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The Lagrangian density of the disjoint union of a
3-uniform tight path and a matching and the Turan
number of its extension

PINGGE CHEN*, JINHUA LIANG, AND YUEJIAN PENGT

Abstract: Given a positive integer n and an r-uniform hypergraph
F, the Turdn number ex(n, F') is the maximum number of edges in
an F-free r-uniform hypergraph on n vertices. The Turdn density of
F is defined as 7(F) = lim,, o ez(n, F) /(7). The Lagrangian den-
sity of an r-uniform graph F'is my (F') = sup{r!\(G) : G is F-free},
where A(G) is the Lagrangian of G. In 1989, Sidorenko [20] showed
that the Lagrangian density of a hypergraph F' is the same as
the Turan density of its extension. For an r-uniform graph F on ¢
vertices, it is clear that my(F) > rI\(K}_,), where K|_; is the com-
plete r-uniform graph on ¢ — 1 vertices. We say that an r-uniform
hypergraph F' on ¢ vertices is A-perfect if my(F) = r!IA(K]_;). A
result of Motzkin and Straus implies that all graphs are A-perfect.
A conjecture proposed in [23] states that for » > 3, there exists
an integer n such that if F' and H are A-perfect r-uniform graphs
on at least n vertices, then the disjoint union of F and H is A-
perfect. The conjecture has been verified in [23] for a 3-uniform
tight star Tp = {123,124, ...,12(t + 2)} and a A-perfect 3-uniform
graph for ¢t > 3 (Sidorenko [20] showed that T} is A-perfect). The
case t = 2 remains unsolved. In this paper, we shall show that
the disjoint union of 75 = {123,234} and a 3-uniform matching is
A-perfect(Jiang-Peng-Wu [9] showed that a 3-uniform matching is
A-perfect). Moreover, using a stability argument of Pikhurko [16],
together with a transference technique between the Lagrangian
density of an r-uniform graph and the Turdn density of its exten-
sion, we also obtain the Turdan numbers of their extensions.
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number.
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1. Notations and definitions

For a set V and a positive integer 7, let V(") denote the family of all r-subsets
of V. An r-uniform graph or r-graph G consists of a set V' (G) of vertices and
a set B(G) C V(G)" of edges. Let |G| denote the number of edges of G. An
edge e = {aj,as,...,a,} will be simply denoted by ajas...a,. An r-graph
H is a subgraph of an r-graph G, denoted by H C G, if V(H) C V(G) and
E(H) C E(G). In particular, a subgraph H is spanning if V(H) = V(Q).
A subgraph of G induced by V' C V| denoted as G[V’], is the r-graph with
vertex set V' and edge set E' = {e € E(G) : e C V'}. Let K} denote the
complete r-graph on t vertices, that is, the r-graph on ¢ vertices containing
all r-subsets of the vertex set as edges.

The r-uniform ¢-matching, denoted by M, is the r-graph with ¢ pairwise
disjoint edges. For a positive integer n, let [n] denote {1,2,3,...,n}.

Given an r-graph F', an r-graph G is called F'-free if it does not contain
a copy of F' as a subgraph. For a fixed positive integer n and an r-graph
F, the Turdn number of F', denoted by ex(n, F), is the maximum number of
edges in an [-free r-graph with n vertices. An averaging argument of Katona-
Nemetz-Simonovits [11] showed that the sequence EIEZ’)F) is a non-increasing

exists. The Turdn density of F' is defined as

ex(n,F)

()

sequence. Hence, lim,,

m(F) = lim w.

n—co (T)

For 2-graphs, Erdds-Stone-Simonovits determined the asymptotic values

of Turdn numbers of all non-bipartite graphs. However, very few results are

known for hypergraphs. For example, the well known conjecture of Turan that

(K f’)) = 5/9 is not completely solved although the upper bounds given in

[3] and [18] are close to the conjectured value, where K f) is the complete

3-graph with 4 vertices. A recent survey on Turan numbers of r-uniform

hypergraphs can be found in [12]. Johnston and Lu introduced the Turdn
density of non-uniform hypergraphs in [10].

Lagrangian has been a useful tool in estimating the Turan density of a

hypergraph.

Definition 1.1. Let G be an r-graph on [n] and let ¥ = (z1,...,x,) € R™.
Define the Lagrange function of G as

c€E(G) ice
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The Lagrangian of G, denoted by A(G), is defined as
AMG) = max{\(G, %) : ¥ € A},

where

A={7=(r1,22,...,2,) € R": Zm, =1,2; >0 for every i € [n]}.

i=1

The value x; is called the weight of the vertex i and a vector ¥ € A is called a
feasible weighting on G. A feasible weighting ¥ is called an optimum weighting

on G if A\(G, %) = A\(G).
Given an r-graph F, the Lagrangian density mw\(F') of F' is

mA(F) = sup{r!\(G) : G is F-free}.

The Lagrangian density of an r-graph is closely related to its Turan den-
sity. We say that a pair of vertices {i,j} is covered in a hypergraph H if there
exists e € H such that {i,j} C e. We say that a hypergraph H covers pairs if
every pair of vertices is covered in H. The extension of an r-graph F', denoted
by HY, is defined as follows. For each pair of vertices v;,v; € V(F) not cov-
ered in F, we add a set B;; of r — 2 new vertices and the edge {v;,v;} U B,
where all B;; are pairwise disjoint over all such pairs {i, j}.

Proposition 1.1 ([19, 16]). Let F' be an r-graph. Then
(1) w(F) < mA(F);
(ii) 7(HY) = 7z (F). In particular, if F covers pairs, then w(F) = m\(F).

For an r-graph H on t vertices, it is clear that my\(H) > rIA(K]_;). We
say that an r-uniform hypergraph H on t vertices is A-perfect if m\(H) =
rIA(K]_;). Theorem 2.1 implies that all 2-graphs are A-perfect. It is interesting
to explore what kind of hypergraphs are A-perfect. Sidorenko [20] showed that
the r-fold enlargement of a tree with order greater than some number A, is
A-perfect. Hefetz and Keevash [6] showed that a 3-uniform matching of size 2
is A-perfect. Jiang-Peng-Wu [9] extended to that any 3-uniform matching is
A-perfect. Pikhurko [16] and Norin-Yepremyan [15] showed that an r-uniform
tight path of length 2 is A-perfect for r = 4 and » = 5 or 6 respectively.
Bene Watts, Norin and Yepremyan [1] showed that an r-uniform matching
of size 2 is not A-perfect (by determining its Lagrangian density) for r > 4
confirming a conjecture of Hefetz and Keevash [6]. Wu-Peng-Chen [22] showed
the same result for = 4 independently. Jenssen [8] showed that a path of
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length 2 formed by two edges intersecting at r — 2 vertices is A-perfect for
r = 3,4,5,6,7. An r-uniform hypergraph is linear if any two edges have at
most 1 vertex in common. Wu-Peng [21] showed that a 3-uniform linear path
of length 3 or 4 is A-perfect. Hu-Peng-Wu [7] showed that the disjoint union of
a 3-uniform linear path of length 2 or 3 and a 3-uniform matching is A-perfect.
Yan-Peng [23] showed that the 3-uniform linear cycle of length 3 ({123, 345,
561}) is A-perfect, and F5 ({123, 124, 345}) is not A-perfect (by determining
its Lagrangian density). In [23], the following conjecture is proposed.

Conjecture 1.1 ([23]). (1) For r > 3, there exists n such that a linear
r-graph with at least n vertices is A-perfect.

(2) For r > 3, there exists n such that if G, H are \-perfect r-graphs with
at least n vertices, then the disjoint union of G and H, denoted by GW H, is
A-perfect.

Yan-Peng [23] also verified the conjecture for a 3-uniform tight star 7, =
{123,124,125,126, ...,12(t + 2)} and a A-perfect 3-uniform graph for ¢ > 3.
The case that t = 2 is unsolved.

In this paper, we show that the disjoint union of 75 and a 3-uniform ¢-
matching (denoted by MJ) is A-perfect. Precisely, let Q12 be the 3-graph
with vertex set [3t + 4] and edge set {123,234} & M. We show that the
Lagrangian density of Q42 is 3I\(K3,, 5). We also give the Turdn numbers of
their extensions by using a similar stability argument for larger enough n as
in [16] and several other papers.

2. Preliminaries

In this section, we give some useful properties of the Lagrange function. The
following fact follows immediately from the definition of the Lagrangian.

Fact 2.1. Let Gy, Gy be r-graphs and G1 C Gy. Then A\(G1) < A(Ga).
Given an r-graph G and a set S of vertices, the link of S in G, denoted
by L (95), is the hypergraph with edge set {e C V(G)\ S:eUS € E(G)}.

In particular, S = {i}, we write Lg({i}) as Lg(i). The degree of i is dg(i) =
|L(7)], the number of edges containing i. Given i, j € V(G), define

Le(j\i)={e€ C“/(—Gl)) cig¢eeU{j} e EG)and eU{i} ¢ E(G)}.

In other words, Lg(j \ ¢) is the set of (r — 1)-tuples in the neighborhood of
J but not in the neighborhood of i. We say that an (r — 1)-tuple e is in the
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neighborhood of a vertex u if {u} Ue is an edge. When there is no confusion,
we will drop the subscript G in Lg (5 \ 7). We say G on vertex set [n] is left-
compressed if for every 1,7, 1 <i < j < n, Lg(j \ i) = (). Equivalently, G on
[n] is left-compressed if jijo - - - j» € E(G) implies i1is - - - i, € E(G), wherever
ip <jpfor 1 <p<r. Leti,je V(G), define

m5(G) = (B(G)\{eU{j} e € La(j \ )} | J{eU{i} re € La(j \ i)}

In other words, m;;(G) is an r-graph obtained from G by replacing an edge

f containing j but not ¢ by (f\ {7}) U {e} if (f\ {7}) U {i} is not an edge
in G. We say that m;;(G) is obtained from G by compressing j to i. By the
definition of m;;(G), it’s straightforward to verify the following fact.

Fact 2.2. Let G be an r-graph on [n|. Let T = (x1,x2,...,x,) be a feasible
weighting on G. If z; > x;, then \(m;;(G), %) > MG, T).

An r-graph G is dense if for every subgraph G’ of G with [V (G')| < |[V(G)]
we have A(G') < A(G). This is equivalent to that no weight in an optimum
weighting on G is zero.

Fact 2.3 ([5]). Let G = (V, E) be a dense r-graph. Then G covers pairs.

n [13], Motzkin and Straus determined the Lagrangian of any given 2-
graph.

Theorem 2.1 (Motzkin and Straus [13]). If G is a 2-graph in which a maz-
imum complete subgraph has t vertices, then N(G) = AN(K7) = 3(1—1). O

The support of a vector Z is o(Z) = {i : x; # 0 for i € [n]}.

Fact 2.4 ([5]). Let G be an r-graph on [n]. Let ¥ = (x1,29,...,2,) be an
optimum weighting on G. Then

NG, 7)

T rA(G)

for every i € o(Z).
Fact 2.5 ([21]). If G is a Ty-free 3-graph on [n] (n > 4). Then \(G) < 5;.

Proof. Since G is Thr-free, then every pair is covered by at most one edge. Let
Z = (x1,29,...,2,) be an optimum weighting on G. By Fact 2.4, oMG.E)
3AG) for all i € o(F). Summing over i € o(Z) we obtain 3]0(17)\)\(@
Yico@) w‘(fgf) 21<Z<J<n zix; < 2 Note that |o(Z)| > 4 (otherwise A\(G)

3-)- So A(G) < 6‘(7@” < 4

IRVARNI
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Theorem 2.2 ([9]). Let t > 2 be an integer. Let G be an M} -free 3-graph.
Then A(G) < M(K3,_,).

Fact 2.6. Let G be an r-graph on [n]. Let & = (x1,x2,...,%,) be a feasible
weighting on G. Let i,j € [n], i # j. Suppose that Lg(i\ j) = Lg(j \ i) = 0.
Let f = (y1,92,--.,yn) be defined by letting yo = x4 for every € € [n] \ {i,7}
and letting y; = y; = 3(x; + x;), then (G, ) > MG, 7).

