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Spectral extremal results on the α-index of graphs
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Abstract: Let G be a graph of order n, and let A(G) and D(G)
be the adjacency matrix and the degree matrix of G respectively.
Define the convex linear combinations Aα(G) of A(G) and D(G) by
Aα(G) = αD(G)+(1−α)A(G) for any real number 0 ≤ α ≤ 1. The
α-index of G is the largest eigenvalue of Aα(G). In this paper, using
some new eigenvector techniques introduced by Tait and coworkers,
we determine the maximum α-index and characterize all extremal
graphs for Kr minor-free graphs, Ks,t minor-free graphs, and star-
forest-free graphs for any 0 < α < 1 respectively.
Keywords: Spectral radius, α-index, extremal graphs, star forests,
minors.

1. Introduction

Let G be an undirected simple graph with vertex set V (G) = {v1, . . . , vn}
and edge set E(G), where n is called the order of G. The adjacency matrix
A(G) of G is the n×n matrix (aij), where aij = 1 if vi is adjacent to vj , and 0
otherwise. The spectral radius of G, denoted by ρ(G), is the largest eigenvalue
of A(G). The signless Laplacian spectral radius of G, denoted by q(G), is the
largest eigenvalue of Q(G), where Q(G) = A(G) + D(G) and D(G) is the
degree diagonal matrix. For v ∈ V (G), the degree dG(v) of v is the number of
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vertices adjacent to v in G. We write d(v) for dG(v) if there is no ambiguity.
Denote by Δ(G) the maximum degree of G and G the complement graph
of G. Let Sn−1 be a star of order n. The center of a star is the vertex of
maximum degree in the star. A star forest is a forest whose components are
stars.

The centers of a star forest are the centers of the stars in the star forest.
A graph G is H-free if it does not contain H as a subgraph. A graph H is
called a minor of a graph G if it can be obtained from G by deleting edges,
contracting edges or deleting vertices. A graph G is H minor-free if it does
not contain H as a minor. For X, Y ⊆ V (G), e(X) denotes the number of
edges in G with two ends in X and e(X, Y ) denotes the number of edges in
G with one end in X and the other in Y . For two vertex disjoint graphs G
and H, we denote by G ∪H and G∇H the union of G and H, and the join
of G and H which is obtained by joining every vertex of G to every vertex of
H, respectively. Denote by kG the union of k disjoint copies of G. For graph
notation and terminology undefined here, readers are referred to [1].

To track the gradual change of A(G) into Q(G), Nikiforov [10] proposed
and studied the convex linear combinations Aα(G) of A(G) and D(G) defined
by

Aα(G) = αD(G) + (1 − α)A(G)

for any real number 0 ≤ α ≤ 1. Note that A0(G) = A(G), 2A1/2(G) = Q(G),
and A1(G) = D(G). The α-index of G is the largest eigenvalue of Aα(G),
denoted by ρα(G). Clearly, ρ0(G) = ρ(G) and 2ρ1/2(G) = q(G).

Let x = (xu)u∈V (G) be an eigenvector to ρα(G). By eigenequations of
Aα(G) on any vertex u ∈ V (G),

ρα(G)xu = αd(u)xu + (1 − α)
∑

uv∈E(G)
xv.

Since Aα(G) is a real symmetric matrix, Rayleigh’s principle implies that

ρα(G) = max
||x||2=1

∑
uv∈E(G)

(αx2
u + 2(1 − α)xu + αx2

v),

also see [10]. Note that Aα(G) is nonnegative. By Perron-Frobenius theory of
nonnegative matrices, if G is connected then Aα(G) has a positive eigenvector
corresponding to ρα(G); also see [10]. In addition, if G is connected and H is
a proper subgraph of G, then

ρα(G) > ρα(H).
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In spectral extremal graph theory, one of the central problems, which is
called spectral Turán problem, is to find the maximum ρ(G) or q(G) of a
graph G of order n without H as a subgraph or as a minor. This problem is
intensively investigated in the literature for many classes of graphs.

For example, Tait [12] determined the maximum spectral radius for Kr

minor-free graphs and Ks,t minor-free graphs by using eigenvector, i.e.,

Theorem 1.1 ([12]). Let r ≥ 3 and G be a Kr minor-free graph of sufficiently
large order n. Then

ρ(G) ≤ ρ(Kr−2∇Kn−r+2)

with equality if and only if G = Kr−2∇Kn−r+2.

Theorem 1.2 ([12]). Let t ≥ s ≥ 2 and G be a Ks,t minor-free graph of
sufficiently large order n. Then

ρ(G) ≤ s + t− 3 +
√

(s + t− 3)2 + 4((s− 1)(n− s + 1) − (s− 2)(t− 1))
2

with equality if and only if n− s + 1 = pt and G = Ks−1∇pKt.

Furthermore, he pointed out the extremal graphs for maximizing the num-
ber of edges and spectral radius are the same for small values of r and s and
then differed significantly. Chen, Liu and Zhang [2, 3] determined the max-
imum (signless Laplacian) spectral radius for kP3-free graphs. They [4] also
determined the maximum signless Laplacian spectral radius for K2,t minor-
free graphs. In addition, Nikiforov [9] gave an excellent survey on this topic.
For more results, see [6, 11, 12, 13, 15].

