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Special cycles for Shtukas are closed
Zhiwei Yun

∗

Abstract: In this paper, we give a different proof of a theorem of
Paul Breutmann: for a Bruhat-Tits group scheme H over a smooth
projective curve X and a closed embedding into another smooth
affine group scheme G, the induced map on the moduli of Shtukas
ShtrH → ShtrG is schematic, finite and unramified. This result en-
ables one to define special cycles on the moduli stack of Shtukas.
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1. Introduction

1.1. Motivation

Special cycles on Shimura varieties provide an important link between geomet-
ric invariants (such as intersection numbers or heights) and analytic invariants
(such as special values or derivatives of L-functions). For a suitable reductive
group G over Q, if we think of (the complex points of) G-Shimura varieties
as the moduli space of G-Hodge structures, then special cycles parametrize
G-Hodge structures with extra data such as a collection of Hodge tensors, or
a reduction to a smaller group H.

Fix a smooth projective geometrically connected curve X over Fq. For
the function field F = Fq(X), the role of Shimura varieties is played by the
moduli stack of Drinfeld Shtukas over X with G-structures. The moduli of
G-Shtukas ShtrG has an extra degree of freedom, the number of legs r (equal
to 1 for Shimura varieties).

One can similarly define special cycles on such moduli stacks as the moduli
stack of G-Shtukas with extra structure such as a reduction to a smaller group
H or a Frobenius-invariant section of an associated bundle. Here are some
examples of special cycles for function fields:
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1. Let ν : X ′ → X be an étale double cover, H = (RX′/XGm)/Gm and G =
PGL2. In this case, ShtrH → ShtrG are called Heegner-Drinfeld cycles.
Their intersection-theoretic properties were studied in [17, 19, 10], and
were given by the rth central derivative of the automorphic L-functions
for PGL2.

2. Let X ′ → X be a double cover and n ≥ 1. Consider Un a unitary group
scheme over X that splits over X ′. Letting H = Un and G = Un×Un+1,
we have a map ShtrH → ShtrG coming from the diagonal embedding
H ↪→ G. The image of this map is the function field analogue of Gan-
Gross-Prasad cycles in the arithmetic GGP conjecture [9].

3. Let G = Un using a double cover as above, and let E be a vector bundle
of rank m ≤ n over X ′. In [7, 8] we define a special cycle Zr

E on ShtrG
parametrizing unitary Shtukas with a Frobenius invariant map from E .
These are function field analogues of the special cycles defined by Kudla
and Rapoport [11, 12]. In the case m = n, they are 0-cycles and their
degrees are given by the Fourier coefficients of the rth central derivative
of Siegel-Eisenstein series [7].

A basic question, before one can even call special cycles “cycles”, is to
show that their image in ShtrG is closed. In the above examples, the closed-
ness is easy to show using special features of the situation (for example in
Example (1) ShtrH is itself proper). We ask more generally if H ↪→ G is a
closed embedding of smooth affine group schemes over X, is the induced map

θr : ShtrH → ShtrG

a finite map? The non-obvious part is the properness of the map.

1.2. Result and proof outline

In [4, Theorem 3.26], P. Breutmann proves that when H is a Bruhat-Tits
group scheme (i.e. connected reductive generically with parahoric level struc-
tures), θr is schematic, finite and unramified. This allows one to define special
cycles on ShtrG as the direct image of the fundamental class of ShtrH.

In this paper we give a different (and hopefully more streamlined) proof
of this fact. In the publicly available version of [4], only a weaker statement
was proved (θr has the same properties after completion along a fixed leg).
Our original purpose was to improve that result over all of Xr. After this
paper was written, we learned from Urs Hartl that a revised version of [4]
(not posted on the arXiv yet) contains the statement that θr is schematic,
finite and unramified.
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Our proof consists of two parts. In the first part we construct a closed
embedding of BunH to the moduli stack BunG(W)◦ of G-torsors together with
a nonzero section of the vector bundle associated to a certain G-representation
W. The argument is easy when H is reductive everywhere, but when H has
parahoric level structures it relies on a deep result of Anschütz [3] (as does
Breutmann’s argument).

In the second part we pass to Shtuka versions of the moduli stacks con-
sidered in the first part. The main observation is that the forgetful map
ShtrG(W)◦ → ShtrG is proper. This argument was used in [7] to show that
Kudla-Rapoport special cycles are closed.

We hope Breutmann’s result and this short paper will provide a start-
ing point for the study of more examples of special cycles on the moduli of
Shtukas. We refer to [18] for a survey of what was known and what is expected
about special cycles (called Heegner-Drinfeld cycles in loc.cit.).

