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Abstract: Given a positive integer n and an r-uniform hypergraph
F , the Turán number ex(n, F ) is the maximum number of edges in
an F -free r-uniform hypergraph on n vertices. The Turán density of
F is defined as π(F ) = limn→∞ ex(n, F )/

(
n
r

)
. The Lagrangian den-

sity of an r-uniform graph F is πλ(F ) = sup{r!λ(G) : G is F -free},
where λ(G) is the Lagrangian of G. In 1989, Sidorenko [20] showed
that the Lagrangian density of a hypergraph F is the same as
the Turán density of its extension. For an r-uniform graph F on t
vertices, it is clear that πλ(F ) ≥ r!λ(Kr

t−1), where Kr
t−1 is the com-

plete r-uniform graph on t− 1 vertices. We say that an r-uniform
hypergraph F on t vertices is λ-perfect if πλ(F ) = r!λ(Kr

t−1). A
result of Motzkin and Straus implies that all graphs are λ-perfect.
A conjecture proposed in [23] states that for r ≥ 3, there exists
an integer n such that if F and H are λ-perfect r-uniform graphs
on at least n vertices, then the disjoint union of F and H is λ-
perfect. The conjecture has been verified in [23] for a 3-uniform
tight star Tt = {123, 124, . . . , 12(t + 2)} and a λ-perfect 3-uniform
graph for t ≥ 3 (Sidorenko [20] showed that Tt is λ-perfect). The
case t = 2 remains unsolved. In this paper, we shall show that
the disjoint union of T2 ∼= {123, 234} and a 3-uniform matching is
λ-perfect(Jiang-Peng-Wu [9] showed that a 3-uniform matching is
λ-perfect). Moreover, using a stability argument of Pikhurko [16],
together with a transference technique between the Lagrangian
density of an r-uniform graph and the Turán density of its exten-
sion, we also obtain the Turán numbers of their extensions.
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number.
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1. Notations and definitions

For a set V and a positive integer r, let V (r) denote the family of all r-subsets
of V . An r-uniform graph or r-graph G consists of a set V (G) of vertices and
a set E(G) ⊆ V (G)(r) of edges. Let |G| denote the number of edges of G. An
edge e = {a1, a2, . . . , ar} will be simply denoted by a1a2 . . . ar. An r-graph
H is a subgraph of an r-graph G, denoted by H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G). In particular, a subgraph H is spanning if V (H) = V (G).
A subgraph of G induced by V ′ ⊆ V , denoted as G[V ′], is the r-graph with
vertex set V ′ and edge set E′ = {e ∈ E(G) : e ⊆ V ′}. Let Kr

t denote the
complete r-graph on t vertices, that is, the r-graph on t vertices containing
all r-subsets of the vertex set as edges.

The r-uniform t-matching, denoted by M r
t , is the r-graph with t pairwise

disjoint edges. For a positive integer n, let [n] denote {1, 2, 3, . . . , n}.
Given an r-graph F , an r-graph G is called F -free if it does not contain

a copy of F as a subgraph. For a fixed positive integer n and an r-graph
F , the Turán number of F , denoted by ex(n, F ), is the maximum number of
edges in an F -free r-graph with n vertices. An averaging argument of Katona-
Nemetz-Simonovits [11] showed that the sequence ex(n,F )

(nr)
is a non-increasing

sequence. Hence, limn→∞
ex(n,F )

(nr)
exists. The Turán density of F is defined as

π(F ) = lim
n→∞

ex(n, F )(n
r

) .

For 2-graphs, Erdős-Stone-Simonovits determined the asymptotic values
of Turán numbers of all non-bipartite graphs. However, very few results are
known for hypergraphs. For example, the well known conjecture of Turán that
π(K(3)

4 ) = 5/9 is not completely solved although the upper bounds given in
[3] and [18] are close to the conjectured value, where K

(3)
4 is the complete

3-graph with 4 vertices. A recent survey on Turán numbers of r-uniform
hypergraphs can be found in [12]. Johnston and Lu introduced the Turán
density of non-uniform hypergraphs in [10].

Lagrangian has been a useful tool in estimating the Turán density of a
hypergraph.

Definition 1.1. Let G be an r-graph on [n] and let �x = (x1, . . . , xn) ∈ R
n.

Define the Lagrange function of G as

λ(G,�x) =
∑

e∈E(G)

∏
i∈e

xi.
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The Lagrangian of G, denoted by λ(G), is defined as

λ(G) = max{λ(G,�x) : �x ∈ Δ},

where

Δ = {�x = (x1, x2, . . . , xn) ∈ R
n :

n∑
i=1

xi = 1, xi ≥ 0 for every i ∈ [n]}.

The value xi is called the weight of the vertex i and a vector �x ∈ Δ is called a
feasible weighting on G. A feasible weighting �x is called an optimum weighting
on G if λ(G,�x) = λ(G).

Given an r-graph F , the Lagrangian density πλ(F ) of F is

πλ(F ) = sup{r!λ(G) : G is F -free}.

The Lagrangian density of an r-graph is closely related to its Turán den-
sity. We say that a pair of vertices {i, j} is covered in a hypergraph H if there
exists e ∈ H such that {i, j} ⊆ e. We say that a hypergraph H covers pairs if
every pair of vertices is covered in H. The extension of an r-graph F , denoted
by HF , is defined as follows. For each pair of vertices vi, vj ∈ V (F ) not cov-
ered in F , we add a set Bij of r − 2 new vertices and the edge {vi, vj} ∪Bij ,
where all Bij are pairwise disjoint over all such pairs {i, j}.

Proposition 1.1 ([19, 16]). Let F be an r-graph. Then
(i) π(F ) ≤ πλ(F );
(ii) π(HF ) = πλ(F ). In particular, if F covers pairs, then π(F ) = πλ(F ).

For an r-graph H on t vertices, it is clear that πλ(H) ≥ r!λ(Kr
t−1). We

say that an r-uniform hypergraph H on t vertices is λ-perfect if πλ(H) =
r!λ(Kr

t−1). Theorem 2.1 implies that all 2-graphs are λ-perfect. It is interesting
to explore what kind of hypergraphs are λ-perfect. Sidorenko [20] showed that
the r-fold enlargement of a tree with order greater than some number Ar is
λ-perfect. Hefetz and Keevash [6] showed that a 3-uniform matching of size 2
is λ-perfect. Jiang-Peng-Wu [9] extended to that any 3-uniform matching is
λ-perfect. Pikhurko [16] and Norin-Yepremyan [15] showed that an r-uniform
tight path of length 2 is λ-perfect for r = 4 and r = 5 or 6 respectively.
Bene Watts, Norin and Yepremyan [1] showed that an r-uniform matching
of size 2 is not λ-perfect (by determining its Lagrangian density) for r ≥ 4
confirming a conjecture of Hefetz and Keevash [6]. Wu-Peng-Chen [22] showed
the same result for r = 4 independently. Jenssen [8] showed that a path of
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length 2 formed by two edges intersecting at r − 2 vertices is λ-perfect for
r = 3, 4, 5, 6, 7. An r-uniform hypergraph is linear if any two edges have at
most 1 vertex in common. Wu-Peng [21] showed that a 3-uniform linear path
of length 3 or 4 is λ-perfect. Hu-Peng-Wu [7] showed that the disjoint union of
a 3-uniform linear path of length 2 or 3 and a 3-uniform matching is λ-perfect.
Yan-Peng [23] showed that the 3-uniform linear cycle of length 3 ({123, 345,
561}) is λ-perfect, and F5 ({123, 124, 345}) is not λ-perfect (by determining
its Lagrangian density). In [23], the following conjecture is proposed.

Conjecture 1.1 ([23]). (1) For r ≥ 3, there exists n such that a linear
r-graph with at least n vertices is λ-perfect.

(2) For r ≥ 3, there exists n such that if G,H are λ-perfect r-graphs with
at least n vertices, then the disjoint union of G and H, denoted by G�H, is
λ-perfect.

Yan-Peng [23] also verified the conjecture for a 3-uniform tight star Tt =
{123, 124, 125, 126, ..., 12(t + 2)} and a λ-perfect 3-uniform graph for t ≥ 3.
The case that t = 2 is unsolved.

In this paper, we show that the disjoint union of T2 and a 3-uniform t-
matching (denoted by M3

t ) is λ-perfect. Precisely, let Qt+2 be the 3-graph
with vertex set [3t + 4] and edge set {123, 234} � M3

t . We show that the
Lagrangian density of Qt+2 is 3!λ(K3

3t+3). We also give the Turán numbers of
their extensions by using a similar stability argument for larger enough n as
in [16] and several other papers.

2. Preliminaries

In this section, we give some useful properties of the Lagrange function. The
following fact follows immediately from the definition of the Lagrangian.

Fact 2.1. Let G1, G2 be r-graphs and G1 ⊆ G2. Then λ(G1) ≤ λ(G2).

Given an r-graph G and a set S of vertices, the link of S in G, denoted
by LG(S), is the hypergraph with edge set {e ⊂ V (G) \ S : e ∪ S ∈ E(G)}.
In particular, S = {i}, we write LG({i}) as LG(i). The degree of i is dG(i) =
|LG(i)|, the number of edges containing i. Given i, j ∈ V (G), define

LG(j \ i) = {e ∈
(
V (G)
r − 1

)
: i /∈ e, e ∪ {j} ∈ E(G) and e ∪ {i} /∈ E(G)}.

In other words, LG(j \ i) is the set of (r − 1)-tuples in the neighborhood of
j but not in the neighborhood of i. We say that an (r − 1)-tuple e is in the
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neighborhood of a vertex u if {u} ∪ e is an edge. When there is no confusion,
we will drop the subscript G in LG(j \ i). We say G on vertex set [n] is left-
compressed if for every i, j, 1 ≤ i < j ≤ n, LG(j \ i) = ∅. Equivalently, G on
[n] is left-compressed if j1j2 · · · jr ∈ E(G) implies i1i2 · · · ir ∈ E(G), wherever
ip ≤ jp for 1 ≤ p ≤ r. Let i, j ∈ V (G), define

πij(G) = (E(G) \ {e ∪ {j} : e ∈ LG(j \ i)})
⋃

{e ∪ {i} : e ∈ LG(j \ i)}.

In other words, πij(G) is an r-graph obtained from G by replacing an edge
f containing j but not i by (f \ {j}) ∪ {i} if (f \ {j}) ∪ {i} is not an edge
in G. We say that πij(G) is obtained from G by compressing j to i. By the
definition of πij(G), it’s straightforward to verify the following fact.

Fact 2.2. Let G be an r-graph on [n]. Let �x = (x1, x2, . . . , xn) be a feasible
weighting on G. If xi ≥ xj, then λ(πij(G), �x) ≥ λ(G,�x).

An r-graph G is dense if for every subgraph G′ of G with |V (G′)| < |V (G)|
we have λ(G′) < λ(G). This is equivalent to that no weight in an optimum
weighting on G is zero.

Fact 2.3 ([5]). Let G = (V,E) be a dense r-graph. Then G covers pairs.

In [13], Motzkin and Straus determined the Lagrangian of any given 2-
graph.

Theorem 2.1 (Motzkin and Straus [13]). If G is a 2-graph in which a max-
imum complete subgraph has t vertices, then λ(G) = λ(K2

t ) = 1
2(1 − 1

t ).

The support of a vector �x is σ(�x) = {i : xi �= 0 for i ∈ [n]}.

Fact 2.4 ([5]). Let G be an r-graph on [n]. Let �x = (x1, x2, . . . , xn) be an
optimum weighting on G. Then

∂λ(G,�x)
∂xi

= rλ(G)

for every i ∈ σ(�x).

Fact 2.5 ([21]). If G is a T2-free 3-graph on [n] (n ≥ 4). Then λ(G) ≤ 1
24 .

Proof. Since G is T2-free, then every pair is covered by at most one edge. Let
�x = (x1, x2, . . . , xn) be an optimum weighting on G. By Fact 2.4, ∂λ(G,�x)

∂xi
=

3λ(G) for all i ∈ σ(�x). Summing over i ∈ σ(�x) we obtain 3|σ(�x)|λ(G) =∑
i∈σ(�x)

∂λ(G,�x)
∂xi

≤ ∑
1≤i<j≤n xixj ≤ 1

2 . Note that |σ(�x)| ≥ 4 (otherwise λ(G) ≤
1
27). So λ(G) ≤ 1

6|σ(�x)| ≤
1
24 .
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Theorem 2.2 ([9]). Let t ≥ 2 be an integer. Let G be an M3
t -free 3-graph.

Then λ(G) ≤ λ(K3
3t−1).

Fact 2.6. Let G be an r-graph on [n]. Let �x = (x1, x2, . . . , xn) be a feasible
weighting on G. Let i, j ∈ [n], i �= j. Suppose that LG(i \ j) = LG(j \ i) = ∅.
Let �y = (y1, y2, . . . , yn) be defined by letting y� = x� for every � ∈ [n] \ {i, j}
and letting yi = yj = 1

2(xi + xj), then λ(G, �y) ≥ λ(G,�x).

