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Standard conjectures and height pairings
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To Benedict Gross on his 70th birthday

Abstract: In this article, we extend Grothendieck’s standard con-
jectures [20, Conjectures 1, 2] to cycles on degenerated fibers and
use them to define some decompositions for the arithmetic Chow
group of Gillet–Soulé. In a local setting, our decompositions pro-
vide non-archimedean analogs of “harmonic forms” on Kähler man-
ifolds. In a global setting, our decompositions provide canonical
arithmetic liftings called “L-liftings” of algebraic cycles on vari-
eties over number fields and thus provide a new height pairing
called the L-height pairing as one extension of Beilinson–Bloch’s
pairing of homologically trivial cycles.
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0. Introduction

Let K be a number field with OK its ring of integers. Let f : X−→SpecOK

be a regular arithmetic variety with a polarization L. This means that X
is regular, that f is flat and proper with geometrically connected fibers, and
that L is an ample hermitian line bundle in the sense of [39]. In this paper, we
introduce a new height pairing for the Chow group Ch∗(XK). This so-called
L-pairing extends Beilinson–Bloch’s height paring on the subgroup Ch∗(XK)0
of cycles homologous to 0. Our pairing is conditional on some local and global
standard conjectures. Under our local standard conjectures, we introduce an
Arakelov Chow group Ch∗(X) of cycles whose curvature at each place of K
are harmonic forms. Under our global standard conjectures, we construct an
L-lifting for the surjection Ch∗(X) → Ch∗(XK). Our work can be viewed as
a preliminary step towards a Hodge theory for polarized arithmetic varieties.

When X is an arithmetic surface, our constructions in this paper are
more or less well known. First, Arakelov [1] introduced a compactification of
X by choosing some volume forms μv on the Riemann surface Xv(C) for each
archimedean place v of K. Then, he constructed an intersection pairing on
the group Pic(X) of Hermitian line bundles on X with admissible metrics
in sense that their curvatures on Xv(C) are multiples of μv for each v | ∞.
In [21, 13], Hriljac and Faltings independently proved a Hodge index theo-
rem which provides an intersection theoretical way to define the Néron–Tate
heights on the Jacobian of XK . Shortly after that, there were two develop-
ments in opposite directions. First of all, Deligne [12] constructed an intersec-
tion pairing on the group P̂ic(X) of all metrized line bundles without fixing
μv. Secondly, in a series of papers [32, 8, 38, 5], Rumely, Chinburg–Rumely,
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Bloch–Gillet–Soulé and the author constructed some new intersection pair-
ings on more restricted Arakelov Picard group Pic(X,μ) by choosing metrics
μv on the reduction graphs at every bad places v. For example, μv’s can be
taken as the curvatures of an arithmetically ample line bundle L as above.
These treated archimedean and non-archimedean places more uniformly. One
aim of this paper is to find a similar construction in high dimension case,
i.e., construction of harmonic forms, admissible arithmetic Chow cycles, and
Hodge decompositions.

There were partial and delicate developments when X is a high dimen-
sional arithmetic variety. First of all, for Arakelov’s original theory, Beilinson
and Gillet–Soulé independently in [2, 16] introduced compactifications of X by
choosing some Kähler forms μv on complex manifold Xv(C) for v | ∞. Then,
they constructed intersection pairing on the Arakelov Chow group Ch∗(X,μ)
using currents with harmonic curvatures on each Xv(C). This intersection
pairing has immediate applications to the Beilinson–Bloch height pairing
on Ch∗(XK)0, extending Hriljac–Faltings’ work for the Néron–Tate height
pairing. Secondly, for Deligne’s pairing, Gillet and Soulé [17] define a bigger
arithmetic Chow group Ĉh

∗
(X) without fixing Kähler forms μv at archimdean

place. Finally, in a series of papers [5, 6], Bloch–Gillet–Soulé developed a non-
archimedean Arakelov theory for X/OK with strictly semistable reductions.
Assuming Grothendieck’s standard conjectures [20, Conjectures 1, 2], they
defined harmonic forms using Laplacians [6, Theorem 6]. Using Bloch–Gillet–
Soulé’s harmonic forms, Künnemann defined an Arakelov group [27, §3.6],
and related it to the Beilinson–Bloch height pairing [27, §3.8]

This paper has achieved two primary goals for a Hodge theory in higher
dimensional polarized arithmetic varieties. The first is a new definition of
harmonic forms for general regular polarized arithmetic varieties. We will use
Lefschetz operators L instead of Laplacian operators Δ, which allows us to
define harmonic forms in more general situations, even including cohomology
cycles. This idea was inspired by the work of Künnemann in a series of papers
[25, 26, 27, 28]. The second is a new decomposition theorem for arithmetic
Chow groups in the Lefschetz operator L. This decomposition theorem allows
to to define so-called L-liftings from Ch∗(XK) to Ĉh

∗
(X) extending the work

of Beilinson and Bloch on homologically trivial cycles. As a consequence of
our new constructions, we will prove the following two statements concerning
relations between various standard conjectures and height pairings:

• The existence of Beilinson–Bloch pairing follows from Grothendieck’s
standard conjectures [20, Conjectures 1, 2].
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• Assume our local standard conjectures. Then two arithmetic standard
conjectures on Ĉh

∗
(X) by Gillet–Soulé and on Ch∗(XK)0 by Beilinson

are equivalent to each other, as they are both equivalent to a standard
conjecture on our Arakelov Chow group Ch∗(X).

As one application of the first statement, in a recent paper [41], for the
product X = C×S of a curve and a surface over a number field, we construct
unconditionally a Beilinson–Bloch type height pairing ([2, 4]) for homolog-
ically trivial algebraic cycles on X. Then for an embedding φ : C−→S, we
define an arithmetic diagonal cycle modified from the graph of φ. This work
extends the previous work of Gross and Schoen [19] when S is the product of
two curves.

This work also arose from an attempt to understand conjectural Gross–
Zagier type formulas for the heights of special cycles of Shimura varieties
in terms of special values of L-series, such as the Gan–Gross–Prasad con-
jecture [15] and Kudla’s program [24]. Consequently, our conditional con-
struction provides some canonical arithmetic special cycles on integral mod-
els of Shimura varieties, including Hecke correspondences. For example, for a
Shimura variety X of orthogonal (resp. unitary type) over a totally real (resp.
CM) field F , our construction gives canonical arithmetic lifting generating a
series of Kudla cycles. By work of W. Zhang, Yuan–Zhang–Zhang, Liu, and
Westerholt-Raum [42, 36, 29, 7], we have the following unconditional result:

• The L-lifting of generating series of Kudla’s cycles is modular in case
of divisors or in case F = Q.

In the rest of this introduction, we give a more detailed outline of this
work.

Local cycles As a local setting, we will consider a flat and projective mor-
phism f : X−→S where S = SpecR with R a complete discrete valuation ring
and X is regular with an ample line bundle L. Then there are groups of al-
gebraic cohomology cycles A∗(Xs), A∗(Xs) over the special fiber i : Xs−→X.
These groups have an action by the Lefschetz operator L defined by the first
Chern class of L. There is also a map connecting them:

i∗i∗ : An+1−∗(Xs)−→A∗(Xs).

We denote its image as A∗
ϕ(Xs), and its cokernel as A∗

ψ(Xs). Thus there is an
exact sequence

0−→A∗
ϕ(Xs)−→A∗(Xs)−→A∗

ψ(Xs)−→0.
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Our starting point is a set of extended Grothendieck’s standard conjectures
[20, Conjectures 1 and 2] for A∗

ϕ(Xs), and A∗
ψ(Xs), Conjectures 1.1.2, 1.1.3,

1.1.4. Under Conjecture 1.1.3 of Lefschetz type, one can prove in Theo-
rem 1.1.8 that there are unique splittings of the above short exact sequences
of L-modules:

A∗(Xs) = A∗
ϕ(Xs) ⊕A∗

ψ(Xs);

Inspired by work of Künnemann for Kähler manifolds, A∗
ψ(Xs) is called the

group of harmonic forms. Indeed, a complex analogue of the map i∗i∗ in
arithmetic intersection theory of Gillet–Soulé is the following map:

∂∂̄ : Ãp−1,p−1(XC) := Ap−1,p−1(XC)/(Im∂ + Im∂̄)−→Ap,p
closed(XC).

The decomposition according to Lefschetz operator coincides with Laplacian
operator:

Ap,p
closed(XC) = ∂∂̄(Ãp−1,p−1(XC)) ⊕Hp,p(XC)

where Hp,p(XC) is the space of harmonic forms of degree (p, p). See Theo-
rem 1.2.1 and Corollary 1.2.2.

Based on the work of Bloch–Gillet–Soulé, and Künnemann, we will show
that Conjectures 1.1.2, 1.1.3, 1.1.4 hold when X/S is strictly semistable so
that all strata satisfy Grothendieck’s standard conjectures [20, Conjectures
1, 2]. See Theorem 1.5.1.

As the first application, we use harmonic forms to define some canonical
local height parings of algebraic cycles under Conjecture 1.1.3. More precisely,
let Ẑ∗(X) be the space of cycles on X modulo homologically trivial cycles
supported on Xs. Then there are maps

An+1−∗(Xs)
i∗−→Ẑ∗(X)ω=i∗−→A∗(Xs)

where ω is called the curvature map. A cycle z ∈ Ẑ∗(X) is called admissible,
if the curvature is harmonic: ω(z) ∈ A∗

ψ(Xs). We let Z∗(X) denote the group
of admissible cycles and call it the Arakelov group of admissible cycles. Then
there is an exact sequence:

0−→i∗A
ψ
n+1−∗(Xs)−→Z

∗(X)−→Z∗(Xη)−→0,

where Aψ
n+1−∗(Xs) is the kernel of i∗i∗ : An+1−∗(Xs)−→A∗(Xs). If we further

assume Conjecture 1.1.2, then the above sequence has an Arakelov lifting
z �→ zAra for z ∈ Z∗(Xη) such that zAra − zZar = i∗g with g ∈ An+1−∗(Xs)
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perpendicular to An+1−∗
ψ (Xs). Thus we get a well-defined Arakelov height

pairing for two disjoint cycles z ∈ Zi(Xη), w ∈ Zj(Xη) with i + j = n + 1:

(z, w)Ara := zAra · wAra.

The analogue in Kähler manifold (XC, ω) for an Arakelov lifting zAra of a
z ∈ Z∗(XC) is a pair (z, g) with a current g ∈ Dp−1,p−1/Im∂ + Im∂ such that

∂∂̄

πi
g = δz − ωz,

where ωz ∈ Hp,p(XC) is a harmonic class representing z. See Gillet–Soulé [17].
The normalization means∫

XC

gh = 0, h ∈ Hn+1−p,n+1−p(XC).

The Arakelov pairing of z with a disjoint cycle w with arithmetic complement
degree is defined as

(z, w)Ara =
∫
XC

gδw.

As one byproduct, one has the following. Theorem 1.6.4: Assume Grothen-
dieck’s standard conjectures [20, Conjectures 1, 2]. Then a cycle z on Z∗(Xη)
with trivial cohomology class in H2∗(Xη̄)(∗) will have a lifting zB with trivial
cohomology class in A∗(Xs).

We will also study the following map of cohomology cycles,

μ : H∗
Xs

(X)−→H∗(Xs),

and denote its image and kernel as H∗
ϕ(Xs) and its cokernel as H∗

ψ(Xs) to
obtain an exact sequence

0−→H∗
ϕ(Xs)−→H∗(Xs)−→H∗

ψ(Xs)−→0.

Then we propose Conjecture 1.1.1 of Lefschetz type for H∗
ϕ(Xs) and H∗

ψ(Xs).
Under this conjecture, one has the following statements:

1. Theorem 1.1.7: there is a unique splitting of above short exact sequence
of L-modules:

H∗(Xs) = H∗
ϕ(Xs) ⊕H∗

ψ(Xs).

We call H∗
ψ(Xs) the space of harmonic forms.
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2. Theorem 1.3.1: there is a connection to the group of invariant cycles
given as follows:

H∗
ψ(Xs)

∼−→H∗(Xη̄)Gal(η̄/η).

For cohomology cycles, we will show that our conjectures are equivalent
to some conjectures about perverse sheaf cohomology; see Theorem 1.4.6.
Based on the work of Beilinson–Bernstein–Deligne–Gabber, we will show that
our Conjecture 1.1.1 holds when R has equal characteristics (Theorem 1.4.6,
Corollary 1.4.8).

Global cycles As a global setting, we will consider a flat and projective
morphism f : X−→S where S = SpecOK with K a number field and X is
regular with an arithmetic ample line bundle L ([39]). Inside Gillet–Soulé’s
arithmetic Chow group Ĉh

∗
(X) with real coefficients, there is an Arakelov

Chow group Ch∗(X) of admissible cycles with harmonic curvature every-
where. This group fits in an exact sequence

0−→B∗(X)−→Ch∗(X)−→Ch∗(X)−→0

where B∗(X) is the space of vertical cycles with trivial curvature. This group
has a 3-step filtration

F iCh∗(X) =

⎧⎪⎪⎨
⎪⎪⎩

Ch∗(X), if i ≤ 0,
Ch∗(X)0, if i = 1,
B∗(X), if i = 2.

where Ch∗(X)0 = Ker(Ch∗(X)−→H2∗(Xη̄)(∗)). The associated graded quo-
tients are

GiCh∗(X) =

⎧⎪⎪⎨
⎪⎪⎩
A∗(Xη), if i = 0,
Ch∗(Xη)0, if i = 1,
B∗(X), if i = 2,

where A∗(Xη) and Ch∗(Xη)0 are the image and the kernel respectively for the
map Ch∗(X)−→A∗(Xη). Assuming Gillet–Soulé’s arithmetic standard conjec-
ture and our local conjectures, we will show that there is a unique splitting
of graded R-modules

α :
2⊕

i=0
GiCh∗(X) ∼−→Ch∗(X)
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such that α|G1 is L-linear, and α|G0 is L-linear modulo α(G2) and Λ-linear
modulo α(G1); see Theorem 2.2.1. We also show that the Lefschetz opera-
tor α−1Lα is determined by an L-isomorphism β : A∗(Xη)−→B∗+1(X). The
structure of the R[L]-module Ch∗(X) with a symmetric pairing depends only
on the graded quotients and a mysterious isomorphism β. We give two appli-
cations of this splitting.