Motivated by above results, we investigate the maximum α-index for Kr

minor-free graphs, Ks,t minor-free graphs, and star-forest-free graphs. Fol-
lowing some new techniques introduced by Tait and coworkers, we show the
extremal graphs of Kr minor-free graphs and Ks,t minor-free graphs for max-
imizing α-index for any 0 < α < 1 and sufficiently large n. Furthermore,
we determine the maximum α-index and characterize all extremal graphs for
star-forest-free graphs for any 0 < α < 1. The main results of this paper are
stated as follows.

Theorem 1.3. Let r ≥ 3 and G be a Kr minor-free graph of sufficiently large
order n. Then for any 0 < α < 1,

ρα(G) ≤ ρα(Kr−2∇Kn−r+2)

with equality if and only if G = Kr−2∇Kn−r+2.
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Theorem 1.4. Let t ≥ s ≥ 2 and G be a Ks,t minor-free graph of sufficiently
large order n. Then for any 0 < α < 1, ρα(G) is no more than the largest
root of fα(x) = 0, and equality holds if and only if n − s + 1 = pt and
G = Ks−1∇pKt, where

fα(x) = x2 −
(
αn + s + t− 3

)
x +

(
α(n− s + 1) + s− 2

)(
αs− α + t− 1

)
− (1 − α)2(s− 1)(n− s + 1).

Theorem 1.5. Let F = ∪k
i=1Sdi be a star forest with k ≥ 2 and d1 ≥ · · · ≥

dk ≥ 1. If G is an F -free graph of order n ≥ 4(
∑k

i=1 di+k−2)(
∑k

i=1 di+3k−5)
α3 for

any 0 < α < 1, then ρα(G) is no more than the largest root of fα(x) = 0, and
equality holds if and only if G = Kk−1∇H and H is a (dk − 1)-regular graph
of order n− k + 1, where

fα(x) = x2 −
(
αn + k + dk − 3

)
x +

(
α(n− k + 1) + k − 2)

)
×(

α(k − 1) + dk − 1
)
− (1 − α)2(k − 1)(n− k + 1).

The rest of this paper is organized as follows. In Section 2, some technical
lemmas are presented. In Section 3, we present the proofs of Theorems 1.3
and 1.4. In Section 4, we give the proof of Theorem 1.5 and some corollaries.

2. Preliminary

Lemma 2.1. Let 0 < α < 1, k ≥ 2, and n ≥ k − 1. If G = Kk−1∇Kn−k+1,
then ρα(G) ≥ α(n − 1) + (1 − α)(k − 2). In particular, if n ≥ (2k−3)2

2α2 −
8k2−18k+9

2α + 2k(k − 1), then ρα(G) ≥ αn + 2k−3−(2k−1)α
2α .

Proof. Set for short ρα = ρα(G) and let xα = (xv)v∈V (G) be a positive eigen-
vector to ρα. By symmetry, all vertices corresponding to Kk−1 in the represen-
tation G := Kk−1∇Kn−k+1 have the same eigenvector entries, denoted by x1.
Similarly, all remaining vertices have the same eigenvector entries, denoted
by x2. By eigenequations of Aα(G), we have

(ρα − α(n− 1) − (1 − α)(k − 2))x1 = (1 − α)(n− k + 1)x2

(ρα − α(k − 1))x2 = (1 − α)(k − 1)x1.

Then ρα(G) is the largest root of g(x) = 0, where

g(x) = x2 − (αn + k − 2)x + (k − 1)(2α− 1)n + (k − 1)(k − kα− 1) = 0.
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Clearly,

ρα(G) = αn + k − 2 +
√

(αn + k − 2)2 − 4(k − 1)[(2α− 1)n + k − kα− 1]
2

≥ (αn + k − 2) + (αn + k − 2 − (k − 1)α)
2

= α(n− 1) + (1 − α)(k − 2).

In addition,

g

(
αn + 2k − 3 − (2k − 1)α

2α

)

= −(1 − α)
2

(
n− (2k − 3)2

2α2 + 8k2 − 18k + 9
2α − 2k(k − 1)

)
≤ 0,

we have

ρα(G) ≥ αn + 2k − 3 − (2k − 1)α
2α .

Next we compare two lower bounds of ρα(G) in Lemma 2.1.

Remark. Note that αn + 2k−3−(2k−1)α
2α − (α(n − 1) + (1 − α)(k − 2)) =

((2k−2)α−(2k−3))(α−1)
2α . If 0 < α ≤ 2k−3

2k−2 , then

αn + 2k − 3 − (2k − 1)α
2α ≥ α(n− 1) + (1 − α)(k − 2).

If 2k−3
2k−2 < α < 1, then

αn + 2k − 3 − (2k − 1)α
2α < α(n− 1) + (1 − α)(k − 2).

Lemma 2.2. Let 0 < α < 1, d ≥ 2, k ≥ 1, n ≥ max{k− 1, 2k− 2 + d−k+1
α },

and H be a graph of order n − k + 1. If G = Kk−1∇H and Δ(H) ≤ d − 1,
then ρα(G) is no more than the largest root of fα(x) = 0, and equality holds
if and only if H is a (d− 1)-regular graph, where

fα(x) = x2 −
(
αn + k + d− 3

)
x +(

α(n− k + 1) + k − 2
)(

α(k − 1) + d− 1
)
− (1 − α)2(k − 1)(n− k + 1).
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Proof. Let u1, u2, · · · , uk−1 be the vertices of G corresponding to Kk−1 in
the representation G := Kk−1∇H. Set for short ρα = ρα(G) and let xα =
(xv)v∈V (G) be a positive eigenvector to ρα. By symmetry, xu1 = · · · = xuk−1 .
Choose a vertex v ∈ V (H) such that

xv = max
z∈V (H)

xz.