Proof. Since LG(i \ j) = LG(j \ i) = ∅, we have

λ(G, �y) − λ(G,�x) =
∑

{i,j}⊆e∈G

[
(xi + xj)2

4 − xixj

] ∏
k∈e\{i,j}

xk ≥ 0.

Let K3−
3t+3 be the 3-graph obtained by removing one edge from K3

3t+3.

Fact 2.7. Let t ≥ 1 be an integer. Let G be a 3-graph on [3t+3]. If G �= K3
3t+3,

then there exists a positive real c1 = c1(t) such that λ(G) ≤ λ(K3−
3t+3) ≤

λ(K3
3t+3) − c1,

If V1, . . . , Vs are disjoint sets of vertices, let Πs
i=1Vi = V1 ×V2 × . . .×Vs =

{(x1, x2, . . . , xs) : ∀i ∈ [s], xi ∈ Vi}. We will use Πs
i=1Vi to also denote the

set of the corresponding unordered s-sets. If L is a hypergraph on [m], then
a blowup of L is a hypergraph G whose vertex set can be partitioned into
V1, . . . , Vm such that E(G) =

⋃
e∈L

∏
i∈e Vi. The following proposition follows

immediately from the definition and is implicit in many papers (see [12] for
instance).

Proposition 2.1. Let r ≥ 2. Let L be an r-graph and G be a blowup of L.
Suppose |V (G)| = n. Then |G| ≤ λ(L)nr.

3. Lagrangian density of Qt+2

Clearly, K3
3t+3 is Qt+2-free. In this section, we will show that the maximum

possible Lagrangian among all Qt+2-free 3-graphs is uniquely achieved by
K3

3t+3. Our main results are as follows.

Theorem 3.1. Let G be a Qt+2-free 3-graph. Then λ(G) ≤ λ(K3
3t+3) =

(3t+1)(3t+2)
6(3t+3)2 . Furthermore, there exists a positive real c = c(t) such that λ(G) ≤

λ(K3
3t+3) − c for any K3

3t+3-free 3-graph G.

Corollary 3.1. πλ(Qt+2) = 3!λ(K3
3t+3).

Proof. Since K3
3t+3 is Qt+2-free, then πλ(Qt+2) ≥ 3!λ(K3

3t+3). On the other
hand, by Theorem 3.1, πλ(Qt+2) ≤ 3!λ(K3

3t+3). Therefore, πλ(Qt+2) =
3!λ(K3

3t+3).
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3.1. Left-compressing a Qt+2-free 3-graph

Let
Q′

t+2 = {a1a2c, b1b2c} �M3
t ,

and
Q′′

t+3 = {a1b1b2, b1b2a2, a1cd2, a2cd1} �M3
t−1.

To prove Theorem 3.1, we will prove the following crucial results.

Lemma 3.1. Let t ≥ 1 be an integer. Then there exists a positive real c such
that the following holds. Let G be a 3-graph on [n] and let 1 ≤ i < j ≤ n. If
G is Qt+2-free, then

(1) either λ(G) ≤ λ(K3
3t+3) − c, or πij(G) is Qt+2-free.

(2) Furthermore, if G is K3
3t+3-free and the pair {i, j} is covered by an

edge of G, then πij(G) is K3
3t+3-free.

Proof. (1) Suppose that πij(G) contains a copy of Qt+2, denoted by Q. There
is e ∈ Q such that i ∈ e ∈ πij(G), j /∈ e and e′ = e\{i}∪{j} ∈ G. Otherwise,
Q is also a copy of Qt+2 in G, it is a contradiction. There are two cases in
terms of the degree of i in Q.

Case 1: dQ(i) = 1. If there exists no f ∈ Q such that j ∈ f , then
Q \ {e} ∪ {e′} forms a copy of Qt+2 in G. If there exists one edge f such that
j ∈ f ∈ Q, then f is an independent edge in Q and f ′ = f \ {j} ∪ {i} ∈ G.
So Q \ {e, f} ∪ {e′, f ′} forms a copy of Qt+2 in G.

Case 2: dQ(i) = 2. Let Q = {e1, e2, e3, · · · , et+2} and |e1 ∩ e2| = 2.
If e′1 = e1 \ {i} ∪ {j} ∈ G, e′2 = e2 \ {i} ∪ {j} ∈ G and j ∈ e3, then

Q \ {e1, e2, e3} ∪ {e′1, e′2, e3 \ {j} ∪ {i}} forms a copy of Qt+2. Otherwise,
without loss of generality, we assume that e′1 = e1 \ {i} ∪ {j} ∈ G but e′2 =
e2 \ {i} ∪ {j} /∈ G. If j ∈ e2 with dQ(j) = 1, then {e′1, e2, e3, · · · , et+2} forms
a copy of Qt+2. If dQ(j) = 0, we get a new subgraph {e′1, e2, e3, · · · , et+2}
isomorphic to Q′

t+2 = {a1a2c, b1b2c} �M3
t in G. In Section 3.2, we will show

the following lemma indicating that λ(G) ≤ λ(K3
3t+3) − c in this case.

Lemma 3.2. Let t ≥ 1 be an integer. Then there exists a positive real c such
that λ(G) ≤ λ(K3

3t+3) − c for any dense Qt+2-free 3-graph with Q′
t+2 ⊆ G.

If j ∈ e3, we have e3, e
′
3 = e3 \{j}∪{i} ∈ G, then we get {e′1, e2, e3, e

′
3, e4,

· · · , et+2} isomorphic to Q′′
t+3 = {a1b1b2, b1b2a2, a1cd2, a2cd1} � M3

t−1 in G.
In Section 3.3, we will show the following lemma indicating that λ(G) ≤
λ(K3

3t+3) − c in this case.

Lemma 3.3. Let t ≥ 1 be an integer. Then there exists a positive real c such
that λ(G) ≤ λ(K3

3t+3) − c for any Qt+2-free 3-graph with Q′′
t+3 ⊆ G.
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(2) We assume that {i, j} is covered by an edge g of G. Suppose for contra-
diction that πij(G) contains a copy K of K3

3t+3. Clearly, V (K) must contain i.
If j ∈ V (K), then it is easy to see that K is also in G, contradicting G being
K3

3t+3-free. By the definition of πij(G), all the edges in K not containing i
are also in G. If j /∈ V (K), V (K) contains at least 3t + 1 vertices outside g
by our assumption. So K contains a copy of Q(t−1)+2 disjoint from g, which
lies in G. Now, Q(t−1)+2 � {g} is a copy of Qt+2 in G, a contradiction.

Next, we perform the following algorithm.

Algorithm 3.1.
Input: An r-graph G on [n].
Output: A dense and left-compressed r-graph G′.
Step 1. If G is dense, then go to step 2. Otherwise, replace G by a dense
subgraph G′ with the same Lagrangian, and relabel the vertices of G′ if neces-
sary such that an optimum weighting �y of G′ satisfying yi ≥ yj if i < j. Then
go to step 2.
Step 2. If G is left-compressed, then terminate. Otherwise, let �y be an opti-
mum weighting of G such that there exist vertices i, j satisfying i < j, yi ≥ yj
and LG(j \ i) �= ∅. Replace G by πij(G) and go to step 1.

Note that the algorithm terminates after finite many steps since Step 2
reduces the parameter s(G) =

∑
e∈G

∑
i∈e i by at least 1 each time and Step

1 reduces the number of vertices by at least 1 each time.

Lemma 3.4. There exists a positive real c such that the following holds. Let
G be a Qt+2-free (and K3

3t+3-free) 3-graph. Then either λ(G) ≤ λ(K3
3t+3) − c

or there exists a dense and left-compressed Qt+2-free (and K3
3t+3-free) 3-graph

G′ with |V (G′)| ≤ |V (G)| and λ(G′) ≥ λ(G).

Proof. If for any c, we have λ(G) > λ(K3
3t+3)−c, then we apply Algorithm 3.1

to G and let G′ be the final graph. Then G′ is dense and left-compressed. By
Fact 2.2, λ(G′) ≥ λ(G). By Lemma 3.1, G′ is Qt+2-free (and K3

3t+3-free).

Proof of Theorem 3.1. By Lemma 3.4, we may assume that G is dense and
left-compressed. Suppose V (G) = [n]. If n ≤ 3t + 3, then by Fact 2.1, we
have λ(G) ≤ λ(K3

3t+3). Furthermore, if G is K3
3t+3-free, then by Fact 2.7,

λ(G) ≤ λ(K3−
3t+3) ≤ λ(K3

3t+3) − c1 for some positive c1 (independent of G).
Hence, we may assume that n ≥ 3t + 4. Let �x = (x1, x2, · · · , xn) be an
optimum weighting of G. Since G is left-compressed, then it is clear that
x1 ≥ x2 ≥ · · · ≥ xn. By Fact 2.3, G covers pairs. So i(n− 1)n ∈ G, for some
i < n − 1. Since G is left-compressed, we have 1(n − 1)n ∈ G, this implies
that ∀ i, j, where 2 ≤ i < j ≤ n, 1ij ∈ G and furthermore LG(1) = K2

n−1.
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Suppose x1 = a. Since �y = ( x2
1−a , . . . ,

xn

1−a) is a feasible weighting on LG(1),
then by Theorem 2.1, we have

λ(LG(1), {x2, x3, · · · , xn}) =
∑

2≤i<j≤n

xixj = (1− a)2λ(LG(1), �y) < 1
2(1− a)2.

Let F = G[{2, 3, · · · , n}]. For t = 1. Suppose F contains a copy of T (3)
2 .

Since n ≥ 7,∃ i, j ∈ {2, 3, · · · , n}, such that i, j /∈ V (T (3)
2 ). Now, {1ij, T (3)

2 }
forms a copy of Q3 in G, contradicting G being Q3-free. Hence F must be
T

(3)
2 -free. Note that �y is a feasible weighting on F . By Fact 2.5, we have

λ(F, �y) ≤ 1
24 . Thus,

λ(G) = λ(G,�x) = aλ(LG(1), {x2, x3, · · · , xn}) + λ(F, {x2, x3, · · · , xn})

<
1
2a(1 − a)2 + 1

24(1 − a)3

= 1
2(1 − a)2

[
a + 1

12(1 − a)
]

≤ 1
2

(24
11

)2
· 1
27 = 32

363 ≤ λ(K3
6 ) − 10−3.

For t ≥ 2. Suppose F contains a copy of M3
t . Since n ≥ 3t + 4,∃ i, j, k ∈

{2, 3, · · · , n}, such that i, j, k /∈ M3
t . Now, {1ij, 1jk} � M3

t forms a copy of
Qt+2 in G, contradicting G being Qt+2-free. Hence F must be M3

t -free. Note
that �y is a feasible weighting on F . By Theorem 2.2, we have λ(F, �y) ≤
λ(K3

3t−1). Let s = 3t− 1 and μ = s2−3s+2
6s2 . Thus,

λ(G) = λ(G,�x) = aλ(LG(1), {x2, x3, · · · , xn}) + λ(F, {x2, x3, · · · , xn})

<
1
2a(1 − a)2 + λ(K3

3t−1)(1 − a)3

= (1 − a)2
[1
2a + (3t− 2)(3t− 3)

6(3t− 1)2 (1 − a)
]

= (1 − a)2
[1
2a + μ(1 − a)

]

= (1 − a)2
[
(1
2 − μ)a + μ

]

= (1 − a)(1 − a)(2a + μ
1
4 − 1

2μ
)(1

4 − 1
2μ)

≤
[
1
3

(
(1 − a) + (1 − a) + (2a + μ

1
4 − 1

2μ
)
)]3

(1
4 − 1

2μ)
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= 1
54(1

2 − μ)2

= 2s4

3(2s2 + 3s− 2)2 .

Since s = 3t− 1, we have

λ(K3
3t+3) =

(
3t + 3

3

)
( 1
3t + 3)3 = s2 + 5s + 6

6(s + 4)2 .

Hence,

λ(G) − λ(K3
3t+3) ≤ 2s4

3(2s2 + 3s− 2)2 − s2 + 5s + 6
6(s + 4)2

= 4s4(s + 4)2 − (s2 + 5s + 6)(2s2 + 3s− 2)2

6(2s2 + 3s− 2)2(s + 4)2

= −21s4 + 65s3 − 50s2 − 52s + 24
6(2s2 + 3s− 2)2(s + 4)2 ,

which is negative for every s ≥ 1. Let

c = min
{

10−3, c1,
21s4 + 65s3 − 50s2 − 52s + 24

6(2s2 + 3s− 2)2(s + 4)2

}
.

Then λ(G) ≤ λ(K3
3t+3) − c and the proof is completed.

We owe the proof of Lemma 3.2 and Lemma 3.3.

3.2. Proof of Lemma 3.2

Let
Q′

t+2 = {a1a2c, b1b2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3}.

Lemma 3.5. Let G be a dense Q3-free 3-graph. If G contains a spanning
subgraph Q′

3, then there exists a vertex v in V (G) such that the link L(v)
contains no K3.