The first one is that Conjectures 1.1.2, 1.1.3, 1.1.4 imply some so called
L-lifting for the projection Ch∗(X)−→Ch∗(XK), and thus a L-pairing on
Ch∗(XK). We will define unconditionally the L-liftings for divisors Ch1(XK)
and 0-cycles Chn(XK) in Corollary 2.5.7, 2.5.10. As a consequences, we will
have some canonical arithmetic liftings of the generating series of Kudla’s
divisors and 0-cycles.

The second one is that Conjectures 1.1.2, 1.1.3, 1.1.4 imply the equiva-
lence (Theorem 2.3.2) between the standard conjecture by Gillet–Soulé for
arithmetic Chow groups Ĉh

∗
(X) and the standard conjecture of Beilinson for

homologically trivial Chow groups Ch∗(X)0.
In function field case, we will also define the group H

∗(X) of admissible
cohomological cycles, and prove a decomposition Theorem 2.4.2 for cohomol-
ogy group H∗(X):

α :
2⊕

i=0
GiH

∗(X) ∼−→H
∗(X),

such that α|G1 is L-linear, and α|G0 is L-linear modulo α(G2) and Λ-linear
modulo α(G1). For an open embedding j : U → S such that f is smooth, the
above decomposition induces a decomposition of Q�-vector spaces:

α :
2⊕

i=0
H i(S, j∗R∗−ifU∗Q�)

∼−→H∗(S, j!∗RfU∗Q�).

Notice that our decomposition is usually different than the one induced from
the canonical splitting of the complex RfU∗Q�:

RfU∗Q� =
⊕
m∈Z

RmfU∗Q�[−m].

1. Local cycles

In this section, we first propose some conjectures (1.1.2, 1.1.1, 1.1.3, 1.1.4)
as extensions of Grothendieck’s standard conjectures [20, Conjectures 1, 2]
for smooth and projective varieties. Then we use these new conjectures to
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construct some canonical splittings of various groups of cycles (1.1.7, 1.1.8).
By comparison with a result of Künnemann on complex varieties [26], our
splitting provides a non-archimedean analog of harmonic forms without using
Laplacian operators. Our treatment applies to both cohomology cycles and
algebraic cohomology cycles.

For cohomology cycles, we will show that our conjectures are equivalent
to some conjectures about perverse sheaf cohomology; see Theorem 1.4.6. In
particular, our conjectures of Lefschetz type hold when the base has equal
characteristics by Beilinson–Bernstein–Deligne–Gabber [3] (1.4.8).

For algebraic cycles on strictly semistable fibers, we will show that our
conjectures are consequences of Grothendieck’s standard conjecture by work
of Bloch–Gillet–Soulé [6] and Künnemann [27] (1.5.1). Applying de Jong’s
alterations, we can prove that the Beilinson–Bloch liftings for homologically
trivial cycles exist under Grothendieck’s standard conjecture [20, Conjectures
1, 2] (1.6.4).

1.1. Cycles on a degenerate fiber

Let S = SpecR with R a complete discrete valuation ring, with the generic
point η = SpecK and the closed point s = Speck with k separately closed.
Let f : X−→S be a proper and flat morphism from a regular scheme with
the special fiber i : Xs−→X and the generic fiber j : Xη−→X. Since X is
defined by finitely many equations, by approximation, we may assume that
X = X0 ⊗S0 S, where S0 = SpecR0 with R0 a complete discrete valuation
subring of R such that

1. the residue field k0 of R0 is of finite type over its prime field;
2. R is the completion of the maximal unramified extension of R0.

Algebraic cycles For Y = X,Xη, Xs, there are the Chow homology groups
Ch∗(Y ) with rational coefficients defined as the quotients of the free groups
of integral subschemes modulo rational equivalence, and the Chow cohomol-
ogy groups Ch∗(Y ) := Ch∗(Y id−→Y ) defined as bivariant operations on the
Chow homology groups on Y -schemes as in Fulton [14, Definition 17.3]. Then
Ch∗(Y ) has a commutative ring structure which acts on Ch∗(Y ) by cap prod-
uct:

∩ : Chi(Y ) ⊗ Chj(Y )−→Chj−i(Y ).
If Y = Xs, Xη, then Y is proper over a field. Composing with the degree

map deg : Ch0(Y )−→Q, there is a pairing

(·, ·)Y : Chi(Y ) ⊗ Chi(Y )−→Q.
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If Y = X or Xη, Y is regular. The cap product with [Y ] defines an
isomorphism

∩[Y ] : Chi(Y ) ∼−→ChdimY−i(Y ).

Let n = dimXη be the relative dimension of f . Then there is a composi-
tion of some morphisms of Chow groups:

i∗i∗ : Chn+1−i(Xs)
i∗−→Chn+1−i(X) � Chi(X) i∗−→Chi(Xs).

One main goal of this paper is to study this map after taking their classes in
an 
-adic cohomology for a prime 
 invertible over S.

Cohomology cycles We start with the following localization sequence of
the 
-adic cohomology and homology groups with Q�-coefficients:

· · · −→H i−1(Xη)−→H i
Xs

(X) μ−→H i(Xs)−→H i(Xη)−→· · · .

We define the groups of vanishing and nearby cycles:

H i
ϕ(Xs) := Im(μ), H i

ψ(Xs) := Coker(μ).

Then there is an exact sequence

(1.1.1) 0−→H i
ϕ(Xs)−→H i(Xs)−→H i

ψ(Xs)−→0.

There is a perfect pairing between H∗(Xs) and H∗
Xs

(X) by the composi-
tion of the following maps:

(·, ·)X : H i(Xs) ⊗H2n+2−i
Xs

(X)(n + 1)−→H2n+2
Xs

(X)(n + 1) deg−→Q�.

Thus we may define the homology group of Xs by

H∗(X) = H2n+2−i
Xs

(X)(n + 1).

This pairing induces perfect pairings on H∗
ϕ and H∗

ψ as follows:

(·, ·)ϕ : H i
ϕ(Xs) ⊗H2n+2−i

ϕ (Xs)(n + 1)−→Q�, (μα, μβ)ϕ = (μα, β)X ,
(·, ·)ψ : H i

ψ(Xs) ⊗H2n−i
ψ (Xs)(n)−→Q�, (α, β)ψ = (ᾱ, β̄ ∩ [Xs])X

where ᾱ ∈ H i(Xs), β̄ ∈ H2n−i(Xs) are liftings of α and β.
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Weights Notice that the cohomology groups H∗
Xs

(X), H∗(Xs) = H∗(X),
H∗(Xη), and H∗(Xη̄) (where η̄ = SpecK̄) have canonical weight filtrations
with respect to Xs. For the last three groups, we refer to [22, §2.2]. For the
first group, we use its duality to the second group. In the rest of this paper,
we will not use the above precise constructions of weights except two formulae
(1.1.2) and (1.1.3). More precisely, assume that Xs is strictly semistable in
the sense of de Jong [9, §1.26] that in the decomposition Xs =

⋃r
i=1 Yi with Yi

irreducible, for any non-empty subset I ⊂ {1, · · · , r}, the strata YI :=
⋂

i∈I Yi

is smooth of dimension n + 1 − |I|. Thus Q� can be represented by the Cěch
complex (C∗, d) with Ci :=

⊕
|I|=i+1 Q�,YI on Xs. And there is a spectral

sequence

Ep,q
1 := Hq(Xs, C

p)) =
⊕

|I|=p+1
Hq(YI) =⇒ Hp+q(Xs).

The canonical weight q on Hq(YI) induces a weight filtration on Xs. More pre-
cisely, by weight consideration, this spectral sequence degenerates at Ep,q

2 =
Hp(Hq(Xs, C

∗)) which has pure weight q. Thus there is a unique weight fil-
tration on H∗(X) such that

GrWp Hp+q(X) = Hq(Hp(Xs, C
∗)).

For example, when q = 0, there are the following formulae for the highest
weight piece of Hp(X):

(1.1.2) 0−→GrWp Hp(X)−→
⊕
i

Hp(Yi)−→
⊕
i<j

Hp(Yij),

Taking duality, we also have the lowest weight piece for Hp
Xs

(X):

(1.1.3)
⊕
i<j

Hp−4(Yij)(−2)−→
⊕
i

Hp−2(Yi)(−1)−→GrWp Hp
Xs

(X)−→0.

Algebraic cohomology cycles Using filtration by weights W∗, there is
the class maps

(1.1.4) Chn+1−∗(Xs)−→GrW2∗H2∗
Xs

(X)(∗), Ch∗(Xs)−→GrW2∗H2∗(Xs)(∗).

For construction of these cycle maps, one can use an argument in Bloch–
Gillet–Soulé [5, Appendix] with “envelopes” replaced by de Jong’s alterna-
tion [9]. The argument in [5] works with this replacement because of Q�-
coefficients. In particular, when X has strict semistable reduction, there is
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the following analogue formula for Chow groups:

0−→Chp(Xs)−→
⊕
i

Chp(Yi)−→
⊕
i<j

Chp(Yij),(1.1.5)

⊕
i<j

Chp(Yij)−→
⊕
i

Chp(Yi)−→Chp(Xs)−→0.(1.1.6)

The class maps (1.1.4) induce maps from these exact sequences to the exact
sequences (1.1.2) and (1.1.3).

Let A∗(Xs) and A∗(Xs) be the images of the maps (1.1.4). Then there is
a connection map

i∗i∗ : An+1−∗(Xs)−→A∗(Xs).

Again, we define the groups of vanishing and nearby cycles by

A∗
ϕ(Xs) := Im(i∗i∗), A∗

ψ(Xs) = Coker(i∗i∗).

Then there is an exact sequence

(1.1.7) 0−→A∗
ϕ(Xs)−→A∗(Xs)−→A∗

ψ(Xs)−→0.

The intersection pairing between Chi(Xs) and Chi(Xs) induces a pairing

Ai(Xs) ⊗ Ai(Xs)−→Q

which is compatible with the pairing of cohomology groups. Moreover,
the same process in cohomology groups defines the pairings on A∗

ϕ(Xs) and
A∗

ψ(Xs).
Thus there is a morphism between above two sequences

0 Ai
ϕ(Xs) Ai(Xs) Ai

ψ(Xs) 0

0 GrW2i H2i
ϕ (Xs)(i) GrW2i H2i(Xs)(i) GrW2i H2i

ψ (Xs)(i) 0.

We will fix an ample line bundle L over X. Let L be the operator over each
group in the above diagram defined by the cup product with the first Chern
class c1(L) ∈ H2(Xs)(1).



Standard conjectures and height pairings 2233

Standard conjectures We would like to propose the following analog of
Grothendieck’s standard conjectures [20, Conjectures 1, 2]:

Conjecture 1.1.1. Let n = dimXη.

1. For i ≤ n, there is an isomorphism

Li : Hn−i
ψ (Xs)

∼−→Hn+i
ψ (Xs)(i).

2. For i ≤ n + 1, there is an isomorphism

Li : Hn+1−i
ϕ (Xs)

∼−→Hn+1+i
ϕ (Xs)(i).

Conjecture 1.1.2. The intersection pairing on algebraic cohomology classes

A∗(Xs) × A∗(Xs)−→Q

is perfect.

Conjecture 1.1.3. Let n = dimXs.

1. For i ≤ n/2, there is an isomorphism

Ln−2i : Ai
ψ(Xs)

∼−→An−i
ψ (Xs).

2. For i ≤ (n + 1)/2, there is an isomorphism

Ln+1−2i : Ai
ϕ(Xs)

∼−→An+1−i
ϕ (Xs).

Conjecture 1.1.4. Let n = dimXs.

1. For i ≤ n/2, 0 �= x ∈ Ker(Ln+1−i|Ai
ψ(Xs)), we have

(−1)i(x, Ln−ix)ψ > 0.

2. For i ≤ (n + 1)/2, 0 �= x ∈ Ker(Ln+2−i|Ai
ϕ(Xs), we have

(−1)i(x, Ln+1−ix)ϕ > 0.

Remark 1.1.5. We want to give some connections between the above conjec-
tures and Grothendieck’s standard conjectures [20, Conjectures 1, 2].

1. If X/S is smooth, then A∗
ϕ(Xs) = H∗

ϕ(Xs) = 0 and

A∗
ψ(Xs) = A∗(Xs) = An+1−∗(Xs), H∗

ψ(Xs) = H∗(Xs) = H∗
Xs

(Xs).

Thus the above conjectures are the Grothendieck conjectures for Xs.
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2. Conversely if Xs is strictly semistable, based on work of Bloch–Gillet–
Soulé [6] and Künnemann [27], we will show that the Grothendieck
standard conjectures [20, Conjectures 1, 2] for strata implies Conjec-
tures 1.1.3, 1.1.4. See Theorem 1.5.1. It will be interesting to extend
these results to general situation.

Remark 1.1.6. Instead of working on A∗(Xs) we can also work on A∗(Xs) by
defining

Aψ
∗ (Xs) = ker(i∗i∗), Aϕ

∗ (Xs) = Im(i∗i∗) = An+1−∗
ϕ (Xs)

to obtain an exact sequence

0−→Aψ
∗ (Xs)−→A∗(Xs)−→Aϕ

∗ (Xs)−→0.

Then there are also standard conjectures for A∗(Xs) which is equivalent to
those for A∗(Xs). Similar equivalence holds for H∗(Xs) and H∗

Xs
(Xs).

Harmonic forms Apply Proposition A.1.1 to
⊕

iH
∗
? (Xs)(i), there is the

following splittings:

Theorem 1.1.7. Assume Conjecture 1.1.1, then there is a unique decompo-
sition of Q�-modules

H∗(Xs) = H∗
ϕ(Xs) ⊕H∗

ψ(Xs),

so that the induced morphism
⊕
i

H∗(Xs)(i) =
⊕
i

H∗
ϕ(Xs)(i) ⊕

⊕
i

H∗
ψ(Xs)(i),

is L-linear.

The space H∗
ψ(Xs) is called the space of harmonic forms.

Theorem 1.1.8. Assume Conjecture 1.1.3. Then there is a unique decompo-
sition of L-modules

A∗(Xs) = A∗
ϕ(Xs) ⊕A∗

ψ(Xs).