Since Δ(H) ≤ d− 1 and G = Kn−1∇H, we have d(v) ≤ k − 1 + d− 1 =
k + d− 2. By eigenequations of Aα(G) on u1 and v, we have

(ρα − α(n− 1))xu1 = (1 − α)(k − 2)xu1 + (1 − α)
∑

uu1∈E(H)
xu

≤ (1 − α)(k − 2)xu1 + (1 − α)(n− k + 1)xv
(1)

(ρα − α(k + d− 2))xv ≤ (ρα − αd(v))xv
= (1 − α)(k − 1)xu1 + (1 − α)

∑
uv∈E(H)

xu

≤ (1 − α)(k − 1)xu1 + (1 − α)(d− 1)xv,

(2)

which implies that

(ρα − α(n− 1) − (1 − α)(k − 2))xu1 ≤ (1 − α)(n− k + 1)xv
(ρα − α(k + d− 2) − (1 − α)(d− 1))xv ≤ (1 − α)(k − 1)xu1 .

Note that Kk−1∇Kn−k+1 is a subgraph of G. By Lemma 2.1, we have

ρα ≥ ρα(Kk−1∇Kn−k+1) ≥ α(n−1)+(1−α)(k−2) ≥ α(k+d−2)+(1−α)(d−1).

Let

fα(x) = x2 −
(
αn + k + d− 3

)
x+(

α(n− k + 1) + k − 2)
)(

α(k − 1) + d− 1
)
− (1 − α)2(k − 1)(n− k + 1).

Then ρα is no more than the largest root of fα(x) = 0. If ρα is equal to
the largest root of fα(x) = 0, then all equalities in (1) and (2) hold. So
d(v) = k + d − 2 and xz = xv for any vertex z ∈ V (H). Since for any
z ∈ V (H),

(ρα − αd(z))xz = (1 − α)(k − 1)xu1 + (1 − α)
∑

uz∈E(H)
xu
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≤ (1 − α)(k − 1)xu1 + (1 − α)(d− 1)xv
= (ρα − αd(v))xv,

we have d(z) = d(v) = d + k − 2. So H is (d− 1)-regular.

3. Graphs without minors

We first present some structural lemmas for Kr minor-free graphs and Ks,t

minor-free graphs respectively.

Lemma 3.1 ([12]). Let r ≥ 3 and G be a bipartite Kr minor-free graph of
order n with vertex partition K and T . Let |K| = k and |T | = n − k. Then
there is an absolute constant C depending only on r such that

e(G) ≤ Ck + (r − 2)n.

In particular, if |K| = o(n), then e(G) ≤ (r − 2 + o(1))n.

Lemma 3.2 ([12]). Let G be a Kr minor-free graph of order n. Assume that
(1 − 2δ)n > r, and (1 − δ)n >

(r−2
2
)

+ 2, and that there is a set K with
|K| = r − 2 and a set T with |T | = (1 − δ)n such that every vertex in K
is adjacent to every vertex in T . Then we may add edges to K to make it a
clique and the resulting graph is still Kr minor-free.

Lemma 3.3 ([12, 14]). Let t ≥ s ≥ 2 and G be a bipartite Ks,t minor-free
graph of order n with vertex partition K and T . Let |K| = k and |T | = n−k.
Then there is an absolute constant C depending only on s and t such that

e(G) ≤ Ck + (s− 1)n.

In particular, if |K| = o(n), then e(G) ≤ (s− 1 + o(1))n.

Lemma 3.4 ([7]). For any graph H, there is a constant C such that if G is
an H minor-free graph of order n then

e(G) ≤ Cn.

Proof of Theorem 1.3. Let G be a Kr minor-free graph of sufficiently large
order n with the maximum α-index.

Claim 1. G is connected.
If G is not connected, then we can add an edge to two components of G to

get a Kr-minor free graph with larger α-index, a contradiction. This proves
Claim 1.
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Next let ρα = ρα(G) and x = (xv)v∈V (G) with the maximum entry 1 be a
positive eigenvector to ρα. Choose an arbitrary w ∈ V (G) with

xw = max{xv : v ∈ V (G)} = 1.

Set L = {v ∈ V (G) : xv > ε} and S = {v ∈ V (G) : xv ≤ ε}, where ε will be
chosen later.

Since Kr−2∇Kn−r+2 is Kr-minor free, by Lemma 2.1,

ρα ≥ ρα(Kr−2∇Kn−r+2) ≥ max
{
αn + 2r − 5(2r − 3)α

2α , α(n− 1)
}
.(3)

By Lemma 3.4, there is a constant C1 such that

2e(S) ≤ 2e(G) ≤ C1n.(4)

Claim 2. There exists a constant C2 such that

|L| ≤ C2(1 − α + αε)
ε

.

In addition, ε can be chosen small enough that

e(L, S) ≤ (k − 1 + ε)n.

By eigenequations of Aα on any vertex u ∈ L, we have

(ρα − αd(u))ε < (ρα − αd(u))xu = (1 − α)
∑

uv∈E(G)
xv ≤ (1 − α)d(u),

which implies that

d(u) > ραε

1 − α + αε
.

Thus

2e(G) =
∑

u∈V (G)
d(u) ≥

∑
u∈L

d(u) ≥ |L|ραε
1 − α + αε

,

which implies that

|L| ≤ 2e(G)(1 − α + αε)
ραε

.(5)
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For sufficiently large n, there is a constant C2 such that

C2 ≥ 2αC1

2α2 + 2r−5−(2r−3)α
n

.