Proof. If L(a1) contains no K3, then we are done. Otherwise, we show that the
only possible sets forming a copy of K3 in L(a1) are {a2, c, dk} (k = 1, 2, 3).
If any of the triples in {a2, c, b1, b2} forms a copy of K3 in L(a1), for example,
if {a2, c, b1} forms a copy of K3 in L(a1), that is, a1a2c, a1cb1, a1a2b1 ∈ G,
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then any two edges of those and the independent edge d1d2d3 forms a copy
of Q3 in G. Similarly, other cases can not happen. If any of the triples with
one vertex in {a2, c, b1, b2} and two vertices in {d1, d2, d3} forms a copy of K3
in L(a1), if {x, y, z} forms a copy of K3 in L(a1), where x ∈ {a2, c, b1, b2},
y, z ∈ {d1, d2, d3}, then {yza1, d1d2d3, b1b2c} forms a copy of Q3 in G. If
{d1, d2, d3} forms a copy of K3 in L(a1), then {d1d2a1, d1d2d3, b1b2c} is a
copy of Q3 in G.

Next, we consider the triples with two vertices in {a2, c, b1, b2} and one
vertex in {d1, d2, d3}. If {a2, bi, dk} (i = 1, 2; k = 1, 2, 3) forms a copy of
K3 in L(a1), then {a1a2bi, a1a2c, d1d2d3} is a copy of Q3 in G. If {c, bi, dk}
(i = 1, 2; k = 1, 2, 3) forms a copy of K3 in L(a1), then {a1cbi, b1b2c, d1d2d3}
is a copy of Q3 in G. If {b1, b2, dk} (k = 1, 2, 3) forms a copy of K3 in L(a1),
then {a1b1b2, b1b2c, d1d2d3} is a copy of Q3 in G.

Therefore, the only possible sets forming a copy of K3 in L(a1) are
{a2, c, dk} (k = 1, 2, 3). Switching a1 and b1, we can show identically that the
only possible sets forming a copy of K3 in L(b1) are {b2, c, dk} (k = 1, 2, 3).
Without loss of generality, we may assume that {a2, c, d1} forms a copy of K3
in L(a1), that is, a1a2c, a1a2d1, a1cd1 ∈ G. We have that {b2, c, dk} (k = 2, 3)
can not form a copy of K3 in L(b1), otherwise, {b1b2dk, b1b2c, a1a2d1} (k =
2, 3) is a copy of Q3 in G. If L(b1) contains no K3, then we are done. Other-
wise, {b2, c, d1} forms a copy of K3 in L(b1), that is, b1b2c, b1b2d1, b1cd1 ∈ G.
We will show that L(d2) contains no K3.

Firstly, we consider the triples in {a1, a2, d1, d3}. If any of the triples in
{a1, a2, d1, d3} forms a copy of K3 in L(d2), for example, if {a1, a2, d1} forms
a copy of K3 in L(d2), that is, a1a2d2, a1d1d2, a2d1d2 ∈ G, then any two edges
of those and the edge b1b2c forms a copy of Q3 in G. Similarly, other cases
can not happen.

Secondly, we consider the triples with one vertex in {a1, a2, d1, d3} and
two vertices in {b1, b2, c}. If any of {b1, b2, ai}, {b1, b2, dk} (i = 1, 2; k = 1, 3)
forms a copy of K3 in L(d2), then {b1b2d2, b1b2c, a1a2d1} is a copy of Q3 in
G. If {bj , c, ai}, {bj , c, dk} (i, j = 1, 2; k = 1, 3) forms a copy of K3 in L(d2),
then {bjcd2, b1b2c, a1a2d1} is a copy of Q3 in G.

Thirdly, if {b1, b2, c} forms a copy of K3 in L(d2), then {b1b2d2, b1b2c,
a1a2d1} is a copy of Q3 in G.

Finally, we consider the triples with two vertices in {a1, a2, d1, d3} and one
vertex in {b1, b2, c}. If any of {a1, a2, bj}, {a1, a2, c} (j = 1, 2) forms a copy
of K3 in L(d2), then {a1a2d2, a1a2d1, b1b2c} is a copy of Q3 in G. If any of
{ai, dk, bj}, {ai, dk, c} (i, j = 1, 2; k = 1, 3) forms a copy of K3 in L(d2), then
{aidkd2, d1d2d3, b1b2c} is a copy of Q3 in G. If {d1, d3, bj} (j = 1, 2) forms a
copy of K3 in L(d2), then {d1bjd2, d1d2d3, a1a2c} is a copy of Q3 in G.
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If {d1, d3, c} forms a copy of K3 in L(d2), i.e., d1d2d3, d1d2c, d3d2c ∈ G.
Let’s consider the pair {a2, b2}. If a2b2a1 ∈ G, then {a1a2b2, a1a2c, d1d2d3}
forms a copy of Q3 in G. If a2b2b1 ∈ G, then {a2b1b2, b1b2c, d1d2d3} forms a
copy of Q3 in G. If a2b2c ∈ G, then {b2a2c, a1a2c, d1d2d3} forms a copy of Q3
in G. If a2b2d1 ∈ G, then {b2a2d1, a1a2d1, d2d3c} forms a copy of Q3 in G. If
a2b2dk ∈ G (k = 2, 3), then {a2b2dk, a1cd1, b1cd1} forms a copy of Q3 in G.
So the pair {a2, b2} can not be covered by any edge of G, by Fact 2.3, it is a
contradiction. The proof is complete.

Lemma 3.6. Let G be a dense Qt+2-free 3-graph. If G contains a spanning
subgraph Q′

t+2, then there exists a vertex v in V (G) such that the link L(v)
contains no Kt+2.

Proof. Note that V (G) = V (Q′
t+2). If L(a1) contains no Kt+2, then we are

done. Otherwise, we will show that the only possible sets forming a copy
of Kt+2 in L(a1) are {a2, c, d1,k1 , d2,k2 , · · · , dt,kt} (ki = 1 or 2 or 3; i =
1, 2, · · · , t).

We apply induction on t. By the proof of Lemma 3.5, the conclusion
holds for t = 1. Suppose that the conclusion holds for t− 1 (t ≥ 2). We will
show that the conclusion holds for t. Let G′ be the subgraph of G induced
on V (G) \ {dt,1, dt,2, dt,3}. Then G′ is Q(t−1)+2-free 3-graph and G′ contains
a spanning subgraph Q′

(t−1)+2.
We consider the (t + 2)-sets of vertices with at least two vertices in

{dt,1, dt,2, dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(a1), where
y1, y2 ∈ {dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {a1, y1, y2}, then {y1y2a1,
dt,1dt,2dt,3, b1b2c, d1,1d1,2d1,3, · · · , dt−1,1dt−1,2dt−1,3} forms a copy of Qt+2 in G.

Next, we consider the (t + 2)-sets of vertices with at most one ver-
tex in {dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices forming a
copy of Kt+1 in LG′(a1) must be of the form {a2, c, d1,k1 , d2,k2 , · · · , dt−1,kt−1}
(ki = 1 or 2 or 3; i = 1, 2, · · · , t − 1). Thus, the only possible sets forming a
copy of Kt+2 in L(a1) are {a2, c, d1,k1 , d2,k2 , · · · , dt,kt} (ki = 1 or 2 or 3; i =
1, 2, · · · , t). Switching a1 and b1, we can show identically that the only pos-
sible sets forming a copy of Kt+2 in L(b1) are {b2, c, d1,k1 , d2,k2 , · · · , dt,kt}
(ki = 1 or 2 or 3; i = 1, 2, · · · , t).

Without loss of generality, we may assume that {a2, c, d1,1, d2,1, · · · , dt,1}
forms a copy of Kt+2 in L(a1), that is, xya1 ∈ G, where x, y ∈ {a2, c, d1,1, d2,1,
· · · , dt,1}. In particular, a1a2di,1, a1cdi,1 ∈ G (i ∈ [t]).

If L(b1) contains no Kt+2, then we are done. Otherwise, we can obtain that
the only possible set forming a copy of Kt+2 in L(b1) is {b2, c, d1,1, d2,1, · · · ,
dt,1}. Indeed, if {b2, c, d1,k1 , d2,k2 , · · · , dt,kt} (ki = 2 or 3, i = 1, 2, · · · , t) forms
a copy of Kt+2 in L(b1), then {b1b2c, b1b2di,ki , a1a2di,1, d1,1d1,2d1,3, d2,1d2,2d2,3,
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· · · , di−1,1di−1,2di−1,3, di+1,1di+1,2di+1,3, · · · , dt,1dt,2dt,3} forms a copy of Qt+2
in G. So the only possible set forming a copy of Kt+2 in L(b1) is {b2, c, d1,1, d2,1,
· · · , dt,1}, that is, xyb1 ∈ G, where x, y ∈ {b2, c, d1,1, d2,1, · · · , dt,1}. In par-
ticular, b1cdi,1 ∈ G (i ∈ [t]). We will show that ∃ i ∈ [t], such that L(di,2)
contains no Kt+2.

We claim that the only possible sets forming a copy of Kt+2 in L(d1,2) are
{d1,1, d1,3, c, d2,k2 , d3,k3 , · · · , dt,kt} (ki = 1 or 2 or 3; i = 1, 2, · · · , t). Applying
induction on t. By the proof of Lemma 3.5, the conclusion holds for t = 1.
For t = 2. We consider the 4-sets of vertices with at least two vertices in
{d2,1, d2,2, d2,3}. If {x1, x2, y1, y2} forms a copy of K4 in L(d1,2), where y1, y2 ∈
{d2,1, d2,2, d2,3}, x1, x2 ∈ V (G)\{d1,2, y1, y2}, then {y1y2d1,2, d2,1d2,2d2,3, b1b2c,
a1a2d1,1} is a copy of Q4 in G. In addition, we consider the 4-sets of vertices
with at most one vertex in {d2,1, d2,2, d2,3}. Let G0 = G[{a1, a2, c, b1, b2, d1,1,
d1,2, d1,3}]. Since the vertices forming a copy of K3 in LG0(d1,2) must be of
the form {d1,1, d1,3, c}, then the only possible sets forming a copy of K4 in
L(d1,2) are {d1,1, d1,3, c, d2,k2} (k2 = 1, 2, 3).

Suppose that the conclusion holds for t−1 (t≥ 3), that is, if {a2, c, d1,1, d2,1,
· · · , dt−1,1} forms a copy of Kt+1 in LG′(a1) and {b2, c, d1,1, d2,1, · · · , dt−1,1}
forms a copy of Kt+1 in LG′(b1), then we can obtain that the only possible sets
forming a copy of Kt+1 in LG′(d1,2) are {d1,1, d1,3, c, d2,k2 , d3,k3 , · · · , dt−1,kt−1}
(ki = 1 or 2 or 3; i = 1, 2, · · · , t− 1). We will show that the conclusion holds
for t.

Firstly, we consider the (t + 2)-sets of vertices with at least two vertices
in {dt,1, dt,2, dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(d1,2),
where y1, y2 ∈ {dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {d1,2, y1, y2}, then
{y1y2d1,2, dt,1dt,2dt,3, a1a2d1,1, b1b2c, d2,1d2,2d2,3, · · ·, dt−1,1dt−1,2dt−1,3} forms a
copy of Qt+2 in G.

Next, we consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. By the induction hypothesis, the only possible sets forming a
copy of Kt+1 in LG′(d1,2) are {d1,1, d1,3, c, d2,k2 , d3,k3 , · · · , dt−1,kt−1}.

Thus the only possible sets forming a copy of Kt+2 in L(d1,2) are {d1,1, d1,3,
c, d2,k2 , · · · , dt,kt}. Similarly, we have that the only possible sets forming a copy
of Kt+2 in L(di,2) (i = 2, 3, · · · , t) are {di,1, di,3, c, d1,k1 , d2,k2 , · · · , di−1,ki−1 ,
di+1,ki+1 , · · · , dt,kt}.

If ∃ i ∈ [t], such that L(di,2) contains no Kt+2, then we are done. Other-
wise, {di,1, di,3, c, d1,k1 , d2,k2 , · · · , di−1,ki−1 , di+1,ki+1 , · · · , dt,kt} forms a copy of
Kt+2 in L(di,2) (i ∈ [t]), that is, xydi,2 ∈ G, where x, y ∈ {di,1, di,3, c, d1,k1 ,
d2,k2 , · · · , di−1,ki−1 , di+1,ki+1 , · · · , dt,kt}. In particular, di,2di,3c ∈ G. Next, we
consider the pair {a2, b2}. If a2b2a1 ∈ G, then {a1a2b2, a1a2c, d1,1d1,2d1,3,
d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If a2b2b1 ∈ G, then
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{b1b2a2, b1b2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G.
If a2b2c ∈ G, then {b2a2c, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a
copy of Qt+2 in G. If a2b2di,1 ∈ G (i ∈ [t]), then {a2b2di,1, a1a2di,1, di,2di,3c,
d1,1d1,2d1,3, d2,1d2,2d2,3, · · ·, di−1,1di−1,2di−1,3, di+1,1di+1,2di+1,3, · · ·, dt,1dt,2dt,3}
is a copy of Qt+2 in G. If a2b2di,ki ∈ G (ki = 2, 3; i ∈ [t]), then {a2b2di,ki ,
a1cdi,1, b1cdi,1, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , di−1,1di−1,2di−1,3, di+1,1di+1,2di+1,3,
· · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. So the pair {a2, b2} can not be covered
by any edge of G, which contradicting Fact 2.3.

