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Which graphs can be counted in C4-free graphs?
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Abstract: For which graphs F is there a sparse F -counting lemma
in C4-free graphs? We are interested in identifying graphs F with
the property that, roughly speaking, if G is an n-vertex C4-free
graph with on the order of n3/2 edges, then the density of F in
G, after a suitable normalization, is approximately at least the
density of F in an ε-regular approximation of G. In recent work,
motivated by applications in extremal and additive combinatorics,
we showed that C5 has this property. Here we construct a family
of graphs with the property.

1. Introduction

When applying the regularity method in extremal graph theory, proofs can
often be divided into two steps: first applying Szemerédi’s regularity lemma to
partition a large graph so that most pairs of parts are regular and then using a
counting (or embedding) lemma to find copies of a particular subgraph in this
regular partition. For dense graphs, these steps are generally well-behaved and
essentially completely understood. For sparse graphs, however, both steps can
break down without additional hypotheses. Here we will focus on the second
step of finding appropriate counting lemmas in the sparse regime, since the
regularity step is now reasonably well understood [14, 22] (although difficulties
in maintaining the so-called no-dense-spots condition can arise even here).

Similar issues arise in the study of quasirandom graphs, a fundamental
theme developed and popularized by Chung, Graham and Wilson [4], building
on earlier work of Thomason [23]. In their work, they showed, somewhat
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surprisingly, that several distinct notions of quasirandomness in dense graphs
are essentially equivalent. In particular, in an n-vertex graph G with edge
density p, where p is a fixed constant, having C4-density p4+o(1) is equivalent
to a certain discrepancy condition and this in turn implies that the F -density
in G is p|E(F )| + o(1) for all fixed graphs F . However, as already observed
by Chung and Graham in [5], these equivalences do not automatically carry
over to graphs with o(n2) edges without additional assumptions. Indeed, even
rather modest variants of the Chung–Graham–Wilson equivalences can fail to
hold [20]. One viewpoint on our work here is that some aspect of the Chung–
Graham–Wilson equivalences may be recovered if we assume that our graph
is C4-free.

Previous work on developing counting lemmas for sparse graphs has large-
ly focused on controlling relatively dense subgraphs of sparse random or pseu-
dorandom graphs. For instance, a counting lemma in sparse random graphs
was proved by Conlon, Gowers, Samotij, and Schacht [6] in connection with
the celebrated KŁR conjecture [15] (see also [2, 21]), while a counting lemma
in sparse pseudorandom graphs was proved by Conlon, Fox, and Zhao [8] and
later extended to hypergraphs [10], allowing them to simplify the proof of the
Green–Tao theorem [13] (see also [9] for a detailed exposition incorporating
many further simplifications of the original proof).

In recent work [7], motivated by applications in extremal and additive
combinatorics, we pursued the study of sparse regularity in a very different
setting, without any explicit pseudorandomness hypothesis. Instead, the only
hypothesis on the host graph was that it be C4-free. Under this assumption,
we proved a C5-counting lemma, which, when combined with an appropriate
sparse regularity lemma, led to various new results, including a C5-removal
lemma in C4-free graphs. As an example of an additive combinatorics appli-
cation, we showed that every Sidon subset of [N ] without nontrivial solutions
to w + x+ y + z = 4u has at most o(

√
N) elements. Here a Sidon set is a set

without nontrivial solutions to the equation x + y = z + w and it is known
that the maximum size of a Sidon subset of [N ] is (1 + o(1))

√
N . We refer

the interested reader to [7] for further discussion of applications.
In this article, we continue the study of counting lemmas in C4-free graphs,

our main interest being the problem of determining which graphs F , besides
C5, satisfy an F -counting lemma in C4-free graphs. We will make this question
more precise in Definition 1.3 below, when we say formally what it means for
a graph F to be countable.

Question 1.1 (Main question, informal). For which graphs F is there an
F -counting lemma in C4-free graphs?
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By extending the proof of [7, Theorem 1.1, see Section 4] (which was
written for F = C5, but easily extends), we can deduce an F -removal lemma
in C4-free graphs whenever F is countable.