Proof. Since Lg(i\ j) = Lg(j \ i) = 0, we have

MG.9) = NG, @) = )

{i,j}CecG

) )2
W—xi%} H x> 0. U
kee\{i,j}

Let K. gtjrg be the 3-graph obtained by removing one edge from K3, 13

Fact 2.7. Lett > 1 be an integer. Let G be a 3-graph on [3t+3]. If G # K3, 5,
then there exists a positive real ¢; = c1(t) such that N(G) < MK3,4) <
)‘<K33t+3) - €1,

If Vi,..., Vs are disjoint sets of vertices, let II{_,V; = Vi x Vo x ... x Vs =
{(z1,22,...,2s) : Vi € [s],z; € V;}. We will use II{_,V; to also denote the
set of the corresponding unordered s-sets. If L is a hypergraph on [m], then
a blowup of L is a hypergraph G whose vertex set can be partitioned into
Vi, ..., Vi such that E(G) = U, [Lice Vi- The following proposition follows
immediately from the definition and is implicit in many papers (see [12] for
instance).

Proposition 2.1. Let r > 2. Let L be an r-graph and G be a blowup of L.
Suppose |V(G)| =n. Then |G| < AN(L)n". O

3. Lagrangian density of Q42

Clearly, K3, 5 is Q1o-free. In this section, we will show that the maximum
possible Lagrangian among all @Q;yo-free 3-graphs is uniquely achieved by

K3, 5. Our main results are as follows.
Theorem 3.1. Let G be a Quio-free 3-graph. Then MN(G) < MNK3 3) =
%. Furthermore, there exists a positive real ¢ = ¢(t) such that \(GQ)

MEK3,,5) — ¢ for any K3, 4-free 3-graph G.
Corollary 3.1. m)\(Qu42) = 3N (K3, ).

Proof. Since K3, 4 is Qupo-free, then mx(Qu12) > 3IA(K3,,3). On the other
hand, by Theorem 3.1, mA(Q12) < 3I\(K3,,3). Therefore, my\(Qui2) =
BA(KH, ). o

A
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3.1. Left-compressing a Q¢2-free 3-graph

Let
Q2+2 = {a1a2¢,b1bac} W Mf’,
and
Q5 = {a1bibe, bibras, arcds, ased } W M} .
To prove Theorem 3.1, we will prove the following crucial results.

Lemma 3.1. Lett > 1 be an integer. Then there exists a positive real ¢ such
that the following holds. Let G be a 3-graph on [n] and let 1 <i < j <mn. If
G is Quyo-free, then

(1) either N(G) < MN(K3,,3) — ¢, or m;(G) is Quio-free.

(2) Furthermore, if G is K3, s-free and the pair {i,j} is covered by an
edge of G, then m;;(G) is K3, 4-free.

Proof. (1) Suppose that 7;;(G) contains a copy of Q¢2, denoted by Q. There
ise e @Qsuchthati € e € m(G),j ¢ eande =e\{i}U{j} € G. Otherwise,
@ is also a copy of Q12 in G, it is a contradiction. There are two cases in
terms of the degree of i in Q.

Case 1: dg(i) = 1. If there exists no f € @ such that j € f, then
Q\ {e}U{e'} forms a copy of Q;2 in G. If there exists one edge f such that
j € f € Q, then f is an independent edge in @ and f' = f\ {j} U{i} € G.
So Q\ {e, f}U{e, f'} forms a copy of Q42 in G.

Case 2: dg(i) = 2. Let Q = {e1,e2,€3, -+ , €2} and |eg Ney| = 2.

Ifel =e\{i}U{j} € G, ey =e\{i}U{j} € G and j € e3, then
Q\ {e1,e2,e3} U{el,eh,e3 \ {j} U{i}} forms a copy of Q2. Otherwise,
without loss of generality, we assume that €] = e \ {i} U{j} € G but € =
eo\ {i} U{j} ¢ G. If j € eo with dp(j) = 1, then {€],e2, €3, - , 112} forms
a copy of Q2. If dg(j) = 0, we get a new subgraph {e},es, €3, -, ei12}
isomorphic to Q}, 5 = {a1asc, bibac} W MP in G. In Section 3.2, we will show
the following lemma indicating that A\(G) < A(K3,,5) — ¢ in this case.

Lemma 3.2. Lett > 1 be an integer. Then there exists a positive real ¢ such
that N(G) < N(K3,,3) — ¢ for any dense Qyo-free 3-graph with Q,,, C G.

If j € e3, we have eg, e, = e3\ {j}U{i} € G, then we get {€], €2, €3, €4, €4,

-, €42} isomorphic to QY3 = {a1b1b2, biboas, arcdy, azed; } W M} | in G.

In Section 3.3, we will show the following lemma indicating that A(G) <
MK3,, ) — ¢ in this case.

Lemma 3.3. Lett > 1 be an integer. Then there exists a positive real ¢ such
that \(G) < XN(K3,,3) — ¢ for any Quya-free 3-graph with Q7 53 C G.
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(2) We assume that {7, j} is covered by an edge g of G. Suppose for contra-
diction that 7;;(G) contains a copy K of K3, 5. Clearly, V(K ) must contain i.
If 7 € V(K), then it is easy to see that K is also in G, contradicting G being
K3, s-free. By the definition of m;;(G), all the edges in K not containing i
are also in G. If j ¢ V(K), V(K) contains at least 3t 4+ 1 vertices outside g
by our assumption. So K contains a copy of Q(;—1)42 disjoint from g, which
lies in G. Now, Q—1)+2 W {g} is a copy of Q¢y2 in G, a contradiction. O

Next, we perform the following algorithm.

Algorithm 3.1.

Input: An r-graph G on [n].

Output: A dense and left-compressed r-graph G'.

Step 1. If G is dense, then go to step 2. Otherwise, replace G by a dense
subgraph G' with the same Lagrangian, and relabel the vertices of G' if neces-
sary such that an optimum weighting § of G' satisfying y; > y; if i < j. Then
go to step 2.

Step 2. If G is left-compressed, then terminate. Otherwise, let i be an opti-
mum weighting of G such that there exist vertices 1, j satisfying i < j, y; > y;
and La(j\ i) # 0. Replace G by m;;(G) and go to step 1.

Note that the algorithm terminates after finite many steps since Step 2
reduces the parameter s(G) = > .cq Y ic. @ by at least 1 each time and Step
1 reduces the number of vertices by at least 1 each time.

Lemma 3.4. There exists a positive real ¢ such that the following holds. Let
G be a Quia-free (and K3, 5-free) 3-graph. Then either N(G) < A(K3,3) — ¢
or there exists a dense and left-compressed Qyyo-free (and K§t+3—free) 3-graph
G’ with |[V(G)| < |[V(G)| and A(G") > A\(G).

Proof. 1f for any ¢, we have A(G) > A(K3, 5)—c, then we apply Algorithm 3.1
to G and let G’ be the final graph. Then G’ is dense and left-compressed. By
Fact 2.2, A(G’) > A(G). By Lemma 3.1, G’ is Qq4o-free (and K3, s-free). O

Proof of Theorem 3.1. By Lemma 3.4, we may assume that G is dense and
left-compressed. Suppose V(G) = [n]. If n < 3t 4+ 3, then by Fact 2.1, we
have A(G) < A(K$,,3). Furthermore, if G is K3 s-free, then by Fact 2.7,
MG) < MK33) < AK3,3) — ¢1 for some positive ¢; (independent of G).
Hence, we may assume that n > 3t + 4. Let ¥ = (1,22, - ,z,) be an
optimum weighting of G. Since G is left-compressed, then it is clear that
xr1 > Ty > -+ > xy. By Fact 2.3, G covers pairs. So i(n — 1)n € G, for some
i < n — 1. Since G is left-compressed, we have 1(n — 1)n € G, this implies
that V i, j, where 2 < i < j < n, 1ij € G and furthermore Lg(1) = K2

n—1-
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2 Ln

Suppose 21 = a. Since i = (1,..., 1) is a feasible weighting on Lg(1),

then by Theorem 2.1, we have

AMLg(1),{z2, 3, -+ ,xp}) = Z zi7; = (1 —a)*A(Lg(1),9) < %(1 —a)?

2<i<j<n

Let F = G[{2,3, -+ ,n}|. For t = 1. Suppose F' contains a copy of T2(3).
Since n > 7,34,5 € {2,3,--- ,n}, such that i, j ¢ V(T2(3)). Now, {lz'j,Tg(g)}
forms a copy of Y3 in GG, contradicting G being Q)3-free. Hence F' must be

T2(3)—free. Note that ¥ is a feasible weighting on F. By Fact 2.5, we have
A(F,¥) < 55 Thus,

)‘(G) = )‘(G)f) = a/\(LG(l)v {‘T% T3, 758”}) + )\(F, {‘T27x37 T 7xn})

1
a(l —a)? + ﬂ“ —a)?

(1—a)? {a + i(1 - a)}

12
1 /24 1 32

2
< S (Z2) === < 3 — 1073,
= 2(11) 27 363_/\(K6) 10

N — DN —

For ¢t > 2. Suppose F contains a copy of MJ. Since n > 3t + 4,3 i,j,k €
{2,3,--- ,n}, such that i,j,k ¢ M2. Now, {lij, 1jk} W M} forms a copy of
Q40 in G, contradicting G being Q4 o-free. Hence F must be MJ-free. Note
that ¢ is a feasible weighting on F. By Theorem 2.2, we have A(F,y) <
MKS,_;). Let s=3t—1and p= ‘“’276%*2. Thus,

ANG)=ANG, %) = aNLg(1),{x2, x5, - ,xn}) + NF, {x2, 23, -+ , 20 })
< gell =+ (K )1 - o)

L1 (3t—2)(3t—3)
= (=a) |50+ =55 1y (1_@}
= (1-a)? _%a+u(1—a)}
= (1-a)? :(%—M)a"‘/‘}

Py Lol
— (1—a)(1—a)(2a+i_%u)(l_im

IN

[g(u—aw+u—a»+@a+ . 0}(1—§m
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254
3(2s2 4+ 3s —2)2°

Since s = 3t — 1, we have

3t+3 1 s>+ 55+ 6
MK, 3) = ? = :
(Kts) ( 3 >(3t+3) 6(s +4)2

Hence,

- 2s% 245546
T 3(282+43s—2)2  6(s+4)?
45 (s +4)? — (s> + 55+ 6)(2s* + 3s — 2)?
6(2s% 4 3s — 2)%(s + 4)?
21s* + 65s® — 50s% — 525 + 24
 6(22+3s—2)%(s+4)2

MG) = MK3y3)

which is negative for every s > 1. Let

, { L 21s4+65s3—5052—525+24}
c=min {1077, ¢y,

6(2s%2 4 3s — 2)%(s + 4)?
Then A\(G) < M(K3,,5) — ¢ and the proof is completed. O

We owe the proof of Lemma 3.2 and Lemma 3.3.
3.2. Proof of Lemma 3.2

Let
QQH = {a1a20, b1bac, d1,1d1,2d1,37 d2,1d2,2d2,37 te adt,ldt,th,3}~

Lemma 3.5. Let G be a dense Qs-free 3-graph. If G contains a spanning
subgraph Q%, then there exists a vertex v in V(G) such that the link L(v)
contains no Ks.

Proof. If L(ay) contains no K3, then we are done. Otherwise, we show that the
only possible sets forming a copy of K3 in L(ay) are {az,c,di} (k =1,2,3).
If any of the triples in {ag, ¢, by, by} forms a copy of K3 in L(ay), for example,
if {ag,c, b1} forms a copy of K3 in L(ay), that is, ajasc, aichy, a1aby € G,
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then any two edges of those and the independent edge didsds forms a copy
of @3 in G. Similarly, other cases can not happen. If any of the triples with
one vertex in {as, ¢, by, bo} and two vertices in {dy, dy, d3} forms a copy of K3
in L(ay), if {z,y, 2z} forms a copy of K3 in L(a1), where x € {ag,c, by, bo},
y,z € {dy,da,ds}, then {yzay,didads, bibec} forms a copy of Q3 in G. If
{dl,dg,dg} forms a Copy of Kg in L((Il), then {dldzal,dldzdg,blbgc} is a
copy of Q3 in G.