The space A∗
ψ(X) is called the space of harmonic forms.

Remark 1.1.9. These two decompositions can be considered as non-archime-
dean analogs of harmonic form decompositions; see Corollary 1.2.2.
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1.2. Archimedean analogue

We want to write an analogue sequence of (1.1.7) when K = C with valuation
| · | using Gillet–Soulé’s theory [17, §3.3.4] of arithmetic Chow groups over
“arithmetic ring (C, |·|)”. Let X be a proper and smooth complex variety. Then
according to Bloch–Gillet–Soulé [5], the analogue of “H i

Xs
(X)−→H i(Xs)” in

archimedean case is given by

μ := ∂∂̄

πi
: Ãi−1,i−1(X(C))−→Ai,i

closed, Ãi−1,i−1(X(C)) := Ai−1.i−1

Im∂ + Im∂̄
.

In this case, the analogue of sequence (1.1.1) becomes

0−→Im(∂∂̄)i,i−→Ai,i
closed(XC)−→H i,i(X(C))−→0.

Thus we write this sequence as

0−→H∗
ϕ(XC)−→H∗(XC)−→H∗

ψ(XC)−→0.

The standard conjectures for H∗
ψ(XC) are the classical hard Lefschetz and

Hodge index theorem in Hodge theory. For H∗
ϕ(XC) := Im(∂∂̄)i,i we have the

following:

Theorem 1.2.1 (Künnemann). For i ≤ (n + 1)/2, there is an isomorphism

Ln+1−2i : H i
ϕ(XC) ∼−→Hn+1−i

ϕ (XC).

Moreover, for 0 �= α ∈ H i
ϕ(XC), Ln+2−2iα = 0, then

(−1)i(α, Ln+1−2iα) > 0.

Proof. The first part is proved in [25, Lemma 10.4]. The second part is proved
in [26, Theorem 1.2].

By Proposition A.1.1, there is the following:

Corollary 1.2.2. There is a unique decomposition into L-modules:

A∗,∗
closed = ∂∂̄(A∗−1,∗−1) ⊕H∗,∗(X).

This decomposition is nothing but harmonic decomposition using the
Laplacian operator. Thus H∗

ψ(X) := H∗,∗(X) is the space of harmonic forms.
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To be consistent with the notation in the non-archimedean situation, we still
denote this decomposition as

H∗(XC) = H∗
ϕ(XC) ⊕H∗

ψ(XC).

1.3. Invariant cycles

Now we want to connect the hard Lefschetz for H∗
ψ to a conjecture about

invariant cycles, which itself is a consequence of Deligne’s weight monodromy
conjecture [10].

Theorem 1.3.1. Let η̄ = SpecK̄ be the geometric point of S with Galois
group I = Gal(K̄/K). Then the following four statements are equivalent:

1. Conjecture 1.1.1 of Lefschetz type for H∗
ψ(Xs);

2. The bijectivity of the following composition of maps:

H∗
ψ(Xs)−→H∗(Xη)−→H∗(Xη̄)I ;

3. The surjectivity of the map to invariant cycles: H∗(Xs) � H∗(Xη̄)I ;
4. For each i, WiH

i(Xη̄)I = H i(Xη̄)I .

Proof. Consider the long exact sequence:

(1.3.1) · · · −→H i−1(Xη)−→H i
Xs

(X) μ−→H i(Xs)−→H i(Xη)−→· · · .

This sequence is self-dual with respect to the pairing:

H i
Xs

(X) ⊗H2n+2−i(Xs)−→Q�(−1 − n).

Notice that H i(Xs) has weight ≤ i and H i
Xs

(X) has weight ≥ i, thus there is
an exact sequence:

0−→H i−1(Xη)/Wi−1H
i−1(Xη)−→H i

Xs
(X) μ−→H i(Xs)−→WiH

i(Xη)−→0,

which is self-dual with respect to (i ←→ 2n + 2 − i). Thus there are isomor-
phisms:

WiH
i(Xη)

∼−→H i
ψ(X), H i(Xη)/WiH

i(Xη)
∼−→H2n+1−i

ψ (Xs)∨(−n− 1).

Combining these two isomorphisms, we get an exact sequence of Q�[L]-mod-
ules:

(1.3.2) 0−→H∗
ψ(Xs)−→H∗(Xη)−→H2n+1−∗

ψ (Xs)∨(−n− 1)−→0.
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As the operator L is an even degree operator, we can decompose this
sequence into two sequences

0−→H2∗
ψ (Xs)−→H2∗(Xη)−→H2n+1−2∗

ψ (Xs)∨(−n− 1)−→0,(1.3.3)
0−→H2∗+1

ψ (Xs)−→H2∗+1(Xη)−→H2n−2∗
ψ (Xs)∨(−n− 1)−→0.(1.3.4)

Now we want to consider the spectral sequence

Ep,q
2 := Hp(I,Hq(Xη̄)) ⇒ Hp+q(Xη).

Since the action of I on H∗(Xη̄) restricting to an open subgroup I0 factors
through the tame quotient Z�(1), this sequence degenerates. Thus there is an
exact sequence

0−→H1(I,H∗−1(Xη̄))−→H∗(Xη)−→H0(I,H∗(Xη̄))−→0.

Using following identities

H1(I,H∗−1(Xη̄)) = H∗−1(Xη̄)I(−1), H0(I,H∗(Xη̄)) = H∗(Xη̄)I ,

we obtain an exact sequence

(1.3.5) 0−→H∗−1(Xη̄)I(−1)−→H∗(Xη)−→H∗(Xη̄)I−→0.

We can decompose it into even and odd degrees as well:

0−→H2∗−1(Xη̄)I(−1)−→H2∗(Xη)−→H2∗(Xη̄)I−→0,
0−→H2∗(Xη̄)I(−1)−→H2∗+1(Xη)−→H2∗+1(Xη̄)I−→0.

By Deligne [11], H∗(Xη̄) satisfies the hard Lefschetz. More precisely, four
end terms are Lefschetz modules with different centers:

H2∗−1(Xη̄)I(−1) : (n + 1)/2, H2∗(Xη̄)I : n/2,
H2∗(Xη̄)I(−1) : n/2, H2∗+1(Xη̄)I : (n− 1)/2.

Now applying Proposition A.1.1 part 2 to the above two sequences, we
get unique splittings,

H2∗(Xη) � H2∗−1(Xη̄)I(−1) ⊕H2∗(Xη̄)I .(1.3.6)
H2∗+1(Xη) � H2∗(Xη̄)I(−1) ⊕H2∗+1(Xη̄)I .(1.3.7)
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From (1.3.6) and (1.3.3), we get morphisms of graded modules

α ∈ Hom(H2∗(Xη̄)I , H2n+1−2∗
ψ (Xs)∨(−1 − n)),

β ∈ Hom(H2∗
ψ (Xs), H2∗−1(Xη̄)I(−1)).

Now we want to prove that part 1 implies part 2. Assume H∗
ψ(X) satisfies

the hard Lefschetz 1.1.1, then four end terms are all Lefschetz modules with
various different centers:

H2∗
ψ (Xs) : n/2, H2n+1−2∗

ψ (Xs)∨ : (n + 1)/2,
H2∗+1

ψ (Xs) : (n− 1)/2, H2n−2∗
ψ (Xs)∨ : n/2.

Considering their centers, by Proposition A.1.1 part 1, these two group ho-
momorphisms α, β vanish. Thus the sequences (1.3.3) and (1.3.4) split with
isomorphisms:

H2∗
ψ (Xs)

∼−→H2∗(Xη̄)I , H2∗−1(Xη̄)I(−1) ∼−→H2n+1−2∗
ψ (Xs)∨(−n− 1),

H2∗+1
ψ (Xs)

∼−→H2∗+1(Xη̄)I , H2∗(Xη̄)I(−1) ∼−→H2n−2∗
ψ (Xs)∨(−n− 1).

Combing these splittings, we get the splitting for sequences (1.3.2) and the
isomorphisms:

H∗
ψ(Xs)

∼−→H∗(Xη̄)I , H∗−1(Xη̄)I(−1) ∼−→H2n+1−∗
ψ (Xs)∨(−n− 1).

In particular, we have part 2 of the theorem.
It is clear that part 2 implies part 3 and that part 3 implies part 4.
Now assume part 4. By duality, the H i(Xη̄)I has weight ≥ i. Thus the

sequence (1.3.5) splits according to weight comparison. In particular, we have

H i
ψ(Xs) = WiH

i(Xs) � H i(Xη̄)I .

Now the hard Lefschetz for H∗(Xη̄) proved by Deligne [11] gives the hard
Lefschetz for H∗

ψ(Xs). Thus we have completed the proof of theorem.

Remark 1.3.2. Combined with known cases of the weight monodromy conjec-
ture, Conjecture 1.1.1 holds for H∗

ψ(Xs) in the following cases:

1. X/S is smooth, see Deligne [11];
2. Xη is a curve, or an abelian variety [SGA7];
3. Xη is a surface, see Rapoport–Zink [31] for semistable case, and de

Jong’s alteration [9] for the general case;
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4. K has positive characteristic, see Deligne [11] for k0 a finite field, and
Ito [22] for the general case;

5. k has characteristic 0, see Steebrink [35] and Saito [33];
6. Xη is a set-theoretically complete intersection in a toric variety, see

Scholze [34];
7. X has a uniformization by Drinfeld upper half spaces [23].

For A∗
ψ(X) there is a slightly weaker result:

Theorem 1.3.3. Assume either the smoothness of X/S or both Conjec-
tures 1.1.2 and 1.1.3 for A∗

ψ(Xs). Then the map

A∗
ψ(Xs)−→GrW2∗H2∗(Xη̄)I(∗)

is injective.

Proof. If X/S is smooth, then

A∗
ψ(X) = A∗(Xs) ⊂ H2∗(Xs)(∗) = H2∗(Xη̄)I .

If Conjectures 1.1.2 and 1.1.3 for A∗
ψ(Xs) hold, then the class map

Ai
ψ(Xs)−→GrW2i H2i

ψ (Xs)(i)

is injective. This follows from the fact that the map respects to the pairing.
We consider the embedding from equation (1.3.6),

A∗
ψ(Xs)↪→GrW2∗H2∗(Xη)(∗) � GrW2∗H2∗−1(Xη̄)I(∗ − 1) ⊕ GrW2∗H2∗(Xη̄)I(∗).

The composition with the first projection gives a map

A∗
ψ(Xs)−→GrW2∗H2∗−1(Xη̄)I(∗ − 1).

This is a morphism between two Lefschetz modules with centers (n + 1)/2
and n/2. Thus by Proposition A.1.1, this map must vanish. Thus we have the
injectivity in the theorem.

1.4. Perverse decompositions

In the following, we want to give an interpretation of our conjectures in terms
of perverse cohomology of the complex Rf∗Q� ∈ Db

c(S) as defined in [3]. Recall
that by definition a perverse sheaf F on S is a complex in Db

c(S) such that
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both F and D(F ) are in D
[−1,0]
c (S), where D is the Verdier duality operator

on Rf∗Q� ∈ Db
c(S) defined by

D(F ) = RHom(F,Q�[2]).

It can be shown that for any complex F ∈ D[−1,0](S), F is perverse if and
only if the following conditions hold:

1. H−1F is a “torsion free” sheaf on S in the sense that the morphism
H−1F−→j∗j

∗H−1F is injective,
2. H0F is a “torsion sheaf” in the sense that j∗H0F = 0 or equivalently

H0F = i∗i
∗H0F .

Any perverse sheaf is a successive extension of simples sheaves which have
forms i∗Us or j∗Vη[−1] for simple sheaves Us, Vη at s and η.

The first result is the following decomposition theorem which we have
learned from Weizhe Zheng [43]:

Lemma 1.4.1. For any C ∈ Db
c(S), there is a decomposition of complexes:

C �
⊕
m∈Z

pHmC[−m].

Proof. It suffices to to show that for any integer n, Ext1(pτ>nC, pτ≤nC) =
0. Since C is a successive extension of pHmC[−m], it suffices to show that
Extm(F,G) = 0 for all perverse sheaves F,G and m ≥ 2. We may even
reduce the following three situations:

F = i∗Q�, F = Q�[1], F = j!Vη[1],

where Vη is non-constant simple sheaf at η. Since Ri!G = Di∗DG, we have

RHom(i∗Q�, G) = RHom(Q�, Ri!G) ∈ D[0,1],

RHom(Q�[1], G) = RHom(Q�[1], i∗G) ∈ D[0,1],

RHom(j!Vη[1], G) = RHom(Vη[1], j∗G) ∈ D[0,1].

It follows that RHom(F,G) ∈ D[0,1]. Thus

Extm(F,G) = Hm(RHom(F,G)) = 0, ∀m ≥ 2.
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Remark 1.4.2. Unlike the usual cohomolgy splitting of complexes, the perverse
cohomology splitting in Lemma 1.4.1 may not be unique as there could be
nontrivial elements in

Hom(pHmC[−m], pHm+1C[−m− 1]) ∼−→Hom(H0(pHmC),H−1(pHm+1C)).

Applying the sheaf cohomology to the identity in the lemma, we obtain
a decomposition:

Hi(C) = H−1(pHi+1C) ⊕H0(pHiC).

From this identity, it is clear that H0(pHiC) is the maximal torsion subsheaf
of Hi(C). Thus we have

H0(pHiC) = Ker(Hi(C)−→j∗j
∗Hi(C)),(1.4.1)

H−1(pHi+1C) = Im(Hi(C)−→j∗j
∗Hi(C)).(1.4.2)

In the following, we apply the above decomposition to the complex Rf∗Q�.
We make the following conjectures:

Conjecture 1.4.3. On S, there is a splitting of complexes:

pRif∗Q�
∼−→H0(pRif∗Q�) ⊕H−1(pRif∗Q�)[1].

Moreover, H−1(pRif∗Q�)
∼−→j∗j

∗Ri−1f∗Q�.

Conjecture 1.4.4. For any i ≤ n + 1, there is an isomorphism

Li : pRn+1−if∗Q�
∼−→pRn+1+if∗Q�(i).

Remark 1.4.5. These two conjectures could be extended to a more general
situation. More precisely, the statements in [3, Theorem 6.2.5 6.2.10] should
hold for any proper morphism of schemes.

