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Eigenvalue sum estimates for lattice subgraphs
Frank Bauer and Gabor Lippner

Abstract: We prove sharp upper and lower bounds, up to an error
term, on the sum of the first k Dirichlet eigenvalues of induced
subgraphs of the d-dimensional lattice.

1. Introduction

Let Ω be a bounded open subset in R
n and consider the Dirichlet eigenvalue

problem
Δφ + λφ = 0 in Ω

and
φ|∂Ω = 0.

We order the eigenvalues of the Dirichlet Laplacian 0 < λ1(Ω) < λ2(Ω) ≤
. . . ≤ λk(Ω) ≤ . . . monotonically. Already in 1912, Weyl [12] obtained an
asymptotic formula for the Dirichlet eigenvalues. Weyl’s asymptotic formula
states that as k → ∞

λk(Ω) ∼ Cn

(
k

V (Ω)

)2/n
,

where V (Ω) is the volume of Ω and Cn = (2π)2V −2/n
n is the Weyl constant

with Vn being the volume of the unit ball in R
n.

In 1961, Pólya [10] proved that, for plane domains Ω that tile R
2,

(1) λk(Ω) ≥ Cn

(
k

V (Ω)

)2/n

for all k ≥ 1. Pólya’s proof also works in R
n and he conjectured that (1) is true

for all domains in R
n. A first important step towards the Pólya conjecture

was made by Lieb [8] who proved that

λk(Ω) ≥ Dn

(
k

V (Ω)

)2/n
,
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where Dn < Cn is a constant that is proportional to Cn. In 1983, Li and Yau
[7] obtained, for general domains Ω, the sharp estimate for the average of the
first k Dirichlet eigenvalues

1
k

k∑
i=1

λi(Ω) ≥ n

n + 2Cn

(
k

V (Ω)

)2/n

which implies

λk(Ω) ≥ n

n + 2Cn

(
k

V (Ω)

)2/n
.

In [6] it was shown that that this result can be obtained as a corollary of an
earlier result by Berezin [1] using the Legendre transformation. Later on, Li
and Yau’s estimate on the sum of the eigenvalues was improved by Melas [9]
whose result was further improved in dimension two in [3]. However, up to
today, Pólya’s conjecture is still open.

Along another line of research, Li and Yau’s estimate was complemented
by Kröger [5] who proved an upper bound of the sum of the first k Dirich-
let eigenvalues, which also involved an additional term that depends on the
geometry of Ω. Moreover, in the same spirit, Kröger [4, 5] obtained upper
and lower bounds for the sum of the first k Neumann eigenvalues. Finally,
Strichartz [11] developed a general framework that allows to obtain upper and
lower bounds for the sum of the first k Dirichlet and Neumann eigenvalues in
a clear way.

1.1. Results

In this paper, we find appropriate discrete analogues of these estimates. Let Zd

be the infinite d-dimensional integer lattice, viewed as a graph. Let Ω ⊂ Z
d be

a finite induced subgraph. We prove upper bounds in the spirit of Kröger [5]
and lower bounds in the spirit of Berezin [1] and Li-Yau [7] for the sum of
the first k Dirichlet eigenvalues of Ω.

That is, we consider the Dirichlet eigenvalue problem

ΔD
Ωφ = −λφ

where ΔD
Ω is the Laplacian with Dirichlet boundary conditions. (For the pre-

cise definition see Section 2.2.) There are |Ω| eigenvalues (with multiplicities)
of the Dirichlet problem, which are all real and positive. Let us denote them
by

0 < λ1 ≤ λ2 ≤ . . . ≤ λ|Ω|.
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Our bounds are summarized in the following theorem.

Theorem 1.1. For 1 ≤ k ≤ |Ω|min(1, Vd)

1
k

k∑
j=1

λj ≤
4π2d

d + 2

(
k

Vd|Ω|

) 2
d

+ |∂Ω|
|Ω|

while for 1 ≤ k ≤ |Ω|min(1, Vd(
√

6/(2π))d)

4π2d

d + 2

(
k

Vd|Ω|

) 2
d

− π4d

3(d + 4)

(
k

|Ω|Vd

) 4
d

≤ 1
k

k∑
j=1

λj

As a consequence of the methods we also obtain a non-trivial upper bound
on individual eigenvalues.