Next, we consider the triples with two vertices in {asg,c, b1, by} and one
vertex in {dy,ds,ds}. If {ag,b;,dr} (i = 1,2,k = 1,2,3) forms a copy of
K3 in L(ay), then {ajasb;, ajage, didads} is a copy of Qs in G. If {c,b;, dy}
(1=1,2;k =1,2,3) forms a copy of K3 in L(ay), then {ajcb;, bibac, d1dads}
is a copy of Q3 in G. If {by,by,di} (k= 1,2,3) forms a copy of K3 in L(aq),
then {a1b1bg, bibac, didads} is a copy of Q3 in G.

Therefore, the only possible sets forming a copy of K3 in L(a;) are
{ag, ¢, di} (k =1,2,3). Switching a; and by, we can show identically that the
only possible sets forming a copy of K3 in L(by) are {bs,c,di} (k =1,2,3).
Without loss of generality, we may assume that {ag, ¢, d; } forms a copy of K3
in L(ay), that is, ayasc, ajasdy, ajed; € G. We have that {by, ¢, di} (k =2,3)
can not form a copy of K3 in L(by), otherwise, {b1bady, b1boc, ajasd;} (k =
2,3) is a copy of Q3 in G. If L(by) contains no K3, then we are done. Other-
wise, {be, ¢,dy} forms a copy of K3 in L(by), that is, bibac, bibedy, bicd; € G.
We will show that L(ds) contains no Kj.

Firstly, we consider the triples in {a1, as,dy,ds}. If any of the triples in
{a1, aq,dy,ds} forms a copy of K3 in L(dy), for example, if {a1, as,d;} forms
a copy of K3 in L(dy), that is, ajasds, a1dida, asdids € G, then any two edges
of those and the edge b1byc forms a copy of Q3 in G. Similarly, other cases
can not happen.

Secondly, we consider the triples with one vertex in {a1, as,d;,ds} and
two vertices in {b1, by, c}. If any of {b1,ba, a;}, {b1,b2,dr} (i =1,2;k = 1,3)
forms a copy of K3 in L(dz), then {b1bads, bibac, arazdy} is a copy of Q3 in
G. If {bj,c,a;}, {bj,c,di} (3,7 =1,2;k = 1,3) forms a copy of K3 in L(ds),
then {bjcds, bibac, arasd; } is a copy of Qs in G.

Thirdly, if {b1,b2,c} forms a copy of K3 in L(dy), then {b1bada, bibac,
ajagd; } is a copy of Q3 in G.

Finally, we consider the triples with two vertices in {a1, as, d1, d3} and one
vertex in {b1,bo, c}. If any of {a1,a2,b;}, {a1,as,¢} (j = 1,2) forms a copy
of K3 in L(dz), then {ajasds, ajasdy, bibac} is a copy of Q3 in G. If any of
{ai, di,b;}, {ai, di, c} (4,5 =1,2;k =1,3) forms a copy of K3 in L(d), then
{aidkdg,dldeg,bleC} is a Copy of Qg in G. If {dl,dg,bj} (j = 172) forms a
copy of K3 in L(dy), then {d1bjds, didads, a1asc} is a copy of Q3 in G.
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If {dl,dg,c} forms a copy of K3 in L(dg), i.e., didads, didoc, dsdsoc € G.
Let’s consider the pair {ag,bo}. If asboa; € G, then {ajagbs, ajasc, didads}
forms a copy of Q3 in G. If asbab; € G, then {axb1ba, bibac, didads} forms a
copy of Q3 in G. If agbec € G, then {byagc, ajasc, didads} forms a copy of Q3
in G. If agbad; € G, then {beaady, arasdy, dadsc} forms a copy of Q3 in G. If
asbody, € G (k = 2,3), then {agbady, ajcdy, byedy } forms a copy of @3 in G.
So the pair {ag, b2} can not be covered by any edge of G, by Fact 2.3, it is a
contradiction. The proof is complete. O

Lemma 3.6. Let G be a dense Qiyo-free 3-graph. If G contains a spanning
subgraph Qj_ o, then there exists a vertex v in V(G) such that the link L(v)
contains no Kiio.

Proof. Note that V(G) = V(Q},5). If L(a1) contains no K; o, then we are
done. Otherwise, we will show that the only possible sets forming a copy
of Kiyo in L(ay) are {ag,c,dik,,dogy, - deg} (ki = 1 or 2 or 3;i =
1,2, ,1).

We apply induction on t. By the proof of Lemma 3.5, the conclusion
holds for t = 1. Suppose that the conclusion holds for ¢t — 1 (¢ > 2). We will
show that the conclusion holds for ¢. Let G’ be the subgraph of G induced
on V(G)\ {ds1,ds2,de3}. Then G’ is Q—1)4o-free 3-graph and G’ contains
a spanning subgraph Q/(t—l) 1o

We consider the (t + 2)-sets of vertices with at least two vertices in
{di1,dro,di 3} I {z1, 20, -+ , 24, y1,y2} forms a copy of Ky49 in L(a), where
Y1, Y2 € {di1,di2,di3}, v, 09, 2 € V(G) \ {a1, 91,92}, then {y112a1,
diadiody 3, bibac, diadipdy 3, - - di—11di—12di—1,3} forms a copy of Q42 in G.

Next, we consider the (¢ + 2)-sets of vertices with at most one ver-
tex in {d1,dr2,d;3}. By the induction hypothesis, the vertices forming a
copy of K11 in Lgr(ar) must be of the form {ag, ¢, di gy, dogy, -+ s di—1 k., }
(ki=1or2or3;i=1,2,--- t —1). Thus, the only possible sets forming a
copy of Kiyo in L(ay) are {as,c,di g, dogy, - sdeg, } (ki =1 0r 2 0or 3;i =
1,2,--- ,t). Switching a; and by, we can show identically that the only pos-
sible sets forming a copy of Ko in L(by) are {be,c,di gy, dojy, -+ ,dis,}
(ki=1lor2or3;i=12,---t).

Without loss of generality, we may assume that {ag,c,dy1,d21, -+ ,di1}
forms a copy of Ki49 in L(ay), that is, zya; € G, where z,y € {ag,¢,d11,d21,
-+ ,dy1}. In particular, ajasd; 1, arcd;q € G (i € [t]).

If L(by) contains no Ky 2, then we are done. Otherwise, we can obtain that
the only possible set forming a copy of Kyt in L(by) is {be,c,d11,d21,- -+,
dia}. Indeed, if {ba, ¢, d1 jy, dogy, -+ o dig, } (ki=2o0r3,i=1,2,---,t) forms
a copy of Ky in L(bl), then {b1b207 b1b2di,k“ a1a2di,1; d1,1d1,2d1,3, d2,1d2,2d2,3>
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o diiadiciodio1 3, digiadiy12dig1 3, -, deadyads 3} forms a copy of Qg
in G. So the only possible set forming a copy of K;4oin L(b1) is {b2, ¢, d1,1,d2 1,
-+ ,dy1}, that is, zyby € G, where z,y € {bs,c,d11,d21,--+ ,di1}. In par-
ticular, bjed;1 € G (i € [t]). We will show that 3 ¢ € [t], such that L(d;2)
contains no Ky o.

We claim that the only possible sets forming a copy of K 9 in L(d, 2) are
{di1,dv3,¢,dopy, d3 g+ dig, } (ki=1o0r2o0r3;i=1,2,---t). Applying
induction on t. By the proof of Lemma 3.5, the conclusion holds for t = 1.
For ¢ = 2. We consider the 4-sets of vertices with at least two vertices in
{da1,doo,dos}. If {z1, 29, y1,y2} forms a copy of Ky in L(d; ), where y1,y, €
{do1,da2,dos}, 1,20 € V(G)\{d1,2, Y1, y2}, then {y1y2di 2, da,1d2 2d2 3, b1 bac,
ajasdy 1} is a copy of Q4 in G. In addition, we consider the 4-sets of vertices
with at most one vertex in {da1,ds2,das}. Let G° = G[{a1,az,¢c, by, ba, dy 1,
di2,dy 3}]. Since the vertices forming a copy of K3 in Lgo(d;2) must be of
the form {dy1,d13,c}, then the only possible sets forming a copy of Ky in
L(dLQ) are {dl,h d173, C, dg’kg} (kQ = 1, 2, 3)

Suppose that the conclusion holds for t—1 (¢ > 3), that is, if {ag, ¢, d1 1, d2 1,
-+, dy—11} forms a copy of K41 in Ler(ar) and {bg,c,dy1,doq, -+ ,di—11}
forms a copy of K11 in L (by1), then we can obtain that the only possible sets
forming a copy of K11 in Le/(dy2) are {dy1,d13,¢,dagy, d3 kg, s di—1 4 }
(ki=1or2or3;i=1,2---,t—1). We will show that the conclusion holds
for ¢.

Firstly, we consider the (¢ + 2)-sets of vertices with at least two vertices
in {di1,d2,dis}. If {21, 29, -+, 24, y1,y2} forms a copy of Kyto in L(d2),
where y1,y2 € {di1,dia,dis}, 1,20, - ;2 € V(G) \ {d12,y1,y2}, then
{y1y2d1,2, dt,ldt,th,?,, a1a2d1,1, b1bac, d2,1d2,2d2,3, ) dt—1,1dt—1,2dt—1,3} forms a
copy of Q12 in G.

Next, we consider the (¢ 4 2)-sets of vertices with at most one vertex in
{di1,ds2,d; 3}. By the induction hypothesis, the only possible sets forming a
Ccopy of Kt+1 in LG/(dLQ) are {dl,l, d173, C, d2’k2, dg,]%, ce ;dt—l,kt,1}~

Thus the only possible sets forming a copy of K49 in L(dy2) are {d1 1, d1 3,
¢, da gy, -+, di g, - Similarly, we have that the only possible sets forming a copy
of Kt_l,.? in L(dug) (Z = 2, 3, cee ,t) are {diJ, diyg, C, dl,k17d2,k27 tee 7di—1,k¢717
di+17ki+17 e 7dt7kt}'

If 3¢ € [t], such that L(d;2) contains no K4, then we are done. Other-
wise, {di1,di3, ¢, di gy, Aoy dici gy ys dig1kisrs - 5 dek, ; forms a copy of
Kiyo in L(d;2) (i € [t]), that is, zyd; 2 € G, where z,y € {d;i1,d;3,¢, dik,
Ao hys s it gy Dip i ,dik, - In particular, d; od; 3¢ € G. Next, we
consider the pair {ag,bo}. If asboay € G, then {ajasbs,aiaqc,dr 1dy 2ds 3,
d271d272d273,"' ,dtyldtjgdtyg} is a COopy of Qt+2 in G. If a2b2b1 S G, then



2392 Pingge Chen et al.

{b1baaz, bibac, diydr2dy 3, do1dopdas, - -+, di1dyads 3} is a copy of Quie in G.
If angC S G, then {bQCLgC, a1asc, d171d1’2d173, d2y1d272d273, cee ,dt,ldt,gdtyg)} is a
COpy of Qt+2 in G. If agbgdiJ eG (Z S [t]), then {agbgd,ﬂ,alagdi’l,digdugc,
dijpdiadis, doidapdas, - dic11dim12di—1,3, dig11dip1,2dig1,3, - -+, deadeade 3}
is a copy of Q2 in G. If agbed, i, € G (ki = 2,3;i € [t]), then {azbad;,,
a10di,1, b1Cdz’,1, d1,1d1,2d1,3, d2,1d2,2d2,3, T, dz’—1,1di—1,2dz‘—1,3, di+1,1di+1,2di+1,3a
-+ diadiad s} is a copy of Quyo in G. So the pair {ag, by} can not be covered
by any edge of GG, which contradicting Fact 2.3. O

Lemma 3.7. Let G be a Q3-free 3-graph. If G contains a subgraph Q5 and
[V(G)| = |V(Q5)| + 1, then there exists a vertex v in V(G) such that the link
L(v) contains no Ks.

Proof. Let uw € V(G) \ V(Q%). If L(u) contains no K, then we are done.
Otherwise, we show that the only possible sets forming a copy of K3 in L(u)
are {a;, bj,di} (i,j =1,2;k = 1,2,3). If any of the triples in {ay, as, ¢, b1, b2}
forms a copy of K3 in L(u), for example, if {ay,as,c} forms a copy of K3
in L(u), that is, ajagu, ajcu, azcu € G, then any two edges of those and the
independent edge dydads forms a copy of Q3 in GG. Similarly, other cases can
not happen. If any of the triples with one vertex in {a1, as, ¢, b1, be} and two
vertices in {dy,dy,ds} forms a copy of K3 in L(u), for example, if {dy,ds, c}
forms a copy of K3 in L(u), then {didau, didads, aiasc} forms a copy of Q3
in G. Similarly, other cases can not happen. If {dy, da, d3} forms a copy of K3
in L(u), then {didau, didads, a1asc} is a copy of Q3 in G.