Theorem 1.4.6. The conjecture of Lefchetz type 1.1.1 for H∗
ψ(X) is equiva-

lent to Conjecture 1.4.3. Assume Conjecture 1.4.3, then Conjecture 1.1.1 of
Lefchetz type for H∗

ϕ(X) is equivalent to Conjecture 1.4.4.

Proof. By Theorem 1.3.1, Conjecture 1.1.1 of Lefchetz type for H∗
ψ(X) is

equivalent to the surjectivity of the morphisms of sheaves for each i:

Rif∗Q�−→j∗j
∗Rij∗Q�.
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By the exact sequence (1.4.2), this is equivalent to the bijectivity

H−1(pRif∗Q�)
∼−→j∗j

∗H−1(pRif∗Q�).

Notice that
D(pRif∗Q�) = pR2n+2−if∗Q�(1 + n).

Thus for the first part of theorem, it suffices to prove the following lemma
which we have learned again from Weizhe Zheng [43]:

Lemma 1.4.7. Let F be a perverse sheaf on S. Then F is split in the fol-
lowing sense

F = H0(F ) ⊕H−1(F )[1]

if and only if
H−1D(F ) ∼−→j∗j

∗H−1D(F ).

Proof. Write exact sequences for F and D(F ) using their cohomology

0−→H−1(F )[1]−→F−→H0(F ),−→0(1.4.3)
0−→H−1D(F )[1]−→D(F )−→H0D(F )−→0,(1.4.4)

Write U = i∗H0DF and V = j∗H−1D(F ) as sheaves at s and η respectively.
If H−1D(F ) ∼−→j∗j

∗H−1D(F ) = j∗V , then apply D to sequence 1.4.4 to
get

0−→i∗U
D−→F−→j∗V

D[1]−→0

where
UD := Hom(U,Q�), V D := Hom(V,Q�(1)).

Taking sheaf cohomology H∗, we obtain a surjective map

i∗U
D � H0(F ).

Taking global sections, this gives UD � i∗H0(F ). Any section of this map
will provide a splitting of (1.4.3).

Conversely, assume F is split, then there is a composition of the following
surjective morphisms of perverse sheaves:

F−→H−1F [1]−→j∗j
∗H−1F [1].
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This is a surjective morphism in the category of perverse sheaves with the
kernel of the form i∗X with X a vector space concentrated at degree 0. By
duality, we have

0−→j∗j
∗DH−1F [1]−→DF−→i∗X

D−→0.

This implies that

H−1DF = j∗j
∗DH−1F.

It remains to prove the second part of theorem. Notice that the hard
Lefschetz for pR∗f∗Q� is equivalent to the hard Lefschetz at (pR∗f∗Q�)η and
(pR∗f∗Q�)s. At η, it is the hard Lefschetz on H∗(Xη̄) proved by by Deligne [11].
At s, under Conjecture 1.1.1 of Lefchetz type for H∗

ψ(X), by Theorem 1.3.1,
formulae (1.4.1, 1.4.2), we have that

H−1(pRi+1fs∗(Q�)) = H i
ψ(X), H0(pRifs∗(Q�)) = H i

ϕ(X).

Thus there is an exact sequence

0−→H∗−1
ψ (X)[1]−→(pR∗f∗Q�)s−→H∗

ϕ(X)−→0.

By the assumption in the theorem, the hard Lefschetz holds for H∗−1
ψ (X)[1]

with center n + 1. Thus the hard Lefschetz for (pR∗f∗Q�)s with center n + 1
is equivalent to the hard Lefschetz for H∗

ϕ(X) with center n + 1.

By Beilinson–Bernstein–Deligne–Gabber [3], we have the following:

Corollary 1.4.8. Assume that S has equal characteristic, then conjectures
1.1.1, 1.4.3, and 1.4.4 all hold.

Proof. When k is of characteristic 0, these are special cases of [3, Theorem
6.2.5, Theorem 6.2.10]. When k has characteristic p, then the same proof over
Q will reduce the problems to the statements for varieties defined over finite
fields: [3, Corollary 5.4.7, and Theorem 5.4.10].

Notice that the results over finite fields were first proved by Deligne [11].
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1.5. Strict semistable reductions

As one attempt to deduce our extended standard conjectures from Grothen-
dieck’s standard conjectures [20, Conjectures 1, 2], we have the following gen-
eral result based on previous work of Bloch–Gillet–Soulé [6] and Künnemann
[27]:

Theorem 1.5.1. Let f : X−→S be as in §1.1. Assume that X has strictly
semistable reductions and that on each stratum YI of dimension nI = n+1−
|I|, the group A(YI) of algebraic cohomology cycles satisfies Grothendieck’s
standard conjectures [20, Conjectures 1, 2]. Then Conjectures 1.1.2, 1.1.3,
and 1.1.4 hold.

Proof. We will use results in [6] where there are different definitions of A∗(Y )
and A∗(Y ). To avoid confusion, we denote their groups as A∗(Xs)BGS and
A∗(Xs)BGS . Recall that these groups are defined using Cěch complexes as
(1.1.2), (1.1.3), (1.1.5) and (1.1.6):

0−→A∗(Xs)BGS−→
⊕
i

A∗(Yi)−→
⊕
i≤j

A∗(Yij),(1.5.1)

⊕
i≤j

A∗(Yij)−→A∗(Yi)−→A∗(Xs)BGS−→0,(1.5.2)

where for smooth variety Z over a field of dimension d, A∗(Z) is defined to
be Ad−∗(Z). There are morphisms among various exact sequences:

(1.1.5) � (1.5.1)−→(1.1.2), (1.1.6) � (1.5.2)−→(1.1.3).

The composition are the class maps (1.1.4) of Chow groups. Thus there are
maps

(1.5.3) A∗(Xs)BGS � A∗(Xs), A∗(Xs)BGS
∼−→A∗(Xs).

In the exact sequences (1.5.1) and (1.5.2), by assumption on the Grothendieck
standard conjectures [20, Conjectures 1, 2], A∗(Yi) is dual to A∗(Yi) =An−i(Yi)
and A∗(Yij) is dual to A∗(Yij) = An−1−∗(Yij). It follows that the intersection
pairing on A∗(Yi) induces a perfect pairing

A∗(Xs)BGS × A∗(Xs)BGS−→R.

Since this pairing is compatible with pairing on A∗(Xs) × A∗(Xs), we have
that A∗(Xs)BGS

∼−→A∗(Xs). Thus we have proved Conjectures 1.1.2.
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For proving the rest of the theorem, we notice that the maps (1.5.3) are
compatible with connection map i∗i∗, i.e., the following diagram is commu-
tative:

An+1−∗(Xs)BGS
i∗i∗

�

A∗(Xs)BGS

�

An+1−∗(Xs)
i∗i∗

A∗(Xs).

We define the groups A∗
ϕ(Xs)BGS and A∗

ψ(Xs)BGS as image and cokernel
of i∗i∗ on the top row analogously. Then there is an isomorphism of two exact
sequences:

0 A∗
ϕ(Xs)BGS

�

A∗(Xs)BGS

�

A∗
ψ(Xs)BGS

�

0

0 A∗
ϕ(Xs) A∗(Xs) A∗

ψ(Xs) 0.

The main results of Bloch–Gillet–Soulé [6, Theorem 6] and Künnemann
[27, Theorem 2.17] are that A∗

ψ(Xs)BGS and A∗
ϕ(Xs)BGS both satisfy Conjec-

tures 1.1.3 and 1.1.4.

Remark 1.5.2. Here are some examples where the assumption of the theorem
hold:

1. Xη is a curve or a surface;
2. Xη is an abelian variety with totally degenerate fiber: Xs is a union of

toric varieties, [27, §3.4];
3. X is the quotient of a Drinfeld upper half space with L induced from

the canonical bundle, [23, Proposition 4.4.].

Remark 1.5.3. In terms of their group A∗(Xs)BGS , the harmonic decomposi-
tion was already given by Bloch–Gillet–Soulé [6, Theorem 6, part (iii)] using
a Laplacian operator.

1.6. Admissible cycles

Let f : X−→S be as in §1.1. Then there is a chain of maps between various
cycles:

Zn+1−∗(Xs)
i∗−→Zn+1−∗(X) = Z∗(X)−→Ch∗(X)−→Ch∗(Xs)

i∗−→A∗(Xs).
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We want to modify all cycle groups by modulo the images of the kernel of the
following map

Zn+1−∗(Xs)−→An+1−∗(Xs)

to obtain a new chain of maps:

(1.6.1) An+1−∗(Xs)
i∗−→Ẑn+1−∗(X) = Ẑ∗(X)−→Ĉh

∗
(X) i∗−→A∗(Xs).

The i∗ is called the curvature map and denoted it by ω.
Let L be an ample line bundle, and assume that Conjecture 1.1.3 holds.

Then by Theorem 1.1.8, and Corollary 1.2.2, there is a decomposition

(1.6.2) A∗(Xs) = A∗
ϕ(Xs) ⊕A∗

ψ(Xs),

where A∗
ψ(Xs) is the space of harmonic forms.

We say that a class x ∈ Ẑ∗(X) (resp, Ĉh
∗
(X)) is admissible, if its curva-

ture ω(x) is harmonic. Let Z∗(X) (resp. Ch∗(X)) denote the group of admis-
sible classes called the Arakelov group. It is clear that A∗

ϕ(Xs) is the image
i∗i∗ in (1.6.1). Thus every class in Ẑ∗(X) can be modified to be admissible
by adding a vertical cycle on a special fiber. Denote Aψ

∗ (Xs) as the kernel of
i∗i∗ : A∗(Xs)−→An+1−∗(Xs). Then there is an exact sequence:

(1.6.3) 0−→i∗A
ψ
n+1−∗(Xs)−→Z

∗(X)−→Z∗(Xη)−→0.

Arakelov liftings We want to define some canonical lifting for the se-
quence 1.6.3. For any cycle z ∈ Z∗(Xη) with Zariski closure zZar, an admissi-
ble lifting zAra of z is called Arakelov lifting if the difference zAra − zZar = i∗g
for some g ∈ An+1−∗(Xs) that is perpendicular to the image of An+1−∗

ψ (Xs) ⊂
An+1−∗(Xs) in the space of harmonic forms.

Theorem 1.6.1. Assume either the smoothness of X/S or Conjectures 1.1.2
and 1.1.3. Then for any cycle z ∈ Z∗(Xη), the Arakelov lifting zAra of z exists
and is unique.

Proof. If X/S is smooth, then we simply take zAra = zZar. So we can assume
Conjectures 1.1.2, 1.1.3 in the following. Let’s start with the following exact
sequence

0−→Aψ
n+1−∗(Xs)−→An+1−∗(Xs)

i∗i∗−→A∗(Xs)−→A∗
ψ(Xs)−→0.
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By Conjecture 2.1.2, the above sequence is dual to the same sequence with ∗
replaced by n+ 1−∗. The decomposition 1.6.2 implies a dual decomposition

A∗(Xs) = Aψ
∗ (Xs) ⊕Aϕ

∗ (Xs).

The Aϕ
∗ (Xs) is in fact the orthogonal complement of A∗

ψ(Xs).
Now for any z ∈ Z∗(Xη), and any lifting z̄ ∈ Z

∗(Xη), their difference
has an expression z̄ − zZar = i∗g for some g ∈ An+1−∗(Xs). We can modify
this element by adding some element in Aψ

n+1−∗(Xs) so that it belongs to
Aϕ

n+1−∗(Xs).

As an application of Proposition 1.6.1, for two disjoint cycles z1 ∈ Zi(Xη)
and z2 ∈ Zj(Xη) with i+j = n+1, we can define their Arakelov height pairing
as follows:

(z1, z2)Ara = zAra
1 · zAra

2 = zAra
1 · zZar

2 .

The archimedean analog of the above construction is classical due to
Arakelov, Faltings, and Gillet–Soulé. For a smooth, complex projective va-
riety X with a Kähler form ω, we can extend any cycle z ∈ Z∗(X) to a Green
current g so that ∂∂̄

πi g = δz−hz where hz is the harmonic form representing z.
This current is unique up to an addition of a harmonic form. We may further
normalize this current by requiring that this current is perpendicular to all
harmonic forms. The resulting cycle zAra = (z, g) is the Arakelov lifting of z.
The admissible height pairing of two disjoint cycles z1, z2 is then

(z1, z2)Ara =
∫
X(C)

g1δz2

where zAra
1 = (z1, g1).

By Theorem 1.5.1, we have the following:

Corollary 1.6.2. Assume that X/S is strictly semistable and that Grothen-
dieck’s standard conjectures [20, Conjectures 1, 2] holds. Then the Arakelov
height pairings are well-defined for cycles on X.

Beilinson–Bloch liftings A cycle z ∈ Ch∗(Xη) is called homologically
trivial if its class in H2∗(Xη̄)(∗) is trivial. For a homologically trivial cycle
z ∈ Ch∗(Xη), a lifting zB ∈ Ĉh

∗
(X) is called a Beilinson–Bloch lifting if zB

has vanishing curvature in A∗(Xs).

Proposition 1.6.3. Assume either the smoothness of X/S or the standard
Conjectures 1.1.2, 1.1.3. An admissible class has curvature 0 if and only if
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it is homologically trivial. In particular, the Beilinson–Bloch lifting exists for
all homologically trivial cycles.

Proof. By Theorem 1.3.3, the A∗
ψ(Xs) is isomorphic to its image in

H2∗(Xη̄)(∗). Thus the curvature map is the following composition of maps:

Z
∗(X) � A∗(Xη)↪→A∗

ψ(Xs),

where A∗(Xη) is the image of Z∗(Xη) in H2∗(Xη̄)(∗).
As an application of Proposition 1.6.3, for two disjoint cycles z1 ∈ Zi(Xη)

and z2 ∈ Zj(Xη) with i + j = n + 1 such that z1 is homologically trivial, we
can define their Beilinson–Bloch local height pairing as follows:

(z1, z2)B = zB1 · zZar
2 .