Lemma 3.7. Let G be a Q3-free 3-graph. If G contains a subgraph Q′
3 and

|V (G)| = |V (Q′
3)|+ 1, then there exists a vertex v in V (G) such that the link

L(v) contains no K3.

Proof. Let u ∈ V (G) \ V (Q′
3). If L(u) contains no K3, then we are done.

Otherwise, we show that the only possible sets forming a copy of K3 in L(u)
are {ai, bj , dk} (i, j = 1, 2; k = 1, 2, 3). If any of the triples in {a1, a2, c, b1, b2}
forms a copy of K3 in L(u), for example, if {a1, a2, c} forms a copy of K3
in L(u), that is, a1a2u, a1cu, a2cu ∈ G, then any two edges of those and the
independent edge d1d2d3 forms a copy of Q3 in G. Similarly, other cases can
not happen. If any of the triples with one vertex in {a1, a2, c, b1, b2} and two
vertices in {d1, d2, d3} forms a copy of K3 in L(u), for example, if {d1, d2, c}
forms a copy of K3 in L(u), then {d1d2u, d1d2d3, a1a2c} forms a copy of Q3
in G. Similarly, other cases can not happen. If {d1, d2, d3} forms a copy of K3
in L(u), then {d1d2u, d1d2d3, a1a2c} is a copy of Q3 in G.

Next, we consider the triples with two vertices in {a1, a2, c, b1, b2} and
one vertex in {d1, d2, d3}. If {a1, a2, dk} (k = 1, 2, 3) forms a copy of K3 in
L(u), then {a1a2u, a1a2c, d1d2d3} is a copy of Q3 in G. If {b1, b2, dk} (k =
1, 2, 3) forms a copy of K3 in L(u), then {b1b2u, b1b2c, d1d2d3} is a copy of
Q3 in G. If {ai, c, dk} (i = 1, 2; k = 1, 2, 3) forms a copy of K3 in L(u), then
{aicu, a1a2c, d1d2d3} is a copy of Q3 in G. If {bj , c, dk} (j = 1, 2; k = 1, 2, 3)
forms a copy of K3 in L(u), then {bjcu, b1b2c, d1d2d3} is a copy of Q3 in G.

Therefore, the only possible sets forming a copy of K3 in L(u) are
{ai, bj , dk} (i, j = 1, 2; k = 1, 2, 3). Without loss of generality, we may assume
that {a1, b1, d1} forms a copy of K3 in L(u), that is a1b1u, a1d1u, b1d1u ∈ G.
We will show that L(b2) contains no K3.

Firstly, we consider the triples in {a1, a2, c, b1, u}. For example, if
{a1, a2, c} forms a copy of K3 in L(b2), that is, a1a2b2, a1cb2, a2cb2 ∈ G, then
any two edges of those and the independent edge d1d2d3 forms a copy of Q3
in G. Similarly, other cases can not happen.

Secondly, we consider the triples with two vertices in {a1, a2, c, b1, u} and
one vertex in {d1, d2, d3}. If {a1, a2, dk} (k = 1, 2, 3) forms a copy of K3 in
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L(b2), then {a1a2b2, a1a2c, d1d2d3} is a copy of Q3 in G. If {ai, c, dk} (i =
1, 2; k = 1, 2, 3) forms a copy of K3 in L(b2), then {aicb2, a1a2c, d1d2d3} is a
copy of Q3 in G. If {ai, b1, dk} (i = 1, 2; k = 1, 2, 3) forms a copy of K3 in L(b2),
then {aib1b2, b1b2c, d1d2d3} is a copy of Q3 in G. If {a1, u, dk} (k = 1, 2, 3)
forms a copy of K3 in L(b2), then {ua1b2, ua1b1, d1d2d3} is a copy of Q3 in
G. If {a2, u, d1} forms a copy of K3 in L(b2), then {ud1b2, ud1b1, a1a2c} is a
copy of Q3 in G. If {a2, u, dk} (k = 2, 3) forms a copy of K3 in L(b2), then
{a2dkb2, a1b1u, b1ud1} is a copy of Q3 in G. If {c, b1, d1} forms a copy of K3 in
L(b2), then {b1d1b2, b1d1u, a1a2c} is a copy of Q3 in G. If {c, b1, dk} (k = 2, 3)
forms a copy of K3 in L(b2), then {b1dkb2, cb1b2, a1ud1} is a copy of Q3 in G. If
{c, u, dk} (k = 1, 2, 3) forms a copy of K3 in L(b2), then {cub2, b1b2c, d1d2d3}
is a copy of Q3 in G. If {b1, u, dk} (k = 1, 2, 3) forms a copy of K3 in L(b2),
then {b1ub2, b1b2c, d1d2d3} is a copy of Q3 in G.

Thirdly, we consider the triples with one vertex in {a1, a2, c, b1, u} and two
vertices in {d1, d2, d3}. If {dk, dt, ai} or {dk, dt, b1} or {dk, dt, c} or {dk, dt, u}
(1 ≤ k < t ≤ 3; i = 1, 2) forms a copy of K3 in L(b2), then {dkdtb2, d1d2d3,
a1a2c} is a copy of Q3 in G.

Finally, if {d1, d2, d3} forms a copy of K3 in L(b2), then {d1d2b2, d1d2d3,
a1a2c} is a copy of Q3 in G. The proof is complete.

Lemma 3.8. Let G be a Qt+2-free 3-graph. If G contains a subgraph Q′
t+2

and |V (G)| = |V (Q′
t+2)| + 1, then there exists a vertex v in V (G) such that

the link L(v) contains no Kt+2.

Proof. Let u ∈ V (G) \ V (Q′
t+2). If L(u) contains no Kt+2, then we are done.

Otherwise, we show that the only possible sets forming a copy of Kt+2 in L(u)
are {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt} (i, j = 1, 2; ks = 1 or 2 or 3; s = 1, 2, · · · , t).
We apply induction on t. By the proof of Lemma 3.7, the conclusion holds
for t = 1. Suppose that the conclusion holds for t − 1 (t ≥ 2). We will show
that the conclusion holds for t.

We consider the (t + 2)-sets of vertices with at least two vertices in
{dt,1, dt,2, dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(u), where
y1, y2 ∈ {dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {u, y1, y2}, then {y1y2u,
dt,1dt,2dt,3, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of
Qt+2 in G.

Next, we consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. Let G′ = G[V (G) \ {dt,1, dt,2, dt,3}]. Then G′ is
Q(t−1)+2-free 3-graph and it contains a subgraph Q′

(t−1)+2. By the induc-
tion hypothesis, the vertices forming a copy of Kt+1 in LG′(u) must be of
the form {ai, bj , d1,k1 , d2,k2 , · · · , dt−1,kt−1} (i, j = 1, 2; ks = 1 or 2 or 3;
s = 1, 2, · · · , t − 1). Thus the only possible sets forming a copy of Kt+2
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in L(u) are {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt} (i, j = 1, 2; ks = 1 or 2 or 3; s =
1, 2, · · · , t).

Without loss of generality, we may assume that {a1, b1, d1,1, d2,1, · · · , dt,1}
forms a copy of Kt+2 in L(u). In this case, {a1, b1, d1,1, d2,1, · · · , dt−1,1} forms
a copy of Kt+1 in L(u), we will show that L(b2) contains no Kt+2. We ap-
ply induction on t. By the proof of Lemma 3.7, the conclusion holds for
t = 1. Suppose that the conclusion holds for t − 1 (t ≥ 2), that is, if
{a1, b1, d1,1, d2,1, · · · , dt−1,1} forms a copy of Kt+1 in LG′(u), then we have
LG′(b2) contains no Kt+1. We will show that the conclusion holds for t.

We consider the (t + 2)-sets of vertices with at least two vertices in
{dt,1, dt,2, dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(b2), where
y1, y2 ∈ {dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {b2, y1, y2}, then {y1y2b2,
dt,1dt,2dt,3, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of
Qt+2 in G.

We consider the (t+2)-sets of vertices with at most one vertex in {dt,1, dt,2,
dt,3}. By the induction hypothesis, the vertices can not form a copy of Kt+1
or Kt+2 in LG′(b2). Thus L(b2) contains no Kt+2 in G.

Lemma 3.9. Let G be a dense Q3-free 3-graph. If G contains a subgraph Q′
3

and |V (G)| = |V (Q′
3)|+ 2, then there exists a vertex v in V (G) such that the

link L(v) contains no K3.

Proof. Let u1, u2 ∈ V (G) \ V (Q′
3). If L(u1) contains no K3, then we are

done. Otherwise, we show that the only possible sets forming a copy of K3
in L(u1) are {ai, bj , dk} or {c, u2, dk} (i, j = 1, 2; k = 1, 2, 3). If any of the
triples in {a1, a2, c, b1, b2, u2} forms a copy of K3 in L(u1), for example, if
{a1, a2, c} forms a copy of K3 in L(u1), that is, a1a2u1, a1cu1, a2cu1 ∈ G,
then any two edges of those and the independent edge d1d2d3 forms a copy
of Q3 in G. Similarly, other cases can not happen. If any of the triples
with one vertex in {a1, a2, c, b1, b2, u2} and two vertices in {d1, d2, d3} forms
a copy of K3 in L(u1), for example, if {d1, d2, u2} forms a copy of K3 in
L(u1), then {d1d2u1, d1d2d3, a1a2c} forms a copy of Q3 in G. Similarly, other
cases can not happen. If {d1, d2, d3} forms a copy of K3 in L(u1), then
{d1d2u1, d1d2d3, a1a2c} is a copy of Q3 in G.

Next, we consider the triples with two vertices in {a1, a2, c, b1, b2, u2} and
one vertex in {d1, d2, d3}.

If {a1, a2, dk} (k= 1, 2, 3) forms a copy of K3 in L(u1), then {a1a2u1, a1a2c,
d1d2d3} is a copy of Q3 in G. If {b1, b2, dk} (k = 1, 2, 3) forms a copy of
K3 in L(u1), then {b1b2u1, b1b2c, d1d2d3} is a copy of Q3 in G. If {ai, c, dk}
(i = 1, 2; k = 1, 2, 3) forms a copy of K3 in L(u1), then {aicu1, a1a2c, d1d2d3}
is a copy of Q3 in G. If {bj , c, dk} (j = 1, 2; k = 1, 2, 3) forms a copy of
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K3 in L(u1), then {bjcu1, b1b2c, d1d2d3} is a copy of Q3 in G. If {ai, u2, dk}
(i = 1, 2; k = 1, 2, 3) forms a copy of K3 in L(u1), then {aiu2u1, dku2u1, b1b2c}
forms a copy of Q3. If {bj , u2, dk} (j = 1, 2; k = 1, 2, 3) forms a copy of K3
in L(u1), then {bju2u1, dku2u1, a1a2c} forms a copy of Q3. Therefore, the
only possible sets forming a copy of K3 in L(u1) are {ai, bj , dk} or {c, u2, dk}
(i, j = 1, 2; k = 1, 2, 3). Switching u1 and u2, we can show identically that the
only possible sets forming a copy of K3 in L(u2) are {ai, bj , dk} or {c, u1, dk}
(i, j = 1, 2; k = 1, 2, 3).

Case 1: A set in the form of {ai, bj , dk} (i, j = 1, 2; k = 1, 2, 3) forms a
copy of K3 in L(u1).

Without loss of generality, we assume that {a1, b1, d1} forms a copy of
K3 in L(u1), that is, a1b1u1, a1d1u1, b1d1u1 ∈ G. We will show that L(u2)
contains no K3. Recall that the only possible sets forming a copy of K3 in
L(u2) are {ai, bj , dk} or {c, u1, dk} (i, j = 1, 2; k = 1, 2, 3).

If {a1, bi, d1} (i = 1, 2) forms a copy of K3 in L(u2), then {a1d1u2, a1d1u1,
b1b2c} is a copy of Q3 in G. If {a1, b1, di} (i = 2, 3) forms a copy of K3 in L(u2),
then {a1b1u2, a1b1u1, d1d2d3} is a copy of Q3 in G. If {a1, b2, di} (i = 2, 3)
forms a copy of K3 in L(u2), then {b2diu2, a1b1u1, b1d1u1} is a copy of Q3
in G. If {a2, b1, d1} forms a copy of K3 in L(u2), then {b1d1u2, b1d1u1, a1a2c}
is a copy of Q3 in G. If {a2, b1, di} (i = 2, 3) forms a copy of K3 in L(u2),
then {a2diu2, a1b1u1, b1d1u1} is a copy of Q3 in G. If {a2, b2, di} (i = 1, 2, 3)
forms a copy of K3 in L(u2), then {a2b2u2, b1d1u1, a1b1u1} is a copy of Q3 in
G. If {c, u1, d1} forms a copy of K3 in L(u2), then {u1d1u2, a1u1d1, b1b2c} is
a copy of Q3 in G. If {c, u1, di} (i = 2, 3) forms a copy of K3 in L(u2), then
{cdiu2, a1b1u1, b1d1u1} is a copy of Q3 in G.

