite extension of k, and the equivalence
is up to conjugation by the dual group. Such homomorphisms φ are called
Langlands parameters. There are a number of conditions such a parameter
must satisfy; for an introduction to the local Langlands conjecture, see [31].

In the case where G = SO(V ) with dimV = 2n + 1, the L-group is the
symplectic group Sp2n(C). Therefore, a Langlands parameter is a symplectic
representation

φ : WD(k) → Sp(M)

where M has dimension 2n over C. In the case where G = SO(V ) with
dimV = 2n and discV = d ∈ k∗/k∗2, the L-group is either the special
orthogonal group SO2n(C) or the full orthogonal group O2n(C). Therefore, a
Langlands parameter gives an orthogonal representation, up to conjugation
by the subgroup SO(N)

φ : WD(k) → O(N)

where N has dimension 2n over C and the determinant of φ is the quadratic
character of the extension k(

√
d). In each case, Langlands proposed that there

should be a finite number of irreducible representations of G(k) associated to
each parameter.

Since the parameters are the same for all orthogonal spaces of the same
rank and discriminant, Vogan realized that it was more convenient to put
the irreducible representations (of the different orthogonal groups of these
spaces) together in the same L-packet. That gave him a simpler conjectural
description of the irreducible representations associated to a single parameter
φ. Let Cφ be the centralizer in the dual group of the image of φ in the L-
group. This group is well-defined up to conjugacy; let Aφ = Cφ/C

0
φ be its finite

component group. Then David conjectured that the individual representations
in a Vogan L-packet of φ should be parametrized by the irreducible complex
representations ρ of Aφ. There were many extremely attractive features of
this correspondence. For example, the restriction of ρ to the center of the
L-group gives information on the specific group acting on the representation
[29]. And the idea of putting the representations of the groups of different
orthogonal spaces in the same packet fitted our restriction problem perfectly.

In the special case when G is a special orthogonal group, the centralizer
Cφ of φ is a product of orthogonal, symplectic, and general linear groups
[29]. Hence the component group Aφ is an elementary abelian 2-group and
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an irreducible representation of Aφ is a quadratic character χ. To identify
which irreducible representation in the Vogan L packet had a non-trivial in-
variant linear form, I needed to construct such a character from the Langlands
parameters.

The Langlands parameters consists of a symplectic representation M of
dimension 2n and an orthogonal representation N of dimension 2n or 2n+2,
with a fixed determinant. In the cases when n = 1 and n = 2, Tunnell and
Prasad had used the local sign ε(M ⊗ N). detN(−1) to say which group
had a non-trivial restriction. That suggested using similar epsilon factors
to define the character χ. I was encouraged to do this by Michael Harris,
who noted that there are more symplectic epsilon factors to consider when
either M or N is reducible. After some experimentation, I came up with the
following recipe. Let (a, b) be a pair of elements, where a is in the centralizer
of the symplectic representation M and b is in the centralizer in SO(N) of the
orthogonal representation N . Let Ma be the subspace of M where a = −1
and let N b be the subspace of N where b = −1. Since a and b centralize the
image of the Weil-Deligne group, Ma is a symplectic representation and N b

is an orthogonal representation of even dimension. Define

χ(a, 1) = ε(Ma ⊗N) detN(−1)dimMa/2

χ(1, b) = ε(M ⊗N b) detN b(−1)dimM/2.

Using some general properties of epsilon factors, I could see that these signs
depend only on the image of the pair (a, b) in the component groups AM ×
AN of the parameters. Even better, the resulting function on the component
groups is a quadratic character! That was so remarkable that it was easy to
conjecture that this character determines the distinguished representations π
and σ. On the centers of the L-groups, we have

χ(−1, 1) = χ(1,−1) = ε(M ⊗N) detN(−1)dimM/2.

and this sign determines the Hasse-Witt invariant of the two quadratic spaces
involved, showing that W is indeed a subspace of V .