The archimedean analog of the above construction is classical due to
Arakelov, Faltings, and Gillet–Soulé. For a complex projective variety X with
a Kähler form ω, we can extend any homologically trivial cycle z ∈ Z∗(X)
to a Green current g so that ∂∂̄

πi g = δz. The Beilinson–Bloch height pairing of
two disjoint cycles z1, z2 is then defined as follows:

(z1, z2)B =
∫
X(C)

g1δz2

where zB1 = (z1, g1) is an admissible lifting of z1.
For non-strictly semistable reduction, we have the following weaker result:

Theorem 1.6.4. Assume the Grothendieck standard conjectures [20, Conjec-
tures 1, 2]. The Beilinson–Bloch lifting exists for every homologically trivial
cycle.

Proof. We need to show that for any homologically trivial cycle z ∈ Ch∗(Xη),
we can find an extension z̄ which has vanishing curvature.

Apply de Jong’s theorem [9] to get a morphism π : X ′−→X such that
f ′ = f ◦ π : X ′−→S satisfies same property as f with X ′ having strictly
semistable reduction. Let i′ : X ′

s−→X denote the inclusion of special fiber
of X ′. Then π∗z is still homologically trivial. Thus there is an extension
π∗z with vanishing curvature. Let z̄ = π!(π∗z). Then z̄ also has vanishing
curvature.

Remark 1.6.5. Using Bloch–Gillet–Soulé’s harmonic forms, Künnemann de-
fined an Arakelov group [27, §3.6], and related it to the Beilinson–Bloch height
pairing [27, §3.8], under the assumptions of Theorem 1.5.1 with following ad-
ditional conditions:
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1. X/S has a model X0/S0 with k(s0) a finite field, and
2. H2∗(YI)(∗) is generated by algebraic classes, and is semisimple under

Gal(k/k(s0)) for |I| = 1, 2

In particular, his work covers the case of abelian varieties over local fields
with total degeneration and the case of varieties uniformized by the Drinfeld
upper-half spaces.

2. Global cycles

In this section, for arithmetic varieties or algebraic varieties fibered over
curves, we define the Arakelov Chow groups of admissible cycles and the
decomposition (2.2.1) by using our structure theorems for Lefschetz modules
in §A under local and global standard conjectures. We will show that the
global standard conjecture for the Arakelov Chow groups is essentially equiv-
alent respectively to the standard conjectures of Gillet–Soulé and Beilinson
(2.1.2, 2.3.2).

We can unconditionally define the Arakelov cohomology groups and the
decompositions in the function field case. These cohomology groups are iso-
morphic to the intermediate extensions of the cohomology groups over smooth
locus. Still, the decomposition (Theorem 2.4.2) is different than the classical
one defined by splitting of cohomology (2.4.8).

For divisors and one cycles, we will give unconditional definitions of admis-
sible cycles and decompositions (Theorems 2.5.6, 2.5.9) using the Hodge index
theorem of Faltings [13] and Moriwaki [30]. Thus we obtain an unconditional
arithmetic L-liftings for divisors and 0-cycles on the generic fibers. (Corol-
laries 2.5.7, 2.5.10). We obtain some modular generating series of arithmetic
Kudla’s divisors or 0-cycles for Shimura varieties of orthogonal or unitary
types.

2.1. Arakelov Chow groups

Arithmetic cycles Let S be a regular scheme of dimension 1, which is
either an arithmetic curve S = SpecOK for a number field K, or a smooth
and projective curve over a field k. We call a place v of K for a point of S or
an infinite valuation in the number field case.

Let f : X−→S be a projective and flat morphism from a regular scheme
of dimension n+ 1. We want to define some modified groups of cycles Ẑ∗(X)
and Ĉh

∗
(X) as follows.

In the geometric situation, we define Ẑ∗(X) as the quotient of Z∗(X)
modulo images of homologically trivial cycles on vertical fibers, and Ĉh

∗
(X)
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as the image of Ch∗(X) in H2∗(Xk̄)(∗) for some Weil cohomology. Notice that
H2∗(Xk̄)(∗) is a cohomology group for the variety Xk̄ rather than H2∗(XK̄)(∗)
for its geometric generic fiber XK̄ .

In the arithmetic situation, we define Ẑ∗(X) and Ĉh
∗
(X) to be the

quotients of Gillet–Soulé’s [17] groups of arithmetic cycles Ẑ∗(X)GS and
Ĉh

∗
(X)GS modulo the images of homologically trivial cycles on vertical fibers.
Let L be an ample line bundle on X. In the arithmetic case, this means

that L is a Hermitian line bundle on X as defined by Gillet–Soulé [17] with
positive curvature point-wise at archimedean places, and with positive in-
tersections with horizontal cycles; see [39]. As usual, let L be the Lefschetz
operator defined by c1(L). Here is (slightly modified) Gillet–Soulé’s standard
conjecture:

Conjecture 2.1.1 (Gillet–Soulé [18]). Let i ≤ (n + 1)/2.

1. We have an isomorphism

Ln+1−2i : Ĉh
i
(X) ∼−→Ĉh

n+1−i
(X).

2. For x ∈ Ĉh
i
(X), x �= 0, and Ln+2−2ix = 0, we have

(−1)i(x, Ln+1−2ix) > 0.

Admissible cycles Let s be a place of K. If s is a closed point of S, then
there is a morphism of schemes:

s̆ := SpecŎS,s−→S,

where ŎS,s denotes the completion of a maximal unramified extension of OS,s.
This induces a morphism

fs̆ : Xs̆ := X ×S s̆−→s̆.

Then we define
A∗(Xs) = A∗(Xs̄)Gal(s̄/s).

If s is infinite given by an embedding K−→C, then we have Ks̄
∼−→C and

Ks = R or C. With our notation in Corollary 1.2.2, we define

A∗(Xs) = A∗(Xs̄)Gal(s̄/s).
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Now we assume for each closed point s of S that Conjecture 1.1.3 holds
for fs̆, and that Conjecture 1.1.2 holds when fs̆ is not smooth. Then by
Theorem 1.1.8, and Corollary 1.2.2, there is a harmonic decomposition

A∗(Xs̄) = A∗
ϕ(Xs̄) ⊕A∗

ψ(Xs̄).

Taking Galois invariants, we get a decomposition

A∗(Xs) = A∗
ϕ(Xs) ⊕A∗

ψ(Xs).

We say that a class x ∈ Ĉh
∗
(X) is admissible at s, if its curvature ωs(x)

is harmonic. We say such a class is admissible if it is admissible everywhere.
Following Gillet–Soulé [17] and Künnemann [27], we define the Arakelov Chow
group as the group of admissible classes:

Ch∗(X) :=
{
x ∈ Ĉh

∗
(X) : ωs(x) ∈ A∗

ψ(Xs), ∀s
}
.

We define the group of vertical cycles and the curvature map by

ωϕ : Ĉh
∗
ϕ(X) :=

∑
s

is∗An+1−∗(Xs) � A∗
ϕ(X) :=

⊕
s

A∗
ϕ(Xs).

Denote the kernel of this curvature map by B∗(X). Then we have the following
identities and exact sequence:

Ĉh
∗
(X) = Ch∗(X) + Ĉh

∗
ϕ(X), B∗(X) = Ch∗(X) ∩ Ĉh

∗
ϕ(X).

0−→B∗(X)−→Ch∗(X)−→Ch∗(XK)−→0.

By Theorem 1.3.3, the A∗
ψ(Xs) is isomorphic to its image in H2∗(XK̄)(∗).

Thus the curvature map is the following composition

Ch∗(X) � A∗(XK)↪→A∗
ψ(Xs),

where A∗(XK) is the image of Ch∗(XK) in H2∗(XK̄)(∗). This implies that an
admissible class has curvature zero at one place if and only if it is homologi-
cally trivial. Thus we have well-defined Beilinson–Bloch height pairing on the
group Ch∗(XK)0 of homologically trivial cycles.

Lemma 2.1.2. Assume the standard conjectures 1.1.3, 1.1.4 for A∗
ϕ(Xs),

A∗
ψ(Xs) for every place s of K. Then the standard conjecture 2.1.1 for Ĉh

∗
(X)
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is equivalent to the standard conjecture for Ch∗(X) of Lefschetz and Hodge
types. Moreover, there is an orthogonal decomposition:

Ĉh
∗
(X) = Ch∗(X) ⊕ A∗

ϕ(X).

Proof. There is an exact sequence:

0−→Ch∗(X)−→Ĉh
∗
(X)−→ A∗

ϕ(X)−→0.

The truth of the standard conjecture for any two of three terms in the above
sequence will imply the truth for the third one.

Filtrations We consider a 3-step filtration F ∗Ch∗(X) by

F iCh∗(X) =

⎧⎪⎪⎨
⎪⎪⎩

Ch∗(X) if i = 0,
Ch∗(X)0 if i = 1,
B∗(X) if i = 2,

where Ch∗(X)0 := Ker(Ch∗(X)−→H2∗(XK̄)(∗)). This filtration has graded
quotients given by

GiCh∗(X) =

⎧⎪⎪⎨
⎪⎪⎩
A∗(XK) if i = 0,
Ch∗(XK)0 if i = 1,
B∗(X) if i = 2,

where A∗(XK) and Ch∗(XK)0 are respectively the image and the kernel of
the following map

Ch∗(XK)−→H2∗(XK̄)(∗).

Notice that the intersection pairing on Ch∗(X) induces the Beilinson–Bloch
height pairing on Ch∗(XK)0 ∼−→G1Ch∗(XK). Let ε ∈ B1(X) denote a class
of degree 1: ε = π∗εK for εK ∈ Ch1(K) with degree 1. Then the intersection
with ε on Ch∗(X) factors through A∗(XK) with the image in B∗(X).

2.2. Decompositions

Applying Theorem A.2.1 and Proposition A.3.1, we have a canonical splitting
of this filtration with respect to operator L and adjoint Λ.
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Theorem 2.2.1. Assume standard Conjectures 1.1.3, 1.1.4, and 2.1.1. There
is a unique splitting of filtered R modules

α = (α0, α1, α2) : G0Ch∗(X) ⊕G1Ch∗(X) ⊕G2Ch∗(X) ∼−→Ch∗(X)

such that α1 is L-linear, and α0 is L-linear modulo Imα2 and Λ-linear modulo
Imα1. Moreover, we have the following properties for this splitting:

1. α1 is isometric when G1Ch∗(X) ∼−→Ch∗(XK)0 is equipped with the Bei-
linson–Bloch height pairing;

2. Imα0 is isotropic;
3. there is an L-linear isomorphism β : G0Ch∗(X)−→G2Ch∗+1(X) such

that α translates the R[L,Λ]-module structure on Ch∗(X) to a structure
on

⊕
i G

iCh∗(X) defined as follows: for (x0, x1, x2) ∈ ⊕2
i=0 G

iCh∗(X),

L

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ :=

⎛
⎜⎝L 0 0

0 L 0
β 0 L

⎞
⎟⎠

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ , Λ

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ :=

⎛
⎜⎝Λ 0 β−1

0 Λ 0
0 0 Λ

⎞
⎟⎠

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ .

Example 2.2.2. It is clear that α0[XK ] = [X], and β[XK ] = cXε for some
c ∈ R. We compute c as follows:

c1(L)n+1 = deg(Ln+1α0[X]) = (n + 1) deg(c1(L)nα2β[XK ])
=(n + 1)c1(LK)nβ([XK ]).

It follows that

β([XK ]) = c1(L)n+1

(n + 1)c1(LK)nXε = hL(XK)Xε.

Then the lifting of c1(LK)i ∈ Ai(XK) under α0 can be defined as

α0Li[XK ] = Liα0[XK ] − iLi−1β[XK ] = c1(L)i − ihL(X)c1(L)i−1Xε = c1(L0)i,

where L0 := L(−hL(X)) is the unique rescaling of L such that c1(L0)n+1 = 0.
Remark 2.2.3 (Triple products). As one application of Theorem 2.2.1, we
consider the following symmetric triple product of cycles:

Chi(X)×Chj(X)×Chk(X)−→R, i+j+k = n+1, (x, y, z)T = d̂eg(x·y·z).

When one of i, j, k is zero, this pairing is completely determined by the
Beilinson–Bloch height pairing on Ch∗(X)0 and by the intersection pairing
on A∗(XK).
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In the general case, this pairing is more complicated to understand. If we
take x, y, z in the graded pieces of these groups with degree 
 ≤ m ≤ n, we
expect x · y · z = 0 if 
+m+ n ≥ 3. This is clear if n = 2, and is conjectured
by Beilinson if 
 = m = n = 1. Also when 
 = 0, m = n = 1 this is essentially
the Beilinson–Bloch height pairing:

(x, y, z)T = (x, yz)B.

It remains two interesting cases: (
,m, n) = (0, 0, 1) or (0, 0, 0).
If (
,m, n) = (0, 0, 1), by the perfectness of the Beilinson–Bloch pairing

on Ch∗(X)0 we obtain a map

Ai(XK) × Aj(XK)−→Chi+j(XK)0.

It is an exciting question to construct this pairing directly.
If 
 = m = n = 0, then there is a triple product for A∗(XK):

Ai(XK)×Aj(XK)×Ak(XK)−→R, i+j+k = n+1, (x, y, z)T = d̂eg(x·y·z).

This pairing has been used when XK is the product of two curves in our
previous work on Gross–Schoen cycles [40] and triple product L-series [37].

L-liftings Using the decomposition in Theorem 2.2.1, we obtain an isomor-
phism:

(Imα0)⊥ = Imα0 + Imα1 ∼−→Ch∗(XK).
The inverse of this map defines a canonical admissible lifting called L-lifting:

Ch∗(XK)−→Ĉh
∗
(X) : z �→ zL.

Then we can define an intersection pairing called L-pairing on Ch∗(XK) by

(·, ·)L : Chi(XK) × Chn+1−i(XK)−→R, (z1, z2)L = deg(zL
1 · zL

2 ).

This pairing has a close relation with Beilinson–Bloch’s height pairing. If
we assume the standard conjecture for Ch∗(XK)0 and A∗(XK), then there is
a unique splitting of L-modules:

Ch∗(XK) ∼−→A∗(XK) ⊕ Ch∗(XK)0, z �→ (zcl, z0).

Thus,
(z1, z2)L = (z0

1 , z
0
2)B.