From the above, we have L(u2) contains no K3.
Case 2: A set in the form of {c, u2, di} (i = 1, 2, 3) forms a copy of K3 in

L(u1).
Without loss of generality, we assume that {c, u2, d1} forms a copy of

K3 in L(u1), that is, cu2u1, cd1u1, u2d1u1 ∈ G. We claim that either L(u2)
contains no K3 or {c, u1, d1} forms a copy of K3 in L(u2). Recall that the
only possible sets forming a copy of K3 in L(u2) are {ai, bj , dk} or {c, u1, dk}
(i, j = 1, 2; k = 1, 2, 3).

If {ai, bj , d1} (i, j = 1, 2) forms a copy of K3 in L(u2), then {bjd1u2, u2d1u1,
a1a2c} is a copy of Q3 in G. If {ai, bj , dk} (i, j = 1, 2, k = 2, 3) forms a copy
of K3 in L(u2), then {aibju2, bjdku2, cu1d1} is a copy of Q3 in G. If {c, u1, di}
(i = 2, 3) forms a copy of K3 in L(u2), then {u1diu2, u1d1u2, a1a2c} is a copy
of Q3 in G.

Therefore, if L(u2) contains no K3, then we are done. Otherwise,
{c, u1, d1} forms a copy of K3 in L(u2), that is, cu1u2, u1d1u2, cd1u2 ∈ G,
then we will show that L(d2) contains no K3.
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Firstly, we consider the triples in {a1, a2, u1, u2, d1, d3}. If any of the
triples in {a1, a2, u1, u2, d1, d3} forms a copy of K3 in L(d2), for example, if
{a1, u1, d1} forms a copy of K3 in L(d2), that is, a1u1d2, a1d1d2, u1d1d2 ∈ G,
then any two edges of those and the edge b1b2c forms a copy of Q3 in G.
Similarly, other cases can not happen.

Secondly, we consider the triples with two vertices in {a1, a2, u1, u2, d1, d3}
and one vertex in {b1, b2, c}.

If any of {a1, a2, bi}, {a1, a2, c} (i = 1, 2) forms a copy of K3 in L(d2), then
{a1a2d2, a1a2c, u1u2d1} is a copy of Q3 in G. If {ai, uj , bk} (i, j, k = 1, 2) forms
a copy of K3 in L(d2), then {aibkd2, u1d1u2, u1d1c} is a copy of Q3 in G. If
{ai, uj , c} (i, j = 1, 2) forms a copy of K3 in L(d2), then {aicd2, a1a2c, u1u2d1}
is a copy of Q3 in G. If any of {ai, dj , bk}, {ai, dj , c} (i, k = 1, 2; j = 1, 3) forms
a copy of K3 in L(d2), then {aidjd2, d1d2d3, b1b2c} is a copy of Q3 in G. If
any of {u1, u2, bi} (i = 1, 2), {u1, u2, c} forms a copy of K3 in L(d2), then
{u1u2d2, u1u2d1, a1a2c} is a copy of Q3 in G. If any of {ui, dj , bk}, {ui, dj , c}
(i, k = 1, 2; j = 1, 3) forms a copy of K3 in L(d2), then {uidjd2, d1d2d3, a1a2c}
is a copy of Q3 in G. If {d1, d3, bi} (i = 1, 2) forms a copy of K3 in L(d2),
then {d1bid2, d1d2d3, a1a2c} is a copy of Q3 in G.

If {d1, d3, c} forms a copy of K3 in L(d2), i.e., d1d2d3, d1d2c, d3d2c ∈ G.
Let’s consider the pairs {ai, bj} (i, j = 1, 2). If aibjuk ∈ G (k = 1, 2),
then {aibjuk, d1d2d3, d1d2c} forms a copy of Q3 in G. If aibjc ∈ G, then
{aibjc, b1b2c, d1d2d3} forms a copy of Q3 in G. If a1bja2 ∈ G, then {a1bja2,
a1a2c, d1d2d3} forms a copy of Q3 in G. If aib1b2 ∈ G, then {aib1b2, b1b2c,
d1d2d3} forms a copy of Q3 in G. Since G is dense, by Fact 2.3, the pairs
{ai, bj} must be covered by an edge in the form of aibjdk. If aibjdk ∈ G
(k = 2, 3), recall that cu1u2, u1u2d1 ∈ G, then {cu1u2, u1u2d1, aibjd2} forms
a copy of Q3 in G. So a1b1d1, a1b2d1, a2b1d1, a2b2d1 ∈ G. Then we have
{cu1u2, a1b1d1, a1b2d1} forms a copy of Q3 in G.

Thirdly, we consider the triples with one vertex in {a1, a2, u1, u2, d1, d3}
and two vertices in {b1, b2, c}. If any of {b1, b2, ai}, {b1, b2, ui}, {b1, b2, dj}
(i = 1, 2; j = 1, 3) forms a copy of K3 in L(d2), then {b1b2d2, b1b2c, u1u2d1}
is a copy of Q3 in G. If {bi, c, aj}, {bi, c, uj}, {bi, c, dk} (i, j = 1, 2; k = 1, 3)
forms a copy of K3 in L(d2), then {bicd2, b1b2c, u1u2d1} is a copy of Q3 in G.

Finally, if {b1, b2, c} forms a copy of K3 in L(d2), then {b1b2d2, b1b2c,
u1u2d1} is a copy of Q3 in G. The proof is complete.

Lemma 3.10. Let G be a dense Qt+2-free 3-graph. If G contains a subgraph
Q′

t+2 and |V (G)| = |V (Q′
t+2)| + 2, then there exists a vertex v in V (G) such

that the link L(v) contains no Kt+2.

Proof. Let u1, u2 ∈ V (G) \ V (Q′
t+2). If L(u1) contains no Kt+2, then we

are done. Otherwise, we show that the only possible sets forming a copy of
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Kt+2 in L(u1) are {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt} or {c, u2, d1,k1 , d2,k2 , · · · , dt,kt}
(i, j = 1, 2; ks = 1 or 2 or 3; s = 1, 2, · · · , t). We apply induction on t. By
the proof of Lemma 3.9, the conclusion holds for t = 1. Suppose that the
conclusion holds for t− 1 (t ≥ 2). We will show that the conclusion holds for
t. Let G′ = G[V (G) \ {dt,1, dt,2, dt,3}].

Consider the (t+2)-sets of vertices with at least two vertices in {dt,1, dt,2,
dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(u1), where y1, y2 ∈
{dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {u1, y1, y2}, then {y1y2u1, dt,1dt,2dt,3,
a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of Qt+2 in G.

Next, consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices forming a copy
of Kt+1 in LG′(u1) must be of the form {ai, bj , d1,k1 , d2,k2 , · · · , dt−1,kt−1} or
{c, u2, d1,k1 , d2,k2 , · · · , dt−1,kt−1} (i, j = 1, 2; ks = 1 or 2 or 3; s= 1, 2, · · · , t−1).
Thus the only possible sets forming a copy of Kt+2 in L(u1) are {ai, bj , d1,k1 ,
d2,k2 , · · · , dt,kt} or {c, u2, d1,k1 , d2,k2 , · · · , dt,kt} (i, j = 1, 2; ks = 1 or 2 or 3;
s = 1, 2, · · · , t). Switching u1 and u2, we can show identically that the only
possible sets forming a copy of Kt+2 in L(u2) are {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt}
or {c, u1, d1,k1 , d2,k2 , · · · , dt,kt} (i, j = 1, 2; ks = 1 or 2 or 3; s = 1, 2, · · · , t).

Case 1: A set in the form of {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt} (i, j = 1, 2; ks =
1 or 2 or 3; s = 1, 2, · · · , t) forms a copy of Kt+2 in L(u1).

We will show that L(u2) contains no Kt+2. Applying induction on t. By
the proof of Lemma 3.9, the conclusion holds for t = 1. Suppose that the
conclusion holds for t − 1 (t ≥ 2). We will show that the conclusion holds
for t.

Consider the (t+2)-sets of vertices with at least two vertices in {dt,1, dt,2,
dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(u2), where
y1, y2 ∈ {dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {u2, y1, y2}, then {y1y2u2,
dt,1dt,2dt,3, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of
Qt+2 in G.

Next, consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices can not form a copy
of Kt+1 or Kt+2 in LG′(u2). Thus L(u2) contains no Kt+2.

Case 2: A set in the form of {c, u2, d1,k1 , d2,k2 , · · · , dt,kt} (ks = 1 or 2 or 3;
s = 1, 2, · · · , t) forms a copy of Kt+2 in L(u1).

Without loss of generality, we assume that {c, u2, d1,1, d2,1, · · · , dt,1} forms
a copy of Kt+2 in L(u1), that is, xyu1 ∈ G, where x, y ∈ {c, u2, d1,1, d2,1, · · · ,
dt,1}. In particular, u1cdi,1, u1u2di,1 ∈ G (i ∈ [t]). In this case, {c, u2, d1,1, d2,1,
· · · , dt−1,1} forms a copy of Kt+1 in L(u1). We claim that the only possible
set forming a copy of Kt+2 in L(u2) is {c, u1, d1,1, d2,1, · · · , dt,1}. Applying
induction on t. By the proof of Lemma 3.9, the conclusion holds for t = 1.
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Suppose that the conclusion holds for t − 1 (t ≥ 2). We will show that the
conclusion holds for t.

Consider the (t+2)-sets of vertices with at least two vertices in {dt,1, dt,2,
dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(u2), where y1, y2 ∈
{dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {u2, y1, y2}, then {y1y2u2, dt,1dt,2dt,3,
a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of Qt+2 in G.

Next, consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices forming a copy of
Kt+1 in LG′(u2) must be of the form {c, u1, d1,1, d2,1, · · · , dt−1,1}. If {c, u1, d1,1,
d2,1, · · · , dt−1,1, dt,kt} (kt = 2, 3) forms a copy of Kt+2 in L(u2), then {u1u2dt,kt ,
u1u2dt,1, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of
Qt+2 in G. From the above, if L(u2) contains no Kt+2, then we are done.
Otherwise, we have that {c, u1, d1,1, d2,1, · · · , dt,1} forms a copy of Kt+2 in
L(u2). We claim that the only possible set forming a copy of Kt+2 in L(a1)
is {a2, c, d1,1, d2,1, · · · , dt,1}. We will apply induction on t. Let’s first show for
t = 1. Suppose that {c, u2, d1,1} forms a copy of K3 in L(u1) and {c, u1, d1,1}
forms a copy of K3 in L(u2). We show that the only possible set forming a
copy of K3 in L(a1) is {a2, c, d1,1}.

Firstly, we consider the triples in {a2, c, b1, b2, u1, u2}. If any of the triples
in {a2, c, b1, b2, u1, u2} forms a copy of K3 in L(a1), for example, if {a2, c, u1}
forms a copy of K3 in L(a1), that is, a1a2c, a1a2u1, a1cu1 ∈ G, then any two
edges of those and the edge d1,1d1,2d1,3 forms a copy of Q3 in G. Similarly,
other cases can not happen.

Secondly, we consider the triples with one vertex in {a2, c, b1, b2, u1, u2}
and two vertices in {d1,1, d1,2, d1,3}. If {x, y, z} forms a copy of K3 in L(a1),
where x ∈ {a2, c, b1, b2, u1, u2}, y, z ∈ {d1,1, d1,2, d1,3}, then {yza1, d1,1d1,2d1,3,
b1b2c} is a copy of Q3 in G.

Thirdly, if {d1,1, d1,2, d1,3} forms a copy of K3 in L(a1), then {d1,1d1,2a1,
d1,1d1,2d1,3, b1b2c} is a copy of Q3 in G.