I was pleased to find this formula for a character, but knew that it was only
going to solve the restriction problem in certain cases. Even for PGL2, one had
to assume that the representation π was infinite dimensional. In the general
case, I guessed that the restriction problem would only have a simple answer
when the two Vogan L-packets were generic. By this we mean that the packet
contains a generic representation (one of maximal Gelfand-Kirillov dimension)
of a quasi-split group. Vogan explained his recipe for generic L-packets in the
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real and complex cases, and that led me to a conjecture in the general case –
that a Vogan L-packet is generic precisely when the adjoint L-function of the
Langlands parameter is regular at the point s = 1. In the case of orthogonal
groups associated to spaces of dimensions 2n+1 and 2n, the adjoint L-function
is associated to the orthogonal representation Sym2 M ⊕ ∧2N of dimension
4n2 of the Weil-Deligne group. It is interesting to note that this is the same
dimension as the dimension of the symplectic representation M ⊗N .

7. The conjecture for global orthogonal groups

Prasad and I also proposed a conjecture in the global case, although we
had almost no evidence beyond the analogy with the low dimensional cases
which were already known. Assume that k is a number field, with completions
kv and ring of adeles A =

∏′
v kv, and let V be a split orthogonal space of

dimension 2n + 1 over k, and W a quasi-split orthogonal space of dimension
2n which is the orthogonal complement of a non-isotropic vector in V . Let
G = SO(V )×SO(W ) and let H be the subgroup SO(W ) embedded diagonally
in G. Finally, let π⊗σ be a tempered automorphic representation of the group
G(A) which occurs in the space of cusp forms on G(k)\G(A).

Such an automorphic representation was conjectured to have a global
Langlands parameter, which is a homomorphism of the global Langlands
group to the L-group Sp(M) × O(N) and restricts to the local Langlands
parameters (Mv, Nv) of πv ⊗ σv for all places v. It should also have a global
L-function L(M ⊗ N, s) for the tensor product representation, which is de-
fined in a half plane by the infinite product of local L-functions. At the time,
there was no method known to obtain the analytic continuation and func-
tional equation of this L-function beyond the two cases of low dimension, so
our conjecture about its central critical value was purely formal.

Since the local parameters are tempered, they are generic and determine
generic Vogan L-packets. By the local conjecture, there is a unique repre-
sentation π∗

v ⊗ σ∗
v in each local packet such that the complex vector space

HomH∗
v
(π∗

v ⊗ σ∗
v ,C) is one dimensional. This is a representation of the group

G∗
v, associated to two local orthogonal spaces W ∗

v ⊂ V ∗
v of the same dimension

and discriminant as W and V . Almost all of these representations are unram-
ified (by the local theory), so we can make the tensor product representation
of the adelic group G∗

A
=

∏′
v G

∗
v. When

ε(M ⊗N) =
∏
v

εv(Mv ⊗Nv) =
∏
v

εv(Mv ⊗Nv) detNv(−1)dimMv/2 = +1
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these local orthogonal spaces are the components of global spaces W ∗ ⊂ V ∗.
This gives a discrete subgroup G∗(k) of G∗(A), and we can ask if the tensor
product representation defined above is automorphic. We conjectured that
this would be the case when

ε(Ma ⊗N) = ε(M ⊗N b) = +1

for all (a, b) in the global centralizer. If this is the case, the embedding into
the space of automorphic forms should be unique up to scaling, by Arthur’s
multiplicity formula [2].

If these global epsilon factors are all +1, we get an invariant linear form on
the automorphic representation via integration over the diagonal subgroup.
H∗(A). Our global conjecture is that this period is non-zero if and only if the
central L-value L(M ⊗N, 1

2) is non-zero. This conjecture was later refined by
Atsushi Ichino and Tamotsu Ikeda [43] [44], who gave a precise conjectural
formula for the central L-value in terms of the product of the period and the
period of the contragredient representation. This generalized the formula of
Waldspurger involving toric periods. In fact, their precise formula involves
the quotient of this central L-value by the value of the adjoint L-function at
the point s = 1:

L(M ⊗N, 1/2)/L(Sym2 M ⊕ ∧2N, 1).