2. Definitions and statements

Let X be a smooth, projective and geometrically connected curve over k = Fq.
Let G be a smooth affine group scheme over X.

2.1. Moduli of bundles

Let BunG denote the moduli stack of G-torsors over X. More precisely, for
any affine scheme S, BunG(S) is the groupoid of G-torsors over X × S.

Let Rep(G) be the category of (finite rank) vector bundles over X with a
linear action of G. Morphisms in Rep(G) are G-equivariant linear maps.

For V ∈ Rep(G) and a G-torsor E over X, let VE be the associated vector
bundle E ×G

X V , the quotient of E ×X V by the diagonal action of G.
Let r ≥ 0 be an integer. Let Hkr

G be the ind-stack whose S-points (S
affine) classify tuples (x• = {xi}1≤i≤r, E• = {Ei}0≤i≤r, f• = {fi}1≤i≤r), where

• xi : S → X (1 ≤ i ≤ r) are morphisms called legs;
• Ei (0 ≤ i ≤ r) are G-torsors over X × S;
• fi : Ei−1|X×S\Γ(xi)

∼→ Ei|X×S\Γ(xi) (1 ≤ i ≤ r) are isomorphisms of
G-torsors.

One can specifying the bounds μ = (μ1, · · · , μr) on the zeros and poles
of (f1, · · · , fr) to get algebraic substacks Hkr,≤μ

G of Hkr
G , so that Hkr

G is the
inductive limit of Hkr,≤μ

G , with transition maps closed embeddings. Our result
will not be sensitive to the precise definition of these bounds, therefore we will
always work with the ind-stack Hkr

G . When G is split, one can specify a bound
μ to be a tuple (μ1, · · · , μr) of dominant coweights of G. We refer to the paper
of Arasteh Rad and Hartl [1] for more precise discussion about bounds.



2206 Zhiwei Yun

2.2. Moduli of Shtukas

Shtukas for GLn are introduced by Drinfeld [6]. For split reductive groups G,
G-Shtukas are defined by Varshavsky [16]. The general notion of G-Shtukas
for group schemes G are introduced and studied by Arasteh Rad and Hartl
[1].

Let r ≥ 0 be an integer. We define ShtrG by the Cartesian diagram

(2.1) ShtrG HkrG
(p0,pr)

BunG
(id,Fr)

BunG × BunG

Here pi : Hkr
G → BunG is the forgetful map recording the G-torsor Ei, for

0 ≤ i ≤ r.
Thus an S-point of ShtrG is a tuple (x•, E•, f•, ι), where

• (x•, E•, f•) ∈ Hkr
G(S);

• ι : Er ∼→ τE0 is an isomorphism of G-torsors over X × S. Here, τE0 =
(idX × FrS)∗E0.

We call such a tuple (x•, E•, f•, ι) an S-family of G-Shtukas with r legs.
Using a bound μ and Hkr,≤μ

G instead of Hkr
G , a similar diagram as (2.1)

defines Shtr,≤μ
G which are algebraic stacks locally of finite type over k. We

see that ShtrG is the inductive limit of Shtr,≤μ
G with transition maps closed

embeddings.

2.3. Special cycles

Let H and G be smooth affine group schemes over X, and H ↪→ G be a closed
embedding.

The inclusion H ↪→ G induces a map ϕ : BunH → BunG sending a H-
torsor F to the induced G-torsor E = F

H
×X G. The same construction gives

a map of ind-stacks hr : Hkr
H → Hkr

G . Using the Cartesian diagram (2.1), the
map h induces a map of ind-stacks

θr : ShtrH → ShtrG .

For any bound λ of modifications for H-torsors, θr sends Shtr,≤λ
H to Shtr,≤μ

G
for some bound μ of modifications for G-torsors. Conversely, for any bound μ
of Hecke modifications for G-torsors, its preimage θr,−1(Shtr,≤μ

G ) is contained
in a finite union of Shtr,≤λ′

H for bounds λ′ of Hecke modifications for H-torsors.
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2.4. Bruhat-Tits group scheme

Let H be a smooth affine group scheme over X. We say H is a Bruhat-Tits
group scheme if

1. The generic fiber of H is a connected reductive group over the function
field F = k(X). This implies that there is an open dense subset U ⊂ X

over which H is a connected reductive group scheme.
2. For each x ∈ X\U , writing Ox for the completed local ring at x and Fx

its fraction field, the group scheme H|Spec Ox is a parahoric subgroup of
H|Spec Fx .