Corollary 1.2 (Sparse removal lemma in C4-free graphs). For any countable
graph F and any ε > 0, there exists δ = δ(F, ε) > 0 such that every n-
vertex C4-free graph with at most δn|V (F )|−|E(F )|/2 copies of F can be made
F -homomorphism-free by removing at most εn3/2 edges.

Here “copies of F” refer to subgraphs isomorphic to F , whereas “F -
homomorphism-free” means that there is no graph homomorphism from F
into the resulting graph after edge removal. In particular, if F is bipartite and
the number of copies of F in a C4-free graph on n vertices is o(n|V (F )|−|E(F )|/2),
then G has o(n3/2) edges.

Let us sketch the main ideas of the proof of Corollary 1.2, referring the
reader to [7, Section 4] for further details. We first apply a sparse weak reg-
ularity lemma to approximate the C4-free graph G by some “dense” graph
H (allowing edge-weights in [0, 1] for H). The counting lemma then implies
that H has small F -homomorphism density. By the dense F -removal lemma,
applied as a black box, one can therefore remove a collection of edges from H
with small total weight so that the remaining graph contains no subgraphs
to which F is homomorphic. Removing the corresponding edges from G then
makes it F -homomorphism-free.

The notion of having an F -counting lemma is made precise in the following
definition. Note that the conclusion we seek is one-sided, that is, we only ask
for a lower bound. In practice, this is usually all that is needed in applications.

Definition 1.3. A graph F is countable if, for every ε > 0, there exists
δ = δ(F, ε) > 0 such that if G is an n-vertex C4-free graph on vertex set
V and H ∈ [0, 1]V×V is a symmetric matrix (i.e., an edge-weighted graph)
satisfying

(1.1)
∣∣∣∣eG(A,B)

n3/2 − eH(A,B)
n2

∣∣∣∣ ≤ δ for all A,B ⊆ V,

where
eG(A,B) = {(x, y) ∈ A×B : xy ∈ E(G)},

and eH(A,B) =
∑

x∈A,y∈B H(x, y), then, for every A = (Av)v∈V (F ) with
Av ⊆ V for each v ∈ V (F ), one has

(1.2) homA(F,G)
n|V (F )|−|E(F )|/2 ≥ homA(F,H)

n|V (F )| − ε,
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where homA(F,G) is the number of homomorphisms from F to G where
each v ∈ V (F ) is mapped to a vertex in Av and homA(F,H) is the weighted
analogue defined by the formula

homA(F,H) :=
∑

xv∈Av ∀v∈V (F )

∏
uv∈E(F )

H(xu, xv).

The scaling in the denominators of the definition above is natural because
the maximum number of edges in an n-vertex C4-free graph is (1/2+o(1))n3/2

(see Remark 1.5 below). It may be instructive to consider what happens when
G is the random graph G(n, n−1/2) and H is the all-1 matrix, in which case,
provided |E(F ′)| < 2|V (F ′)| for all subgraphs F ′ of F , (1.1) and (1.2) with
δ, ε → 0 hold with high probability as n → ∞.
Remark 1.4. In Definition 1.3, it suffices to only consider unweighted graphs
H, since we can always randomly sample a weighted graph to get an un-
weighted graph with similar density properties. However, in applications, H
is usually the normalized edge-density matrix of some (weak) regular partition
of G, so it is more intuitive to allow edge-weights for H.
Remark 1.5. The polarity graph [3, 11, 12] is an n-vertex C4-free graph G
with (1/2 + o(1))n3/2 edges (which is essentially best possible by the Kővári–
Sós–Turán theorem [16]). In addition, it has the property that every edge lies
in exactly one triangle and it satisfies the discrepancy condition (1.1) with
δ = O(n−1/4) and H being the all-1 matrix.