Hence by (3)–(5),

|L| ≤ 2e(G)
ρα

· (1 − α + αε)
ε

≤ C1n

αn + 2r−5−(2r−3)α
2α

· (1 − α + αε)
ε

= 2αC1

2α2 + 2r−5−(2r−3)α
n

· 1 − α + αε

ε
≤ C2(1 − α + αε)

ε
.

Choose ε small enough such that |L| ≤ εn. By Lemma 3.1, e(L, S) ≤ (r− 2+
ε)n. This proves Claim 2.

By Claim 2, we can choose ε small enough such that

2e(L) ≤ C1|L| ≤
C1C2(1 − α + αε)

ε
≤ εn.

Claim 3. Let u ∈ L. Then for any u ∈ L, there is a constant C3 such that

d(u) ≥ (1 − C3(1 − xu + ε))n.

Since

ρα
∑

v∈V (G)
xv

=
∑

v∈V (G)
ραxv =

∑
v∈V (G)

(
αd(v)xv + (1 − α)

∑
vz∈E(G)

xz

)

= α
∑

v∈V (G)
d(v)xv + (1 − α)

∑
vz∈E(G)

(xv + xz)

= α

(∑
v∈L

d(v)xv +
∑
v∈S

d(v)xv
)

+ (1 − α)
( ∑

vz∈E(L)
(xv + xz) +

∑
vz∈E(L,S)

(xv + xz) +
∑

vz∈E(S)
(xv + xz)

)

≤ α(2e(L) + e(L, S)) + αε(2e(S) + e(L, S)) + (1 − α)(2e(L) +
(1 + ε)e(L, S) + 2εe(S))

= 2e(L) + 2εe(S) + (1 + ε)e(L, S),
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we have

(6)

∑
v∈V (G)

xv ≤
2e(L) + 2εe(S) + (1 + ε)e(L, S)

ρα

≤ εn + εC1n + (1 + ε)(r − 2 + ε)n
ρα

= ((1 + C1)ε + (1 + ε)(r − 2 + ε))n
ρα

.

By eigenequations of Aα on u, we have

(ρα − αd(u))xu = (1 − α)
∑

uv∈E(G)
xv ≤ (1 − α)

∑
v∈V (G)

xv.(7)

By (3), (6), and (7), we have

d(u) ≥ ρα
α

−
(1 − α)

∑
v∈V (G) xv

αxu

≥ ρα
α

− (1 − α)((1 + C1)ε + (1 + ε)(r − 2 + ε))n
ρααxu

≥ n− 1 − (1 − α)((1 + C1)ε + (1 + ε)(r − 2 + ε)
α2(1 − 1

n)xu
.

Since n is sufficiently large and ε is small enough, there is a constant C3 such
that

d(u) ≥ n−1− (1 − α)((1 + C1)ε + (1 + ε)(r − 2 + ε)
α2(1 − 1

n)xu
≥ (1−C3(1−xu+ε))n.

This proves Claim 3.

Claim 4. Let 1 ≤ s < r− 2. Suppose that there is a set X of s vertices such
that X = {v ∈ V (G) : xv ≥ 1 − η and d(v) ≥ (1 − η)n}, where η is much
smaller than 1. Then there is a constant C4 and a vertex v ∈ L\X such that
xv ≥ 1 − C4(η + ε) and d(v) ≥ (1 − C4(η + ε))n.

By eigenequations of Aα on w, we have

ρα − αd(w) = (ρα − αd(w))xw = (1 − α)
∑

vw∈E(G)
xv.

Multiplying both sides of the above inequality by ρα, we have

ρα(ρα − αd(w))
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= (1 − α)
∑

vw∈E(G)
ραxv

= (1 − α)
∑

vw∈E(G)

(
αd(v)xv + (1 − α)

∑
uv∈E(G)

xu

)

= (1 − α)
∑

vw∈E(G)
αd(v)xv + (1 − α)2

∑
vw∈E(G)

∑
uv∈E(G)

xu

≤ (1 − α)
( ∑

v∈V (G)
αd(v)xv − αd(w)

)
+ (1 − α)2

∑
uv∈E(G)

(xu + xv) −

(1 − α)2
∑

vw∈E(G)
xv

= α(1 − α)
∑

uv∈E(G)
(xu + xv) − α(1 − α)d(w) +

(1 − α)2
∑

uv∈E(G)
(xu + xv) − (1 − α)(ρα − αd(w))

= (1 − α)
∑

uv∈E(G)
(xu + xv) − (1 − α)ρα,

which implies that

∑
uv∈E(G)

(xu + xv) ≥
ρα(ρα + 1 − α− αd(w))

1 − α
.

On the other hand,∑
uv∈E(G)

(xu + xv)

=
∑

uv∈E(L,S)
(xu + xv) +

∑
uv∈E(S)

(xu + xv) +
∑

uv∈E(L)
(xu + xv)

≤
∑

uv∈E(L,S)
(xu + xv) + 2εe(S) + 2e(L)

≤ εe(L, S) +
∑

uv∈E(L\X,S)
u∈L\X

xu +
∑

uv∈E(L∩X,S)
u∈L∩X

xu + 2εe(S) + 2e(L).