8. OSU and UCSD

Prasad and I worked this out, with more examples, in an exchange of letters
in the fall of 1990. We started to write this up [29] when I was invited by
Steve Rallis to speak at a conference on representation theory in Ohio State
in 1991. At the time, Vogan’s theory was not well known, so I spent the first
half of my talk summarizing his ideas, and presented our conjecture on the
restriction of generic packets from SOn to SOn−1 at the end. When I finished,
the response of the audience was complete silence. However, Jacquet came up
afterwards to offer encouragement. And the next day Rallis showed me how
our conjecture on the adjoint L-function at s = 1 was compatible with the
formula of Casselman-Shalika [10] for unramified principle series, giving the
value of the Whittaker functional on a spherical vector.

One point that puzzled me was that the formula for the character χ of the
component group AM×AN worked equally well whenever M was a symplectic
representation and N was an orthogonal representation of even dimension.
There was no need to assume that dimN = dimM or dimN = dimM + 2,
as we were doing in restriction from SO(n) to SO(n − 1). Was there a more
general restriction problem that involved this character of the component
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group? Again, Rallis pointed us in the right direction, suggesting that we
look at Bessel models for orthogonal groups, and this led to the more general
conjectures posed in [30].

In 1993, I took a sabbatical year and visited the University of California
in San Diego. My plan was to work with Harold Stark, on his conjectures on
Artin L-functions at s = 0. But when I arrived, Stark told me he had almost
no free time – he was department chair and the UC system was in one of its
periodic crises. So I decided to learn some more representation theory, and
found an excellent teacher on the faculty – Nolan Wallach. I showed Wallach
our conjecture for the discrete series of real orthogonal groups, where the sym-
plectic epsilon factors could actually be calculated, and we decided to work
on some simple cases, where the restriction was a direct sum of discrete series
representations of the smaller orthogonal group [34]. This led us to the study
of quaternionic discrete series and their continuations [33]. These special cases
all checked out, and so did a number of cases with tamely ramified parameters
on p-adic groups [31]. I was becoming more confident of the correctness of the
local conjecture but couldn’t make any general progress on it.

It was another sabbatical at UCSD, in 2007, that got us started up again.
This time it was Dipendra who was visiting, and Wee Teck Gan on the faculty
was his host. Although Wee Teck was my PhD student, he had received a lot of
guidance from Gordan Savin and had focused up to that point on exceptional
groups. He had studied the restriction of Saito-Kurokawa representations of
SO(5) to SO(4), but that was motivated by the question of constructing non-
tempered Arthur packets on the exceptional group G2. He began his transition
to the world of classical groups when considering the local Langlands conjec-
ture for the group GSp(4), and corresponded frequently with Prasad about
it. This may have persuaded Dipendra to take his sabbatical at UCSD.

During this visit, Wee Teck and Dipendra formulated a generalization of
our conjectures on the restriction of representations of orthogonal groups to
the restriction of representations of other classical groups, like unitary groups.
I had discussed possible extensions of our conjectures to unitary groups with
Michael Harris in the early 1990s. Together with Kudla and Sweet [40], Harris
discovered a beautiful formula for the explicit theta correspondence for p-adic
unitary groups using local epsilon factors. This was certainly encouraging, but
a precise conjecture had eluded me.