2. Preliminaries

2.1. Notation

We will use the standard notation for graphs. If G is a graph, V (G) and E(G)
will denote the vertex and edge sets of G, though when it causes no confusion
we will write x ∈ G instead of x ∈ V (G). For a finite graph G we denote by

C(G) = {f : V (G) → C}

the finite dimensional complex vector space of functions on V (G), and equip
it with the natural Hermitian scalar product

〈f, g〉G =
∑

x∈V (G)
f(x)g(x) : f, g ∈ C(G).

For any edge (xy) ∈ E(G) we define the following gradient function:

∇xyf = f(y) − f(x) : f ∈ C(G),

and then the Laplace operator ΔG : C(G) → C(G) acts via

ΔGf(x) =
∑
y∼x

∇xyf =
∑
y∼x

f(y) − f(x).

It is standard that this operator is self-adjoint with respect to the above scalar
product.

We consider Z
d as a group with the standard symmetric generating set

S = {e1, . . . , ed,−e1, . . . ,−ed}. We also think of Z
d as the Cayley graph
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obtained by this generating set. By a slight abuse of the gradient notation we
are also going to consider, for any s ∈ S, the operator ∇s : C(Zd) → C(Zd)
defined for a function f ∈ C(Zd) as

∇sf(x) = f(x + s) − f(x) : x ∈ Z
d.

2.2. Dirichlet-Laplacian, Green’s formula

Let Ω be a finite induced subgraph of Zd. We will now recall the notions of the
closure Ω, the boundary ∂Ω, and the edge boundary ∂eΩ of the subgraph Ω:

Ω = Ω ∪ {x ∈ Z
d : (∃y ∈ Ω : x ∼ y)}

∂Ω = Ω \ Ω
∂eΩ = {(xy) ∈ E(Zd) : x ∈ Ω, y ∈ ∂Ω}

There is an embedding C(Ω) → C(Ω) obtained by extending functions to be
0 on ∂Ω. We denote this by f �→ f̄ .

The Dirichlet-Laplace operator acts on C(Ω) in the following way.

Definition 2.1. For f ∈ C(Ω) let

ΔD
Ωf = (ΔΩf̄)|Ω

Proposition 2.2. ΔD
Ω is self-adjoint with respect to the Hermitian inner

product 〈· , ·〉Ω.

Proof. Let f, g ∈ C(Ω). The inner product on Ω extends naturally to Ω. Then

〈f,ΔD
Ωg〉Ω = 〈f, (ΔΩḡ)|Ω〉Ω

(a)= 〈f̄ ,ΔΩḡ〉Ω
(b)=

= 〈ΔΩf̄ , ḡ〉Ω
(a)= 〈(ΔΩf̄)|Ω, ḡ〉Ω = 〈ΔD

Ωf, g〉Ω,

where (a) follows since f̄ and ḡ both vanish outside of Ω, while (b) is simply
the self-adjointness of ΔΩ.

Let us recall the following standard result for the Laplace operator on
finite graphs (without boundary).

Theorem 2.3 (Green’s formula). Let G be a finite graph. Then for all func-
tions f, g ∈ C(G)

−〈ΔGf, g〉G =
∑

(x,y)∈E(G)
(∇xyf)(∇xyg)
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where the sum on the right hand side counts every edge once, with an arbitrary
order of its nodes.

Applying this to the special case of G = Ω and noting that

〈ΔD
Ωf, g〉Ω = 〈ΔΩf̄ , ḡ〉Ω

and f̄ |∂Ω = 0, we get a Green’s formula for the Dirichlet-Laplace operator.

Corollary 2.4. For all functions f, g ∈ C(Ω):

−〈ΔD
Ωf, g〉Ω =

∑
(x,y)∈E(Ω)

(∇xyf)(∇xyg) +
∑

(xy)∈∂eΩ
f(x)g(x)

In the following, we consider the Dirichlet eigenvalue problem

ΔD
Ωφ = −λφ.

By Proposition 2.2 and Corollary 2.4 there are |Ω| eigenvalues (with multi-
plicities) and they are all positive real numbers. We label them in increasing
order

0 < λ1 ≤ λ2 ≤ . . . ≤ λ|Ω|.

The corresponding eigenfunctions are going to be denoted φi (i = 1 . . . |Ω|)
respectively.