More specifically, let q be a prime power and let G0 be the graph with
q2 + q + 1 vertices, each corresponding to a point of the projective plane over
Fq, i.e., elements of F3

q \{(0, 0, 0)} where (x, y, z) is identified with (λx, λy, λz)
for every nonzero λ ∈ Fq, with an edge between (x, y, z) and (x′, y′, z′) if and
only if xx′ + yy′ + zz′ = 0. This graph has exactly q + 1 loops. It is also
(q + 1)-regular and has the property that each pair of distinct vertices has
exactly one common neighbor, which in particular implies that G0 is C4-free.
The square of its adjacency matrix is thus qI + J (with J being the all-1
matrix) and, hence, all of its eigenvalues, besides the top eigenvalue q + 1,
are ±√

q. The discrepancy claim in the previous paragraph then follows from
the expander mixing lemma (see, e.g., [17]). In practice, we will actually use
the induced subgraph G of this graph where we remove all vertices with
loops. This inherits the discrepancy property from G0, but has the additional
property mentioned above that every edge is contained in a unique triangle
(see [18] for a more detailed discussion of this point).

We now use the polarity graph to deduce a simple necessary condition for
F to be countable.
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Remark 1.6. If F is countable, then it has girth at least 5.
Indeed, suppose that F contains a 4-cycle v1v2v3v4. Let G be an n-vertex

polarity graph and H the all-1 matrix. The discrepancy property (1.1) is
satisfied for δ = o(1) by the previous remark. Set Av1 , Av2 , Av3 , Av4 to be
disjoint vertex sets of V (G), each of order 	n/4
, and Av = V (G) for all
v ∈ V (F ) \ {v1, v2, v3, v4}. Then homA(F,G) = 0 since G is C4-free, but
homA(F,H) � n|V (F )|, so F is not countable.

Now suppose that F contains a triangle. Consider the graph G′ obtained
from the polarity graph G by deleting one edge from each triangle of G
chosen uniformly and independently at random (recall that G is a disjoint
union of triangles). With probability 1− o(1), the discrepancy property (1.1)
remains valid with δ = o(1) and H the all-2/3 matrix. However, (1.2) fails
when Av = V (G) for all v, since the fact that G′ is triangle-free implies that
hom(F,G′) = 0. So again F is not countable. (The same construction also
appears in [1, Lemma 2.6].)

In the next section, we describe our main result, which gives a sufficient
condition for countability, presented as a recursive construction.

2. Countable graphs

We begin with a simple proposition, whose proof may be found in Section 5.

Proposition 2.1. Adding a pendant edge to a countable graph produces a
countable graph.

In particular, we have the following important corollary.

Corollary 2.2. All trees are countable.

It will be shown in the next section that it suffices to verify countability
within n-vertex C4-free graphs G with maximum degree at most 2

√
n. This

makes the following definition relevant.

Definition 2.3. A graph F is tame if there exists a constant C = C(F ) such
that hom(F,G) ≤ Cn|V (F )|−|E(F )|/2 for every n-vertex C4-free graph G with
maximum degree at most 2

√
n.

An edgeless graph is clearly tame. Here is a sufficient recursive condition
for tameness.

Proposition 2.4. Let F be a tame graph. Let F ′ be obtained from F by either

(a) adding a pendant edge to F (creating a single new leaf vertex) or
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(b) joining two (not necessarily distinct) vertices of F by a 3-edge path
whose two intermediate vertices are new. (If the two vertices of F are
the same, then the path is a triangle.)

Then F ′ is tame.

Proof. Let G be an n-vertex C4-free graph with maximum degree at most
2
√
n. It suffices to show that hom(F ′, G) ≤ 4

√
n hom(F,G). In case (a), this

is clear, since G has maximum degree at most 2
√
n. In case (b), we verify

that the number of 3-edge walks between any pair of vertices (not necessarily
distinct) in G is at most 4

√
n. Indeed, given x, y ∈ V (G), let w be a neighbor

of x. If w �= y (at most 2
√
n such w), then, since G is C4-free, there is at most

one 2-edge walk from w to y. On the other hand, if w = y (at most one such
w), the number of 2-edge walks from w = y back to itself is deg(y) ≤ 2

√
n.