Let t = |L ∩X|. Combining with (3), we have
∑

uv∈E(L\X,S)
u∈L\X

xu
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≥ ρα(ρα + 1 − α− αd(w))
1 − α

− 2εe(S) − 2e(L) − εe(L, S) −
∑

uv∈E(L∩X,S)
u∈L∩X

xu

≥
(

αn

1 − α
+ 2r − 5 − (2r − 3)α

2α(1 − α)

)(2r − 5 − (2r − 3)α
2α + 1

)
−

εC1n− εn− ε(r − 2 + ε)n− tn

=
(
r − 5

2 − t− ε(C1 + ε + r − 1)
)
n + (2r − 5)2 − (2r − 3)(2r − 5)α

4α2

≥
(
r − 5

2 − t− ε(C1 + ε + r)
)
n

In addition,

e(L\X,S) = e(L, S) − e(L ∩X,S)
≤ (r − 2 + ε)n− t(1 − η)n + t(t− 1) + t(|L| − t)
≤ (r − 2 + ε)n− t(1 − η)n + t(t− 1) + t(εn− t)
≤ (r − 2 + 2ε− t(1 − η − ε))n

Note that for any η > 0, there exists a constant C ′
4 such that C ′

4η ≥ 1
2 . Then

there is a vertex v ∈ L\X such that

xv ≥

∑
uv∈E(L\X,S)

u∈L\X
xu

e(L\X,S)

≥ (r − 5
2 − t− ε(C1 + ε + r))n

(r − 2 + ε− t(1 − η − ε))n

= 1 −
1
2 + tη + ε(C1 + ε + t + 1)
r − 2 + ε− t(1 − η − ε)

≥ 1 −
1
2 + (r − 3)η + ε(C1 + ε + r − 2)
r − 2 + ε− (r − 3)(1 − η − ε)

= 1 −
1
2 + (r − 3)η + ε(C1 + ε + r − 2)

1 + (r − 2)ε + (r − 3)η

≥ 1 − max{C1 + ε + r − 2, C ′
4 + r − 3}

1 + (r − 2)ε + (r − 3)η (η + ε)

By Claim 3, Claim 4 follows directly.

If we start with w and iteratively apply Claim 4, then for any δ > 0,
we can choose ε small enough that G contains a set X with r − 2 vertices
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such that their common neighborhood of size is at least (1 − δ)n and each
eigenvector entry is at least 1− δ. From now on, denote by K the set X with
r − 2 vertices mentioned above. Let T be the common neighborhood of K
and R = V (G)\(K ∪ T ). Clearly, |K| = r − 2, |T | ≥ (1 − δ)n, and |R| ≤ δn.

Claim 5. K induces a clique and T is an independent set.
If K does not induce a clique, then we can add all possible edges to make

it a clique. By Lemma 3.2, the resulting graph G′ is still Kr minor-free. Since
G is connected, ρα(G′) > ρα(G), a contradiction. Hence K induces a clique.
If there is an edge in T , then there is a Kr minor in G, a contradiction. Thus
T is an independent set. This proves Claim 5.

Claim 6. For any v ∈ V (G)\K, we have xv ≤
√
α

C1
, where C1 is the constant

in (4).
Since G is Kr-minor free, any vertex in R can be adjacent to at most one

vertex in T . By the definition of R, every vertex in R can be adjacent to at
most r − 3 vertices in K. In addition, by Claim 5, T is an independent set
and thus any vertex in T has at most r − 2 + |R| neighbors. Hence for any
vertex v ∈ V (G)\K,

d(v) ≤ r − 2 + |R| ≤ r − 2 + δn.(8)

Since R is also Kr-minor free, we have

2e(R) ≤ C1|R| ≤ C1δn.

By eigenequations of Aα(G), we have

α(n− 1)
∑
u∈R

xu ≤ ρα
∑
u∈R

xu =
∑
u∈R

(
αd(u)xu + (1 − α)

∑
uv∈E(G)

xv

)

≤
∑
u∈R

(αd(u) + (1 − α)d(u)) =
∑
u∈R

d(u)

≤ 2e(R) + (r − 2)|R| ≤ C1δn + (r − 2)δn
= (C1 + r − 2)δn,

which implies that

(9)
∑
u∈R

xu ≤ (C1 + r − 2)δn
α(n− 1) .
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By eigenequations of Aα(G) on any vertex v ∈ V (G)\K, we have

(10) (ρα − αd(v))xv = (1 − α)
∑

uv∈E(G)
xu ≤ (1 − α)

(
r − 2 +

∑
u∈R

xu

)
.

By Lemma 3.2 and (8)–(10), we have

xv ≤ (1 − α)(r − 2 +
∑

u∈R xu)
ρα − αd(v)

≤
(1 − α)

(
r − 2 + (C1+r−2)δn

α(n−1)

)
α(n− 1) − α(r − 2 + δn)

=
(1 − α)

(
r − 2 + (C1+r−2)δ

α(1− 1
n

)

)
α((1 − δ)n− r + 1)

Then we can choose ε small enough to make δ small enough to get the result.
This proves Claim 6.

Claim 7. R is empty.
If R is not empty, then there exists a vertex v ∈ R such that v has at most

C1 neighbors in R. Let H be a graph obtained from G by removing all edges
incident with v and then connecting v to each vertex in K. Since K induces
a clique, H is still Kr minor-free. Let u ∈ K be the vertex not adjacent to v.
Then

ρα(H) − ρα

≥ xTAα(H)x
xTx − xTAαx

xTx

≥ 1
xTx

(
αx2

u + 2(1 − α)xuxv + αx2
v −

∑
vz∈E(G)

z/∈K

(αx2
z + 2(1 − α)xvxz + αx2

z)
)

≥ 1
xTx

(
2α(1 − δ)2) − α(C1 + 1)(α + 2(1 − α) + α)

C2
1

)

= 2α
xTx

(
(1 − δ)2 − C1 + 1

C2
1

)

Choose ε small enough so that (1 − δ)2 > C1+1
C2

1
. Then ρα(H) > ρα, a contra-

diction. This proves Claim 7.
By Claims 6 and 7, G = Kr−2∇Kn−r+2. This completes the proof.
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Proof of Theorem 1.4. Let G be a Ks,t minor-free graph of order n with the
maximum α-index.