This identity follows that Imα0 is isotropic and perpendicular to Imα1.
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2.3. Arithmetic standard conjectures

In the following, we want to compare three arithmetic standard conjectures:
Gillet–Soulé’s standard Conjecture 2.1.1, the standard conjecture on its sub-
group Ch∗(X) of admissible cycles, and the following conjecture by Beilinson
on the group Ch∗(XK)0 of homologically trivial cycles:

Conjecture 2.3.1 (Beilinson). Let i ≤ (n + 1)/2.

1. We have an isomorphism

Ln+1−2i : Chi(XK)0 ∼−→Chn+1−i(XK)0.

2. For x ∈ Chi(XK)0, x �= 0, and Ln+2−2ix = 0, we have

(−1)i(x, Ln+1−2ix) > 0.

One of our main results in this section is the following:

Theorem 2.3.2. Assume Grothendieck’s standard conjectures [20, Conjec-
tures 1, 2] for A∗(XK), the standard conjectures 1.1.3 and 1.1.4 for A∗

ϕ(Xs),
A∗

ψ(Xs) for every place s of K, and the perfectness of the pairing

B∗(X) × An+1−∗(X)−→R.

Then the following statements hold:

1. The standard conjecture 2.1.1 for Ĉh
∗
(X) is equivalent to the standard

conjecture for Ch∗(X);
2. The standard conjecture for Ch∗(X) implies Beilinson’s standard con-

jecture 2.3.1.
3. Beilinson’s standard conjecture 2.3.1 implies the standard conjecture

2.1.1 for any polarization of the form L ⊗ π∗(c), where c ∈ P̂ic(OK)
with deg c sufficiently large.

Proof. The part one is implies by Lemma 2.1.2. For the other two parts, we
apply Theorem A.4.3.

2.4. Cohomology cycles

In the following, we want to consider the group H∗(X) of cohomology cycles
in the function field case. For simplicity, we assume that k = k̄. Then for each
closed point s of S, we have maps:

(2.4.1) H∗
Xs

(X) is∗−→H∗(X) i∗s−→H∗(Xs).
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Using Corollary 1.4.8 and Theorem 1.1.7, we get a unique decomposition as
Q[L]-modules:

(2.4.2) H∗(Xs) = H∗
ϕ(Xs) ⊕H∗

ψ(Xs).

Notice that H∗
ϕ(Xs) �= 0 only if Xs is singular. We define the group H

∗(X) of
admissible cohomological group H

∗(X) as the class with harmonic curvatures
in H∗

ψ(Xs) for all s:

H
∗(X) :=

{
α ∈ H∗(X) : i∗sα ∈ H∗

ψ(Xs),∀s ∈ S
}
.

Then we get a decomposition

H∗(X) = H∗
ϕ(X) + H

∗(X), H∗
ϕ(X) :=

∑
s∈S

is∗H
∗
Xs

(Xs).

We define a tree-step filtration on H
∗(X) by

(2.4.3) F iH
∗(X) =

⎧⎪⎪⎨
⎪⎪⎩
H

∗(X) if i = 0
Ker(H∗(X)−→H∗(XK̄)) if i = 1
Ker(H∗(X)−→H∗(XK)) if i = 2

where H∗(XK) := lim−→U
H∗(XU ) where U runs through non-empty open sub-

sets of S. Let GiH
∗(X) (i = 0, 1, 2) denote the graded pieces.

Proposition 2.4.1. The H
∗(X) has a Lefschetz module structure with center

n+ 1, and each GiH
∗(X) has a Lefschetz module structure with center n+ i.

More precisely, let j : U↪→S be any non-empty open subscheme of S over
which f is smooth. Then we have the following isomorphisms Q�[L]-modules,

GiH
∗(X) ∼−→H i(S, j∗R∗−ifU∗Q�),

where the action of L on H i(S, j∗R∗−ifU∗Q�) is induced from its action on
the sheaves RifU∗Q�.

Applying Theorem A.2.1, we will get a decomposition analogous to The-
orem 2.2.1:

Theorem 2.4.2. There is a unique splitting of filtered Q� modules

α = (α0, α1, α2) : G0H
∗(X) ⊕G1H

∗(X) ⊕G2H
∗(X) ∼−→H

∗(X)



Standard conjectures and height pairings 2257

such that α1 is L-linear, and α0 is L-linear modulo Imα2 and Λ-linear modulo
Imα1.

To prove Proposition 2.4.1, we need to reinterpret the cohomology H
∗(X)

and its filtration in terms of decomposition theorems for the complex Rf∗Q�

on S in [3, Theorem 5.4.5, 5.4.6] in characteristic p and [3, Theorem 5.4.5,
5.4.6] in characteristic 0. More precisely, we will compare Rf∗Q� with interme-
diate complex Rf∗Q� := j!∗RU∗Q� which has cohomology R

i
f∗Q� = j∗Ri

U∗Q�.
Our first step is to write down some decompositions.

First of all, the analog Lemma 1.4.1 holds for sheaves Db
c(S) with the

same proof. Thus there is a (non-canonical) decomposition:

(2.4.4) Rf∗Q� �
⊕
m∈Z

pRmf∗Q�K[−m].

Secondly, the global analogue of the Conjecture 1.4.3 holds for over S:
there is a splitting of complexes:

pRif∗Q�
∼−→H0(pRif∗Q�) ⊕H−1(pRif∗Q�)[1],(2.4.5)

H−1(pRif∗Q�)
∼−→j∗R

i−1fU∗Q� = R
i−1

f∗Q�.(2.4.6)

Finally, the global analogue of Conjecture 1.4.4 holds: for any i ≤ n + 1,
we have an isomorphism

(2.4.7) Li : pRn+1−if∗Q�
∼−→pRn+1+if∗Q�(i).

Now we want to translate these isomorphisms in terms of usual coho-
mology: The first isomorphisms (2.4.4), (2.4.5), and (2.4.6) gives a single
isomorphism:

Rf∗Q� =
⊕
m

(Φm ⊕R
m
f∗Q�)[−m], Φm := Ker(Rmf∗Q�−→R

m
f∗Q�).

It is clear that each Φm is a complex of sheaves supported on S \U . The last
isomorphism (2.4.7) gives two isomorphisms:

Li : Φn+1−i ∼−→Φn+1+i(i), Li : Rn−i
fU ∗Q�

∼−→R
n+i

f∗Q�(i).

Applying Proposition A.1.1 to the exact sequence

0−→Φ∗−→R∗f∗Q�−→R
∗
f∗Q�−→0
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we obtain a unique decomposition of Q�[L] modules:

R∗f∗Q�
∼−→Φ∗ ⊕R

∗
f∗Q�.

Thus we have proved the following:

Lemma 2.4.3. There is a unique decomposition of the form (2.4.4) respect-
ing the action by Lefschetz operator L. More precisely, there are canonical
splittings of Q�[L] modules:

Rf∗Q�
∼−→Φ∗ ⊕Rf∗Q�,

Rf∗Q�
∼−→

⊕
m

R
m
f∗Q�[−m].

At each closed point s ∈ S, Lemma 2.4.3 gives a splitting Q[L] modules

H∗(Xs) = Φ∗
s ⊕ (R∗

f∗Q�)s.

This must be coincides with decomposition (2.4.2). Thus we have

Φ∗
s = H∗

ϕ(Xs), (R∗
f∗Q�)s = H∗

ψ(Xs).

Over S, Lemma 2.4.3 implies the following identities:

H∗(X) = H∗(S,Rf∗Q�), H∗
ϕ(X) = H∗(S,Φ∗), H

∗(X) = H∗(S,Rf∗Q�).

In particular, there is a splitting of cohomology:

(2.4.8) H
∗(X) = H∗(S,Rf∗Q�) =

2⊕
i=0

H i(S,R∗−i
f∗Q�).

This splitting is compatible with the filtration F iH
∗(X) defined as in (2.4.3).

Thus we have GiH
∗(X) = H i(S,R∗−i

f∗Q�) which are Lefschetz modules with
center n + i. This completes the proof of the proposition.
Remark 2.4.4. Notice that the decomposition in Theorem 2.4.2 depends on
the Lefschetz operator L while the decomposition in (2.4.8) does not. More
precisely module the Tate twists, write L = Lϕ + L0 + L1 + L2 with respect to
the decomposition

H2(X) = H2
ϕ(X) ⊕

2⊕
i=0

H i(S,R∗−i
f∗Q�).
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Then on the decomposition (2.4.8), H∗(X), Lϕ acts trivially, Lj acts by its
action on R

∗−i
f∗Q�,

LjH
i(S,R∗−i

f∗Q�) ⊂ H i+j(S,R∗−i−j
f∗Q�), j = 0, 1, 2.

This shows that the two decompositions in Theorem 2.4.2 and (2.4.8) are
different if L1 �= 0.
Remark 2.4.5. As in Remark 2.2.3, there is a triple product on groups H∗(X).
It would be interesting to construct such a triple pairing directly.
Remark 2.4.6 (
-adic height pairings). Recall from the last section, the group
Ĉh

∗
(X) of “arithmetic Chow cycles” is defined as the image of Ch∗(X) in

H2∗(X)(∗). If we assume local standard conjectures, then we can define
the subgroup Ch∗(X) of admissible classes which is in fact the intersec-
tion Ĉh

∗
(X) ∩ H

2∗(X)(∗). Furthermore, the filtrations on Ch∗(X) and on
H

2∗(X)(∗) are compatible. Thus two Theorems 2.2.1 and 2.4.2 give the same
decomposition for Ch∗(X).

Without local standard conjectures, we can use Theorem 2.4.2 to lift
cycles in A∗(XK) and Ch∗(XK)0 to H

2∗(X)(∗) by embeddings

A∗(XK) ↪→ G0H
2∗(X)(∗), Ch∗(XK)0 ↪→ G1H

2∗(X)(∗).

In particular, there is a well-defined 
-adic height pairing on Ch∗(XK)0 which
has been defined by Beilinson [2].

2.5. Divisors and 0-cycles

Local decomposition Let s be a place of K and i = n or 1. We want to
define unconditionally a splitting for the group Ai(Xs) of i-vertical cycles. We
start with an intersection pairing and a power of Lefschetz operator:

(x, y) : A1(Xs) ⊗ An(Xs)−→Q, (x, y) = deg(i∗i∗x ∪ y).
Ln−1 : An(Xs)−→A1(Xs).

The following is the classical local index theorem:

Lemma 2.5.1. For x ∈ A1(Xs) we have

(x, Ln−1x) ≤ 0.

The equality holds if and only if x ∈ Q · [Xs].
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Corollary 2.5.2. Let i = 1 or n. There is a decomposition

Ai(Xs) = Aψ
i (Xs) ⊕Aϕ

i (Xs).

Here Aψ
i (Xs) and Aϕ

i (Xs) are defined as follows:

1. If i = n, we take

Aψ
n(Xs) := Q · [Xs], Aϕ

n(Xs) := {x ∈ An(Xs), deg Lnx = 0} .

2. If i = 1, we take

Aψ
1 (Xs) := {x ∈ A1(Xs) : (x, y) = 0 ∀y ∈ An(Xs)} ,

Aϕ
1 (Xs) := Ln−1Aϕ

n.

Admissible cycles For i = 1, n, we want to define the Arakelov Chow
group Chi(X) of admissible cycles. First we want to do some analysis on
vertical cycles for each place s of S. Let is : Xs−→X be the embedding.
Then there are maps

is∗ : An+1−i(Xs)−→Ĉh
i
(X).

We define Ai
ϕ(X) (resp Bi(X)) as the sum of is∗Aϕ

n+1−i(Xs) (resp.
is∗A

ψ
n+1−i(Xs)), and Chi(X) to be the orthogonal complements of An+1−i

ϕ (X).
Then there is a decomposition and an exact sequence:

Ĉh
i
(X) = Ai

ϕ(X) ⊕ Chi(X),

0−→Bi(X)−→Chi(X)−→Chi(X)−→0.

In terms of curvatures, the subgroup Chi(X) of Ĉh
i
(X) consists of elements

x such that the volume form Ln−ix (as a functional over
∑

s i∗Chn(Xs)) is
proportional to c1(L)n.

Again, there is an intersection pairing

Ch1(X) ⊗ Chn(X)−→R.

Let Ci(X) be the null space of this pairing. Also there is a power of Lefschetz
operator

Ln−1 : Ĉh
1
(X)−→Ĉh

n
(X).
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We have the following Hodge index theorem deduced from the local index
theorem 2.5.1 and the global Hodge index theorem of Faltings [13], Hriljac
and Moriwaki [30].

Theorem 2.5.3 (Hodge index theorem). For any non-zero x ∈ Ch1(X) with
Lnx = 0, then

(x, Ln−1x) < 0.

Corollary 2.5.4. The morphism Ln−1 is injective, C1(X) = 0, and

Chn(X) = Cn(X) ⊕ Ln−1Ch1(X).

Remark 2.5.5. It is conjectured that Cn(X) = 0 or equivalently, Chn(X) =
Ln−1Ch1(X). In fact, by the non-degeneracy of the Neron–Tate height pairing,
Cn(X) is isomorphic to the kernel of the Abel–Jacobi map Chn(XK)0 →
Alb(X)R.

Decomposition of arithmetic diviors Consider a 3-step filtration for
Arakelov group of divisors Ch1(X) by

F iCh1(X) =

⎧⎪⎪⎨
⎪⎪⎩

Ch1(X), if i = 0,
Ch1(X)0, if i = 1,
B1(X), if i = 2.

where Ch1(X)0 = Ker(Ch1(X)−→H2(XK̄)(1)). This filtration has graded
quotients given by

GiCh1(X) =

⎧⎪⎪⎨
⎪⎪⎩
A1(XK), if i = 0,
Ch1(XK)0, if i = 1,
B1(X), if i = 2,

where

A1(XK) = NS(XK) ⊗ R, Ch1(XK) = Pic(XK) ⊗ R,

Ch1(XK)0 = Pic0(XK) ⊗ R.