Example 2.5. All cycles are tame, since, for each � ≥ 3, one can first build
an (�− 3)-edge path using (a) and then complete it to an �-cycle using (b).

Example 2.6. The graphs in the sequence depicted below are also tame. To
see this, observe that, at each step, we add a new path with � ≥ 3 edges
whose intermediate vertices are new (by again applying step (a) � − 3 times
and then applying step (b) once).

Example 2.7. K2,3 is not tame. Indeed, the n-vertex polarity graph G has
hom(K2,3, G) ≥ hom(K1,3, G) =

∑
x∈V (G) degG(x)3 � n5/2, which is much

larger than the Cn2 upper bound required for tameness.

Example 2.8. Let K ′
k denote the 1-subdivision of Kk. Then K ′

k is tame if
and only if k ≤ 4. Indeed, let G be the n-vertex polarity graph. Then, since
there is a homomorphism K ′

k → K1,(k2) mapping all k vertices of the original
Kk to the same vertex, we have that

hom(K ′
k, G) ≥ hom(K1,(k2), G) � n1+(k2)/2.

But 1 +
(k
2
)
/2 > k = |V (K ′

k)| − |E(K ′
k)|/2 for k ≥ 5, so K ′

k is not tame. On
the other hand, for k ≤ 3, K ′

k is tame due to Proposition 2.4, while, despite
the fact that Proposition 2.4 does not apply to K ′

4, it is still tame, as may
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be verified by performing a case check based on which subsets of the original
four vertices of K4 are mapped to the same vertex.

It will follow from our results below that every K ′
k is countable. Therefore,

K ′
5 (or K ′

k for any k ≥ 5) is an example of a non-tame countable graph.
Moreover, since, for H the all-1 matrix, the polarity graph G satisfies the
discrepancy property (1.1) with δ = o(1), we see that K ′

5 does not satisfy an
“upper-bound counting lemma”, i.e., (1.2) with ≥ · · ·−ε replaced by ≤ · · ·+ε.
That is, the K ′

5-counting lemma in C4-free graphs is truly one-sided.

We now describe an important building block in our recursive construction
of countable graphs.

Definition 2.9. Let F be a graph and I ⊆ V (F ) an independent set. We
say that F is a connector with ends I (or simply that (F, I) is a connector) if

(a) F is countable and
(b) the graph F ∨I F formed by gluing two copies of F along I is tame.

Here is the simplest interesting connector.

Example 2.10. The 2-edge path v0v1v2 is a connector with ends {v0, v2}.
This is illustrated below, where the ends of the connector are marked by red
triangles.

F = F ∨I F =

More generally, any path is a connector with ends being any independent
set. However, the same statement does not extend to all trees. For instance,
K1,3 does not give rise to a triple-ended connector, since K2,3 is not tame by
Example 2.7.

Our main result is the following recursive construction of countable
graphs. It can be visualized in terms of “islands” and “bridges.” We start with
several disjoint tame countable components (the islands) and join them using
connectors (the bridges). The theorem then says that the resulting graph is
countable.

Theorem 2.11. Let F be a graph that is an edge-disjoint union of its sub-
graphs F1, . . . , Fk, J1, . . . , J�, satisfying all of the following conditions:

(a) F1, . . . , Fk are countable and vertex-disjoint;
(b) F1, . . . , Fk−1 are tame (Fk may be tame or not);
(c) for each j ∈ [�], Jj is a connector with ends Ij = V (Jj)∩V (F1∪· · ·∪Fk)

and Ij has at most one vertex in common with each Fi;
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(d) each pair of connectors Ji and Jj share at most one vertex and the
vertex they share (if any) lies in Ii ∩ Ij.

Then F is countable.

Example 2.12. The 5-cycle is countable. The “islands and bridges” decom-
position is illustrated below, where each contiguous shaded region is an island.
Both connectors are 2-edge paths.