In this paper we will give a different proof of the following theorem of
Breutmann.

Theorem 1 (Breutmann [4, Theorem 3.26]). Let H ↪→ G be a closed em-
bedding of smooth affine group schemes over X. Assume H is a Bruhat-Tits
group scheme over X. Then the map θr : ShtrH → ShtrG is schematic, finite
and unramified.

Concretely, this means that for any bound μ of modifications for G-torsors,
the restriction θr,−1(Shtr,≤μ

G ) → Shtr,≤μ
G , as a map of algebraic stacks, is

schematic, finite and unramified.
Following this theorem, one can define special cycles as follows. Choose

bounds λ and μ for H and G such that θr restricts to a map Shtr,≤λ
H → Shtr,≤μ

G .
Assume Shtr,≤λ

H has a fundamental cycle [Shtr,≤λ
H ] (for example, if Shtr,≤λ

H is
smooth). Then we get a cycle θrμ,∗[Shtr,≤λ

H ] on Shtr,≤μ
G by pushing forward

along θr. We would like to call such algebraic cycles on Shtr,≤μ
G special cycles.

2.5. Pseudo-homomorphisms

We give a slight generalization of the above theorem to allow more flexibility.
Note that maps between the moduli stacks of bundles BunH → BunG does

not necessarily come from a homomorphism H → G. This can already be seen
in the first example in §1.1. A natural setting to get a map BunH → BunG is
a pseudo-homomorphism between H and G in the following sense.

Definition 1. Let H and G be group schemes over X. We define a pseudo-
homomorphism E0 : H ⇒ G to be a right G-torsor E0 over X with a commuting
(left) action of H.
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A pseudo-homomorphism E0 : H ⇒ G induces a homomorphism of group
schemes iE0 : H → AutG(E0) (the latter being an inner form of G over X).
Since BunG is unchanged if G is replaced by an inner form, iE0 induces a map
ϕE0 : BunH → BunG . More precisely, for F ∈ BunH(S), ϕE0(F) = F

H
×X E0

which is a right G-torsor over X × S.
Conversely, if H is a constant group scheme H = H×X, then any map ϕ :

BunH → BunG comes from a pseudo-homomorphism E0 : H ⇒ G, unique up
to isomorphism. Indeed, the image of the trivial H-torsor under ϕ is a G-torsor
E0 over X with a commuting H-action, which is the same as a commuting
H-action, so that ϕ = ϕE0 .

Definition 2. We say a pseudo-homomorphism E0 : H ⇒ G is a pseudo-closed
embedding if the induced map iE0 : H → AutG(E0) is a closed embedding.

Remark 1. Let BG be the classifying stack of G over X. Namely, for any
test scheme S with a map x : S → X, BG(S) is the groupoid of x∗G-torsors
over S. This is a gerbe over X. Then a pseudo-homomorphism E0 : H ⇒ G
is the same datum as a morphism of stacks β : BH → BG. Namely, given
β, the composition X → BH β−→ BG gives a right G-torsor E0 over X with a
commuting action of H. Conversely, given a pseudo-homomorphism E0 : H ⇒
G, for any scheme S with x : S → X and any x∗H-torsor Fx over S, we define
βS ∈ BG(S) (a x∗G-torsor over S) to be Fx ×x∗H

S x∗E0.
In some cases, it is more natural to define the moduli stack of torsors not

starting from a group scheme G over X, but starting from a gerbe G over X.
See [8, §3.1].

A pseudo-homomorphism E0 : H ⇒ G similarly induces a map hr
E0

:
Hkr

H → Hkr
G covering ϕE0 : BunH → BunG via the projections pi : Hkr

H →
BunH and pi : Hkr

G → BunG , 0 ≤ i ≤ r. Therefore it also induces a map of
ind-stacks

θrE0 : ShtrH → ShtrG .

Theorem 2. Let E0 : H ⇒ G be a pseudo-closed embedding of smooth affine
group schemes over X. Assume H is a Bruhat-Tits group scheme over X.
Then the map θrE0

: ShtrH → ShtrG is schematic, finite and unramified.

This theorem directly follows from Theorem 1: we may replace G with its
inner form AutG(E0) without changing the moduli stack ShtrG , and reduce to
the situation of a closed embedding H ↪→ AutG(E0).

The rest of the paper is devoted to the proof of Theorem 1.
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3. Reductions of bundles

In this section, k is an arbitrary field. Let X be a smooth, projective and
geometrically connected curve over k. Let H ↪→ G be a closed embedding of
smooth affine group schemes over X.