2.3. Fourier transform on Zd

We are going to use methods inspired by the Fourier transform to prove
our main results. In this section, we collect some technical results about the
Fourier transform on Z

d and Ω. To this end, let us define hz : Zd → C by

hz(x) = ei〈x,z〉

for all x ∈ Z
d and all z ∈ [−π, π]d. Here the inner product is just the usual

inner product on R
d, that is 〈x, z〉 =

∑d
j=1 xjzj . By abuse of notation the

restriction of hz to Ω will also be denoted by hz.
Let us write

Φ(z) =
d∑

i=1
2 − 2 cos zi.
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Lemma 2.5. The hz functions have the following properties:

〈hz, hz〉Ω = |Ω|(2)
〈hz,−ΔD

Ωhz〉Ω ≤ |Ω|Φ(z) + |∂eΩ|.(3)

Proof. The first property is simple, since

〈hz, hz〉Ω =
∑
x∈Ω

hz(x)hz(x) =
∑
x∈Ω

1 = |Ω|.

For the other property, observe using Corollary 2.4 that

〈hz,−ΔD
Ωhz〉Ω =

∑
(x,y)∈E(Ω)

|∇xyhz|2 +
∑

(xy)∈∂eΩ)
|hz(x)|2 ≤

≤ 1
2
∑
x∈Ω

∑
s∈S

|ei〈x,z〉 − ei〈x+s,z〉|2 + |∂eΩ|.

Here the only reason for the inequality is that the right hand sum picks up
certain edges that aren’t originally in E(Ω). Thus it suffices to prove

1
2
∑
x∈Ω

∑
s∈S

|ei〈x,z〉 − ei〈x+s,z〉|2 = |Ω|Φ(z).

This is easy to see, since for any x ∈ Z
d we have |ei〈x,z〉 − ei〈x+ej ,z〉|2 =

|1 − eizj |2 = 2 − 2 cos zj .

Lemma 2.6. For any f ∈ C(Ω) the following hold:

1
(2π)d

∫
[−π,π]d

|〈f, hz〉Ω|2dz = 〈f, f〉Ω.(4)

1
(2π)d

∫
[−π,π]d

Φ(z)|〈f, hz〉Ω|2dz = −〈f,ΔD
Ωf〉Ω(5)

Proof. The first equation is simply the L2 invariance of Fourier transform.
The second equation can be thought of as the analogue of how the Fourier
transform of the derivative is just z times the Fourier transform. To prove it,
let us extend f to all of Zd by 0 outside of Ω. Then we can compute:

(6) 1
(2π)d

∫
[−π,π]d

(2 − 2 cos zj)|〈f, hz〉Ω|2dz =

1
(2π)d

∫
[−π,π]d

|e−i〈ej ,z〉 − 1|2 · |〈f, hz〉Ω|2dz =
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1
(2π)d

∫
[−π,π]d

|〈f, (e−i〈ej ,z〉 − 1) · hz〉Ω|2dz =

1
(2π)d

∫
[−π,π]d

|〈f, ei〈x−ej ,z〉 − ei〈x,z〉〉Ω|2dz =

1
(2π)d

∫
[−π,π]d

|〈f, ei〈x−ej ,z〉 − ei〈x,z〉〉Zd |2dz (∗)=

1
(2π)d

∫
[−π,π]d

|〈f(x + ej) − f(x), ei〈x,z〉〉Zd |2dz =

〈∇ejf,∇ejf〉Zd ,

where (∗) follows from the general “integration by parts” identity
〈f,∇−ejg〉Zd = −〈∇−ejf, g〉Zd = 〈∇ejf, g〉Zd . By summing over all coordi-
nate directions we get:

1
(2π)d

∫
[−π,π]d

Φ(z)|〈f, hz〉Ω|2dz =
d∑

j=1
〈∇ejf,∇ejf〉Zd

In this last expression |∇xyf |2 is counted once for every edge where either x
or y is in Ω. The rest can be ignored because f is zero outside of Ω. Thus by
Corollary 2.4 this is equal to −〈f,ΔD

Ωf〉Ω.

3. Proof of Theorem 1.1

Let Ω be a finite induced subgraph of Zd. We are going to prove upper and
lower bounds on the sum of the first k eigenvalues of the Dirichlet-Laplace
operator on Ω.

3.1. Upper bound

We start with a general lemma about eigenspaces.