Next, we consider the triples with two vertices in {as, as,c, b1, be} and
one vertex in {dy,ds,ds}. If {a1,a9,dr} (k = 1,2,3) forms a copy of K3 in
L(u), then {ajasu, ajasc,didads} is a copy of Qs in G. If {by,be,di} (k =
1,2,3) forms a copy of K3 in L(u), then {bibau, bibac, didads} is a copy of
Qs in G. If {a;,c,di} (i =1,2;k = 1,2,3) forms a copy of K3 in L(u), then
{aicu, arasc, didads} is a copy of Qs in G. If {b;,c,di} (7 =1,2k =1,2,3)
forms a copy of K3 in L(u), then {bjcu, bibac, d1dads} is a copy of Q3 in G.

Therefore, the only possible sets forming a copy of K3 in L(u) are
{ai,bj,di} (1,5 =1,2;k = 1,2,3). Without loss of generality, we may assume
that {ai,b1,d;} forms a copy of K3 in L(u), that is a1byu, a1diu, bidiu € G.
We will show that L(by) contains no Kj.

Firstly, we consider the triples in {aj,as,c,by,u}. For example, if
{a1, ag, ¢} forms a copy of K3 in L(by), that is, ajasbe, aichy, aschby € G, then
any two edges of those and the independent edge dydads forms a copy of Q3
in G. Similarly, other cases can not happen.

Secondly, we consider the triples with two vertices in {a1, az, ¢, b1, u} and
one vertex in {dy,ds,ds}. If {a1,a9,d} (k = 1,2,3) forms a copy of K3 in
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L(bg), then {alagbg,alagc, dldgdg} is a COopy of Qg in G. If {CLZ‘,C, dk} (l =
1,2,k = 1,2,3) forms a copy of K3 in L(bg), then {a;chy, ajasc, didads} is a
copy of Q3 in G. If {a;, by, di} (i = 1,2,k = 1,2, 3) forms a copy of K3 in L(bs),
then {a;b1ba, bibac, d1dads} is a copy of Q3 in G. If {ay,u,d} (K = 1,2,3)
forms a copy of K3 in L(by), then {uaibe,uaiby,didads} is a copy of Q3 in
G. If {ag,u,d;} forms a copy of K3 in L(bg), then {udybe, udiby,ajasc} is a
copy of Qs in G. If {ag,u,d} (k = 2,3) forms a copy of K3 in L(bs), then
{agdibe, a1byu, byud; } is a copy of Q3 in G. If {c, b1, dy } forms a copy of K3 in
L(bs), then {b1d1be, bidyu, ajasc} is a copy of Q3 in G. If {c, by, di} (k =2,3)
forms a copy of K3 in L(bs), then {b1dyba, cbiba, ajud; } is a copy of Q3 in G. If
{c,u,di} (k=1,2,3) forms a copy of K3 in L(b2), then {cubs, bibac, didads}
is a copy of Q3 in G. If {by,u,dr} (k =1,2,3) forms a copy of K3 in L(by),
then {blubg, blbzc, d1d2d3} is a COpy of Qg in G.

Thirdly, we consider the triples with one vertex in {a1, as, ¢, by, u} and two
vertices in {dy, dg, ds}. If {d,ds, a;} or {dg,ds, b1} or {dg,dy, c} or {dy,ds, u}
(1 <k<t<3;i=1,2) forms a copy of K3 in L(b), then {dyd;bs,d1d2ds,
ajagc} is a copy of Q3 in G.

Finally, if {dl, d2, dg} forms a COpy of Kg in L(bg), then {dldgbg, d1d2d3,
ajagc} is a copy of @3 in G. The proof is complete. O

Lemma 3.8. Let G be a Qi2-free 3-graph. If G contains a subgraph @},
and |V (G)| = |V(Qj)| + 1, then there exists a vertex v in V(G) such that
the link L(v) contains no Kiio.

Proof. Let u € V(G) \ V(Q},2)- If L(u) contains no Ko, then we are done.
Otherwise, we show that the only possible sets forming a copy of Ko in L(u)
are {a;, bj, dy gy, dojy, - deg, } (5,5 =1,2;ks =1or 20r 3;5s =1,2,--- ,1).
We apply induction on t. By the proof of Lemma 3.7, the conclusion holds
for t = 1. Suppose that the conclusion holds for t — 1 (¢ > 2). We will show
that the conclusion holds for t.

We consider the (¢ + 2)-sets of vertices with at least two vertices in
{diy,dio,dis}. I {x1, 29, -+ , x4, y1,y2} forms a copy of Kiyo in L(u), where
yi,y2 € {di1,di2,dis}, x1,20,- - 1 € V(G) \ {u,y1,92}, then {y192u,
deadiody 3, a1azc, didypdy 3, doidoadas, -+ di—11di—12di—13} is a copy of
Q42 in G.

Next, we consider the (¢ 4 2)-sets of vertices with at most one vertex in
{dt’l,dt’g,dt,g}. Let G, = G[V(G) \ {dt71,dt72,dt73}]. Then GI is
Q(t—1)42-free 3-graph and it contains a subgraph Q’(t_l) 4o+ By the induc-
tion hypothesis, the vertices forming a copy of K1 in L¢g/(u) must be of
the form {a;,b;,d1 5, doky, - ,dic1 e} (4,7 = 1,2;ks = 1 or 2 or 3;
s = 1,2,---,t — 1). Thus the only possible sets forming a copy of Kjio
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in L(u) are {a;,b;,dy g, dopy, - ,dig,} (1,5 = 1,2;ks = 1 or 2 or 3;s =
1,2,---,t).

Without loss of generality, we may assume that {a1,b1,d11,da1, - ,di1}
forms a copy of Kiyo in L(u). In this case, {a1,b1,d11,da1,- -+ ,di—11} forms
a copy of Kyy1 in L(u), we will show that L(by) contains no Kiio. We ap-
ply induction on t. By the proof of Lemma 3.7, the conclusion holds for
t = 1. Suppose that the conclusion holds for ¢ — 1 (¢ > 2), that is, if
{a1,b1,d11,d21, -+ ,di—11} forms a copy of Kyyq in Legs(u), then we have
L¢r(by) contains no Kiyq1. We will show that the conclusion holds for ¢.

We consider the (t + 2)-sets of vertices with at least two vertices in
{di1,dro,di3}. I {x1, 0, -, x4, 41, Y2} forms a copy of Kyi9 in L(by), where
Y, y2 € {diy,di2,di3}, v1,20,--- 2 € V(G) \ {b2, 91,72}, then {y1y2bo,
dt,ldt,Zdt,:s,alaZQ d1,1d1,2d1,3,d2,1d2,2d2,3,"' 7dt—1,1dt—1,2dt—1,3} is a copy of
Q42 in G.

We consider the (t+42)-sets of vertices with at most one vertex in {d 1, d; 2,
d¢ 3}. By the induction hypothesis, the vertices can not form a copy of K1
or Ko in L (by). Thus L(by) contains no Kypo in G. O

Lemma 3.9. Let G be a dense Qs-free 3-graph. If G contains a subgraph Q%
and |V(Q)| = |V(Qf)| + 2, then there exists a vertex v in V(G) such that the
link L(v) contains no K.

Proof. Let ui,uz € V(G) \ V(Q5). If L(u1) contains no K3, then we are
done. Otherwise, we show that the only possible sets forming a copy of K3
in L(up) are {a;,b;,dp} or {c,us,di} (1,7 = 1,2;k = 1,2,3). If any of the
triples in {a1,ag, ¢, by, ba, us} forms a copy of K3 in L(uy), for example, if
{a1, aq,c} forms a copy of K3 in L(uy), that is, ajasus,aicus,ascuy; € G,
then any two edges of those and the independent edge didsds forms a copy
of Q3 in G. Similarly, other cases can not happen. If any of the triples
with one vertex in {aq, as, ¢, by, by, us} and two vertices in {dy,ds,ds} forms
a copy of K3 in L(uy), for example, if {dy,ds,us} forms a copy of Kj in
L(uy), then {dydauy, didads, ajasc} forms a copy of @3 in G. Similarly, other
cases can not happen. If {dy,ds,d3} forms a copy of K3 in L(up), then
{dldgul, dldgdg, alagc} is a COpy of Qg in G.

Next, we consider the triples with two vertices in {aq, as, ¢, by, ba, us} and
one vertex in {dy, dz, ds}.

If {ay,aqs,di} (k=1,2,3) forms a copy of K3in L(uy), then {ajasu1, ajasc,
dydads} is a copy of Q3 in G. If {by,be,dr} (k = 1,2,3) forms a copy of
K3 in L(uy), then {b1bouq, b1bec, didads} is a copy of Q3 in G. If {a;,c,di}
(1=1,2;k =1,2,3) forms a copy of K3 in L(uy), then {a;cuy, ajasc, didads}
is a copy of Q3 in G. If {bj,c,dp} (j = 1,2k = 1,2,3) forms a copy of
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Kg in L(ul), then {bjcul,blbgc, dldgdg} is a Copy of Qg in G. If {CLi,UQ,dk}
(1 =1,2;k =1,2,3) forms a copy of K3 in L(uq), then {a;uouq, dguguy, bybac}
forms a copy of Q3. If {bj,ua,di} (j = 1,2k = 1,2,3) forms a copy of Kj
in L(u1), then {bjugus, dyuguy, ajasc} forms a copy of Q3. Therefore, the
only possible sets forming a copy of K3 in L(uy) are {a;,b;,d} or {c,us,dy}
(1,7 =1,2;k = 1,2,3). Switching u; and us, we can show identically that the
only possible sets forming a copy of K3 in L(us) are {a;, bj, dy} or {c,u1,dy}
(i,j=1,2k =1,2,3).

Case 1: A set in the form of {a;,b;,di} (i,j = 1,2,k = 1,2,3) forms a
copy of K3 in L(uy).

Without loss of generality, we assume that {aq,b1,d;} forms a copy of
K5 in L(uy), that is, aibiuy, ardius, bidiuy € G. We will show that L(ug)
contains no Kj3. Recall that the only possible sets forming a copy of K3 in
L(ug) are {a;, bj,dy} or {c,ur,di} (1,7 =1,2;k =1,2,3).

If {ay,b;,d1} (i = 1,2) forms a copy of K3 in L(us), then {ajdius, a;dyuy,
bibac} is a copy of Qs in G. If {aq, b1, d;} (i = 2,3) forms a copy of K3 in L(us),
then {aibiug, a1byuy, drdeds} is a copy of Qs in G. If {a1,bs,d;} (1 = 2,3)
forms a copy of K3 in L(ug), then {bad;ug,a1bjuy,bidius} is a copy of Qs
in G. If {ag,b1,d;} forms a copy of K3 in L(ug), then {bidius, bidius, ajasc}
is a copy of Q3 in G. If {ag,b1,d;} (i = 2,3) forms a copy of K3 in L(us),
then {aad;ug, a1byuy, bidiug} is a copy of Q3 in G. If {ag, by, d;} (i = 1,2,3)
forms a copy of K3 in L(ug), then {asbous, bidiui, a;bius} is a copy of @3 in
G. If {c,uy,d;} forms a copy of K3 in L(us), then {ujdiug, ajuidy, biboc} is
a copy of Q3 in G. If {c,u1,d;} (i = 2,3) forms a copy of K3 in L(us), then
{cd;ug, a1byuy, bidiu } is a copy of Q3 in G.

From the above, we have L(ug) contains no K.

Case 2: A set in the form of {c,uq2,d;} (i = 1,2, 3) forms a copy of K3 in
L(Ul)

Without loss of generality, we assume that {c,us,d;} forms a copy of
Ks in L(uq), that is, cusuy, cdiuy,usdiu; € G. We claim that either L(us)
contains no Kj or {c,uy,dy} forms a copy of K3 in L(uz). Recall that the
only possible sets forming a copy of K3 in L(ug) are {a;,b;,d} or {c,u1,dy}
(i,j=1,2k =1,2,3).