Remark 2. A typical way to construct objects V ∈ Rep(G) is as follows.
Let Gη be the generic fiber of G, a reductive group over F = k(X). Now the
coordinate ring OGη = F [Gη] is a union of finite-dimensional F -subspaces Vi

stable under the right translation of Gη. Let Vi be the saturation of Vi in
OG (which is a union of vector bundles on X), then Vi ∈ Rep(G) with the
G-action inherited from the right translation action on OG , and OG is the
union of Vi.

More generally, suppose R is a quasi-coherent sheaf on X with a linear
G-action (i.e., an OG-comodule), and R is a union of vector bundles, then R
is a union of G-stable vector bundles (i.e., objects in Rep(G)). This can be
checked by the saturation as above.

The stack quotient G/H is an algebraic space. Let V ∈ Rep(G). Let VH

be the subbundle of H-invariants. The action of G on V moves the natural
embedding VH ↪→ V and gives a morphism G → (VH)∨ ⊗OX V that is right
invariant under H. It therefore induces a unique map of algebraic spaces over
X

(3.1) bV : G/H → (VH)∨ ⊗OX V .

Here the right side is identified with the total space of the vector bundle with
the same name.

3.1. The case H is reductive

From now until §3.3, we assume H is a reductive group scheme over X. In
this case, the fppf sheaf G/H is representable by a scheme which is affine over
X. This is a special case of a general theorem of Alper [2, Theorem 9.4.1]
(which only requires G to be affine over X). This immediately implies that
the natural map

G/H → G //H = Spec
X

(OH
G )

is an isomorphism.

Lemma 1. Assume H is reductive. There exists V ∈ Rep(G) such that bV is
a closed embedding.
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Proof. Since OG is a finitely generated sheaf of algebras over OX , by Re-
mark 2, there exists a G-stable subbundle V0 ⊂ OG such that Sym(V0) → OG
is surjective. In other words, G embeds into the total space of the vector bundle
V∨

0 . This allows us to apply Seshadri’s theorem [14, Theorem 3] to conclude
that OH

G is a finitely generated sheaf of algebras over OX . Choosing a G-stable
V ⊂ OG such that VH generates OH

G as a quasi-coherent sheaf of algebras. We
claim that bV is a closed embedding. To see this, it suffices to show that the
image of mV : VH⊗V∨ → OH

G contains VH. But let e : OX → V∨ correspond
to the map V ⊂ OG

ev1−−→ OX (ev1 is restriction to the unit section), then the
composition

VH id⊗e−−−→ VH ⊗ V∨ mV−−→ OH
G

is the inclusion of VH in OH
G . Therefore the image of mV contains algebra

generators of OH
G , and bV is a closed embedding.

3.2. Bundles with sections

Let Z → X be a stack with a left G-action. For any right G-torsor E over
X ×S, we can form the twisted product πE,Z : E ×G

X Z → X ×S, which étale
locally over X × S is isomorphic to Z × S. Let BunG(Z) be the stack whose
S-points consists of pairts (E , t) where E is a right G-torsor over X × S and
t : X × S → E ×G

X Z be a section of πE,Z .
When Z is the total space of W ∈ Rep(G), then we write BunG(W) for

BunG(Z). In this case, BunG(W) is the relative spectrum of the symmetric
algebra of a coherent sheaf (this coherent sheaf is B = R1pBun∗(W∨

univ ⊗
p∗XωX), where pBun : X × BunG → BunG and pX : X × BunG → X are
the projections, and Wuniv is the bundle associated to W and the universal
G-torsor over X × BunG).

It is clear that BunG(G/H) ∼= BunH. Applying the map bV to the con-
struction BunG(−) gives a map of stacks

bBun
V : BunH ∼= BunG(G/H) → BunG((VH)∨ ⊗ V).

Lemma 2. Assume H is reductive, and let V be as in Lemma 1.

1. The map bBun
V is a closed embedding.

2. Let BunG((VH)∨⊗V)◦ ⊂ BunG((VH)∨⊗V) be the open substack consist-
ing of (E , t) such that t|X×{s} is nonzero for any geometric point s ∈ S.
Then the image of bBun

V lies in BunG((VH)∨ ⊗ V)◦. In particular, bBun
V

induces a closed embedding

bBun,◦
V : BunH ↪→ BunG((VH)∨ ⊗ V)◦.
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Proof. (1) We first observe that if Z1 ↪→ Z2 is a closed embedding of G-
schemes over X, then the induced map BunG(Z1) → BunG(Z2) is also a closed
embedding. This is easy to see by making a base change to any test scheme
mapping to BunG(Z2). Applying this observation to the closed embedding
bV , we conclude that BunH ∼= BunG(G/H) → BunG((VH)∨ ⊗ V) is a closed
embedding.