Finally, we consider the triples with two vertices in {a2, c, b1, b2, u1, u2}
and one vertex in {d1,1, d1,2, d1,3}. If {a2, bi, d1,k} (i = 1, 2; k = 1, 2, 3) forms
a copy of K3 in L(a1), then {a1a2bi, a1a2c, d1,1d1,2d1,3} is a copy of Q3 in
G. If {a2, ui, d1,k} (i = 1, 2; k = 1, 2, 3) forms a copy of K3 in L(a1), then
{a1a2ui, a1a2c, d1,1d1,2d1,3} is a copy of Q3 in G. If {c, bi, d1,k} (i = 1, 2; k =
1, 2, 3) forms a copy of K3 in L(a1), then {a1cbi, a1a2c, d1,1d1,2d1,3} is a copy
of Q3 in G. If {c, ui, d1,k} (i = 1, 2; k = 1, 2, 3) forms a copy of K3 in
L(a1), then {a1cui, cu1u2, d1,1d1,2d1,3} is a copy of Q3 in G. If {b1, b2, d1,k}
(k = 1, 2, 3) forms a copy of K3 in L(a1), then {a1b1b2, b1b2c, d1,1d1,2d1,3} is
a copy of Q3 in G. If {bi, uj , d1,1} (i, j = 1, 2) forms a copy of K3 in L(a1),
then {a1ujd1,1, u1u2d1,1, b1b2c} is a copy of Q3 in G. If {bi, uj , d1,k} (i, j =
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1, 2; k = 2, 3) forms a copy of K3 in L(a1), then {a1bid1,k, cu1u2, u1u2d1,1}
is a copy of Q3 in G. If {u1, u2, d1,k} (k = 1, 2, 3) forms a copy of K3 in
L(a1), then {u1u2a1, u1u2c, d1,1d1,2d1,3} is a copy of Q3 in G. If {a2, c, d1,k}
(k = 2, 3) forms a copy of K3 in L(a1), then {a1a2d1,k, a1a2c, u1u2d1,1} is a
copy of Q3 in G. So the only possible set forming a copy of K3 in L(a1) is
{a2, c, d1,1}.

Suppose that it holds for t−1 (t ≥ 2), that is, if {c, u2, d1,1, d2,1, · · · , dt−1,1}
forms a copy of Kt+1 in LG′(u1), and {c, u1, d1,1, d2,1, · · · , dt−1,1} forms a
copy of Kt+1 in LG′(u2). Then the only possible set forming a copy of Kt+1
in LG′(a1) is {a2, c, d1,1, d2,1, · · · , dt−1,1}. We will show that the conclusion
holds for t.

Consider the (t+2)-sets of vertices with at least two vertices in {dt,1, dt,2,
dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(a1), where y1, y2 ∈
{dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {a1, y1, y2}, then {y1y2a1, dt,1dt,2dt,3,
b1b2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of Qt+2 in G.

Next, consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices forming a copy of
Kt+1 in LG′(a1) must be of the form {a2, c, d1,1, d2,1, · · · , dt−1,1}. If {a2, c, d1,1,
d2,1, · · · , dt−1,1, dt,k} (k = 2, 3) forms a copy of Kt+2 in L(a1), then {a1a2dt,k,
a1a2c, u1u2dt,1, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of
Qt+2 in G.

So the only possible set forming a copy of Kt+2 in L(a1) is {a2, c, d1,1, d2,1,
· · · , dt,1}. If L(a1) contains no Kt+2, then we are done. Otherwise, we assume
that {a2, c, d1,1, d2,1, · · · , dt,1} forms a copy of Kt+2 in L(a1). Let’s consider
the pair {a2, b2}. If a2b2a1 ∈ G, then {a1a2b2, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3,
· · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If a2b2b1 ∈ G, then {b1b2a2, b1b2c,
d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If a2b2c ∈ G,
then {a2b2c, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2
in G. If a2b2ui ∈ G (i = 1, 2), then {a2b2ui, a1cd1,1, u3−icd1,1, d2,1d2,2d2,3, · · · ,
dt,1dt,2dt,3} is a copy of Qt+2 in G. If a2b2di,1 ∈ G (i ∈ [t]), then {a2b2di,1,
a1a2di,1, cu1u2, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , di−1,1di−1,2di−1,3, di+1,1di+1,2di+1,3,
· · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If a2b2di,ki ∈ G (ki = 2, 3; i ∈ [t]),
then {a2b2di,ki , a1cdi,1, u1cdi,1, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , di−1,1di−1,2di−1,3,
di+1,1di+1,2di+1,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. Thus we obtain that
the pair {a2, b2} can not be covered by any edge of G, which contradicting
Fact 2.3. So we have L(a1) contains no Kt+2. This completes the proof.

Lemma 3.11. Let G be a dense Q3-free 3-graph. If G contains a subgraph
Q′

3 and |V (G)| > |V (Q′
3)|+ 2, then there exists a vertex v in V (G) such that

the link L(v) contains no K3.
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Proof. Let u1, u2, · · · , up ∈ V (G) \ V (Q′
3) (p ≥ 3). If L(u1) contains no K3,

then we are done. Otherwise, we show that the only possible sets forming a
copy of K3 in L(u1) are {ai, bj , dk} or {c, ul, dk}, (i, j = 1, 2; k = 1, 2, 3; 2 ≤
l ≤ p). If any of the triples in {a1, a2, c, b1, b2, u2, u3, · · · , up} forms a copy of
K3 in L(u1), for example, if {a1, c, u2} forms a copy of K3 in L(u1), that is,
a1cu1, cu2u1, a1u2u1 ∈ G, then any two edges of those and the independent
edge d1d2d3 forms a copy of Q3 in G. Similarly, other cases can not happen. If
any of the triples with one vertex in {a1, a2, c, b1, b2, u2, u3, · · · , up} and two
vertices in {d1, d2, d3} forms a copy of K3 in L(u1), for example, if {d1, d2, u2}
forms a copy of K3 in L(u1), then {d1d2u1, d1d2d3, a1a2c} forms a copy of Q3
in G. Similarly, other cases can not happen. If {d1, d2, d3} forms a copy of K3
in L(u1), then {d1d2u1, d1d2d3, a1a2c} is a copy of Q3 in G.

Next, we consider the triples with two vertices in {a1, a2, c, b1, b2, u2, u3,
· · · , up} and one vertex in {d1, d2, d3}. If {a1, a2, dk} (k = 1, 2, 3) forms a copy
of K3 in L(u1), then {a1a2u1, a1a2c, d1d2d3} is a copy of Q3 in G. If {b1, b2, dk}
(k = 1, 2, 3) forms a copy of K3 in L(u1), then {b1b2u1, b1b2c, d1d2d3} is a copy
of Q3 in G. If {ai, c, dk} (i = 1, 2; k = 1, 2, 3) forms a copy of K3 in L(u1), then
{aicu1, a1a2c, d1d2d3} is a copy of Q3 in G. If {bj , c, dk} (j = 1, 2; k = 1, 2, 3)
forms a copy of K3 in L(u1), then {bjcu1, b1b2c, d1d2d3} is a copy of Q3 in G.
If {ai, ul, dk} (i = 1, 2; k = 1, 2, 3; 2 ≤ l ≤ p) forms a copy of K3 in L(u1),
then {aiulu1, dkulu1, b1b2c} forms a copy of Q3. If {bi, ul, dk} (i = 1, 2; k =
1, 2, 3; 2 ≤ l ≤ p) forms a copy of K3 in L(u1), then {biulu1, dkulu1, a1a2c}
forms a copy of Q3. If {ul, ut, dk} (k = 1, 2, 3; 2 ≤ l < t ≤ p) forms a copy of
K3 in L(u1), then {ulutu1, dkutu1, a1a2c} forms a copy of Q3.

Therefore, the only possible sets forming a copy of K3 in L(u1) are
{ai, bj , dk} or {c, ul, dk} (i, j = 1, 2; k = 1, 2, 3; 2 ≤ l ≤ p).

Case 1: A set in the form of {ai, bj , dk} (i, j = 1, 2; k = 1, 2, 3) forms a
copy of K3 in L(u1).

Without loss of generality, we may assume that {a1, b1, d1} forms a copy
of K3 in L(u1), that is, a1b1u1, a1d1u1, b1d1u1 ∈ G. We will show that L(u3)
contains no K3. Note that the only possible sets forming a copy of K3 in
L(u3) are {ai, bj , dk} or {c, ul, dk} (i, j = 1, 2; k = 1, 2, 3; l = 1, 2, 4, · · · , p).

If {a1, b1, dk} (k = 1, 2, 3) forms a copy of K3 in L(u3), then {a1b1u3,
a1b1u1, d1d2d3} is a copy of Q3 in G. If {a1, b2, d1} forms a copy of K3 in L(u3),
then {a1d1u3, a1d1u1, b1b2c} is a copy of Q3 in G. If {a1, b2, dk} (k = 2, 3)
forms a copy of K3 in L(u3), then {b2dku3, a1b1u1, a1d1u1} is a copy of Q3 in
G. If {a2, b1, d1} forms a copy of K3 in L(u3), then {b1d1u3, b1d1u1, a1a2c} is
a copy of Q3 in G. If {a2, b1, dk} (k = 2, 3) forms a copy of K3 in L(u3), then
{a2dku3, a1b1u1, a1d1u1} is a copy of Q3 in G. If {a2, b2, dk} (k = 1, 2, 3) forms
a copy of K3 in L(u3), then {a2b2u3, a1b1u1, a1d1u1} is a copy of Q3 in G.
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If {c, u1, d1} forms a copy of K3 in L(u3), then {u1d1u3, b1d1u1, a1a2c} is
a copy of Q3 in G. If {c, u1, dk} (k = 2, 3) forms a copy of K3 in L(u3), then
{cdku3, a1b1u1, a1d1u1} is a copy of Q3 in G. If {c, ul, dk} (l = 2, 4, · · · , p; k =
1, 2, 3) forms a copy of K3 in L(u3), then {culu3, a1b1u1, a1d1u1} is a copy of
Q3 in G.

From the above, we have L(u3) contains no K3.
Case 2: A set in the form of {c, ul, dk} (2 ≤ l ≤ p; k = 1, 2, 3) forms a

copy of K3 in L(u1).
Without loss of generality, we may assume that {c, u2, d1} forms a copy

of K3 in L(u1), that is, cu2u1, cd1u1, u2d1u1 ∈ G. In this case, we will also
show that L(u3) contains no K3. Note that the only possible sets forming a
copy of K3 in L(u3) are {ai, bj , dk} or {c, ul, dk} (i, j = 1, 2; k = 1, 2, 3; l =
1, 2, 4, · · · , p).

If {ai, bj , dk} (i, j = 1, 2, k = 1, 2, 3) forms a copy of K3 in L(u3), then
{aibju3, cu1u2, d1u1u2} is a copy of Q3 in G. If {c, ul, dk} (l = 1, 2; k = 1, 2, 3)
forms a copy of K3 in L(u3), then {culu3, cu1u2, d1d2d3} is a copy of Q3 in
G. If {c, ul, dk} (l = 4, · · · , p; k = 2, 3) forms a copy of K3 in L(u3), then
{cd1u1, u2d1u1, uldku3} is a copy of Q3 in G.

Therefore, the only possible sets forming a copy of K3 in L(u3) are
{c, ul, d1} (l = 4, · · · , p). In this case, culu3, cd1u3, uld1u3 ∈ G. We consider
the pairs {b1, ul} (l = 4, · · · , p). If b1ulai ∈ G (i = 1, 2), then {b1ulai, cd1u1,
cd1u3} is a copy of Q3 in G. If b1ulc ∈ G, then {b1ulc, cb1b2, d1d2d3} is a copy
of Q3 in G. If b1ulb2 ∈ G, then {b1ulb2, cb1b2, d1d2d3} is a copy of Q3 in G. If
b1uld1 ∈ G, then {b1uld1, uld1u3, ca1a2} is a copy of Q3 in G. If b1uldk ∈ G
(k = 2, 3), then {b1uldk, cd1u1, cd1u3} is a copy of Q3 in G. If b1ulu2 ∈ G, then
{b1ulu2, cd1u1, cd1u3} is a copy of Q3 in G. If b1uluk ∈ G (k = 3, · · · , p, k �= l),
then {b1uluk, cd1u1, cu1u2} is a copy of Q3 in G. Since G is dense, the pairs
{b1, ul} must be covered by an edge in the form of b1ulu1 ∈ G. Next, we con-
sider the pairs {b2, ul} (l = 4, · · · , p). Switching b1 and b2, we have b2ulu1 ∈ G,
then {b2ulu1, b1ulu1, ca1a2} is a copy of Q3 in G. It is a contradiction.

From the above, we have L(u3) contains no K3.

Lemma 3.12. Let G be a dense Qt+2-free 3-graph. If G contains a subgraph
Q′

t+2 and |V (G)| > |V (Q′
t+2)| + 2, then there exists a vertex v in V (G) such

that the link L(v) contains no Kt+2.

Proof. Let u1, u2, · · · , up ∈ V (G)\V (Q′
t+2) (p ≥ 3). If L(u1) contains no Kt+2,

then we are done. Otherwise, we show that the only possible sets forming a
copy of Kt+2 in L(u1) are {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt} or {c, ul, d1,k1 , d2,k2 ,
· · · , dt,kt} (i, j = 1, 2; l = 2, 3, · · · , p; ks = 1 or 2 or 3; s = 1, 2, · · · , t). We
apply induction on t. By the proof of Lemma 3.11, the conclusion holds for
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t = 1. Suppose that the conclusion holds for t− 1 (t ≥ 2). We show that the
conclusion holds for t. Let G′ = G[V (G) \ {dt,1, dt,2, dt,3}].