Lemma 3.1. Let L be a self-adjoint, positive semidefinite operator on a fi-
nite dimensional, Hermitian, complex vector space W with Hermitian inner
product 〈 , 〉. Let 0 ≤ γ1 ≤ . . . γs denote its eigenvalues, and let us choose an
orthonormal basis of eigenfunctions fi : i = 1, . . . , s where fi corresponds to
γi. Then for any 1 ≤ k ≤ s and any vector g ∈ W one has

(7) γk+1〈g, g〉 ≤ 〈g, Lg〉 +
k∑

j=1
(γk+1 − γj)|〈g, fj〉|2.
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Proof. Let V ⊂ W denote the subspace spanned by f1, . . . , fk, and let P be
the orthogonal projection to V . By the Rayleigh quotient, we have

γk+1 = inf
0�=w⊥V

〈w,Lw〉
〈w,w〉 .

Since for any g ∈ W we have g − Pg ⊥ V , this gives us

γk+1〈g − Pg, g − Pg〉 ≤ 〈g − Pg, L(g − Pg)〉.

By the Pythagorean theorem, the left hand side is equal to

γk+1(〈g, g〉 − 〈Pg, Pg〉) = γk+1

⎛
⎝〈g, g〉 −

k∑
j=1

|〈g, fj〉|2
⎞
⎠ .

Since V is invariant under L and g − Pg ⊥ LPg as well as L(g − Pg) ⊥ Pg,
the right hand side is equal to

〈g, Lg〉 − 〈Pg, LPg〉 = 〈g, Lg〉 −
k∑

j=1
γj |〈g, fj〉|2.

Putting the two sides together we get

γk+1〈g, g〉 ≤ 〈g, Lg〉 +
k∑

j=0
(γk+1 − γj)|〈g, fj〉|2,

and this is what we wanted to prove.

We are going to use this lemma by “averaging” it over a set of carefully
chosen g’s.

Lemma 3.2. Let Ω be as before. Fix 1 ≤ k ≤ |Ω|, and let B ⊂ [−π, π]d be a
measurable subset. Then

λk+1(|Ω||B| − k(2π)d) ≤ |Ω|
∫
z∈B

Φ(z) − (2π)d
k∑

j=1
λj + |B| · |∂eΩ|.

Proof. We use Lemma 3.1 with the choice of W = C
Ω, L = −ΔD

Ω and g = hz,
as defined in the previous section. In this case γj = λj and fj = φj . Let us
integrate over z ∈ B. This gives
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λk+1

∫
z∈B

〈hz, hz〉Ω ≤
∫
z∈B

〈hz,−ΔD
Ωhz〉Ω +

k∑
j=1

(λk+1 − λj)
∫
z∈B

|〈hz, φj〉Ω|2.

By Lemma 2.5 the left hand side is λk+1|B||Ω|, and the first term on the right
hand side is at most |B||∂eΩ| + |Ω|

∫
z∈B Φ(z). Finally, since λk+1 ≥ λj , the

second term on the right hand side cannot decrease if we increase the domain
of integration from B to the whole [−π, π]d. Then again, using Lemma 2.6,
and observing that 〈φj , φj〉 = 1, we obtain

λk+1|B||Ω| ≤ |B||∂eΩ| + |Ω|
∫
z∈B

Φ(z) +
k∑

j=1
(λk+1 − λj)(2π)d.

Finally, grouping all the terms containing λk+1 we get the claimed inequality.

Theorem 3.3. Let Ω be a finite induced subgraph of Zd. Then for any k ≤
Vd|Ω| the eigenvalues of the Dirichlet-Laplace satisfy

1
k

k∑
j=1

λj ≤ (2π)2 d

d + 2

(
k

Vd|Ω|

) 2
d

+ |∂Ω|
|Ω| ,

λk+1 ≤ (2π)2 d · 2
d+2
d

d + 2

(
k

Vd|Ω|

) 2
d

+ |∂Ω|
|Ω|

Proof. Let us choose B to be a ball centered around the origin of radius

R = 2π
(

k

Vd|Ω|

) 1
d

.

This R has been chosen such that |Ω||B| = k(2π)d holds. Now the left hand
side of Lemma 3.2 becomes 0, so we get that the right hand side is non-
negative:

(2π)d
k∑

j=1
λj ≤ |B||∂eΩ| + |Ω|

∫
z∈B

Φ(z).