(2) If F ∈ BunH(S) is an H-torsor over X × S, and E = F ×H G ∈
BunG(S), the section t of (VH)∨ ⊗OX VE is induced from the map

VH � OS = (VH)F ↪→ VF = VE

which is clearly nonzero along X ×{s} for any geometric point s ∈ S. Hence
the image of bBun

V lands in BunG((VH)∨ ⊗ V)◦.

3.3. The case H is a Bruhat-Tits group scheme

For the rest of the section, we assume H is a Bruhat-Tits group scheme over
X, see §2.4.

For V ∈ Rep(G), consider the map bV defined in (3.1). We can choose
V ∈ Rep(G) such that bV is a closed embedding when restricted to U . This is
possible: by applying Lemma 1 to the reductive groups HU ↪→ GU over U (the
proof of Lemma 1 works for U in place of X), we obtain V ′ ∈ Rep(GU ) such
that bV ′ : GU/HU → (V ′HU )∨ ⊗OU V ′ is a closed embedding. By Remark 2
we may assume V ′ ⊂ OGU . Then take V ∈ Rep(G) to be the saturation of V ′

over X, so that bV |U = bV ′ is a closed embedding.
The following result generalizes Lemma 2 to the case H is a Bruhat-Tits

group scheme. The essential part of the proof follows the same lines as Step
2 in Breutman’s proof of [4, Theorem 3.26], which relies on a deep result of
Anschütz [3].

Proposition 1. Assume H is a Bruhat-Tits group scheme over X, and that
V ∈ Rep(G) is such that bV is a closed embedding over U . Then the map bBun

V
is a closed embedding.

Proof. For the proof we can base change the situation to k. Therefore we will
assume k is algebraically closed.

Let Z ⊂ (VH)∨ ⊗ V be the closure of the image of GU/HU . Since G/H is
smooth over X, GU/HU is dense in G/H hence bV lands in Z. Therefore we
have a G-equivariant map

(3.2) cV : G/H → Z
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which is an isomorphism over U . It then induces a map

cBun
V : BunH ∼= BunG(G/H) → BunG(Z)

such that bBun
V is the composition of cBun

V followed by the closed embedding
BunG(Z) ↪→ BunG((VH)∨ ⊗ V) (see the proof of Lemma 2(1)). Therefore it
suffices to prove that cBun

V is a closed embedding.
First we check that cBun

V is schematic and of finite type. By [1, Proposition
2.2(a)], there is a faithful representation V ′ of H such that H ↪→ GL(V ′) is a
closed embedding, GL(V ′)/H is quasi-affine over X and it admits a GL(V ′)-
equivariant open embedding into a GL(V ′)-scheme Y affine over X. Moreover,
the construction of V ′ in loc.cit. allows us to arrange that V ′ extends to a
representation of G. Now we have maps

ρ : BunH
cBun
V−−→ BunG(Z) → BunG → BunGL(V ′) ∼= BunN

where N is the rank of V ′. By [1, Theorem 2.6] applied to the embedding
H ↪→ GL(V ′), we conclude that ρ is schematic and of finite type. So a fortiori
cBun
V is schematic and of finite type.

Next we check that cBun
V is proper. For this it suffices to check that cBun

V
satisfies the existence and uniqueness of the valuative criterion for DVRs
[15, Lemma 104.11.2, 104.11.3]. Let R be a DVR with K = Frac(R). Let
(E , t) : Spec R → BunG(Z), and its restriction (E , t)K to XK lifts to FK :
Spec K → BunH (an H-torsor over XK). We would like to check that there
exists a finite extension K ′/K, with R′ = OK′ , and an H-torsor FR′ over
XR′ , viewed as a map Spec R′ → BunH such that the following diagram is
commutative

Spec K ′ Spec K
FK BunH

cBun
V

Spec R′

FR′

Spec R
(E,t)

BunG(Z)

Moreover, any finite extension K ′/K, the dotted arrow (together with 2-
isomorphisms making the diagram commutative) should be unique up to
unique isomorphism.