As in the orthogonal case, where the two orthogonal spaces W ⊂ V play
a critical role, Dipendra and Wee Teck formulated the restriction problem for
unitary groups using Hermitian spaces. Let K be an étale quadratic extension
of the local field k, and let W ⊂ V be non-degenerate Hermitian spaces over
the K of dimensions n − 1 and n respectively. Let G = U(W ) × U(V ) and
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let H be the subgroup U(W ) embedded diagonally in G. When K = k × k
is the split étale algebra, the group G is isomorphic to GLn×GLn−1 and
H is isomorphic to GLn−1. This case is much easier, as the L-packets for G
contain only one representation π⊗ σ, and for generic parameters a non-zero
H invariant linear form on π ⊗ σ is known to exist. In what follows, we will
assume that K is a field.

Let π⊗σ be an irreducible representation of G(k) = U(W )×U(V ). Then
the dimension of HomH(π ⊗ σ,C) is again less than or equal to 1 (cf. [1]).
The local conjecture predicts when the dimension is equal to 1 in terms of
epsilon factors of the respective Langlands parameters. For representations of
the local unitary group Un, a Langlands parameter is a homomorphism from
the Weil-Deligne group of k to a semi-direct product

φ : WD(k) → GLn(C).Gal(K/k) = GL(M).Gal(K/k),

Here the Galois group of K/k acts on GLn(C) by a pinned outer automor-
phism. A surprising fact is that the restriction of φ to the subgroup WD(K),
which is a representation M of dimension n, completely determines the pa-
rameter. The representation M is not arbitrary: its conjugate is isomorphic
to its dual, and the conjugate duality of M is orthogonal if n is odd and
symplectic if n is even. For proofs, as well as the definition of the sign of a
conjugate duality, see [17, Ch 3].

In our case, the representations π and σ have Langlands parameters M
and N of dimensions n and n − 1, so one is conjugate orthogonal and the
other is conjugate symplectic. Hence the tensor product M ⊗N is conjugate
symplectic, and we can use its epsilon factors to define a quadratic character
χ of the component group, just as in the orthogonal case. The local conjecture
is that the dimension of the H-homomorphisms is 1 when one sums over a
generic L-packet, and the pair of representations (π, σ) in the L-packet where
the dimension is equal to 1 is given by the distinguished character. The global
conjecture, involving periods of automorphic representations and the central
value of the tensor product L-function, is similar to the orthogonal case.
However, a tremendous advantage in the Hermitian case is that the global
L-function is just the Rankin L-function over K of the representation M⊗N .
In this case, both the analytic continuation and the functional equation of
the L-function were known, so the global conjecture could actually be tested.

9. Paris

Beyond the Hermitian case, and its generalization to Bessel models, we real-
ized that we could formulate a conjecture on restriction in four general cases
[17]:



2148 Benedict H. Gross

• Orthogonal spaces W ⊂ V of odd codimension,
• Hermitian spaces W ⊂ V of odd codimension,
• Symplectic spaces W ⊂ V of even codimension,
• Anti-Hermitian spaces W ⊂ V of even codimension.

The latter two cases involve the Weil representation. They are reflections
of the former two, through the mirror of the theta correspondence. Each case
has its own distinguishing features, but the local conjecture always involves
the signs of symplectic epsilon factors and the global case the central value of
the corresponding tensor product L-function, whose non-vanishing is related
to the non-triviality of certain automorphic periods. A precise formula for
this central value was given in a refined conjecture, which in the orthogonal
case is due to Ichino and Ikeda [44] and in the Hermitian case is due to Neal
Harris [41]. Automorphic periods had previously been studied by Ginzburg,
Jiang, and Rallis [22, 23], in a slightly different context. Our conjectures
encompassed almost all of the restriction problems in the literature, where
the multiplicity was less than or equal to one. We had a number of examples
in low dimension where the conjectures worked out [18], and there were some
encouraging partial results for real groups (cf. [49] [50]), but we had no idea
how to proceed in general.