Since 2 − 2 cos x ≤ x2 for all x, we get Φ(z) ≤ ||z||2, giving

∫
z∈B

Φ(z) ≤
∫
z∈B

|z|2 dz = dVd

∫ R

r=0
rd+1dr = dVd

d + 2R
d+2.
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Plugging this back into the previous inequality, we obtain

k∑
j=1

λj ≤
d

d + 2
Vd|Ω|
(2π)dR

d+2 + k|∂eΩ|
|Ω|

Substituting our choice of R, we get

k∑
j=1

λj ≤ (2π)2 d

d + 2 · k
(

k

Vd|Ω|

) 2
d

+ k|∂eΩ|
|Ω|

as was claimed.
This method also allows to get an upper bound on a single eigenvalue. To

this end, let us use Lemma 3.2 with B′ a ball of radius R′ = R · 21/d centered
around the origin. Then |Ω||B′| = 2k(2π)d and thus |Ω||B′|−k(2π)d = k(2π)d,
and ignore the

∑k
1 λk term on the right hand side. Thus we get

λk+1 ≤ d

d + 2
Vd|Ω|
k(2π)dR

d+22
d+2
d + |∂Ω|

|Ω| = (2π)2 d · 2
d+2
d

d + 2

(
k

Vd|Ω|

) 2
d

+ |∂Ω|
|Ω| .

Remark 3.4. For the eigenvalue problem on Ω as a graph without boundary,
a similar result was obtained by Harrell and Stubbe [2]. They however choose
B to be a cube [−c, c]d which allows k to be any integer between 1 and Ω,
however yields a slightly worse constant than our choice of B, whereas we
obtain the sharp constant compared to the lower bound presented in the next
section.

3.2. Lower bound

We are going to use an adaptation of Li and Yau’s method [7] that involves
expressing the eigenvalue sum as an integral, and then use bounds on the
integrand to get an estimate for the sum. The integral we get in the discrete
case is slightly different from the one in the original continuous version, so
first we need to prove a modified version of the lemma that enables them to
derive such lower bounds.

Lemma 3.5 (modification of Lemma 1 from [7]). Let F be a real-valued
function on R

d such that 0 ≤ F ≤ M and
∫

[−π,π]d
F (z) dz ≥ K.
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Assume (
K

MVd

) 1
d

≤
√

6 < π,

where Vd is the volume of the unit ball in R
d. Then

∫
[−π,π]d

Φ(z)F (z)dz ≥ d ·K
d + 2

(
K

MVd

) 2
d

− d ·K
12(d + 4)

(
K

MVd

) 4
d

,

where Φ(z) =
∑

i 2 − 2 cos zi as before.

Proof. We may assume
∫
[−π,π]d F (z)dz = K by decreasing F as necessary.

As a first step we find a suitable radially symmetric function ϕ(z) such that
0 ≤ ϕ(z) ≤ Φ(z) for all z ∈ [−π, π]d. Observe, that 2 − 2 cosx ≥ x2 − x4/12
for all x. Thus,

d∑
i=1

2 − 2 cos zi ≥
d∑

i=1
z2
i − z4

i /12 ≥
d∑

i=1
z2
i −

1
12

(
d∑

i=1
z2
i

)2

= |z|2 − 1
12 |z|

4.

Note that x2 − x4/12 is monotone increasing on [0,
√

6] where it has a local
maximum. Also, even though Φ(z) is not radially symmetric, it is clearly
monotone increasing in [−π, π]d along each half line starting at 0. Let us define

ϕ(z) =
{

|z|2 − |z|4/12 (|z| ≤
√

6)
3 (|z| >

√
6) .

Then by the radial monotonicity of Φ we get that Φ(z) ≥ ϕ(z) for all
z ∈ [−π, π]d. Since F (z) ≥ 0, we get∫

z∈[−π,π]d
Φ(z)F (z)dz ≥

∫
z∈[−π,π]d

ϕ(z)F (z)dz.

Let R be such that MRdVd = K, and let

F̃ (z) =
{

M (|z| ≤ R)
0 (|z| > R) .