For this we may replace K by C, the completion of an algebraic closure
of K, and replace R by OC , and show the existence and uniqueness of the



Special cycles for Shtukas are closed 2213

dotted arrow in the following diagram

Spec C
FC BunH

cBun
V

Spec OC

F

(E,t)
BunG(Z)

Since (3.2) is an isomorphism over U , (E , t) gives an H-reduction FU of
E|UOC

. We already have an H-torsor FC over XC and by the commutation
of the square above, it coincides with FU over UC . Therefore we have an
H-torsor F◦ over UOC ∪XC = XOC\(X\U) (where X\U is identified with a
subset of the special fiber of XOC ). We only need to extend F◦ to an H-torsor
F over XOC (the diagram above will then be commutative, for the datum of
t is determined by its restriction to UOC ).

For each x ∈ X\U , recall the completed local ring Ox and its fraction
field Fx. Let Dx = Spec Ox and D×

x = Spec Fx. For any Fq-algebra A, we
denote Dx,A = Spec (Ox⊗̂Fq

A) and D×
x,A = Spec (Fx⊗̂Fq

A). It suffices to
show that the H-torsor F◦|Dx,OC

\{x} extends to Dx,OC , and the extension is
unique up to a unique isomorphism. Then use Beauville-Laszlo gluing to get
the existence and uniqueness of the global extension to XOC .

By a deep result of Anschütz [3, paragraph after Theorem 1.1], for H a
Bruhat-Tits group scheme, any H-torsor on Dx,OC\{x} is trivial. We fix a triv-
ialization of FU |D×

x,OC

. Then extensions of FU |D×
x,OC

to Dx,OC are parametrized
by OC-points of the affine flag variety FlH,x := LxH/L+

xH. The trivialization
of FU |D×

x,OC

induces a trivialization of E|D×
x,OC

, so that extensions of E|D×
x,OC

to
Dx,OC are parametrized by OC-points of FlG,x = LxG/L+

x G, and E|Dx,OC
gives

a particular OC-point of FlG,x. On the other hand, FC |Dx,C gives a C-point
of FlH,x so we have a commutative diagram

Spec C
FC |Dx,C FlH,x

Spec OC

E|Dx,OC FlG,x

By [13], FlH,x is ind-proper, therefore the dotted arrow above exists and is
unique. This shows the existence and uniqueness of F|Dx,OC

for each x ∈ X\U ,
hence the existence and uniqueness of F itself.

Knowing that cBun
V is proper, it remains to show that geometric fibers

of cBun
V are either empty or a (reduced) geometric point. Let K ⊃ Fq be
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an algebraically closed field, and let (E , t) be a K-point of BunG(Z). As
above, (E , t)UK determines an H-reduction FU over UK . Upon choosing a
trivialization of FU |D×

x,K
for each x ∈ X\U , extensions of FU to XK are

parametrized by
∏

x∈X\U FlH,x(K). On the other hand, extensions of E|UK to
XK are parametrized by

∏
x∈X\U FlG,x(K). Therefore, the fiber cBun,−1

V (E , t),
as a K-scheme, is the fiber of

(3.3)
∏

x∈X\U
FlH,x →

∏
x∈X\U

FlG,x

over the given K-point of
∏

x∈X\U FlG,x given by E|Dx,K . Since H ↪→ G is a
closed embedding, so is (3.3), therefore the fiber of (3.3) over a K-point is
either Spec K or empty. This finishes the proof.

4. Closedness of special cycles

In this section, the base field k = Fq. We will prove Theorem 1 in this section.

4.1. Shtukas with sections

Let W ∈ Rep(G). Consider the ind-stack ShtrG(W) whose S-points are tuples
(x•, E•, f•, ι, t•) where

• (x•, E•, f•, ι) ∈ ShtrG(S);
• For 0 ≤ i ≤ r, ti is a section of WEi

such that the following diagram is commutative

(4.1) OX×S

t0

· · · OX×S

tr

OX×S

τ t0

WE0

f1 · · · fr WEr
ι
∼ WτE0 = τ (WE0)

Define an open substack ShtrG(W)◦ ⊂ ShtrG(W) whose S-points are those
(x•, E•, f•, ι, t•) such that for any geometric point s ∈ S, the restriction of ti
to X × {s} is nonzero for any 0 ≤ i ≤ r.

Proposition 2. Let G be a smooth affine group scheme over X. For W ∈
Rep(G), the forgetful map

ForgW : ShtrG(W)◦ → ShtrG

is schematic, finite and unramified.
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Proof. From the definition ForgW is schematic. We first show that ForgW is
proper, for which we introduce a projectivized version of ShtrG(W)◦.

Let PBunG(W) be the moduli stack whose S-points are triples (E ,M, t)
where E is a G-torsor over X×S, M is a line bundle over S, and t : OX�M →
WE is a map of coherent sheaves on X ×S that is nonzero on X ×{s} for all
geometric points s ∈ S.