Consider the (t+2)-sets of vertices with at least two vertices in {dt,1, dt,2,
dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(u1), where y1, y2 ∈
{dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {u1, y1, y2}, then {y1y2u1, dt,1dt,2dt,3,
a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of Qt+2 in G.

Next, consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices forming a copy
of Kt+1 in LG′(u1) must be of the form {ai, bj , d1,k1 , d2,k2 , · · · , dt−1,kt−1} or
{c, ul, d1,k1 , d2,k2 , · · · , dt−1,kt−1} (i, j = 1, 2; l = 2, 3, · · · , p; ks = 1 or 2 or 3;
s = 1, 2, · · · , t − 1). Thus the only possible sets forming a copy of Kt+2 in
L(u1) are {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt} or {c, ul, d1,k1 , d2,k2 , · · · , dt,kt} (i, j =
1, 2; l = 2, 3, · · · , p; ks = 1 or 2 or 3; s = 1, 2, · · · , t).

Case 1: A set in the form of {ai, bj , d1,k1 , d2,k2 , · · · , dt,kt} (i, j = 1, 2; ks =
1 or 2 or 3; s = 1, 2, · · · , t) forms a copy of Kt+2 in L(u1).

We will show that L(u3) contains no Kt+2. Applying induction on t. By
the proof of Lemma 3.11, the result holds for t = 1. Suppose that the conclu-
sion holds for t−1 (t ≥ 2), that is, if {ai, bj , d1,k1 , d2,k2 , · · · , dt−1,kt−1} forms a
copy of Kt+1 in LG′(u1). Then LG′(u3) contains no Kt+1. We will show that
the conclusion holds for t.

Consider the (t+2)-sets of vertices with at least two vertices in {dt,1, dt,2,
dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(u3), where
y1, y2 ∈ {dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {u3, y1, y2}, then {y1y2u3,
dt,1dt,2dt,3, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3} is a copy of
Qt+2 in G.

Next, we consider the (t + 2)-sets of vertices with at most one vertex in
{dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices can not form a copy
of Kt+1 or Kt+2 in LG′(u3). Thus L(u3) contains no Kt+2.

Case 2: A set in the form of {c, ul, d1,k1 , d2,k2 , · · · , dt,kt} (l = 2, 3, · · · , p;
ks = 1 or 2 or 3; s = 1, 2, · · · , t) forms a copy of Kt+2 in L(u1).

Without loss of generality, we assume that {c, u2, d1,1, d2,1, · · · , dt,1} forms
a copy of Kt+2 in L(u1), that is, xyu1 ∈ G, where x, y ∈ {c, u2, d1,1, d2,1,
· · · , dt,1}. In particular, u1cdi,1, u1u2di,1 ∈ G (i ∈ [t]). In this case, {c, u2, d1,1,
d2,1, · · · , dt−1,1} forms a copy of Kt+1 in L(u1). We claim that the only
possible sets forming a copy of Kt+2 in L(u3) are {c, ul, d1,1, d2,1, · · · , dt,1}
(l = 4, · · · , p). Applying induction on t. By the proof of Lemma 3.11, the
result holds for t = 1. Suppose that the result holds for t− 1 (t ≥ 2), that is,
if {c, u2, d1,1, d2,1, · · · , dt−1,1} forms a copy of Kt+1 in LG′(u1). Then the only
possible sets forming a copy of Kt+1 in LG′(u3) are {c, ul, d1,1, d2,1, · · · , dt−1,1}
(l = 4, · · · , p). We will show that the conclusion holds for t.
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Firstly, we consider the (t + 2)-sets of vertices with at least two ver-
tices in {dt,1, dt,2, dt,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in
L(u3), where y1, y2 ∈ {dt,1, dt,2, dt,3}, x1, x2, · · · , xt ∈ V (G) \ {u3, y1, y2},
then {y1y2u3, dt,1dt,2dt,3, a1a2c, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3}
is a copy of Qt+2 in G.

Secondly, we consider the (t+ 2)-sets of vertices with at most one vertex
in {dt,1, dt,2, dt,3}. By the induction hypothesis, the vertices forming a copy of
Kt+1 in LG′(u3) must be of the form {c, ul, d1,1, d2,1, · · · , dt−1,1} (l = 4, · · · , p).
If {c, ul, d1,1, d2,1, · · · , dt−1,1, dt,k} (k = 2, 3) forms a copy of Kt+2 in L(u3),
then {u1cdt,1, u1u2dt,1, uldt,ku3, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt−1,1dt−1,2dt−1,3}
is a copy of Qt+2 in G. Thus the only possible sets forming a copy of Kt+2 in
L(u3) are {c, ul, d1,1, d2,1, · · · , dt,1} (l = 4, · · · , p).

If L(u3) contains no Kt+2, then we are done. Otherwise, we assume
that {c, ul, d1,1, d2,1, · · · , dt,1} forms a copy of Kt+2 in L(u3). In this case,
cdi,1u3, uldi,1u3 ∈ G (i ∈ [t]). We consider the pairs {b1, ul} (l = 4, · · · , p). If
b1ulai ∈ G (i= 1, 2), then {b1ulai, cd1,1u1, cd1,1u3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3}
is a copy of Qt+2 in G. If b1ulc ∈ G, then {b1ulc, cb1b2, d1,1d1,2d1,3, d2,1d2,2d2,3,
· · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If b1ulb2 ∈ G, then {b1ulb2, cb1b2,
d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If b1uldi,1 ∈ G
(i∈ [t]), then {b1uldi,1, uldi,1u3, ca1a2, d1,1d1,2d1,3, · · · , di−1,1di−1,2di−1,3, di+1,1
di+1,2di+1,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If b1uldi,ki ∈ G (ki =
2, 3; i ∈ [t]), then {b1uldi,ki , cdi,1u1, cdi,1u3, d1,1d1,2d1,3, · · · , di−1,1di−1,2di−1,3,
di+1,1di+1,2di+1,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G. If b1ulu2 ∈ G, then
{b1ulu2, cd1,1u1, cd1,1u3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a copy of Qk+2 in G. If
b1uluk ∈ G (k = 3, · · · , n, k �= l), then {b1uluk, cd1,1u1, cu1u2, d2,1d2,2d2,3, · · · ,
dt,1dt,2dt,3} is a copy of Qt+2 in G. Since G is dense, then the pair {b1, ul}
must be covered by an edge in the form of b1ulu1. Next, we consider the
pairs {b2, ul} (l = 4, · · · , p). Switching b1 and b2, we have b2ulu1 ∈ G, then
{b2ulu1, b1ulu1, d1,1d1,2d1,3, d2,1d2,2d2,3, · · · , dt,1dt,2dt,3} is a copy of Qt+2 in G.
It is a contradiction.

From the above, we have L(u3) contains no Kt+2.

Proof of Lemma 3.2. Let �x be an optimum weighting of G. By Lemmas 3.6,
3.8, 3.10, and 3.12, there exists a vertex v in V (G) such that L(v) contains
no Kt+2. By Fact 2.4, we have

3λ(G) = λ(L(v), �x) ≤
(
t + 1

2

)
( 1
t + 1)2 = t

2(t + 1) .

Since

λ(K3
3t+3) =

(
3t + 3

3

)
( 1
3t + 3)3 = (3t + 2)(3t + 1)

6(3t + 3)2 .
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Hence

λ(G) − λ(K3
3t+3) ≤

t

6(t + 1) − (3t + 2)(3t + 1)
6(3t + 3)2 = − 1

3(3t + 3)2 .

Let c = 1
3(3t+3)2 .

Then λ(G) ≤ λ(K3
3t+3) − c.

3.3. Proof of Lemma 3.3

Let

Q′′
t+3 = {a1b1b2, b1b2a2, a1cd2, a2cd1, d1,1d1,2d1,3, d2,1d2,2d2,3,

· · · , dt−1,1dt−1,2dt−1,3}.

Lemma 3.13. Let G be a Q3-free 3-graph. If G contains a spanning subgraph
Q′′

4, then there exists a vertex v in V (G) such that the link L(v) contains no
K3.

Proof. Since G is Q3-free, we will show that L(d1) contains no K3.
If any of {b1, b2, ai} (i = 1, 2), {b1, b2, c}, {b1, b2, d2} forms a copy of

K3 in L(d1), then {b1b2d1, b1b2a2, a1cd2} is a copy of Q3 in G. If any of
{a1, c, bi} (i = 1, 2), {a1, c, a2}, {a1, c, d2} forms a copy of K3 in L(d1), then
{a1cd1, a1cd2, a2b1b2} is a copy of Q3 in G. If any of {a2, bi, a1}, {a2, bi, c},
{a2, bi, d2} (i = 1, 2) forms a copy of K3 in L(d1), then {a2bid1, a2b2b1, a1cd2}
is a copy of Q3 in G. If any of {a1, d2, a2}, {a1, d2, bi} (i = 1, 2) forms a
copy of K3 in L(d1), then {a1d2d1, a1cd2, a2b1b2} is a copy of Q3 in G. If
any of {c, d2, a2} {c, d2, bi} (i = 1, 2) forms a copy of K3 in L(d1), then
{cd2d1, cd2a1, a2b1b2} is a copy of Q3 in G, it is a contradiction.

From the above, we have L(d1) contains no K3.

Lemma 3.14. Let G be a Qt+2-free 3-graph. If G contains a spanning sub-
graph Q′′

t+3, then there exists a vertex v in V (G) such that the link L(v)
contains no Kt+2.

Proof. We claim that L(d1) contains no Kt+2. Applying induction on t. By
the proof of Lemma 3.13, the conclusion holds for t = 1. Suppose that the
conclusion holds for t− 1 (t ≥ 2).

We will show that the conclusion holds for t.
Let G′ = G[V (G) \ {dt−1,1, dt−1,2, dt−1,3}]. We consider the (t+ 2)-sets of

vertices with at least two vertices in {dt−1,1, dt−1,2, dt−1,3}. If {x1, x2, · · · , xt,
y1, y2} forms a copy of Kt+2 in L(d1), where y1, y2 ∈ {dt−1,1, dt−1,2, dt−1,3},
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x1, x2, · · · , xt ∈ V (G) \ {d1, y1, y2}, then {y1y2d1, dt−1,1dt−1,2dt−1,3, a2b1b2,
a1cd2, d1,1d1,2d1,3, · · · , dt−2,1dt−2,2dt−2,3} is a copy of Qt+2 in G.

Now consider the (t + 2)-sets of vertices with at most one vertex in
{dt−1,1, dt−1,2, dt−1,3}. By the induction hypothesis, the vertices can not form
a copy of Kt+1 or Kt+2 in LG′(d1). Thus L(d1) contains no Kt+2.

Lemma 3.15. Let G be a Q3-free 3-graph. If G contains a subgraph Q′′
4 and

|V (G)| ≥ |V (Q′′
4)|+ 1, then there exists a vertex v in V (G) such that the link

L(v) contains no K3.

Proof. Let u1, u2, · · · , up ∈ V (G) \ V (Q′′
4). If L(d1) contains no K3, then we

are done. Otherwise, we show that the only possible sets forming a copy of
K3 in L(d1) are {a1, bi, uj} (i = 1, 2; j = 1, 2, · · · , p).

Firstly, we consider the triples in {a1, a2, b1, b2}. If {a1, a2, bi} (i = 1, 2)
forms a copy of K3 in L(d1), then {a2bid1, a2b1b2, a1cd2} is a copy of Q3 in G. If
{ai, b1, b2} (i = 1, 2) forms a copy of K3 in L(d1), then {b1b2d1, b1b2a2, a1cd2}
is a copy of Q3 in G.

Secondly, we consider the triples with one vertex in {a1, a2, b1, b2} and
two vertices in {c, d2, u1, u2, · · · , up}. If {x, y, z} forms a copy of K3 in L(d1),
where x, y ∈ {c, d2, u1, u2, · · · , up}, z ∈ {a1, a2, b1, b2}, then {xyd1, a1b1b2,
a2b1b2} forms a copy of Q3 in G.

Thirdly, we consider the triples in {c, d2, u1, u2, · · · , up}. If {c, d2, u1}
forms a copy of K3 in L(d1), that is, cd2d1, cu1d1, d2u1d1 ∈ G, then any
two edges of those and the edge a1b1b2 make a copy of Q3 in G. Similarly,
other cases can not happen.

Finally, we consider the triples with two vertices in {a1, a2, b1, b2} and
one vertex in {c, d2, u1, u2, · · · , up}. If any of {a1, a2, c}, {a1, bi, c} (i = 1, 2)
forms a copy of K3 in L(d1), then {a1cd1, a1cd2, a2b1b2} is a copy of Q3 in G.
If any of {a1, a2, d2}, {a1, bi, d2} (i = 1, 2) forms a copy of K3 in L(d1), then
{a1d2d1, a1cd2, a2b1b2} is a copy of Q3 in G. If {a1, a2, uj} (j = 1, 2, · · · , p)
forms a copy of K3 in L(d1), then {a2ujd1, a2cd1, a1b1b2} is a copy of Q3 in
G. If any of {b1, b2, c}, {b1, b2, d2}, {b1, b2, uj} (j = 1, 2, · · · , p) forms a copy
of K3 in L(d1), then {b1b2d1, b1b2a2, a1cd2} is a copy of Q3 in G. If any of
{a2, bi, c}, {a2, bi, d2}, {a2, bi, uj} (i = 1, 2; j = 1, 2, · · · , p) forms a copy of K3
in L(d1), then {a2bid1, a2b1b2, a1cd2} is a copy of Q3 in G.