In some orthogonal and Hermitian cases, when the sign in the functional
equation is −1, we also made an arithmetic conjecture for the first derivative
of the tensor product L-function at the central point. This involved the heights
of diagonal cycles on Shimura varieties, generalizing the limit formula I found
with Zagier. For the first derivative, we needed an additional assumption.
Namely, at all Archimedean places of the number field k, the group acting on
the distinguished representations π and σ in the L-packet should be compact.
This implies that k is totally real and, in the Hermitian case, that K is a CM
field. Moreover, the codimension of W in V must be equal to 1. Yifeng Liu
[51] formulated a conjecture for the first derivative in the anti-Hermitian case,
with the same hypothesis on the Archimedean places, which forces k to be
totally real, K to be CM, and W = V .

I was visiting Paris to give some talks on this material in July of 2008.
After one of my lectures, Waldspurger invited me into his office and reported
that he had found a proof of the full p-adic conjecture in the orthogonal
case! When he sketched out his miraculous argument I was so astonished
that I began to question my command of French. In the proof, he had to
assume some standard conjectures on Vogan L-packets, but these would soon
be established for classical groups by Jim Arthur [2].

Waldspurger’s ideas opened a flood of research in the subject (some of
the subsequent developments are described in an epilogue). Since his lecture



The road to GGP 2149

at Durham had been my entry point into the subject, this seems like a good
place to end the story.

10. Epilogue

The fundamental work of Waldspurger [65, 66, 67, 68] (and Moeglin-Wald-
spurger [54]) is based on an interpretation of the restriction multiplicity in
terms of the characters of the representations involved, proved via a local
trace formula. It quickly led to a great number of developments, to the extent
that the GGP conjecture for Hermitian spaces is now essentially proved. Here
are some of the highlights – for more details see the Bourbaki report [6].

• (Local Hermitian case) Adapting Waldspurger’s local trace formula
techniques to the Hermitian case, Raphaël Beuzart-Plessis initially es-
tablished the local GGP conjecture for unitary groups over p-adic fields
[3, 4] and later settled the archimedean case [5]. His results were for
tempered L-packets. They were extended to generic L-packets by Gan-
Ichino [20], who also settled the local skew-Hermitian case via the theta
correspondence. In the real case, Hongyu He [42] found a compact proof
of the GGP conjecture for discrete series L-packets, and Hang Xue
treated the general Archimedean case [70, 71].

• (Global Hermitian case) The main tool for attacking the GGP conjec-
ture in the global case is a relative trace formula, which was developed
by Jacquet and Rallis [47] around 2010. The strategy involves compar-
ing the relative trace formula for the pair of unitary groups (Un, Un−1)
with the relative trace formula for the pair (GLn,GLn−1). As with any
application of the trace formula, it is necessary to prove an analog of
the fundamental lemma and the smooth transfer of test functions. The
fundamental lemma was established by Zhiwei Yun [74] over local func-
tion fields using geometric arguments and the result was transported
to p-adic fields by Julia Gordon. A major breakthrough was made by
Wei Zhang [79], who established the smooth transfer of test functions
at non-archimedean places. This allowed him to prove the global GGP
conjecture [79] and also Ichino-Ikeda’s precise conjectural formula [80]
under some simplifying local hypotheses. Some of these local hypotheses
were weakened through the work of Beuzart-Plessis and Xue [69].
There was a general belief that to obtain the full global conjecture,
it would be necessary to work out all the intricacies of the Jacquet-
Rallis trace formula, rather than using a simple version of it. It was
thus a surprise when in 2019, Beuzart-Plessis, Yifeng Liu, Wei Zhang
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and Xinwen Zhu [8] were able to remove the last local assumptions in
the global GGP conjecture for stable L-packets of unitary groups. In
the meantime, Pierre-Henri Chaudouard and his student Michal Zydor
[83] tackled the Jacquet-Rallis trace formula [12] in full. In a recent
paper [7], Beuzart-Plessis, Chaudouard and Zydor have combined their
improved understanding to establish the full global GGP conjecture for
unitary groups and its refinement by Ichino-Ikeda and Harris!