If {a;,b;,d1} (i, j=1,2) forms a copy of K3 in L(ug), then {b;d us, usdiuy,
arasc} is a copy of Qs in G. If {a;,b;,di} (4,7 = 1,2,k = 2,3) forms a copy
of K3 in L(us), then {a;bjus, bjdius, cuidy } is a copy of Q3 in G. If {c,u1,d;}
(1 = 2,3) forms a copy of K3 in L(us), then {uyd;us, uydiusg, ajasc} is a copy
of Q3 in G.

Therefore, if L(ug) contains no Kj, then we are done. Otherwise,
{c,u1,d;} forms a copy of K3 in L(usz), that is, cujug, uidiug, cdiug € G,
then we will show that L(ds2) contains no K.
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Firstly, we consider the triples in {aj,as,uy,us,dy,ds}. If any of the
triples in {a1, ag,u1, us,dy,ds} forms a copy of Kj in L(dz), for example, if
{a1,u1,d;} forms a copy of K3 in L(ds), that is, ajuids, aydids, uidids € G,
then any two edges of those and the edge bibsc forms a copy of @3 in G.
Similarly, other cases can not happen.

Secondly, we consider the triples with two vertices in {ay, as, u, ug, dy, ds}
and one vertex in {by, bo, c}.

If any of {a1, ag, b;}, {a1,as,c} (i = 1,2) forms a copy of K3 in L(dz), then
{a1a9ds, ajazc, uyugdy } is a copy of Qs in G. If {a;, uj, b} (i, j, k = 1,2) forms
a copy of K3 in L(dy), then {a;bids, uidiug, uidic} is a copy of Qs in G. If
{ai,uj,c} (1,7 = 1,2) forms a copy of K3 in L(dz), then {a;cds, a1asc, uyuad; }
is a copy of Q3 in G. If any of {a;,d;, by}, {ai, dj, ¢} (i,k =1,2;j = 1,3) forms
a copy of K3 in L(ds), then {a;d;ds,d1dads, bibac} is a copy of Q3 in G. If
any of {uy,u2,b;} (i = 1,2), {u1,us,c} forms a copy of K3 in L(ds), then
{urugdy, uyusdy, ayagc} is a copy of Qs in G. If any of {w;,d;, by}, {w;, d;, c}
(i,k =1,2;j = 1,3) forms a copy of K3 in L(dy), then {u;d;ds, didads, a1asc}
is a copy of Q3 in G. If {dy,ds,b;} (i = 1,2) forms a copy of K3 in L(ds),
then {d1b;ds, d1dads, ajasc} is a copy of Q3 in G.

If {d1,ds,c} forms a copy of K3 in L(dy), i.e., didads, didac, dsdac € G.
Let’s consider the pairs {a;, b;} (4,5 = 1,2). If a;bjur, € G (kK = 1,2),
then {a;bjui,d1dads, didac} forms a copy of Q3 in G. If a;bjc € G, then
{aibjc, bibac, didads} forms a copy of Qs in G. If a1bjas € G, then {aib;as,
aiasc, d1d2d3} forms a Copy of Qg in G. If aiblbg € G, then {aiblbg,blbgc,
dydads} forms a copy of Q3 in G. Since G is dense, by Fact 2.3, the pairs
{ai,b;} must be covered by an edge in the form of a;b;dy. If a;b;jdi, € G
(k = 2,3), recall that cujug, uyusd; € G, then {cujug, ujuady, a;bjds} forms
a copy of Q3 in G. So a1bidy, ai1bady, asbidy, asbad; € G. Then we have
{cujuz, a1bydy, a1bady } forms a copy of @3 in G.

Thirdly, we consider the triples with one vertex in {ay, ags, u1,us,dy,ds}
and two vertices in {by,bs,c}. If any of {b1,b2,a;}, {b1,b2,w;}, {b1,b2,d;}
(1 =1,2;7 = 1,3) forms a copy of K3 in L(ds), then {b1bads, biboc, ugusdy }
is a copy of Qs in G. If {b;,c,qa;}, {bi,c,u;}, {bi,c,dp} (4,7 = 1,2,k = 1,3)
forms a copy of K3 in L(ds), then {b;cda, bibac, ujuads } is a copy of Q3 in G.

Finally, if {b1,bs,c} forms a copy of K3 in L(ds), then {b1bads, b1bac,
uyugdy } is a copy of Q3 in G. The proof is complete. O

Lemma 3.10. Let G be a dense Quro-free 3-graph. If G contains a subgraph
Qiyo and |V(G)| = [V(Q}42)| + 2, then there exists a verter v in V(G) such
that the link L(v) contains no Kiis.

Proof. Let ui,us € V(G) \ V(Q}42). If L(u1) contains no Kyyo, then we
are done. Otherwise, we show that the only possible sets forming a copy of



The disjoint union of a 3-uniform tight path and a matching 2397

Kt+2 in L(ul) are {ai, bj, d17k1,d27k2, tee 7dt,kt} or {C, U, d17k1,d27k2, tee 7dt,kt}
(1,7 = 1,2;ks = 1 or 2 or 3;s = 1,2,--- ,t). We apply induction on t. By
the proof of Lemma 3.9, the conclusion holds for ¢ = 1. Suppose that the
conclusion holds for t — 1 (¢ > 2). We will show that the conclusion holds for
t. Let G' = G[V(G) \ {d¢1,ds2,di 3}

Consider the (t+2)-sets of vertices with at least two vertices in {dy 1, dy 2,
dist. If {xq, 20, -+ 24, y1,y2} forms a copy of Ky in L(uy), where yq,y2 €
{de,dio,dis}, w1,29,-- 2 € V(G) \ {u1,y1,y2}, then {y1your, d1dy2dy 3,
aragc, didiadi 3, doidoodas, - -+ di—11di—1,2di—13} is a copy of Qo in G.

Next, consider the (¢ + 2)-sets of vertices with at most one vertex in
{di1,di2,di3}. By the induction hypothesis, the vertices forming a copy
of Kiy1 in Leg/(uy) must be of the form {a;, bj,di g, dojy, -, de—14,_,} OF
{c,ug, dy gy dogey, -+ dim1 gy o} (1, j=1,2;ks=1o0r20r 3;s=1,2,--- ,t—1).
Thus the only possible sets forming a copy of Kyio in L(u;) are {a;, bj, di
dojys -+ s dig } or {c,ua, dv gy, dogy, + sdeg, } (1,7 = 1,2;ks = 1 or 2 or 3;
s =1,2,---,t). Switching u; and uy, we can show identically that the only
possible sets forming a copy of K19 in L(ug) are {a;, bj, di gy, do gy, -+ s dig, }
or {c,ur,dyjy,dojy,  dig} (i) =1,2ks=10or2o0r3;s=1,2,---,t).

Case 1: A set in the form of {a;,b;,d1 g, dojy, -+, dig,} (4,5 = 1,2, ks =
lor2or3;s=1,2,---,t) forms a copy of K¢yo in L(uy).

We will show that L(uz) contains no K;io. Applying induction on t. By
the proof of Lemma 3.9, the conclusion holds for ¢ = 1. Suppose that the
conclusion holds for t — 1 (¢t > 2). We will show that the conclusion holds
for ¢.

Consider the (¢ +2)-sets of vertices with at least two vertices in {d; 1, d¢ 2,
digt. If {z1,29, - 24, y1,y2} forms a copy of Ko in L(ug), where
y1,Y2 € {dia,dia,dis}, x1,29,-- 2 € V(G) \ {u2,y1,y2}, then {yiyous,
dt,1dt,2dt,3,a1a20, d1,1d1,2d1,3,d2,1d2,2d2,3,'" ,dt—1,1dt—1,2dt—1,3} is a copy of
Qiy2 in G.

Next, consider the (¢ + 2)-sets of vertices with at most one vertex in
{di1,ds2,d; 3}. By the induction hypothesis, the vertices can not form a copy
of Kiy1 or Ko in L (uz). Thus L(ug) contains no Kyio.

Case 2: A set in the form of {c, ug, di k,, do gy, -+ s dig, } (ks =1 0r 2 or 3;
s=1,2,---,t) forms a copy of K; o in L(uy).

Without loss of generality, we assume that {c, ua, dy1,d2 1, -+, di1} forms
a copy of Kiyo in L(uq), that is, zyu; € G, where 2,y € {c,uz,d11,d21,- -+,
di1}. In particular, uyed; 1, uiuad; 1 € G (i € [t]). In this case, {c, ug,d11,d2 1,
-+« ,dy—11} forms a copy of K41 in L(u;). We claim that the only possible
set forming a copy of Kiio in L(ug2) is {c,u1,d11,d2q, -+ ,de1}. Applying
induction on t. By the proof of Lemma 3.9, the conclusion holds for ¢t = 1.
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Suppose that the conclusion holds for ¢ — 1 (¢ > 2). We will show that the
conclusion holds for t.

Consider the (¢ +2)-sets of vertices with at least two vertices in {dy1, d¢ 2,
des}. U {z1, 29, - 24, y1,y2} forms a copy of Kyio in L(uz), where y1,ys €
{diy,dia,di3}, w1, 20, 20 € V(G) \ {u2,y1, 92}, then {y1y2uz, di1dy 2dy 3,
arazc,didyodi 3, doidoadas, - - di—11di—1,2di—13} i a copy of Qiyo in G.

Next, consider the (¢ + 2)-sets of vertices with at most one vertex in
{di1,ds2,d;3}. By the induction hypothesis, the vertices forming a copy of
Kt+1 in LGI(UQ) must be of the form {C, Uy, d171, d271, ey, dt,171}. If {C, Uy, d171,
dov, -+ di—11,dr, } (ky=2,3) forms a copy of Kyyoin L(ug), then {ujuady ,,
urugdy y, ayagc, dyadyady 3, dadaada s, - -+ di—11di—12di—13} is a copy of
Qt4+2 in G. From the above, if L(ug) contains no Ko, then we are done.
Otherwise, we have that {c,ui,di1,d21,-- ,di1} forms a copy of Kipo in
L(ug). We claim that the only possible set forming a copy of K2 in L(a;)
is {ag,c,d11,da 1, -+ ,di1}. We will apply induction on ¢. Let’s first show for
t = 1. Suppose that {c, ug,d; 1} forms a copy of K3 in L(uy) and {c,uq,d;y 1}
forms a copy of K3 in L(uz). We show that the only possible set forming a
copy of K3 in L(ay) is {ag, ¢, d11}.

Firstly, we consider the triples in {as, ¢, by, ba, u1, ug}. If any of the triples
in {ag, ¢, b1, ba, u1,uz} forms a copy of K3 in L(ay), for example, if {ag, ¢, u; }
forms a copy of K3 in L(ay), that is, ajasc, ajaguy, ajcu; € G, then any two
edges of those and the edge d; 1d; 2d; 3 forms a copy of (Y3 in G. Similarly,
other cases can not happen.

Secondly, we consider the triples with one vertex in {asg,c, by, by, u1, us}
and two vertices in {dy1,d12,d13}. If {z,y, 2} forms a copy of K3 in L(a1),
where x € {ag, c, bl, bQ, Uy, UQ}, Y,z € {dl,h d172, d173}, then {yzal, d1,1d1’2d173,
bibac} is a copy of Q3 in G.

Thirdly, if {d11,d12,d1 3} forms a copy of K3 in L(ay), then {d;1d12a1,
d171d1’2d173, bleC} is a Ccopy of Qg in G.