Similarly to the proof of Claim 1 in Theoren 1.3, G is connected. Next
let ρα = ρα(G) and x = (xv)v∈V (G) be a positive eigenvector to ρα such that
w ∈ V (G) and

xw = max{xu : u ∈ V (G)} = 1.

Set L = {v ∈ V (G) : xv > ε} and S = {v ∈ V (G) : xv ≤ ε}, where ε will
be chosen later.

Claim 1. For any δ > 0, if we choose ε small enough, then G contains a set
K with s− 1 vertices such that their common neighborhood of size is at least
(1 − δ)n and each eigenvector entry is at least 1 − δ.

We omit the proof of Claim 1 as it is similar to the proofs of of Claims 2-4
in Theorem 1.3.

Let T be the common neighborhood of K and R = V (G)\(K ∪ T ).

Claim 2. R is empty.
Noting any vertex in R ∪ T has at most t − 1 neighbors in R ∪ T as G

is Ks,t minor-free. In addition, noting the graph obtained from G by adding
a vertex adjacent to every vertex in K is still Ks,t minor-free. The proof
of Claim 2 is similar to the proofs of Claims 6 and 7. Hence it is omitted
here.

Now |K| = s − 1 and |T | = n − s + 1. Let H be the subgraph of G
induced by T . Now G = G[K]∇H. Since G is Ks,t minor-free, Δ(H) ≤
t− 1.

First suppose that K induces a clique. By Lemma 2.2, ρα(G) is no more
than the largest root of fα(x) = 0, where fα(x) = x2 − (αn + s + t − 3)x +
(α(n−s+1)+s−2))(α(s−1)+ t−1)−(1−α)2(s−1)(n−s+1) and equality
holds if and only if G = Ks−1∇H, where H is a (t − 1)-regular graph. It
suffices to prove that equality can hold if and only if G = Ks−1∇pKt, where
n − s + 1 = pt. Suppose that H has a connected component H1 that is not
isomorphic to Kt and set h := |V (H1)|. Clearly H1 is a (t− 1)-regular graph
of order h ≥ t + 1. If h = t + 1, then any two nonadjacent vertices in H
have t− 1 common neighbors, which combining with clique Ks−1 yields Ks,t,
a contradiction. Thus h ≥ t + 2. Note that G is Ks,t minor-free, we have H1
is K1,t minor-free. Hence

e(H1) ≤ h + t(t− 3)
2 ,
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see [5]. However, since H1 is a (t− 1)-regular graph of order h, we have

e(H1) = h(t− 1)
2 > h + t(t− 3)

2 ,

a contradiction. Hence H is the union of disjoint complete graphs of order t,
i.e., G = Ks−1∇pKt, where n− s + 1 = pt.

Next suppose that K does not induce a clique. Let G′ be the graph ob-
tained from G by adding edges to K to make it a clique. Then ρα(G) < ρα(G′).
By Lemma 2.2, ρα(G′) is no more than the largest root of fα(x) = 0, and
thus ρα(G) is less than the largest root of fα(x) = 0. This completes the
proof.

Let α = 1
2 . It is easy to get the following corollary for q(G).

Corollary 3.5. Let t ≥ s ≥ 2 and G be a Ks,t minor-free graph of sufficiently
large order n. Then

q(G) ≤ n + 2s + 2t− 6 +
√

(n + 2s− 2t− 2)2 + 8(s− 1)(t− s + 1)
2

with equality if and only if n− s + 1 = pt and G = Ks−1∇pKt.

4. Graphs without star forests

In this section, we present the proof of Theorem 1.5 and some corollaries.

Lemma 4.1. Let F = ∪k
i=1Sdi be a star forest with k ≥ 2 and d1 ≥ · · · ≥

dk ≥ 1. If G is an F -free graph of order n ≥ ∑k
i=1 di + k, then

e(G) ≤ 1
2

( k∑
i=1

di + 2k − 3
)
n− 1

2(k − 1)
( k∑

i=1
di + k − 1

)
.

Proof. Let C = {v ∈ V (G) : d(v) ≥ ∑k
i=1 di + k − 1}. Since G is F -free,

|C| ≤ k− 1, otherwise we can embed an F in G by the definition of C. Hence

2e(G) =
∑
v∈C

d(v) +
∑

v∈V (G)\C
d(v)

≤ (n− 1)|C| + (n− |C|)
( k∑

i=1
di + k − 2

)

=
(
n−

k∑
i=1

di − k + 1
)
|C| +

( k∑
i=1

di + k − 2
)
n
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≤ (k − 1)
(
n−

k∑
i=1

di − k + 1
)

+
( k∑

i=1
di + k − 2

)
n

=
( k∑

i=1
di + 2k − 3

)
n− (k − 1)

( k∑
i=1

di + k − 1
)

This completes the proof.

Next we prove the following result for star-forest-free connected graphs,
which plays an important role in the proof of Theorem 1.5.