With the Hermitian case settled (and the skew-Hermitian case likely to
follow from work on the relative trace formula [52] [72]), what remains to be
done? Here are three active areas of research.

• (Global Orthogonal case) The original conjectures of [29, 30] remain
open in the local archimedean setting and the global setting. A recent
paper [53] of Zhilin Luo began the adaptation of Waldspurger’s method
to the archimedean case. In the global situation, there is no known
analog of the Jacquet-Rallis relative trace formula. On the other hand,
a different approach to the GGP conjecture was pioneered by David
Ginzburg, Dihua Jiang, and Rallis [22, 23]. Jiang and Lei Zhang [48]
extended this approach and successfully proved one implication of the
global GGP conjecture in the orthogonal and Hermitian case – the
nonvanishing of the global period integral implies the nonvanishing of
the central L-value. They also proved the converse in some situations.

• (Arithmetic case) In the case where the sign of the global functional
equation is −1 one expects a formula for the first derivative in terms
of the heights of cycles on Shimura varieties. Wei Zhang has proposed
a general program to attack this case. As a first step, he formulated an
arithmetic fundamental lemma [78], which is an identity relating the
first derivative of an orbital integral to certain local height pairings.
There has been some recent progress in this direction [56, 57], and a
proof in the Hermitian case [82], some of which is surveyed in [81].
Following up on some of these ideas, Zhiwei Yun and Wei Zhang re-
visited the original case of torus periods on PGL2 over function fields.
They established some astonishing results [75, 76] giving an interpreta-
tion of the coefficients in the entire Taylor expansion of the Rankin
L-function at the central critical point, in terms of intersection numbers
of special cycles on the moduli spaces of Drinfeld’s shtukas. This gener-
alizes both Waldspurger’s formula for the special value and my formula
with Zagier for the first derivative! It was totally unexpected and opens
an exciting approach to the conjecture of Birch and Swinnerton-Dyer
for elliptic curves over function fields.
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• (Nontempered case) After the completion of our papers [17, 18], Gan
and Prasad spent a semester at MSRI in the fall of 2014 working out an
extension of our restriction conjectures to certain nontempered repre-
sentations arising from Arthur parameters [19]. A local Arthur parame-
ter is a homomorphism from the product WD×SL2(C) to the complex
L-group, which has bounded image when restricted to the Weil-Deligne
group WD. When the image of SL2(C) is trivial, these are the tempered
Langlands parameters. When the image of SL2 is non-trivial, there is a
standard method to convert the Arthur parameter into a (non-generic)
Langlands parameter, and this determines an L-packet of non-tempered
irreducible representations.
Now consider Arthur parameters M for SO2n+1 and N for SO2n. Decom-
posing for the action of SL2(C) we may write M =

∑
n Symn(C2)⊗Mn

and N =
∑

n Symn(C2) ⊗Nn where Mn is a symplectic representation
of the Weil-Deligne group when n is even and is an orthogonal repre-
sentation when n is odd. Similarly, Nn is orthogonal when n is even and
symplectic when n is odd. We say the pair (M,N) of Arthur parameters
is relevant if these representations are “within distance one” of each
other. More precisely, a pair is relevant when we have decompositions
Mn = M+

n +M−
n and N+

n +N−
n such that for n ≥ 0 we have M+

n = N−
n+1

and for n ≥ 1 we have M−
n = N+

n−1. In this case, we predict that the re-
striction problem, for representations in the associated local L-packets,
behaves exactly as in the tempered case. When the Arthur parameters
are not relevant we predict that the sum of multiplicities over the lo-
cal L-packets is zero. A similar recipe works for all pairs of classical
groups. The fact that relevance is necessary for the pair (GLn,GLn−1)
was proved by M. Gurevich [37], and the full conjecture in this case was
proved for p-adic groups by K.Y Chan [11].
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