Theorem 2.5.6. There is a unique splitting of the filtration on Ch1(X):

α = (α0, α1, α2) : G0Ch1(X) ⊕G1Ch1(X) ⊕G2Ch1(X) ∼−→Ch1(X).

with following properties:
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• α2 is the embedding of B1(X);
• α1 is the lifting ξ ∈ Ch1(XK)0 to a class α1ξ ∈ F 1Ch1(X) such that

deg c1(L)nα1ξ = 0;
• α0 is the lifting which takes a class ξ ∈ A1(XK) to a class α0(ξ) ∈

Ch1(X) with following two properties:

1. on XK , c1(LK)n−1α0ξK ∈ Chn(XK) is proportional to c1(LK)n;

2. the intersection number c1(L0)nα0ξ = 0, where L0 =L−hL(XK)Xε.

Corollary 2.5.7 (L-liftings for divisors). For any line bundle M there is a
unique arithmetic line bundle ML extending M with the following two condi-
tions:

1. ML is admissible in the sense that the volume form c1(Man) · c1(L)n−1

is proportional to c1(L)n at every place s of K.
2. deg ĉ1(L0)nĉ1(ML) = 0.

Remark 2.5.8. In the case X = C × C a self-product of a curve and L =
p∗1ξ + p∗2ξ for an ample line bundle ξ. Such a lifting has been constructed
using adelic line bundles and used to study heights of Gross–Schoen cycles
and triple product L-series; see [40, 37].

Decomposition of 1-cycles In the following we want to give a decompo-
sition of 1-cycles for a modified group

Chn(X)′ = Chn(X)/(Bn(X)∩Cn(X)), Bn(X)′ =Bn(X)/(Bn(X)∩Cn(X)).

Recall that Bn(X)∩Cn(X) is the null space for the pairing Bn(X)×A1(XK)→
R. Then we still have an exact sequence

0−→Bn(X)′−→Chn(X)′−→Chn(XK)−→0.

Consider a 3-step filtration for Arakelov group of 1-cycles Chn(X) by

F iChn(X)′ =

⎧⎪⎪⎨
⎪⎪⎩

Chn(X)′, if i = 0,
Chn(X)0, if i = 1,
Bn(X), if i = 2,

where Chn(X)0 := Ker(Chn(X)′−→H2n(XK̄)(n)). This filtration has graded
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quotients given by

GiChn(X)′ =

⎧⎪⎪⎨
⎪⎪⎩
An(XK), if i = 0,
Chn(XK)0, if i = 1,
Bn(X)′, if i = 2,

where
An(XK) ∼−→R · c1(LK)n, Chn(XK)0 = ker deg .

Theorem 2.5.9. There is a unique splitting of the filtration on Chn(X)

α = (α0, α1, α2) : G0Chn(X)′ ⊕G1Chn(X)′ ⊕G2Chn(X)′ ∼−→Chn(X)′.

with the following properties:

1. α2 is the given embedding of Bn(X)′,
2. α1 is the unique lifting so that Imα1 is perpendicular to α0(A1(XK)),
3. α0 on An(XK) � Q · Ln[Xs] to take Ln[Xs] to c1(L0)n.

Corollary 2.5.10 (L-liftings for 0-cycles). For any ξ ∈ Chn(XK), there is a
unique lifting ξL ∈ Ĉh

n
(X) modulo Bn(X) ∩ Cn(X) with the following two

conditions:

1. ξL is admissible in the sense that its curvature form is proportional to
c1(L)n at every place s of K.

2. degα0(x)ξL = 0 for all x ∈ NS(XK).

Modularity of arithmetic Kudla’s generating series Consider a Shi-
mura variety X defined by an orthogonal (resp. hermitian space) V over a
totally real (resp. CM) field F of signature (n, 2), (n+2, 0), · · · (n+2, 0) (resp.
(n, 1), (n + 1, 0), · · · (n + 1, 0). Then there is a projective system of Shimura
varieties XU of dimension n over F indexed by open and compact subgroups
of GSpin(V̂ ) (GU(V̂ )). For each integer between 0 and n and each Bruhat–
Schwartz function φ ∈ S(V̂ r) there are generating series of Kudla cycles Zφ

of codimension r special cycles; see [24, 36, 29].
In [24], Kudla conjectured that these series of spaces are modular for

symplectic groups GSpr (resp. unitary group U(r, r)) over F . In his thesis
[42], Wei Zhang proved such modularity under the condition that these series
are convergent; see also extensions in [36, 29]. For unconditional modularity,
there are the case of divisors in [36, 29], and the case F = Q by work of
Bruinier and Westerholt-Raum [7].
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Let L be an arithmetic ample line bundle over an integral model of X.
Then using our conditional L-lifting, we get generating series ZL

ϕ. As the lifting
is unique, the modularity of Zϕ will imply the modularity of ZL

ϕ. In particular,
when r = 1 or F = Q we have a modular generating series of arithmetic cycles
ZL
ϕ.

Appendix A. Lefschetz modules

In this appendix, we prove some results about splittings of Lefschetz modules
with filtrations of 2 or 3 steps. We will start with an easy result about two-
step filtrations with centers (n + 1)/2 and n/2 for their graded quotients,
which will be used almost everywhere in the paper. Then we will study the
significantly more complicated case of filtrations with three steps that will
only be used in §2 for global cycles.

Let E be a field of characteristic 0. We will consider the abelian category
M of graded vector spaces V ∗ = ⊕i∈ZV

i over E with a linear operator L of
degree 1: L : V ∗−→V ∗+1 such that V i = 0 if |i| >> 0.

By a Lefschetz module with center n/2, for n a non-negative integer, we
mean an object V ∗ ∈ M such that for any integer i ≤ n/2, there is an
isomorphism:

Ln−2i : V i ∼−→V n−i.

Define the primitive part by

V i
0 := Ker(Ln+1−2i|V i), i ≤ n/2.

Then there is a Lefschetz decomposition:

V i =
∑

j≤min(n/2.i)
Li−jV j

0 .

It is well known that for any Lefschetz structure V ∗ with center n/2, there is
a unique operator Λ on V ∗ with degree −1 such that [Λ, L]|V i = n− 2i.

For the uniqueness of Λ, we notice that any two such Λ’s will have a
difference operator Δ with degree −1 and commuting with L. It follows that
for any j ≤ n/2,

Ln+1−jΔV j
0 = ΔLn+1−jV j

0 = 0.

Thus ΔV j
0 = 0 since Ln+1−j is bijective on V j−1. Thus Δ = 0 on V as it

commutes with L.
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For the existence of Λ, we notice that the above primitive decomposition
realize V as a direct sum of simple modules of forms V (n, j) :=

⊕n−j
i=j Eei

with j ≤ n/2 and

Lei = (n− j − i)ei+1, Λei = (i− j)ei−1,

where we treat ej−1 = en−j+1 = 0.

A.1. Two-step filtrations

Proposition A.1.1. Let U∗ and W ∗ be Lefschetz modules with centers m/2
and n/2 respectively. Then in the category M, the following hold:

1. if m > n, then HomM(W,U) = 0;
2. if m = n + 1, then Ext1M(W,U) = 0;

Proof. For the first one, let ϕ ∈ HomM(W,U). Then for any i ≤ n/2 < m/2,

Lm−2iϕ(W i
0) = Lm−n−1ϕ(Ln+1−2iW i

0) = 0.

This implies that ϕ(W i
0) = 0. Thus ϕ = 0.

For the second part, consider an extension V of W by U in M:

0−→U−→V−→W−→0.

Since Ln+1−2k : Uk−→Un+1−k is an isomorphism, there is a canonical lifting
of primitive parts:

V i
0

∼−→W i
0, V i

0 := Ker(Ln+1−2k|V i), i ≤ n/2.

Thus we can define a lifting of W i by

W i
L :=

∑
k≤min(n/2,i)

Li−kV k
0 .

The uniqueness of this lifting follows from part 1.

A.2. Three-step filtrations

Theorem A.2.1. Let V ∗ be a Lefschetz module over E with center (n+1)/2
with a three step filtration in objects in M:

0↪→F 2V ∗↪→F 1V ∗↪→F 0V ∗ = V ∗
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such that their graded quotients GiV := V i/V i+1 are Lefschetz modules with
center (n + i)/2. Then there is a unique splitting of graded E-modules

α : G0V ∗ ⊕G1V ∗ ⊕G2V ∗ ∼−→V ∗

such that the following hold for the restrictions αi = α|GiV ∗ : GiV ∗−→F iV ∗:

1. α1 : G1V ∗−→V ∗ is L-linear;
2. α0 : G0V ∗−→V ∗ is L-linear modulo Imα2 and Λ-linear modulo Imα1.

Moreover, there is an isomorphism β : G0V ∗−→G2V ∗+1 of L-modules such
that α-translates the E[L,Λ]-module structure on V ∗ into an E[L,Λ]-module
structure on

⊕
GiV ∗ as follows: for xi ∈ GiV ∗,

L

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ =

⎛
⎜⎝L 0 0

0 L 0
β 0 L

⎞
⎟⎠

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ , Λ

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ =

⎛
⎜⎝Λ 0 β−1

0 Λ 0
0 0 Λ

⎞
⎟⎠

⎛
⎜⎝x0

x1

x2

⎞
⎟⎠ .

First, let us reduce the proof to the case G1V ∗ = 0. Apply Proposi-
tion A.1.1 to the exact sequences

0−→F 2V ∗−→F 1V ∗−→G1V ∗−→0,
0−→G1V ∗−→V ∗/F 2V ∗−→G0V ∗−→0,

to obtain unique L-linear liftings

α1 : G1V ∗−→F 1V ∗, v : G0V ∗−→V ∗/F 2V ∗.

Let Ṽ ∗ be the preimage of v(G0V ∗) under the projection V ∗−→V ∗/F 2V ∗.
Then there is a direct sum of L-modules:

V ∗ = α1(G1V ∗) ⊕ Ṽ ∗.

Since both V ∗ and G1V ∗ have Lefschetz structures with center (n + 1)/2, so
does Ṽ ∗. Thus, we reduce the proof of Theorem A.2.1 to the case G1V ∗ = 0.
In this case, we rewrite the theorem as follows:

Proposition A.2.2. Let 0−→U∗ ε−→V ∗ η−→W ∗−→0 be an exact sequence of
graded vector spaces over E with an action by L of degree 1. Assume that
for some integer n, L induces Lefschetz structures on U∗, V ∗, and W ∗ with
centers of symmetry (n+ 2)/2, (n+ 1)/2, and n/2 respectively. Then there is
a unique section α : W ∗−→V ∗ for η such that α is Λ-linear. Moreover, there
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is a unique L-isomorphism β of W ∗−→U∗+1 such that the operators L and Λ
on V ∗ are given by

L(εx + αy) = ε(Lx + βy) + αLy, Λ(εx + αy) = εΛx + α(β−1x + Λy).

The proof of this proposition uses several lemmas.

Lemma A.2.3. Under the assumption of Proposition A.2.2, there is a lifting
α : W ∗−→V ∗, and an L-isomorphism β : W ∗−→U∗+1 satisfying the following
conditions:

Lα = αL + εβ.

Proof. Let us consider the primitive class of V i
0 for i ≤ (n + 1)/2, i.e., the

kernel of Ln+2−2i on V i. Since this operator gives an isomorphism

Ln+2−2i : U i ∼−→Un+2−i,

there is an isomorphism:

η : V i
0

∼−→Ker(Ln+2−2i : W i−→W n+2−i) = LW i−1
0 + W i

0.

This defines a lifting αi : W i
0↪→V i

0 .
Next we claim that there is a unique E-linear isomorphism βi : W i

0−→U i+1
0

such that

Ln+1−2iαi(x) = (n + 1 − 2i)εLn−2iβi(x), ∀x ∈ W i
0.

This equation has a unique solution βi(x) ∈ U i+1, because the left hand side
belongs to εUn+1−i = εLn+2−2(i+1)U i+1. Since αi(x) ∈ U i

0, Ln+2−2iαi(x) = 0,
thus βi(x) ∈ U i+1

0 . It follows that βi is a linear map W i
0−→U i+1

0 . We claim
that βi is bijective. If βi(x) = 0, then αi(x) = 0 since Ln+1−2i|V i is bijective.
Thus x = 0. For surjectivity, let y ∈ U i+1

0 , then there is a z ∈ V i such that
Ln+1−2iz = εLn−2iy. Then z is primitive since Ln+2−2iz = εLn+1−2iy = 0.
Thus ηz = Lu + x with u ∈ W i−1

0 , x ∈ W i
0. Since Ln+1−2iηz = ηεLn−2iy = 0,

we see that u = 0. Thus z = αix and y = βix.
Now we define β from βi using the commutativity with L, and define α

from αi and β using equation

αLj(x) = Ljαi(x) − jεLj−1βi(x), x ∈ W i
0, j ≤ n− 2i.

To check this is well defined, we notice that Lj(x) = 0 implies either x = 0 or
j = n− 2i. It is clear that α and β satisfy the condition of the Lemma.
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Lemma A.2.4. For the lifting α in Lemma A.2.3, the two equations in
Proposition A.2.2 hold. In particular, α is Λ linear.

Proof. It is clear that the first equation holds by construction. For the sec-
ond equation, let Λ′ denote the right hand side of the second equation in
Proposition A.2.2

Λ′(εx + αy) = εΛx + α(β−1x + Λy).

We need only show that Λ′ satisfies the same equation as Λ on V ∗:

[Λ′, L]|V i = n + 1 − 2i.

This can be checked easily.

Lemma A.2.5. The lifting α in Lemma A.2.3 is the unique Λ-equivariant
lifting.

Proof. If there is another Λ-equivariant lifting α′, then the difference is given
by

α′ − α = εδ

with δ : W ∗−→U∗ a linear map such that εδ is equivariant with Λ:

εδΛ = Λεδ = εΛδ + αβ−1δ.

Thus εβ−1δ ∈ Imα ∩ Imε = 0 so is δ = 0.

A.3. Symmetric pairings

Let notation be as in Theorem A.2.1. In the following, we assume that V ∗

has a symmetric, non-degenerate intersection pairing:

(·, ·) : V ∗ ⊗ V n+1−∗−→E,

such that F 2V ∗ and F 1V ∗ are orthogonal complements to each other, and
that the pairing is L-adjoint in the sense

(Lx, y) = (x, Ly), ∀x ∈ V ∗, y ∈ V n−∗.