This radius is chosen such that
∫
F̃ =

∫
F , and since ϕ is radially symmetric

and monotonic, it is intuitively clear that F̃ minimizes
∫
ϕF among all F that

satisfy the assumptions as long as R ≤ π. We can make this intuition precise:∫
z∈[−π,π]d

ϕ(z)(F (z) − F̃ (z))dz =
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=
∫
z∈[−π,π]d\BR

ϕ(z)F (z)dz −
∫
BR

ϕ(z)(M − F (z))dz ≥

≥ ϕ(R)
∫
z∈[−π,π]d\BR

F (z)dz − ϕ(R)
∫
BR

M − F (z)dz =

= ϕ(R)
(∫

[−π,π]d
F (z)dz −

∫
BR

M

)
= 0,

where ϕ(R) denotes the value ϕ(z) for any z such that |z| = R. In the inequal-
ity we used 0 ≤ F (z) ≤ M and that ϕ(z) is radially monotonic. Thus we have∫

z∈[−π,π]d
Φ(z)F (z)dz ≥

∫
z∈[−π,π]d

ϕ(z)F (z)dz ≥ M

∫
BR

ϕ(z)dz.

If R ≤
√

6 then the last expression is simply

M

∫ R

0

(
r2 − r4

12

)
d · rd−1Vddr = d ·MVd

(
Rd+2

d + 2 − Rd+4

12(d + 4)

)
.

Since R was chosen such that MRdVd = K, this can be written as

K

(
d

d + 2R
2 − d

12(d + 4)R
4
)

= d ·K
d + 2

(
K

MVd

) 2
d

− d ·K
12(d + 4)

(
K

MVd

) 4
d

,

and this is what we wanted to prove.

Theorem 3.6. Let Ω be a finite induced subgraph of Zd and let k be an integer
such that

(8) k

|Ω| ≤
(√

6
2π

)d

Vd

holds. Then the Dirichlet-Laplace eigenvalues of Ω satisfy

1
k

k∑
j=1

λj ≥ (2π)2 · d

d + 2

(
k

|Ω|Vd

) 2
d

− (2π)4 d

12(d + 4)

(
k

|Ω|Vd

) 4
d

.

Proof. Let us denote

Fj(z) = 〈Pjhz, Pjhz〉Ω = ||Pjhz||2

where || · || denotes the L2 norm and we use it to avoid excessive scalar
products in our formulas, Pj is the projection on the space spanned by the



Eigenvalue sum estimates for lattice subgraphs 2351

j-th Dirichlet eigenfunction φj , and hz(x) = ei<x,z> for all x ∈ Ω as before.
Following Li and Yau we consider the function

F (z) =
k∑

j=1
Fj(z) =

k∑
j=1

||Pjhz||2 = ||Phz||2

where P is the projection on the space spanned by the first k Dirichlet eigen-
functions φ1, . . . , φk. Because the eigenfunctions {φj}|Ω|

j=1 form an orthonormal
basis of C(Ω) we observe that

(9) F (z) =
∑
x∈Ω

|Phz(x)|2 =
k∑

j=1
| 〈φj , hz〉 |2.

In order to apply Lemma 3.5 to the function F (z) we need to bound
F,

∫
F , and

∫
ΦF . This is done using Lemma 2.6:

F (z) = ||Phz||2 ≤ ||hz||2 = |Ω|;∫
z∈[−π,π]d

F (z)dz =
k∑

j=1

∫
z∈[−π,π]d

|〈φj , hz〉Ω|2dz =

= (2π)d
k∑

j=1
||φj ||2 = (2π)dk;

∫
z∈[−π,π]d

Φ(z)F (z)dz =
k∑

j=1

∫
z∈[−π,π]d

Φ(z)|〈φj , hz〉Ω|2 =

= (2π)d
k∑

j=1
〈φj ,−ΔD

Ωφj〉Ω = (2π)d
k∑

j=1
λj .

Here Φ(z) =
∑d

l=1 (2 − 2 cos zl) as before.
Now we apply Lemma 3.5 to F with the choice of M = |Ω| and K =

(2π)dk. The assumption (8) guarantees that the lemma can indeed be applied.
As a result, we obtain

k∑
i=1

λi = 1
(2π)d

∫
[−π,π]d

Φ(z)F (z)dz ≥

≥ kd

d + 2

(
k(2π)d

|Ω|Vd

) 2
d

− kd

12(d + 4)

(
k(2π)d

|Ω|Vd

) 4
d

,

proving the theorem.
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