We claim that PBunG(W) is the projectivization of a sheaf of graded
algebra over BunG . Indeed, let Euniv be the universal G-torsor over BunG ×X,
and let Wuniv = WEuniv (a vector bundle over BunG ×X). Let pBun : BunG ×
X → BunG and pX : BunG × X → X be the projections. Consider the
coherent sheaf A = R1pBun∗(W∨

univ ⊗ p∗XωX) on BunG . Let Proj(Sym•(A))
(relative to BunG) be the projective bundle of hyperplanes in fibers of A. By
definition, Proj(Sym•(A))(S) classifies triples (E ,M, σ) where E is a G-torsor
over X × S, M is a line bundle over S, and σ is a surjective map of coherent
sheaves on S

σ : h∗
EA � M∨.

Here hE : S → BunG is given by E . Equivalently, σ is the same datum as
a map of complexes Lh∗

ERpBun∗(W∨
univ ⊗ p∗XωX)[1] → M∨, hence by base

change is the same as RprS∗(W∨
E ⊗ pr∗XωX)[1] → M∨ (we use prS and prX

to denote the projections X×S → S and X×S → X). Taking relative Serre
dual, σ∨ is a map M → RprS∗(pr∗XWE) that is nonzero on X × {s} for all
geometric points s ∈ S. Equivalently this is a map t : OX � M → WE as
in the definition of PBunG(W). This proves PBunG(W) ∼= Proj(Sym•(A)). In
particular, PBunG(W) → BunG(W) is proper.

Similarly, define PHkr
G(W) to classify (x•, E•, f•,M, t•) where (x•, E•, f•) ∈

Hkr
G(W)(S), M is a line bundle on S and ti : OX � M → WEi (0 ≤ i ≤ r),

compatible with the modifications f• and nonzero when restricted to X×{s}
for all geometric points s.

We claim that the forgetful map PHkr
G(W) → Hkr

G is proper. Indeed,
PHkr

G(W) is closed in Hkr
G ×p0,BunG PBunG(W) because t0 determines all ti

for i ≥ 1, and the existence of ti means the map t0 : OX �M|X×S\∪j≤iΓ(xj) →
WEi |X×S\∪j≤iΓ(xj) extends to the whole X × S, which imposes a closed con-
dition on t0.

Finally, we define PShtrG(W) by the Cartesian square

(4.2) PShtrG(W) PHkr
G(W)

(p0,pr)

PBunG(W)
(id,Fr)

PBunG(W) × PBunG(W)
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The Cartesian square (4.2) maps to the Cartesian square (2.1) defining
ShtrG , and the maps PHkr

G(W) → HkG and PBunG(W) → BunG are both
proper. Therefore the map PShtrG(W) → ShtrG is proper. We have a factoriza-
tion

ForgW : ShtrG(W)◦ πW−−→ PShtrG(W) → ShtrG
where the first map sends (x•, E•, f•, ι, t•) to (x•, E•, f•, ι,M = OS , t•). To
show ForgW is proper, it remains to show that πW is proper. We claim that πW
is a F×

q -torsor. Clearly F×
q acts on ShtrG(W)◦ by scaling ti, and πW is invariant

under this action. Take an S-point ξ = (x•, E•, f•, ι,M, t•) of PShtrG(W). By
shrinking S we may assume M = OS . Then τ t0 = ctr : OX×S → τ (WE0) for
a unique invertible function c ∈ H0(S,O×

S ). Then the fiber of πW over this
ξ is the subscheme of Gm,S classifying b ∈ O×

S such that bq = cb (for such
b, t′i = bti makes the rightmost square of the diagram (4.1) commutative).
Therefore πW is a F×

q -torsor.
It remains to show that ForgW is unramified. For this we fix any alge-

braically closed field K ⊃ k and a K-point (x•, E•, f•, ι) ∈ ShtrG(K), and show
that its fiber under ForgW is finite and reduced over K. Let Ui = H0(XK ,WEi)
for 0 ≤ i ≤ r. Then we have a Frobenius semilinear isomorphism φ : U0

∼→ Ur

induced by ι. All Ui lie in the same FK = K(X)-vector space Uη which is
the generic fiber of WE0 , and φ extends to an endomorphism of Uη. The fiber
Forg−1

W (x•, E•, f•, ι) is the set of t ∈ ∩r
i=0Ui such that φ(t) = t. Let Ω ⊂ U0

be the largest K-subspace that is stable under φ. Then φ|Ω gives a descent
datum to a Fq-vector space Ω0 = Ωφ such that Ω0 ⊗Fq K = Ω. Then Ω0 is a
finite-dimensional Fq-vector space and Forg−1

W (x•, E•, f•, ι) = Ω0. This proves
that ForgW is unramified.