Similarly, �-cycles, for � ≥ 5, can be shown to be countable by starting with
two islands, one an isolated vertex, as above, and the other a path of length
� − 4, with 2-edge-path connectors joining the endpoints of this path to the
isolated vertex. As mentioned in [7, Footnotes 1 and 3], knowing that longer
cycles can be counted allows us to extend our results [7, Section 1.3] about
finding solutions of translation-invariant equations in Sidon sets to equations
with more than five variables.

Example 2.13. Since the 5-cycle is both countable and tame, we can use it
as an island to build up further countable graphs. For example, connecting a
pair of 5-cycles using 2-edge-path connectors, as shown below, yields a new
countable graph.

Example 2.14. Using that the 5-cycle is countable and tame, we see that
the following graph is also countable, again with the islands shaded:

This graph is also tame by Proposition 2.4, so we can repeat the process to
show that the following graph (and any longer chain of 5-cycles) is tame and
countable.
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Example 2.15. The following graph is a connector (with the ends again
marked by red triangles):

(2.1)

Indeed, we saw in the last example that this graph is countable, while the
graph formed by gluing two copies along the ends, as shown below, is tame
by Example 2.6.

Similarly, we can check that the following graph (and any longer chain of
5-cycles) is a multi-ended connector:

Example 2.16. The following graph is countable (one of the connectors is a
2-edge path, while the other is (2.1)):

We can extend this example further. Since the above graph is countable, we
can use Proposition 2.4 to verify that, with the ends as marked, it is also a
connector:

Using this connector, we deduce that the following graph is countable:
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Similar inductive arguments allow us to prove the countability of many other
graphs of girth at least 5. However, as we shall explain in more detail in the
concluding remarks, we are far from a classification. For instance, our methods
seem insufficient for showing that 3-regular graphs such as those below are
countable.

Open Problem 2.17. Are the dodecahedral and Petersen graphs, shown
below, countable?

In the remainder of the article, we prove Proposition 2.1 and Theo-
rem 2.11.

3. Trimming high-degree vertices

In this brief section, we show that in the definition of countability, Defini-
tion 1.3, we can restrict to considering n-vertex C4-free graphs G satisfying
an additional maximum degree assumption, namely, that G has maximum
degree at most 2

√
n, without affecting the family of graphs which are count-

able.

Lemma 3.1. Let G be a graph on a vertex set V of size n and let H ∈
[0, 1]V×V be a symmetric matrix such that

(3.1)
∣∣∣∣eG(A,B)

n3/2 − eH(A,B)
n2

∣∣∣∣ ≤ δ for all A,B ⊆ V.

Let S = {v ∈ V : degG(v) ≤ 2
√
n} and let G′ be the subgraph of G with the

same vertex set V but only keeping edges with both endpoints in S. Then∣∣∣∣eG′(A,B)
n3/2 − eH(A,B)

n2

∣∣∣∣ ≤ 3δ for all A,B ⊆ V.

Proof. Write S = V \ S. Applying (3.1) to (A,B) = (S, V ), we have

δn2 ≥
√
neG(S, V ) − eH(S, V ) ≥

√
n · 2

√
n|S| − |S||V | = n|S|,

so |S| ≤ δn. For any A,B ⊆ V , writing A′ = A∩ S and B′ = B ∩ S, we have
eG′(A,B) = eG(A′, B′), so∣∣√neG′(A,B) − eH(A,B)

∣∣
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=
∣∣√neG(A′, B′) − eH(A′, B′) + eH(A′, B′) − eH(A,B)

∣∣
≤

∣∣√neG(A′, B′) − eH(A′, B′)
∣∣ + (|A \ A′| + |B \B′|)n

≤ δn2 + 2|S|n ≤ 3δn2.

4. Notation and setup

Given a graph F , a vertex weight function on F (sometimes we say “on V (F )”,
as graphs and their vertex sets are interchangeable for this purpose) is a
collection α = (αv)v∈V (F ) of functions αv : V → [0, 1] indexed by v. It will
be important for our arguments that each αv takes values in [0, 1] and not in
some wider range.