Theorem 4.2. Let F = ∪k
i=1Sdi be a star forest with k ≥ 2 and d1 ≥ · · · ≥

dk ≥ 2. If G is an F -free connected graph of order n for any 0 < α < 1, where
n ≥ 4(

∑k

i=1 di+k−2)(
∑k

i=1 di+3k−5)
α2 , then ρα(G) is no more than the largest root

of fα(x) = 0 and equality holds if and only if G = Kk−1∇H and H is a
(dk − 1)-regular graph of order n− k + 1, where

fα(x) = x2 −
(
αn + k + dk − 3

)
x+(

α(n− k + 1) + k − 2
)(

α(k − 1) + dk − 1
)
− (1 − α)2(k − 1)(n− k + 1).

Proof. Let G be an F -free connected graph of order n with the maximum
α-index. Set for short Aα = Aα(G) and ρα = ρα(G). Let xα = (xv)v∈V (G) be
a positive eigenvector to ρα such that w ∈ V (G) and

xw = max{xu : u ∈ V } = 1.

Since Kk−1∇Kn−k+1 is F -free, it follows from Lemma 2.1 that

ρα ≥ ρα(Kk−1∇Kn−k+1) ≥ αn + 2k − 3 − (2k − 1)α
2α .

Let L = {u ∈ V (G) : xu > ε} and S = {u ∈ V (G) : xu ≤ ε}, where

ε = 1
4(
∑k

i=1 di + 3k − 5)
.

Claim. |L| = k − 1.
First suppose that |L| ≥ k. By eigenequations of Aα on any vertex u ∈ L,

we have

(ρα − αd(u))ε < (ρα − αd(u))xu = (1 − α)
∑

uv∈E(G)
xv ≤ (1 − α)d(u),
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which implies that

d(u) > ραε

1 − α + αε
≥

(
αn+ 2k − 3 − (2k − 1)α

2α

)
ε

1 − α + αε
≥

k∑
i=1

di+k−2,

where the last inequality holds as ε ≥ 2α(1−α)(
∑k

i=1 di+k−2)
2α2(n−

∑k

i=1 di−k+2)−(2k−1)α+2k−3
. Thus

d(u) ≥
k∑

i=1
di + k − 1.

Then we can embed an F in G with all centers in L, a contradiction.
Next suppose that |L| ≤ k − 2. Then

e(L) ≤
(
|L|
2

)
≤ 1

2(k − 2)(k − 3)

and
e(L, S) ≤ (k − 2)(n− k + 2).

In addition, by Lemma 4.1,

e(S) ≤ e(G) ≤ 1
2

( k∑
i=1

di + 2k − 3
)
n.

By eigenequations of Aα on w, we have

ρα − αd(w) = (ρα − αd(w))xw = (1 − α)
∑

vw∈E(G)
xv.

Multiplying both sides of the above equality by ρα, we have

ρα(ρα − αd(w))
= (1 − α)

∑
vw∈E(G)

ραxv

= (1 − α)
∑

vw∈E(G)

(
αd(v)xv + (1 − α)

∑
uv∈E(G)

xu

)

= (1 − α)
∑

vw∈E(G)
αd(v)xv + (1 − α)2

∑
vw∈E(G)

∑
uv∈E(G)

xu
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≤ (1 − α)
( ∑

v∈V (G)
αd(v)xv − αd(w)

)
+ (1 − α)2

∑
uv∈E(G)

(xu + xv) −

(1 − α)2
∑

vw∈E(G)
xv

= α(1 − α)
∑

uv∈E(G)
(xu + xv) − α(1 − α)d(w) +

(1 − α)2
∑

uv∈E(G)
(xu + xv) − (1 − α)(ρα − αd(w))

= (1 − α)
∑

uv∈E(G)
(xu + xv) − (1 − α)ρα,

which implies that

∑
uv∈E(G)

(xu + xv) ≥
ρα(ρα + 1 − α− αd(w))

1 − α
.

On the other hand,
∑

uv∈E(G)
(xu + xv)

=
∑

uv∈E(L,S)
(xu + xv) +

∑
uv∈E(S)

(xu + xv) +
∑

uv∈E(L)
(xu + xv)

≤
∑

uv∈E(L,S)
(xu + xv) + 2εe(S) + 2e(L)

≤
∑

uv∈E(L,S)
(xu + xv) + ε

( k∑
i=1

di + 2k − 3
)
n + (k − 2)(k − 3).

Hence
∑

uv∈E(L,S)
(xu + xv)

≥ ρα(ρα + 1 − α− αd(w))
1 − α

− ε

( k∑
i=1

di + 2k − 3
)
n− (k − 2)(k − 3)

≥
(

αn

1 − α
+ 2k − 3 − (2k − 1)α

2α(1 − α)

)(2k − 3 − (2k − 1)α
2α + 1

)
−

ε

( k∑
i=1

di + 2k − 3
)
n− (k − 2)(k − 3)



2374 Ming-Zhu Chen et al.

=
(
k − 3

2 − ε

( k∑
i=1

di + 2k − 3
))

n + (2k − 3)2 − (2k − 3)(2k − 1)α
4α2 −

(k − 2)(k − 3),

where the second inequality holds as d(w) ≤ n − 1. On the other hand, by
the definition of L and S, we have

∑
uv∈E(L,S)

(xu + xv) ≤ (1 + ε)e(L, S) ≤ (1 + ε)(k − 2)(n− k + 2).