Finally, we consider the triples with two vertices in {az, ¢, by, ba, uy, us}
and one vertex in {dy1,dy2,d13}. If {ag,b;,d1x} (1 = 1,2,k = 1,2,3) forms
a copy of K3 in L(a1), then {ajasb;, ajasc,dy1diadi s} is a copy of Q3 in
G. If {ag,u;,dig} (i = 1,2;k = 1,2,3) forms a copy of K3 in L(a), then
{alagui,alagc, d171d172d1’3} is a Copy of Qg in G. If {C, bi, de} (7, = 1, 2; k=
1,2,3) forms a copy of K3 in L(ay), then {aicb;, ajasc, dy1di2dy 3} is a copy
of Qs in G. If {c,u;,dip} (i = 1,2,k = 1,2,3) forms a copy of K3 in
L(ay), then {ajcu;, cuyug, dydiadi 3} is a copy of Qs in G. If {by,be,dy 1}
(k’ = 1,2,3) forms a COpy of Kg in L(G,l), then {alblbg,blbgc, d1’1d172d173} is
a copy of Q3 in G. If {b;,uj,di1} (i,j = 1,2) forms a copy of K3 in L(a1),
then {aju;dy 1, uiuady 1, bibac} is a copy of Qs in G. If {b;,uj,d1} (4,5 =
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1,2;k = 2,3) forms a copy of K3 in L(ay), then {aib;d; j, cuiug, uyusd; 1}
is a copy of Q3 in G. If {uy,ue,di i} (K = 1,2,3) forms a copy of K3 in
L(ay), then {ujusai, uyusc, didiodi 3} is a copy of Q3 in G. If {ag, ¢, di 1}
(k = 2,3) forms a copy of K3 in L(ay), then {ajasds i, a1asc, uquady 1} is a
copy of 3 in G. So the only possible set forming a copy of K3 in L(aq) is

{CLQ, C, d1,1}~

Suppose that it holds for t—1 (¢ > 2), that is, if {c, u2, d11,d21,- - ,di—11}
forms a copy of Kyy1 in Le(up), and {c,us,dy1,d21, - ,di—11} forms a
copy of Kyi1 in L (ug). Then the only possible set forming a copy of Kyiq
in Lei(ar) is {ag, ¢, dig,doy, -+ ,di—1,1}. We will show that the conclusion
holds for t.

Consider the (t+2)-sets of vertices with at least two vertices in {dy,1, dy 2,
dis}. U {z1, 29, - 24, y1,y2} forms a copy of Kyyo in L(ay), where y,ys €
{dig,dia,di3}, w1,20,- - 20 € V(G)\ {a1,y1, 92}, then {y1y2a1, di1d; 2dy 3,
b1bac, d1,1d1,2d1,3,d2,1d2,2d2,3, s ,dt—l,ldt—l,zdt—1,3} is a copy of Q12 in G.

Next, consider the (¢ + 2)-sets of vertices with at most one vertex in
{di1,ds2,d; 3}. By the induction hypothesis, the vertices forming a copy of

Kyy1in Ler(ar) must be of the form {as, ¢, dy1,d21, -+, di—11}. I {ag, ¢, dy 1,
doa, - ,di—11,dii} (k= 2,3) forms a copy of K49 in L(ay), then {ajasd; k.
aasc, uyadyy, dydyody 3, da1daada g, - - - 7dt—1,1dt—1,2dt—1,3} is a copy of
Q42 in G.

So the only possible set forming a copy of Ko in L(ay) is {ag, ¢, d11,d2 1,
-+, dia}. If L(ay) contains no Ko, then we are done. Otherwise, we assume
that {ag,c,di1,da1, -+ ,de 1} forms a copy of Kiio in L(ay). Let’s consider
the pair {ag, b2} If a2b2a1 S G, then {alagbg,alagc, d171d172d173,d271d272d273,
e L diadiadi s} is a copy of Quie in G If aghaby € G, then {bibaag, bybac,
dy1diady g, doidoadas, - di1diads 3} is a copy of Quya in G. If agbye € G,
then {GQbQC, a1asc, d1,1d1,2d1,3,d2,1d2,2d2,3, ce 7dt,1dt,2dt,3} is a copy of Q42
in G. If agbgui eG (Z = 1, 2), then {CLQbQ’UJi, alcdlvl,uz),,icdl,l, d2y1d272d2’3, ety
dt,ldt,gdt,g} is a CcCopy of Qt+2 in G. If a2b2di71 e G (Z € [t]), then {a2b2di,1,

ajagd; 1, cuzug, di1dy ody 3, da1dopde g, -+ di—11di—12d;—1 3, div11dip1,2di41.3,
,dt71dt72dt73} is a copy of Qt+2 in G. If agbgdi,ki e G (kl =2,3;1 € [t]),
then {agbad;,, a1cd; 1, uicd;y, dyydiody 3, dadeodas, -+ di—y1di—12di—1 3,

dit11diy12dit13, -+ ,diadiad 3} is a copy of Qpio in G. Thus we obtain that
the pair {as, b2} can not be covered by any edge of G, which contradicting
Fact 2.3. So we have L(ay) contains no K;i 9. This completes the proof. [

Lemma 3.11. Let G be a dense Qs-free 3-graph. If G contains a subgraph
Q% and |V(G)| > |V(Q%)| + 2, then there exists a vertex v in V(G) such that
the link L(v) contains no Ks.
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Proof. Let uy,ug, -+ ,u, € V(G)\ V(Q%) (p > 3). If L(u1) contains no K,
then we are done. Otherwise, we show that the only possible sets forming a
copy of K3 in L(uy) are {a;,bj,di} or {c,w,dr}, (4,7 = 1,2,k =1,2,3;2 <
[ <p). If any of the triples in {a1, ag, ¢, b1, b2, ug, us, - -+ ,u,} forms a copy of
K3 in L(uy), for example, if {a, ¢, us} forms a copy of K3 in L(uq), that is,
ajcuy, cugu, aquguy € G, then any two edges of those and the independent
edge didads forms a copy of Q3 in G. Similarly, other cases can not happen. If
any of the triples with one vertex in {a1,as, ¢, by, b, ug, us,-- - ,u,} and two
vertices in {dy, dg, ds} forms a copy of K3 in L(uy), for example, if {dy, ds, us}
forms a copy of K3 in L(uy), then {didayuy, dydads, ajasc} forms a copy of Qs
in G. Similarly, other cases can not happen. If {d;, ds, d3} forms a copy of K3
in L(uy), then {dydauy, didads, ajasc} is a copy of Q3 in G.

Next, we consider the triples with two vertices in {ay, as, ¢, by, be, us, ug,

-, u,} and one vertex in {dy, da, ds}. If {a1, as, di} (k = 1,2,3) forms a copy
of K3 in L(uy), then {ajaguy, ajasc, didads} is a copy of Qs in G. If {by, bo, di. }
(k=1,2,3) forms a copy of K3 in L(uy), then {b1bauy, bibac, didads} is a copy
of Q3 in G. If {a;,c,di} (i =1,2;k =1,2,3) forms a copy of K3 in L(uy), then
{aicur, a1azc, didads} is a copy of Qs in G. If {bj,c,dy} (j =1,2,k=1,2,3)
forms a copy of K3 in L(uy), then {bjcui, bibac, d1dads} is a copy of Q3 in G.
If {aj,u,di,} (i =1,2;k =1,2,3;2 <1 < p) forms a copy of K3 in L(uq),
then {a;ujuy, dpwjug, bibec} forms a copy of Q3. If {b;,u;,dr} (i = 1,2,k =
1,2,3;2 < [ < p) forms a copy of K3 in L(uy), then {bjuuy, dpujuy, ajasc}
forms a copy of Qs. If {ug, us, di} (k=1,2,3;2 <1<t <p) forms a copy of
K3 in L(uy), then {uupug, diugur, agage} forms a copy of Qs.

Therefore, the only possible sets forming a copy of K3 in L(u;) are
{ai, bj,di} or {c,u, d} (i, =1,2,k=1,2,3;2 <1 <p).

Case 1: A set in the form of {a;,b;,d;} (i,j = 1,2k = 1,2,3) forms a
copy of K3 in L(uq).

Without loss of generality, we may assume that {aj,b1,d;} forms a copy
of K3 in L(uy), that is, a;byuy, ardiur, bidiug € G. We will show that L(us)
contains no Kj3. Note that the only possible sets forming a copy of K3 in
L(us) are {a;,bj,d} or {c,w,dp} (i,j =1,2,k=1,2,3;1=1,2,4,--- ,p).

If {a1,b1,dp} (K = 1,2,3) forms a copy of K3 in L(us), then {aibius,
a1byuy, didads} is a copy of Qs in G. If {aq, by, dy } forms a copy of K3 in L(us),
then {aidius, ardiuy,bibac} is a copy of Qs in G. If {aq,bs,di} (kK = 2,3)
forms a copy of K3 in L(us), then {bedyus, a1biuy, ardiuy} is a copy of Q3 in
G. If {ag, b1, d1} forms a copy of K3 in L(us), then {bidyus, bidius, ajasc} is
a copy of Q3 in G. If {ag, b1,dr} (k = 2,3) forms a copy of K3 in L(ug), then
{agdyus, a1byuy, ardiuy } is a copy of Qs in G. If {ag, ba, di} (k = 1,2,3) forms
a copy of K3 in L(ug), then {agbous, a1bius, a1dius} is a copy of Q3 in G.
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If {¢,uy,d;} forms a copy of K3 in L(ug), then {uidyus, bydiug, ayasc} is
a copy of Qs in G. If {c,u1,d} (k= 2,3) forms a copy of K3 in L(us), then
{cdiusz, a1byuy, ardiug } is a copy of Q3 in G. If {c,u;,di} (I1=2,4,--- ,p;k =
1,2,3) forms a copy of K3 in L(us), then {cwjus, a1byuy, ardiuy} is a copy of
Qg in G.

From the above, we have L(ug) contains no K.

Case 2: A set in the form of {c,u;,dp} (2 <1 < p;k = 1,2,3) forms a
copy of K3 in L(uq).

Without loss of generality, we may assume that {c,ug,d;} forms a copy
of K3 in L(u1), that is, cuguy, cdyuy, usdiug € G. In this case, we will also
show that L(usz) contains no K. Note that the only possible sets forming a
copy of K3 in L(ug) are {a;,b;,dip} or {c,w,dp} (1,5 = 1,2,k = 1,2,3;1 =
1,2,4,-- ,p).

If {ai,b;,dp} (4,7 = 1,2,k = 1,2,3) forms a copy of K3 in L(us), then
{aibjus, cuyug, diugus} is a copy of Q3 in G. If {c,w,di} (1 =1,2k=1,2,3)
forms a copy of K3 in L(us), then {cujus, cujus,didsds} is a copy of Q3 in
G. If {c,u;,di} (I =4,---,p;k = 2,3) forms a copy of K3 in L(us), then
{edyuy, uadiuy, widius} is a copy of Q3 in G.

Therefore, the only possible sets forming a copy of K3 in L(us) are
{c,u;,d1} (I =4,--- ,p). In this case, cujus, cdyus, wydyus € G. We consider
the pairs {b1,w} (I =4,--- ,p). If byuya; € G (i = 1,2), then {bywa;, cdyuq,
cdyuz} is a copy of Qs in G. If byuc € G, then {byu;c, cb1bs, didads} is a copy
of Q3 in G. If byube € G, then {byu;b, cb1be, d1dads} is a copy of Q3 in G. If
biuid; € G, then {bywdy, wdius, caras} is a copy of Q3 in G. If bjudy € G
(k = 2,3), then {bywdy, cdyuy, cdyus} is a copy of Q3 in G. If bywus € G, then
{brwug, cdyuy, cdyus} is a copy of Q3 in G. If byuju, € G (k=3,--- ,p,k # 1),
then {byujug, cdyuy, cuug} is a copy of Q3 in G. Since G is dense, the pairs
{b1, u;} must be covered by an edge in the form of byuu; € G. Next, we con-
sider the pairs {ba,u;} (I =4,-- -, p). Switching by and by, we have byuju; € G,
then {bawjuy, byujuy, cajas} is a copy of Qs in G. It is a contradiction.

From the above, we have L(u3) contains no K. O

Lemma 3.12. Let G be a dense Qiyo-free 3-graph. If G contains a subgraph
Qo and |V (G)| > |V(Q}2)| + 2, then there exists a vertex v in V(G) such
that the link L(v) contains no Kiis.

Proof. Let uy,ug, -+ ,u, € V(G)\V(Qj42) (p > 3). If L(u;) contains no Ko,
then we are done. Otherwise, we show that the only possible sets forming a
copy of Kiyo in L(uy) are {a;,bj,dig,,dojy, - ,dig, } or {c,u,dig,,dog,,
g,y (7 = 1,20 =2,3,--- ,piks = 1or 20r 3;s =1,2,---,t). We
apply induction on t. By the proof of Lemma 3.11, the conclusion holds for
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t = 1. Suppose that the conclusion holds for ¢ — 1 (¢ > 2). We show that the
conclusion holds for t. Let G' = G[V(G) \ {d¢1,d:2,di3}].