This induces a non-degenerate L-adjoint pairing as follows:

(·, ·)i,2−i : GiV ∗ ⊗G2−iV n+1−∗−→E.
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Using the isomorphism β : G0V ∗−→G2V ∗+1, we have the following a non-
degenerate L-adjoint pairings (·, ·)i,i on GiV ∗ for i = 0, 2:

(·, ·)i,i : GiV ∗ ⊗GiV n+i−∗−→E,

(x, y)0,0 := (x, βy)0,2, ∀(x, y) ∈ G0V ∗ ×G0V n−∗,

(u, v)2,2 := (β−1u, v)0,2, ∀(u, v) ∈ G2V ∗ ×G2V n+2−∗.

Proposition A.3.1. With the assumption and notation as above, we have
the following assertions:

1. For each i, the pairing (·, ·)i,i is symmetric, non-degenerate, and L-
adjoint.

2. The Imα0 is perpendicular to Imα1 + Imα0.

Thus the pairing (·, ·) is transformed by α to the following pairing on
⊕

GiV ∗:

((x, y, z), (x′, y′, z′)) = (x, z′)0,2 + (y, y′)1,1 + (z, x′)2,0
∀(x, x′) ∈ G0V ∗ ×G0V n+1−∗, ∀(y, y′) ∈ G1V ∗ ×G1V n+1−∗,

∀(z, z′) ∈ G2V ∗ ×G2V n+1−∗.

Proof. It is easy to see that (·, ·)1,1 is symmetric, non-degenerate, and L-
adjoint, and that the isomorphism α in Theorem A.2.1 restricting on G1V ∗

is an isometry. Thus the quotient V ∗/αG1V ∗ is isomorphic to the orthogonal
complement of Imα1 with induced two-step filtration. So we have reduced the
proof to the case G1V ∗ = 0.

Let D(V )∗ denote the dual Lefschetz structure for V ∗ with

D(V )i = Hom(V n+1−i, E), Lψ = ψ ◦ L, ∀ψ ∈ D(V )∗

Then the pairings (·, ·) and (·, ·)2,0 induce isomorphisms of Lefschetz modules

V ∗−→D(V )∗, G0V ∗−→D(F 2V )∗.

These isomorphisms must be Λ-equivariant.
Since F 2V ∗ is isotropic in V ∗, we have the following equality:

(α0x + α2z, α0x′ + α2z′) = (x, β−1z′)0,0 + (x′, β−1z)0,0 + (α2z, α2z′),
∀(x, x′) ∈ G0V ∗ ×G0V n+1−∗V, ∀(z, z′) ∈ G2V ∗ ×G2V n+1−∗V ∗.

Now apply the adjoint property of Λ to obtain the following equality:

(Λ(α0x + α2z), α0x′ + α2z′) = (α0x + α2z, Λ(α0x′ + α2z′)).
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By Theorem A.2.1, this means the following equality:

(α0Λx+α2Λz+α0β−1z, α0x′+α2z′) = (α0x+α2z, α0Λx′+α2Λz′+α0β−1z′).

We apply this equation to each of the following cases

1. x = x′ = 0: (z′, z)2,2 = (z, z′)2,2;
2. z = x′ = 0: (Λx, z′)0,2 = (x,Λz′)0,2 + (α0x, α0β−1z′);
3. z = z′ = 0: (α0Λx, α0x′) = (α0x, α0Λx′).

The first case shows that (·, ·)2,2 is symmetric, and so is (·, ·)0,0 as

(x, y)0,0 = (x, βy)0,2 = (βx, βy)2,2, ∀x ∈ G0V ∗, y ∈ G0V n−∗.

The second case then shows that (α0z, α0x′) = 0 for all (x, x′) ∈ G0V ∗ ×
G0V n+1−∗. Thus Imα0 is isotropic. The third case is trivial. The rest of the
proposition is straightforward.

A.4. Standard conjectures

In this section, we work on E = R.

Definition A.4.1 (Standard conjecture). Let M be a R[L]-module with a
symmetric pairing with center n/2:

M∗ ×Mn−∗−→R

such that L is self-adjoint in the sense

(Lx, y) = (x, Ly), ∀x, y ∈ V ∗.

We say that the the standard conjecture holds for (M, (·, ·)) with center n/2,
if the following two conditions hold:

1. Hard Lefschetz theorem: M is a Lefschetz module with center n/2;
2. Hodge index theorem: the pairing (−1)i(·, ·) is positive definite on the

primitive component M i
0 = Ker(Ln+1−2i|M i).

Proposition A.4.2. With setting as in Theorem A.2.1, the Hodge index theo-
rem for (V ∗, (·, ·)V ) is equivalent to the Hodge index theorem for (G1V ∗, (·, ·)1,1)
and (G0V ∗, (·, ·)0,0)

Proof. By Proposition A.3.1, it is easy to reduce the proof to the case G1V ∗ =
0. So let’s assume G1V ∗ = 0 and let α0x+ α2z be a primitive element in V i.
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Then x ∈ G0V i, z ∈ G2V i with i ≤ (n + 1)/2 and

0 = Ln+2−2i(α0x+α2z) = α0Ln+2−2ix+α2(Ln+2−2iz+(n+2−2i)Ln+1−2iβx).

This implies x = xi + Lxi−1 with xi, xi−1 primitives, and that z = −(n+ 2−
2i)βxi−1, where xi = 0 if i = (n + 1)/2. Now

Ln+1−2i(α0x + α2z) = α0Ln+1−2ix + α2(Ln+1−2iz + (n + 1 − 2i)Ln−2iβx)
=α0Ln+2−2ixi−1 + α2(−Ln+1−2iβxi−1 + (n + 1 − 2i)Ln−2iβxi).

It follows that

(α0x + α2z, Ln+1−2i(α0x + α2z))
=(β−1z, Ln+2−2ixi−1)0,0 + (−Ln+1−2ixi−1 + (n + 1 − 2i)Ln−2ixi, x)0,0
= − (n + 3 − 2i)(xi−1, Ln+2−2ixi−1)0,0 + (n + 1 − 2i)(xi, Ln−2ixi)0,0.

The positivity of the last quantity is equivalent to the Hodge index theorem
for G0V ∗.

In the rest of this section, we let V ∗ ∈ M be a L-module over R with
following structures:

1. A three-step filtration for V ∗ in objects in M:

0↪→F 2V ∗↪→F 1V ∗↪→F 0V ∗ = V ∗

with graded quotients GiV := V i/V i+1. Assume that G2V ∗ is finite-
dimensional.

2. a symmetric intersection pairing on V ∗:

(·, ·) : V ∗ ⊗ V n+1−∗−→E,

such that F 2V ∗ and F 1V ∗ are orthogonal complements to each other,
and that the pairing is L-adjoint in the sense

(Lx, y) = (x, Ly), ∀x ∈ V ∗, y ∈ V n−∗.

3. an operator ε ∈ HomM(V ∗, V ∗+1) such that Im(ε) ⊂ F 2V ∗, Ker(ε) ⊃
F 1V ∗, and that

(εx, y) = (x, εy), ∀x ∈ V ∗, y ∈ V n−∗.

The induced map G0V ∗−→F 2V ∗+1 is still denoted by ε.
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Notice that at this point, we do not assume that GiV are Lefschetz modules
and that (·, ·) is non-degenerate on V ∗. These structures allows us to define
the following objects:

1. New operators L(c) = L + cε for c ∈ R.
2. A symmetric pairing (·, ·)0 on G0V ∗ by

(x, y)0 = (x, εy).

3. A symmetric pairing (·, ·)1 on G1V ∗:

(x, y)1 = (x̄, ȳ), x ∈ G1V ∗, y ∈ G1V n+1−∗

where x̄ ∈ F 1V ∗, ȳ ∈ F 1V n+1−∗ are any liftings of x, y.

The main result in this section is the following:

Theorem A.4.3. Assume the standard conjecture for G0V ∗. Then the fol-
lowing statements hold:

1. The standard conjecture for V ∗ implies the standard conjecture for G1V ∗.
2. The standard conjecture for G1V ∗ implies the standard conjecture for

V ∗ for any Lefschetz operator of the form L(c) = L + cε with c ∈ R

sufficiently large.

Let us start with part 1 of Theorem A.4.3.

Lemma A.4.4. Assume the standard conjectures for G0V ∗ and V ∗. Then
G1V ∗ satisfies the standard conjecture. More precisely, the following state-
ments hold:

1. ε : G0V ∗ ∼−→F 2V ∗+1 as an L-modules.
2. The submodule C∗ := F 2V ∗ + ΛF 2V ∗+1 is stable under L and Λ.
3. The C∗ satisfies the standard conjecture with center (n+ 1)/2, and the

projection to G2V ∗ induces an isomorphism ΛF 2V ∗ ∼−→G0V ∗.
4. Let D∗ denote the orthogonal complement of C∗ in V ∗. Then

F 1V ∗ = F 2V ∗ + D∗, G1V ∗ ∼−→D∗.

5. The standard conjecture holds for G1V ∗ ∼−→D∗.

Proof. By the standard conjecture for V ∗, the intersection pairing on V ∗ is
non-degenerate. Since F 2V ∗ is perpendicular to F 1V ∗ in V ∗, the intersection
pairing induces maps:

F 2V ∗↪→(G0V n+1−∗)∨ ∼−→G0V ∗−1,
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where the last isomorphism follows from the standard conjecture for G0V ∗.
Combining this with the map ε : G0V ∗−1−→F 2V ∗ we obtain a chain of maps:

G0V ∗−1 ε−→F 2V ∗↪→G0V ∗−1.

The composition is the identity map. Thus all these maps are bijective. This
proves part 1.

For part 2, the stability of C∗ under L is easy as LΛ = [L,Λ] + ΛL. For
Λ, we need to show that Λ2F 2V ∗ is included into C∗. Since by part 1, every
element in F 2V ∗ can be written as a linear combination of elements of the
form Liεx with x a primitive element in G0V ∗, thus we need only show that
Λ2Liεx ∈ C∗ for al;l x ∈ G0V ∗

0 . It is easy to see that

ΛLiεx = LiΛεx (mod F 2V ∗), Λ2Liεx ≡ LiΛ2εx (mod C∗).

Thus it suffices to show Λ2εx = 0. Set j = deg x ≤ n/2. Then

Ln+1−2jεx = εLn+1−2jx = 0.

Since deg εx = j + 1, this follows that εx = Lx1 + x2 with x1, x2 primitive in
V ∗. This shows that Λ2εx = 0. This proves part 2.

By part 2, we see that C∗ is a Lefschetz submodule of V ∗ with center
(n + 1)/2. The standard conjecture for V ∗ applies to C∗. Thus the induced
pairing on C∗ is perfect. Since the F 2V ∗ is isotropic under the intersection
pairing, the pairing

F 2V ∗ × ΛF 2V ∗−→R

is non-degenerate on F 2V ∗; and thus it is perfect as dim ΛF 2V ∗ ≤ dimF 2V ∗.
It follows that the projection C∗−→G2V ∗ induces a bijection ΛF 2V ∗ ∼−→G0V ∗.
This proves part 3.

By part 3, D∗ is a Lefschetz module with center (n+1)/2 and satisfies the
Hodge index theorem. As the F 2V ∗ is the orthogonal complement of F 1V ∗,
we see that F 1V ∗ is the orthogonal complement of F 2V ∗. Thus the following
identities hold:

F 1V ∗ = F 2V ∗ + D∗, G1V ∗ = D∗.

Thus we have shown that G1V ∗ satisfies the standard conjecture.

Now we want to prove the second part of Theorem A.4.3. Notice that the
action of L(c) is same as that of L on F 1V ∗. By Proposition A.4.2, we need
only prove the following:
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Lemma A.4.5. With assumption as in Theorem A.4.3, part 2, then there is
a c ∈ R≥0 with the following properties:

1. V ∗ is a Lefschetz module with center (n + 1)/2 for L(c);
2. G1V ∗ satisfies the Hodge index theorem.

Proof. The assumption on the non-degeneracy of F 2V ∗ ×G0V ∗ implies that
F 2V ∗ is a Lefschetz module with center (n+1)/2. Combining with a standard
conjecture for G1V ∗, we also have the non-degeneracy of the pairing on V ∗.

Now we apply Proposition A.1.1 to the exact sequence:

0−→F 2V ∗−→F 1V ∗−→G1V ∗−→0

we obtain a splitting α : G1V ∗−→F 1V ∗ of L modules. Let C∗ denote the
orthogonal complement of Im(α) in V ∗. Then C∗ is an L(c) module with a
non-degenerate intersection and sits in an exact sequence

0−→F 2V ∗−→C∗−→G0V ∗−→0.

We want to show that C∗ is a L(c) module with center (n + 1)/2.
For any i < (n + 1)/2, consider the map

L(c)n+1−2i : Ci−→Cn+1−i.

It is easy to see that

L(c)n+1−2i = Ln+1−i + (n + 1 − i)cLn−2iε.

Since Ci and Cn+1−i have the same dimension say di, the set Si of c ∈ R so
that L(c)n+1−2i is not injective is the set of roots of a polynomial equation
Pi = 0 of degree ≤ di. We need only show that Pi �= 0. Notice that Pi = 0
is equivalent to that two operators Ln+1−2i and Ln−2iε have a common null
vector x ∈ Ci. Then εx ∈ G2V i+1. Since F 2V ∗ is a Lefschetz module with
center (n+2)/2, the equation Ln−2iεx = 0 implies that εx = 0. Thus x ∈ G2V i.
Then the equation Ln+1−2ix = 0 implies that x = 0. This finishes the proof
that V ∗ is a Lefschetz module with center (n + 1)/2, and thus the first part
of Lemma.

For the second part of Lemma, we notice that the lifting α0 for L(c) does
not depend on the choice of c because of explicit formulae for L and Λ in
Theorem A.2.1. Thus we can use the same formula to obtain

β(c) = β + cε : G0V ∗ ∼−→F 2V ∗+1.
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It follows that the induced pairing (·, ·)0,0(c) on G0V ∗ has the form

(x, y)0,0(c) = (x, y)0,0 + c(x, y)0.

Now for an i ≤ n/2, and the pairing on the primitive part G0V i
0 multiplied

by (−1)i has the form

(−1)i(x, y)0,0(c) = (−1)i(x, y)0,0 + c(−1)i(x, y)0.

Since (−1)i(·, ·)0 is positive definite, the above pairing is positive definite for
c sufficiently large.
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