Thus

(1 + ε)(k − 2)(n− k + 2)

≥
(
k − 3

2 − ε

( k∑
i=1

di + 2k − 3
))

n + (2k − 3)2 − (2k − 3)(2k − 1)α
4α2 −

(k − 2)(k − 3),

which implies that
(
− 1

2 + ε

(∑k
i=1 di + 3k− 5

))
n ≥ (2k−3)2−(2k−3)(2k−1)α

4α2 +

(k − 2)(1 + ε(k − 2)). Since ε = 1
4(
∑k

i=1 di+3k−5)
, we have

n ≤ −(2k − 3)2 − (2k − 3)(2k − 1)α
α2 − 4(k − 2)

(
1 + k − 2

4(
∑k

i=1 di + 3k − 5)

)

<
(2k − 3)(2k − 1)

α

<
4(
∑k

i=1 di + k − 2)(
∑k

i=1 di + 3k − 5)
α2 ,

a contradiction. This proves the Claim.
By Claim, |L| = k − 1 and thus |S| = n − k + 1. Then the subgraph H

induced by S in G is Sdk -free. Otherwise, we can embed an F in G with k−1
centers in L and a center in S as d(u) ≥ ∑k

i=1 di + k − 1 for any u ∈ L, a
contradiction. Now Δ(H) ≤ dk − 1. Note that the resulting graph obtained
from G by adding all edges in L and all edges with one end in L and the other
in S is also F -free and its spectral radius increase strictly. By the extremality
of G, we have G = Kk−1∇H. By Lemma 2.2 and the extremality of G, ρα is
no more than largest root of fα(x) = 0, and ρα is equal to the largest root
of fα(x) = 0 if and only if H is a (dk − 1)-regular graph of order n − k + 1,
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where

fα(x) = x2 −
(
αn + k + dk − 3

)
x +(

α(n− k + 1) + k − 2
)(

α(k − 1) + dk − 1
)
− (1 − α)2(k − 1)(n− k + 1).

This completes the proof.

Proof of Theorem 1.5. Let G be an F -free graph of order n with the maxi-
mum α-index.

If G is connected, then the result follows directly from Theorem 4.2. Next
we suppose that G is not connected. Since Kn−1∇Kn−k+1 is F -free,

ρα(G) ≥ ρα(Kn−1∇Kn−k+1) ≥ αn + 2k − 3 − (2k − 1)α
2α .

Let G1 be a component of G such that ρα(G1) = ρα(G). Set n1 = |V (G1)|.
Then

n1 − 1 ≥ ρα(G1) = ρα(G) ≥ αn + 2k − 3 − (2k − 1)α
2α

≥ 4(
∑k

i=1 di + k − 2)(
∑k

i=1 di + 3k − 5)
α2 + 2k − 3 − (2k − 1)α

2α ,

which implies that

n1 ≥ 4(
∑k

i=1 di + k − 2)(
∑k

i=1 di + 3k − 5)
α2 + (2k − 3)(1 − α)

2α

>
4(
∑k

i=1 di + k − 2)(
∑k

i=1 di + 3k − 5)
α2

By Theorem 4.2 again, ρα(G1) is no more than the largest root of x2−(αn1 +
k+dk−3)x+

(
α(n1−k+1)+k−2

)(
α(k−1)+dk−1

)
−(1−α)2(k−1)(n1−k+1) =

0. Hence ρα(G1) is less than the largest root of x2 −
(
αn + k + dk − 3

)
x +(

α(n− k + 1) + k − 2
)(
α(k − 1) + dk − 1

)
− (1 − α)2(k − 1)(n− k + 1) = 0.

This completes the proof.

Let Fn,k = Kk−1∇(pK2∪ qK1), where n− (k−1) = 2p+ q and 0 ≤ q < 2.

Corollary 4.3. Let F = ∪k
i=1Sdi be a star forest with k ≥ 2 and d1 ≥ · · · ≥

dk = 2. If G is an F -free graph of order n ≥ 4(
∑k

i=1 di+k−2)(
∑k

i=1 di+3k−5)
α3 , then

ρα(G) ≤ ρα(Fn,k)

with equality if and only if G = Fn,k.
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Proof. Let G be a graph having the maximum α-index among all F -free
graphs of order n. It suffices to show that G = Fn,k. If G is connected, then
by the proof of Theorem 4.2, we have G = Kk−1∇H, where H is a graph
of order n − k + 1 with Δ(H) ≤ 1. So H is the union of some edges and
isolated vertices. Hence G = Fn,k. If G is not connected, then by the similar
proof of Theorem 1.5, there is a component G1 of G such that |V (G1)| ≥
4(
∑k

i=1 di+k−2)(
∑k

i=1 di+3k−5)
α2 and ρ(G) = ρ(G1). By above case,

ρα(G) = ρα(G1) = ρα(Fn1,k) < ρα(Fn,k).

Hence the result follows.

Let α = 1
2 . By Theorem 1.5 and Corollary 4.3, we have the following

corollary.

Corollary 4.4. Let F = ∪k
i=1Sdi be a star forest with k ≥ 2 and d1 ≥ · · · ≥

dk ≥ 2 and G be an F -free graph of order n ≥ 32(
∑k

i=1 di + k− 2)(
∑k

i=1 di +
3k − 5).
(i) If dk = 2, then

q(G) ≤ q(Fn,k)
with equality if and only if G = Fn,k.
(ii) If dk ≥ 3, then

q(G) ≤ n + 2k + 2dk − 6 +
√

(n + 2k − 2dk − 2)2 + 8(k − 1)(dk − k + 1)
2

with equality if and only if G = Kk−1∇H, where H is a (dk−1)-regular graph
of order n− k + 1.
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