Consider the (¢ +2)-sets of vertices with at least two vertices in {dy1, dt 2,
des}. U {z1, 29, - x4, y1,y2} forms a copy of Kyio in L(uy), where y1,ys €
{diy,dia,di3}, w1, 20, 20 € V(G) \ {u1,y1, 92}, then {y1y2ur, di1dy2dys 3,
arazc,didyodi 3, doidoadas, - - di—11di—1,2di—13} i a copy of Qiyo in G.

Next, consider the (¢ + 2)-sets of vertices with at most one vertex in
{di1,dt2,d;3}. By the induction hypothesis, the vertices forming a copy
of K41 in Le/(uq) must be of the form {a;,bj, dik,,dojgy, -+ di—14,_,} OF
{c,ur,dy gy dogy, o s di—1gy o} (1,7 = 1,20 = 2,3, ,piks = 1 or 2 or 3;
s =1,2,---,t —1). Thus the only possible sets forming a copy of Ko in
L(uy) are {ai, bj,di gy, dojy, -+ o deg, } or {c,up,dy g, dogy, - ,dig} (1,5 =
1,2,01=2,3,--- ;p;ks=1or2o0r3;s=12---t).

Case 1: A set in the form of {a;, b;,d1 k,,dok,, - ,deg } (4,5 = 1,2, ks =
lor2or3;s=1,2,---,t) forms a copy of Ko in L(uy).

We will show that L(us) contains no K;s. Applying induction on t. By
the proof of Lemma 3.11, the result holds for ¢ = 1. Suppose that the conclu-
sion holds for ¢t —1 (t > 2), that is, if {a;, bj, di k., do gy, -+, di—1,4,_, } forms a
copy of Kyy1 in Lg/(up). Then L (us) contains no Kyyq. We will show that
the conclusion holds for ¢.

Consider the (¢ +2)-sets of vertices with at least two vertices in {d; 1, d; 2,

desy. It {x1,29, - ,x1,y1,92} forms a copy of Kyyo in L(ug), where
Y, y2 € {di1.dio,dis}, v1,20,--- 20 € V(G) \ {us, y1, 42}, then {yi1yous,
dt,ldt,th,37a1a207 d1,1d1,2d1,3,d2,1d2,2d2,3,"' ,dt—1,1dt—1,2dt—1,3} is a copy of
Qt+2 in G.

Next, we consider the (¢ + 2)-sets of vertices with at most one vertex in
{di1,d:2,d; 3}. By the induction hypothesis, the vertices can not form a copy
of K41 or Ko in L (us). Thus L(ug) contains no Kyqo.

Case 2: A set in the form of {c,w;, dik,,dogy, -+ dig, } (1 =2,3,---,p;
ks=1or2or3;s=1,2,---,t) forms a copy of Kiyo in L(uy).

Without loss of generality, we assume that {c, us,d11,d2 1, - ,d1} forms
a copy of Kipo in L(uq), that is, zyu; € G, where z,y € {c,ug,dy1,d21,
-+, di1}. In particular, uycd; 1, uqued; 1 € G (i € [t]). In this case, {c, us, dy 1,
dai,--+ ,di—11} forms a copy of Kiiq in L(u;). We claim that the only
possible sets forming a copy of Kyyo in L(us) are {c,u;,dy1,daq, -+ ,di1}
(I = 4,---,p). Applying induction on ¢. By the proof of Lemma 3.11, the
result holds for ¢ = 1. Suppose that the result holds for ¢ — 1 (¢ > 2), that is,
if {C, ug, d171, d271, ce 7dt—1,1} forms a Ccopy of Kt+1 in Lg/(ul). Then the only
possible sets forming a copy of K11 in Ler(ug) are {c,w;, di1,d21, -+ ,di—11}
(l=4,---,p). We will show that the conclusion holds for ¢.
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Firstly, we consider the (t 4+ 2)-sets of vertices with at least two ver-
tices in {d¢1,dr2,dis}. If {x1, 29, -+, 2, y1,y2} forms a copy of Kiyo in
L(u3), where y1,yo € {di1,dr2,di3}, v1,72,- 70 € V(G) \ {us, 91,92},
then {y1y2U3, dt,ldt,2dt,3; a1a2C, d1,1d1,2d1,37 d2,1d2,2d2,3, T dt—l,ldt—l,zdt—m}
is a copy of Q42 in G.

Secondly, we consider the (¢ + 2)-sets of vertices with at most one vertex
in {d;1,d; 2,d;3}. By the induction hypothesis, the vertices forming a copy of
K41 in L (ug) must be of the form {c, u;, dy1,doq, -+ ,di—11} (=4, ,p).
If {c,w,di1,doj, - di—11,de s} (K = 2,3) forms a copy of Ko in L(ug),
then {uicdy 1, uiuody 1, widy gus, didiodi s, dodaada s, - -+ di—11di—12de—13}
is a copy of Q¢y2 in G. Thus the only possible sets forming a copy of Kiyo in
L(ug) are {c,u;,dy1,doq, - ,din} (I=4,---,p).

If L(us) contains no Ko, then we are done. Otherwise, we assume
that {c,w;,di1,d21, - ,di1} forms a copy of Kiyo in L(ug). In this case,
cd;1ug, wid; jug € G (i € [t]). We consider the pairs {by,w;} (I =4,---,p). If
blulai S G (Z = 1, 2), then {blulai, cdl,lul, Cd171UJ3, d271d272d2,3, s ,dtyldtgdtyg}
isa Copy of Qt+2 inG.If blulc S G, then {blulc, Cblbg7 d171d172d1’3, d271d272d2,3,
e diadiadi s} is a copy of Quio in G. If byube € G, then {byu;bs, cbybo,
dy1diady 3, doidondas, - -+ di1diads 3} is a copy of Qpo in G If bywd;y € G
(i € [t]), then {biwd; 1, wd;1us, caras, diidiodi s, -+ di—11di—12di—13, dig11
diy12div13,+ ,dgadiadyz} is a copy of Qo in G If byud;y, € G (k; =
2,3;i € [t]), then {bywdi,, cdi1ur, cdiyus, diidiadis, -+ di—i1di—1,2di—1 3,
di+171di+172di+1,3, s ,dt71dt72dt73} is a COpy of Qt+2 in G. If b1UZUQ S G, then
{bluluQ, cdmul, Cd1’1U3, d2,1d2’2d273, tee ,dt71dt72dt,3} is a COopy of Qk+2 inG. If
bluluk S G (]-C = 3, e, N, k 7& l), then {bluluk, CdLlul, Cuiug, d2,1d2’2d273, Ty,
diadiodi s} is a copy of Quio in G. Since G is dense, then the pair {by,u;}
must be covered by an edge in the form of bjuwyu;. Next, we consider the
pairs {by,w;} (I =4,---,p). Switching b; and be, we have bouju; € G, then
{bawur, biwgus, di1diody 3, dodoada s, - - -, de1dyady 3} is a copy of Qyyo in G.
It is a contradiction.

From the above, we have L(us3) contains no Ky . O

Proof of Lemma 3.2. Let ¥ be an optimum weighting of G. By Lemmas 3.6,
3.8, 3.10, and 3.12, there exists a vertex v in V(G) such that L(v) contains
no Kyio. By Fact 2.4, we have

o (t+1), 1 o, ot
3A<G>:A<L<v>7x>s< 2 >(t+1) e

Since

s (343 1 4 (3t+2)(Bt+1)
)\(K3t+3)—< 3 >(3t—|—3) BT
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Hence
MG) = AKiiia) < 55 : Il (3t6+(3?i3;; = _3(3t—13)2'
Let c = m
Then M\(G) < MK3,,5) — c. O
3.3. Proof of Lemma 3.3
Let

"
Qt+3 = {015152, bibaag, aicds, azedy, d1,1d1,2d1,3, d2,1d2,2d2,37
T 7dt—1,1dt—1,2dt—1,3}-

Lemma 3.13. Let G be a Qs-free 3-graph. If G contains a spanning subgraph
QY, then there exists a vertex v in V(G) such that the link L(v) contains no
Ks.

Proof. Since G is Qs-free, we will show that L(d;) contains no K.

If any of {b1,be,a;} (i = 1,2), {b1,be,c}, {b1,b2,do} forms a copy of
K3 in L(dy), then {bibady,biboag,arcds} is a copy of Qs in G. If any of
{a1,¢,b;} (i = 1,2), {a1,c, a2}, {a1,c,da} forms a copy of K3 in L(d;), then
{ajcdy, arcdy, asbiby} is a copy of Q3 in G. If any of {as,b;,a1}, {as,b;,c},
{ag,b;,dy} (i = 1,2) forms a copy of K3 in L(dy), then {asb;dy, azbaby, ajeds}
is a copy of Q3 in G. If any of {a1,ds,as}, {a1,ds,b;} (i = 1,2) forms a
copy of K3 in L(dy), then {aidady, aicds,agbiba} is a copy of Qs in G. If
any of {c,dy,as} {c,da,b;} (i = 1,2) forms a copy of K3 in L(d;), then
{cdady, cdaay, asbibe} is a copy of Q3 in G, it is a contradiction.

From the above, we have L(d;) contains no K. O

Lemma 3.14. Let G be a Qiro-free 3-graph. If G contains a spanning sub-
graph QY. s, then there exists a vertex v in V(G) such that the link L(v)
contains no Kiyo.

Proof. We claim that L(d;) contains no Ky 2. Applying induction on ¢. By
the proof of Lemma 3.13, the conclusion holds for ¢ = 1. Suppose that the
conclusion holds for ¢t — 1 (¢ > 2).

We will show that the conclusion holds for ¢.

Let G’ = GIV(G) \{di-1,1,di—1,2,di—13}]. We consider the (¢ + 2)-sets of
vertices with at least two vertices in {d;_11,di—12,di—13}. If {21,290, -+ , 24,
y1,y2} forms a copy of Kiio in L(dy), where y1,y2 € {di—11,di—12,di—13},
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Ty, 2,01y € V(G) \ {d1,y1, 42}, then {y1yadi, di—11ds—12ds-13, asbibs,
arcdy, dy1diady g, -+ di—o1di—29di—23} is a copy of Q1o in G.

Now consider the (¢ + 2)-sets of vertices with at most one vertex in
{di—11,di—12,di—13}. By the induction hypothesis, the vertices can not form
a copy of Kyy1 or Kiyoin Lei(dy). Thus L(dy) contains no Kiyo. O

Lemma 3.15. Let G be a Qs-free 3-graph. If G contains a subgraph Q] and
\V(G)| > |V(QY)| + 1, then there exists a vertex v in V(G) such that the link
L(v) contains no Ks.

Proof. Let uy,ug,--- ,u, € V(G) \ V(QY). If L(d;) contains no K3, then we
are done. Otherwise, we show that the only possible sets forming a copy of
K3 in L(dy) are {a1,b;,u;} (i=1,2;j=1,2,---,p).

Firstly, we consider the triples in {aj, az, by, bo}. If {a1,a9,b;} (i = 1,2)
forms a copy of K3 in L(dy), then {asb;dy, asb1be, aycds} is a copy of Q3 in G. If
{ai, bl, bQ} (Z = 1, 2) forms a Copy of K3 in L(dl), then {blbgdl, blbgag, alcdg}
is a copy of Q3 in G.

Secondly, we consider the triples with one vertex in {aj,as,b1,be} and
two vertices in {c, da, u1,us, - - - ,up}t. If {z,y, 2} forms a copy of K3 in L(d;),
where z,y € {c,dy,ur,ug,--- ,up}, 2z € {a1,a2,b1,b2}, then {xyd;, a1bibs,
asbiby} forms a copy of Q3 in G.

Thirdly, we consider the triples in {c,dg,ur,ug, - ,up}. If {c,da,uq}
forms a copy of K3 in L(dy), that is, cdady, cuidy, douidy € G, then any
two edges of those and the edge a1b1b2 make a copy of Q3 in G. Similarly,
other cases can not happen.