Therefore, we obtain the only possible sets forming a copy of K3 in L(d1)
are {a1, bi, uj} (i = 1, 2; j = 1, 2, · · · , p). Without loss of generality, we assume
that {a1, b1, u1} forms a copy of K3 in L(d1), that is, a1b1d1, a1u1d1, b1u1d1 ∈
G. We will show that L(d2) contains no K3.

Firstly, we consider the triples in {a1, a2, b1, b2}. If {a1, a2, bi} (i = 1, 2)
forms a copy of K3 in L(d2), then {a1bid2, a1b1b2, a2cd1} is a copy of Q3 in G. If
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{ai, b1, b2} (i = 1, 2) forms a copy of K3 in L(d2), then {b1b2d2, b1b2a1, a2cd1}
is a copy of Q3 in G.

Secondly, we consider the triples with two vertices in {a1, a2, b1, b2} and
one vertex in {c, d1, u1, u2, · · · , up}. If {a1, a2, c} forms a copy of K3 in L(d2),
then {a2cd2, a2cd1, a1b1b2} is a copy of Q3 in G. If {a1, a2, d1} forms a copy of
K3 in L(d2), then {a2d1d2, a2cd1, a1b1b2} is a copy of Q3 in G. If {a1, a2, uj}
(j = 1, 2, · · · , p) forms a copy of K3 in L(d2), then {a1ujd2, a1cd2, a2b1b2} is a
copy of Q3 in G. If any of {b1, b2, c}, {b1, b2, d1}, {b1, b2, uj} (j = 1, 2, · · · , p)
forms a copy of K3 in L(d2), then {b1b2d2, b1b2a1, a2cd1} is a copy of Q3 in G.
If any of {a1, bi, c}, {a1, bi, d1}, {a1, bi, uj} (i = 1, 2; j = 1, 2, · · · , p) forms a
copy of K3 in L(d2), then {a1bid2, a1b1b2, a2cd1} is a copy of Q3 in G. If any
of {a2, bi, c}, {a2, bi, d1}, {a2, bi, uj} (i = 1, 2; j = 1, 2, · · · , p) forms a copy of
K3 in L(d2), then {a2bid2, a2b1b2, a1u1d1} is a copy of Q3 in G.

Thirdly, we consider the triples with one vertex in {a1, a2, b1, b2} and two
vertices in {c, d1, u1, u2, · · · , up}. If {x, y, z} forms a copy of K3 in L(d2),
where x, y ∈ {c, d1, u1, u2, · · · , up}, z ∈ {a1, a2, b1, b2}, then {xyd2, a1b1b2,
a2b1b2} forms a copy of Q3 in G.

Finally, we consider the triples in {c, d1, u1, u2, · · · , up}. If {x, y, z} forms a
copy of K3 in L(d2), where x, y, z ∈ {c, d1, u1, u2, · · · , up}, then {xyd2, a1b1b2,
a2b1b2} forms a copy of Q3 in G.

From the above, we have L(d2) contains no K3.

Lemma 3.16. Let G be a Qt+2-free 3-graph. If G contains a subgraph Q′′
t+3

and |V (G)| ≥ |V (Q′′
t+3)| + 1, then there exists a vertex v in V (G) such that

the link L(v) contains no Kt+2.

Proof. Let u1, u2, · · · , up ∈ V (G) \ V (Q′′
t+3). If L(d1) contains no Kt+2, then

we are done. Otherwise, we show that the only possible sets forming a copy of
Kt+2 in L(d1) are {a1, bi, uj , d1,k1 , d2,k2 , · · · , dt−1,kt−1} (i= 1, 2; j = 1, 2, · · · , p;
ks = 1 or 2 or 3; s = 1, 2, · · · , t− 1).

Applying induction on t. By the proof of Lemma 3.15, the conclusion
holds for t = 1. For t = 2. We consider the 4-sets of vertices with at
least two vertices in {d1,1, d1,2, d1,3}. If {x1, x2, y1, y2} forms a copy of K4
in L(d1), where y1, y2 ∈ {d1,1, d1,2, d1,3}, x1, x2 ∈ V (G) \ {d1, y1, y2}, then
{y1y2d1, d1,1d1,2d1,3, a2b1b2, a1cd2} is a copy of Q4 in G.

Now consider the 4-sets of vertices with at most one vertex in {d1,1, d1,2,
d1,3}. Let G0 = G[{a1, a2, b1, b2, c, d1, d2}]. Since the vertices forming a copy of
K3 in LG0(d1) must be of the form {a1, bi, uj} (i = 1, 2; j = 1, 2, · · · , p). Thus
the only possible sets forming a copy of K4 in L(d1) are {a1, bi, uj , d1,k1}
(i = 1, 2; j = 1, 2, · · · , p; k1 = 1, 2, 3). Switching d1 and d2, we have that
the only possible sets forming a copy of K4 in L(d2) are {a2, bi, uj , d1,k1}
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(i = 1, 2; j = 1, 2, · · · , p; k1 = 1, 2, 3). Suppose that the conclusion holds
for t − 1 (t ≥ 3). We will show that the conclusion holds for t. Let G′ =
G[V (G) \ {dt−1,1, dt−1,2, dt−1,3}].

Consider the (t + 2)-sets of vertices with at least two vertices in {dt−1,1,
dt−1,2, dt−1,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(d1), where
y1, y2 ∈ {dt−1,1, dt−1,2, dt−1,3}, x1, x2, · · · , xt ∈ V (G) \ {d1, y1, y2}, then
{y1y2d1, dt−1,1dt−1,2dt−1,3, a2b1b2, a1cd2, d1,1d1,2d1,3, · · · , dt−2,1dt−2,2dt−2,3} is
a copy of Qt+2 in G.

Now consider the (t + 2)-sets of vertices with at most one vertex in
{dt−1,1, dt−1,2, dt−1,3}. By the induction hypothesis, the vertices forming a
copy of Kt+1 in LG′(d1) must be of the form {a1, bi, uj , d1,k1 , d2,k2 , · · · ,
dt−2,kt−2} (i = 1, 2; j = 1, 2, · · · , p; ks = 1 or 2 or 3; s = 1, 2, · · · , t− 2). Thus
the only possible sets forming a copy of Kt+2 in L(d1) are {a1, bi, uj , d1,k1 , d2,k2 ,
· · · , dt−1,kt−1} (i = 1, 2; j = 1, 2, · · · , p; ks = 1 or 2 or 3; s = 1, 2, · · · , t− 1).

Without loss of generality, we may assume that {a1, b1, u1, d1,1, d2,1, · · · ,
dt−1,1} forms a copy of Kt+2 in L(d1). In particular, a1u1d1 ∈ G. We will
show that L(d2) contains no Kt+2.

Applying induction on t. By the proof of Lemma 3.15, the conclusion
holds for t = 1. For t = 2, recall that the only possible sets forming a copy
of K4 in L(d2) are {a2, bi, uj , d1,k1} (i = 1, 2; j = 1, 2, · · · , p; k1 = 1, 2, 3). But
{a2, bi, uj , d1,k1} (i = 1, 2; j = 1, 2, · · · , p; k1 = 1, 2, 3) can not form a copy of
K4 in L(d2). Otherwise, {a2bid2, a2b1b2, a1u1d1, d1,1d1,2d1,3} (i = 1, 2) forms
a copy of Q4 in G. Then L(d2) contains no K4.

Suppose that the conclusion holds for t−1 (t≥ 3), that is, if {a1, b1, u1, d1,1,
d2,1, · · · , dt−2,1} forms a copy of Kt+1 in LG′(d1), then we have that LG′(d2)
contains no Kt+1. We will show that the conclusion holds for t.

Consider the (t + 2)-sets of vertices with at least two vertices in {dt−1,1,
dt−1,2, dt−1,3}. If {x1, x2, · · · , xt, y1, y2} forms a copy of Kt+2 in L(d2), where
y1, y2 ∈ {dt−1,1, dt−1,2, dt−1,3}, x1, x2, · · · , xt ∈ V (G) \ {d2, y1, y2}, then
{y1y2d2, dt−1,1dt−1,2dt−1,3, a2b1b2, a1cd2, d1,1d1,2d1,3, · · · , dt−2,1dt−2,2dt−2,3} is
a copy of Qt+2 in G.

Now consider the (t + 2)-sets of vertices with at most one vertex in
{dt−1,1, dt−1,2, dt−1,3}. By the induction hypothesis, the vertices can not form
a copy of Kt+1 or Kt+2 in LG′(d2). Thus L(d2) contains no Kt+2.

Proof of Lemma 3.3. Let �x be an optimum weighting of G. By Lemmas 3.14
and 3.16, there exists a vertex v in V (G) such that L(v) contains no Kt+2.
The rest of the proof is identical to the proof Lemma 3.2.
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4. Turán number of the extension of Qt+2

Let T r
m(n) be the balanced complete m-partite r-uniform graph on n vertices,

i.e., V (T r
m(n)) = V1∪V2∪· · ·∪Vm such that Vi∩Vj = ∅ for every 1 ≤ i < j ≤ m

and |V1| ≤ |V2| ≤ · · · ≤ |Vm| ≤ |V1| + 1, and E(T r
m(n)) = {e ∈

([n]
r

)
: ∀i ∈

[m], |e ∩ Vi| ≤ 1}. Let trm(n) = |T r
m(n)|. Given positive integers m and r, let

[m]r = m(m− 1) . . . (m− r + 1).
For an r-graph F and p ≥ |V (F )|, let KF

p denote the family of r-graphs
H that contains a set C of p vertices, called the core, such that the subgraph
of H induced by C contains a copy of F and such that every pair of vertices
in C is covered in H. Let HF

p be a member of KF
p obtained as follows. Label

the vertices of F as v1, . . . , v|V (F )|. Add new vertices v|V (F )|+1, . . . , vp. Let
C = {v1, . . . , vp}. For each pair of vertices vi, vj ∈ C not covered in F , we
add a set Bij of r−2 new vertices and the edge {vi, vj}∪Bij , where the Bij ’s
are pairwise disjoint over all such pairs {i, j}. Note that the extension HF is
the case that p = |V (F )|.

Using a stability argument of Pikhurko [16] and a transference technique
between the Lagrangian density of an r-uniform graph and the Turán density
of its extension in several other papers, we obtain the following result.

Theorem 4.1. For sufficiently large n, ex(n,HQt+2) = t33t+3(n). Moreover,
if n is sufficiently large and G is an HQt+2-free 3-graph on [n] with |G| =
t33t+3(n), then G = T 3

3t+3(n).

To prove the theorem, we need several results from [2]. Similar results are
obtained independently in [15].

Definition 4.1 ([2]). Let m, r ≥ 2 be positive integers. Let F be an r-graph
that has at most m + 1 vertices satisfying πλ(F ) ≤ [m]r

mr . We say that KF
m+1

is m-stable if for every real ε > 0 there are a real δ > 0 and an integer n1
such that if G is a KF

m+1-free r-graph with at least n ≥ n1 vertices and more
than ( [m]r

mr − δ)
(n
r

)
edges, then G can be made m-partite by deleting at most

εn vertices.

Theorem 4.2 ([2]). Let m, r ≥ 2 be positive integers. Let F be an r-graph
that either has at most m vertices or has m + 1 vertices one of which has
degree 1. Suppose either πλ(F ) < [m]r

mr or πλ(F ) = [m]r
mr and KF

m+1 is m-stable.
Then there exists a positive integer n2 such that for all n ≥ n2 we have
ex(n,HF

m+1) = trm(n) and the unique extremal r-graph is T r
m(n).

The following lemma is proved in [21].

Lemma 4.1 ([21]). Let m, r ≥ 2 be positive integers. Let F be an r-graph
that has at most m+1 vertices with r− 1 vertices of one edge of degree 1 and
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πλ(F ) ≤ [m]r
mr . Suppose there is a constant c > 0 such that for every F -free

and Kr
m-free r-graph L, λ(L) ≤ λ(Kr

m) − c holds. Then KF
m+1 is m-stable.

Proof of Theorem 4.1. By Theorem 3.1 and Corollary 3.1, Qt+2 satisfies the
conditions of Lemma 4.1. So KQt+2

3t+4 is (3t+3)-stable. The theorem then follows
from Theorem 4.2.

Remark. As mentioned earlier, Conjecture 1.1 has been verified for a 3-
uniform tight star Tt = {123, 124, 125, 126, ..., 12(t + 2)} and a λ-perfect 3-
uniform graph for t ≥ 3 in [23]. Surprisingly, it seems to be much harder to
verify for the case t = 2. We think that it is interesting to understand for the
case t = 2.
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