4.2. Proof of Theorem 1

Choose V ∈ Rep(G) so that bV is a closed embedding over U . Let W =
(VH)∨ ⊗ V. We factorize the map θr : ShtrH → ShtrG as follows

(4.3) θr : ShtrH
bSht,◦
V ShtrG(W)◦

ForgW ShtrG

The map bSht,◦
V sends (x•,F•, f

′
•, ι

′) ∈ ShtrH(S) to the tuple (x•, E• = F• ×H

G, f• = f ′
• × idG , ι

′ = ι × idG , t• = {ti}0≤i≤r) where ti : OX×S → WEi =
(VH)∨ ⊗OX VEi is induced from the canonical map VH � OS = (VH)Fi →
VFi = VEi .



Special cycles for Shtukas are closed 2217

The last map ForgW is schematic, finite and unramified by Proposition 2.
Below we will show that bSht,◦

V is a closed embedding, which then implies that
θr is schematic, finite and unramifed, as desired.

To show bSht,◦
V is a closed embedding, it suffices to prove that the map

bSht
V : ShtrH → ShtrG(W) is a closed embedding. For this we introduce the ind-

stack Hkr
G(W) to classify (x•, E•, f•, t•) as in ShtrG(W) satisfying the same

conditions, except that there is no ι. Then we have a Cartesian square

(4.4) ShtrG(W) HkrG(W)

(p0,pr)

BunG(W)
(id,Fr)

BunG(W) × BunG(W)

Now there is a canonical map from the diagram defining ShtrH (replacing
G by H in (2.1)) to the diagram (4.4) by applying the basic map bBun

V to
all the H-torsors. We denote the map on the upper right corner by bHk

V :
Hkr

H → Hkr
G(W); the resulting map on the upper left corner is the map

bSht
V we introduced before. By Proposition 1, bBun

V is a closed embedding. In
the next lemma we shall show that bHk

V is also a closed embedding. This
implies that bSht

V is also a closed embedding, being the fiber product of closed
embeddings over a closed embedding. This finishes the proof.

Lemma 3. The map bHk
V is a closed embedding.

Proof. We have a commutative diagram

(4.5) HkrH
bHk
V

(pi)0≤i≤r

HkrG(W)

(pi)0≤i≤r

(BunH)r+1
∏

bBun
V BunG(W)r+1

We claim that this diagram is Cartesian, which would prove that bHk
V is a

closed embedding, since bBun
V is by Proposition 1.

Let Hkr,W
H be the fiber product Hkr

G(W) and (BunH)r+1 over BunG(W)r+1

using the maps in the above diagram. By definition, an S-point of Hkr,W
H is

a tuple (x•,F•, f•, t•) where, denoting Ei = Fi ×H
X G, fi : Ei−1|X×S\Γ(xi)

∼→
Ei|X×S\Γ(xi) is a G-isomorphism and intertwines ti−1 and ti. We would like
to show that fi comes from a unique isomorphism f ′

i : Fi−1|X×S\Γ(xi)
∼→

Fi|X×S\Γ(xi) of H-torsors.
Let Y = X × S\Γ(xi). Write E for the G-torsor Ei−1|Y ∼= Ei|Y (identified

via fi) over Y . The algebraic space E/H over Y classifies reductions of E to H
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(over test Y -schemes). In particular, Fi−1|Y and Fi|Y give two H-reductions
of E to H hence define two sections ξi−1, ξi : Y → E/H. The map bV induces
a map

β : E/H → (VH) ⊗OX VE

where VE is the vector bundle over Y associated to E and V . The compositions
β ◦ξi−1 and β ◦ξi are the sections ti−1|Y and ti|Y respectively. By assumption,
ti−1|Y and ti|Y are identified via fi, hence

(4.6) β ◦ ξi−1 = β ◦ ξi.

Recall that V is chosen so that bV is a closed embedding over the open curve
U , hence β is a closed embedding over Y ′ = (U × S) ∩ Y (inside X × S).
Then (4.6) implies that ξi−1|Y ′ = ξi|Y ′ . Since Y ′ is dense in Y and E/H is
separated over Y (for H ↪→ G is closed), we must have ξi−1 = ξi, i.e., the
equality of the H-reductions Fi−1|Y and Fi|Y of E = Ei−1|Y ∼= Ei|Y . This
shows that (4.5) is Cartesian and finishes the proof.
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