Finally, we consider the triples with two vertices in {a1,ag,b1,b2} and
one vertex in {c,da, uy,us, - ,up}. If any of {a1,aq, ¢}, {a1,b;,¢} (i = 1,2)
forms a copy of K3 in L(dy), then {aicdy, aicds, agbiba} is a copy of Q3 in G.
If any of {ay,as,ds}, {a1,b;,do} (i = 1,2) forms a copy of K3 in L(d;), then
{a1dady, arcds, agbiba} is a copy of Q3 in G. If {a1,a2,u;} (j =1,2,---,p)
forms a copy of K3 in L(d), then {asu;di, agedi, aibiba} is a copy of Q3 in
G. If any of {by,bs,c},{b1,ba,do},{b1,b2,u;} (j =1,2,---,p) forms a copy
of Kg in L(dl), then {blbgdl,blbgag,alcdg} is a COpy of Qg in G. If any of
{az, bi, ¢}, {as, b, do}, {ag, bi,u;} (i =1,2;5=1,2,---,p) forms a copy of K3
in L(dy), then {asb;dy, asbibe, ajeds} is a copy of Q3 in G.

Therefore, we obtain the only possible sets forming a copy of K3 in L(d;)
are {ar, b, u;} (i=1,2;j=1,2,---,p). Without loss of generality, we assume
that {a1,b1,u1} forms a copy of K3 in L(dy), that is, a1b1dy, ajuidy, byuidy €
G. We will show that L(ds) contains no K.

Firstly, we consider the triples in {a1,ag,b1,b2}. If {a1,a92,b;} (i = 1,2)
forms a copy of K3 in L(ds), then {a1b;dz, a1b1be, ased; } is a copy of Q3 in G. If
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{ai, bl, bg} (Z = 1, 2) forms a COpy of Kg in L(dg), then {b1b2d2, blbgal, CLQCdl}
is a copy of QI3 in G.

Secondly, we consider the triples with two vertices in {ay,as,b1,b2} and
one vertex in {c¢, dy, u1, ug, - -+ ,up}. If {a1, as, ¢} forms a copy of K3 in L(da),
then {agcds, asedy, arbibs} is a copy of Q3 in G. If {ay, ag, dy } forms a copy of
K3 in L(dy), then {asdids, agedy, a1biba} is a copy of Qs in G. If {a1, ag, u;}
(j = 1, 27 cee ,p) forms a Ccopy of Kg in L(dg), then {alujdg, alcdg, agblbg} isa
copy of Q3 in G. If any of {by,bs,c}, {b1,b2,d1}, {b1,b2,u;} (7 =1,2,---,p)
forms a copy of K3 in L(dz), then {b1bads, bibaay, aseds } is a copy of Q3 in G.
If any of {a1,b;,c}, {a1,b;,di}, {a1,b;,u;) (0 =1,2;5 =1,2,---,p) forms a
copy of K3 in L(dz), then {a1b;ds, a1b1ba, azcdy } is a copy of Q3 in G. If any
of {ag,b;,c}, {as,b;,di}, {a, bs,u;} (i =1,2;5=1,2,--- ,p) forms a copy of
K3 in L(dy), then {asbids, asb1be, aquid; } is a copy of Q3 in G.

Thirdly, we consider the triples with one vertex in {a1, as, b1, b2} and two
vertices in {c,dy, ui, ug, -+ ,up}t. If {x,y, 2} forms a copy of K3 in L(ds),
where z,y € {c,di,ui,uz, -+ ,up}t,z € {ai,az,bi,b2}, then {xyds, aibibs,
asbibe} forms a copy of @3 in G.

Finally, we consider the triples in {c¢, dy, u1, ug,- - ,up}. If {z,y, 2z} forms a
copy of K3 in L(ds), where x,y, z € {c, dy,u1,us,-- - ,up}, then {xyds, a1b1bs,
asbiby} forms a copy of Q3 in G.

From the above, we have L(dy) contains no K. O

Lemma 3.16. Let G be a Q42-free 3-graph. If G' contains a subgraph QY 4
and |V(GQ)| > |V(Qf43)| + 1, then there exists a vertex v in V(G) such that
the link L(v) contains no Kiis.

Proof. Let ui,us,--- ,u, € V(G)\ V(Q{,3). If L(d1) contains no Ko, then
we are done. Otherwise, we show that the only possible sets forming a copy of
Kiyo in L(dy) are {a1, bi, uj, di gy, dojy, -+ i1y o} (1=1,2;7=1,2,--- | p;
ks=1lor2or3;s=1,2,---,t—1).

Applying induction on t. By the proof of Lemma 3.15, the conclusion
holds for ¢t = 1. For t = 2. We consider the 4-sets of vertices with at
least two vertices in {dy1,d12,d13}. If {z1,22,y1,y2} forms a copy of K4
in L(dl), where y1,y2 € {dl’l,dlg,dl,g}, T1,Ty € V(G) \ {dl,yl,yg}, then
{y1y2di, dy 1d1 2d1 3, asbiba, arcda } is a copy of Q4 in G.

Now consider the 4-sets of vertices with at most one vertex in {dy 1, d; 2,
d13}. Let GO = G[{a1, ag, b1, ba, ¢, dy, da}]. Since the vertices forming a copy of
K3 in Lgo(dy) must be of the form {ay,b;,u;} (i =1,2;5=1,2,---,p). Thus
the only possible sets forming a copy of Ky in L(dy) are {ai,b;, u;,d1 g, }
(1t =1,2,7 = 1,2,--- ,p;k1 = 1,2,3). Switching d; and do, we have that
the only possible sets forming a copy of Ky in L(da) are {as,b;, u;,d1, }
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(1 =1,2;5 = 1,2,--- ,p;ky = 1,2,3). Suppose that the conclusion holds
for t — 1 (¢t > 3). We will show that the conclusion holds for ¢. Let G' =
GIV(G)\ {di-1,1,di—1,2,di—1,3}].

Consider the (t 4 2)-sets of vertices with at least two vertices in {d_1 1,
di—12,di—13}. H {z1, 29, , 2,41, y2} forms a copy of Ky in L(d;), where
y1.y2 € {di—11.di—12.di—13}, 21,02, 2, € V(G) \ {d1,v1,92}, then
{ylyZdhdt—l,ldt—l,th—l,&a2b1b27alcd27d1,1dl,2d1,37"' ,dt—z,ldt—2,2dt—2,3} is
a copy of Q4o in G.

Now consider the (¢ + 2)-sets of vertices with at most one vertex in
{di—1,1,di—12,di—13}. By the induction hypothesis, the vertices forming a
copy of Kyy1 in Le(dy) must be of the form {ai,b;,u;,di g, doj,, -,
di—op, 3 (1=1,2,j=1,2,--- ;pyks=1or2or3;s=1,2,---,t—2). Thus
the only possible sets forming a copy of K9 in L(d1) are {a1, b;, uj, di g, , do g,
e dpi gy (=12 =1,2,--- \piks=1or2o0r3;s=12,---,t—1).

Without loss of generality, we may assume that {a1,b1,u1,d11,d2q, -,
di—1,1} forms a copy of Ko in L(dy). In particular, ayuid; € G. We will
show that L(dz) contains no K is.

Applying induction on ¢. By the proof of Lemma 3.15, the conclusion
holds for t = 1. For t = 2, recall that the only possible sets forming a copy
of Ky in L(dy) are {ag, b, uj,diy} (1 =1,2;5=1,2,--- ,p;k1 =1,2,3). But
{az, bi,uj,dig, } (1 =1,2;5=1,2,--- ,p;ky = 1,2,3) can not form a copy of
K4 in L(dg) Otherwise, {agbidg,agblbg,aluldl,d171d1,2d173} (Z = 1, 2) forms
a copy of Q4 in G. Then L(ds) contains no Kjy.

Suppose that the conclusion holds for t—1 (¢ > 3), that is, if {a1, b1, w1, dy 1,
doj, -+ ,di—21} forms a copy of Kyyq in Ler(dy), then we have that Lei(da)
contains no Ky;1. We will show that the conclusion holds for ¢.

Consider the (t + 2)-sets of vertices with at least two vertices in {d;_1 1,
di—12,di—13}. H {z1, 29, -, 2,41, y2} forms a copy of K;i9 in L(dy), where
y1.y2 € {di—11,di—12.di—13}, 21,02,--- 2, € V(G) \ {d2, 91,92}, then
{y1yeda, di—11di—12di—13, agbiby, arcdy, dyydyody 3, -+ di—o1di—n2d;_23} is
a copy of Q42 in G.

Now consider the (¢ + 2)-sets of vertices with at most one vertex in
{di—1,1,di—12,di—13}. By the induction hypothesis, the vertices can not form
a copy of K1 or Kiyo in Lei(dz). Thus L(dy) contains no Kiyo. O

Proof of Lemma 3.3. Let ¥ be an optimum weighting of G. By Lemmas 3.14
and 3.16, there exists a vertex v in V(G) such that L(v) contains no Kyio.
The rest of the proof is identical to the proof Lemma 3.2. O
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4. Turan number of the extension of Q42

Let T7 (n) be the balanced complete m-partite r-uniform graph on n vertices,
e, V(T} (n)) = ViUVLU- - -UV,, such that V;NV; = D forevery 1 <i < j<m
and |Vi| < [V3| < - < Voo < [Vi| + 1, and E(T(n) = {e € (W) :vi e
[m],le N V;| < 1}. Let ¢ (n) = |T7,(n)|. Given positive integers m and r, let
m], =m(m—1)...(m—r+1).

For an r-graph F and p > |[V(F)|, let K[ denote the family of r-graphs
H that contains a set C' of p vertices, called the core, such that the subgraph
of H induced by C' contains a copy of F' and such that every pair of vertices
in C' is covered in H. Let Hlf be a member of ICZ{J obtained as follows. Label
the vertices of F' as vy,..., v (p). Add new vertices vy (g)+1,.-.,Vp. Let
C = {v1,...,v,}. For each pair of vertices v;,v; € C not covered in F, we
add a set B;; of r — 2 new vertices and the edge {v;, v;} U B;;, where the B;;’s
are pairwise disjoint over all such pairs {i,5}. Note that the extension H* is
the case that p = |V(F)|.

Using a stability argument of Pikhurko [16] and a transference technique
between the Lagrangian density of an r-uniform graph and the Turan density
of its extension in several other papers, we obtain the following result.

Theorem 4.1. For sufficiently large n, ex(n, H+2) = 3, 5(n). Moreover,
if n is sufficiently large and G is an H9+2-free 3-graph on [n] with |G| =
t§t+3<”)’ then G = T§t+3(n).

To prove the theorem, we need several results from [2]. Similar results are
obtained independently in [15].

Definition 4.1 ([2]). Let m,r > 2 be positive integers. Let F' be an r-graph

that has at most m + 1 vertices satisfying my(F) < hmn—]f We say that KF

is m-stable if for every real ¢ > 0 there are a real § > 0 and an integer n,
such that if G is a KL |-free r-graph with at least n > ny vertices and more

than (@ —0)(") edges, then G can be made m-partite by deleting at most

mT
en vertices.
Theorem 4.2 ([2]). Let m,r > 2 be positive integers. Let F' be an r-graph
that either has at most m wvertices or has m + 1 vertices one of which has
degree 1. Suppose either m\(F') < [Z—][ ormy\(F) = [Z—}[ and KE .| is m-stable.
Then there exists a positive integer ng such that for all n > ny we have
ex(n, HE ) =t (n) and the unique extremal r-graph is Tp,(n). O

The following lemma is proved in [21].

Lemma 4.1 ([21]). Let m,r > 2 be positive integers. Let F' be an r-graph
that has at most m+ 1 vertices with r — 1 vertices of one edge of degree 1 and
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m(F) < [z—]f Suppose there is a constant ¢ > 0 such that for every F'-free
and KT,-free r-graph L, A(L) < A(K?,) — ¢ holds. Then KL | is m-stable.

Proof of Theorem 4.1. By Theorem 3.1 and Corollary 3.1, Qo satisfies the
conditions of Lemma 4.1. So Kgﬁﬁ is (3t+3)-stable. The theorem then follows
from Theorem 4.2. O

Remark. As mentioned earlier, Conjecture 1.1 has been verified for a 3-
uniform tight star T, = {123,124,125,126,...,12(t + 2)} and a A-perfect 3-
uniform graph for ¢ > 3 in [23]. Surprisingly, it seems to be much harder to
verify for the case t = 2. We think that it is interesting to understand for the
case t = 2.
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