Let x = (xv)v∈V (F ) ∈ V V (F ) with xv ∈ V . For each S ⊆ V (F ), we write
xS = (xv)v∈S for its projection onto the coordinates indexed by S. To avoid
notational clutter, we will sometimes write a subgraph as the subscript rather
than its vertex set. For example, if F ′ is a subgraph of F and S ⊆ V (F ), then
we write xF ′ = xV (F ′), xF\F ′ = xV (F )\V (F ′), and xF\S = xV (F )\S .

Given a function f : V S → R, we write
∫

f(xS)dxS = |V |−|S| ∑
xS∈V S

f(xS).

Furthermore, given a vertex weight function α = (αv)v∈S on S, we write
∫

f(xS)dαxS =
∫

f(xS)
∏
v∈S

αv(xv) dxS .

Given a symmetric function g : V × V → R and x ∈ V V (F ), we define
gF : V V (F ) → R by

gF (x) =
∏

uv∈F
g(xu, xv).

Given S⊆V (F ) and a vertex weight function α on F\S, we define gF,S : V S →
R by

gαF,S(xS) =
∫

gF (xF ) dαxF\S ,

which (up to normalization) corresponds to counting homomorphisms from
F to the weighted graph corresponding to g where the image of S is xS and
the remaining vertices of F are weighted by α. Such quantities also arise
naturally when using flag algebras. Finally, given a vertex weight function α
on F , we write
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tα(F, g) = gαF,∅ =
∫ ∏

uv∈F
g(xu, xv)

∏
v∈V (F )

(αv(xv)dxv) ,

which is the α-weighted homomorphism density of F in g.
It will also be convenient to allow our weight function notation to be

a little more flexible, in the sense that we automatically ignore uninvolved
vertices. For example, if α is a vertex weight function on F and F ′ is a
subgraph on a proper vertex subset, then we still write tα(F ′, g) and dαxF ′

with the understanding that α is now restricted to the vertex set of F ′. This
way we do not always have to specify the set of vertices that the weight
function is defined on.

Both the discrepancy condition (1.1) and the counting lemma conclusion
(1.2) can be equivalently rephrased in terms of weight functions α rather
than product sets A. The extra flexibility allowed by considering [0, 1]-valued
weight functions will be helpful in our proofs. To see the equivalence, note
that, with the function g =

√
nG (here we view G : V × V → {0, 1} as the

edge-indicator function of the graph G), we have

homA(F,G)
n|V (F )|−|E(F )|/2 = tα(F, g)

for the vertex weight function α on F which is equal to the indicator function
of A (i.e., αv(x) = 1 if x ∈ Av and 0 otherwise). Likewise, for h = H,

homA(F,H)
n|V (F )| = tα(F, h).

Hence, the counting lemma conclusion (1.2), that

homA(F,G)
n|V (F )|−|E(F )|/2 ≥ homA(F,H)

n|V (F )| − ε,

is equivalent to the statement that

(4.1) tα(F, g) ≥ tα(F, h) − ε

for any {0, 1}-valued vertex weight function α. Since tα(F, g) − tα(F, h) is a
multilinear function of the values (αv(x))v∈F,x∈V , the extrema of the function
are attained when αv(x) ∈ {0, 1} for all v ∈ F and x ∈ V . This shows that
the counting lemma conclusion (1.2) is equivalent to the statement that (4.1)
holds for all vertex weight functions.
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By the same argument, the discrepancy condition (1.1), that
∣∣∣∣eG(A,B)

n3/2 − eH(A,B)
n2

∣∣∣∣ ≤ δ for all A,B ⊆ V,

is equivalent to∣∣∣∣
∫

(g − h)(x, y)α1(x)α2(y)dxdy
∣∣∣∣ ≤ δ for all α1, α2 : V → [0, 1].

In fact, (thanks to the trimming step in the previous section) from now on
we will only need the one-sided discrepancy hypothesis

(4.2)
∫

g(x, y)α1(x)α2(y)dxdy ≥
∫

h(x, y)α1(x)α2(y)dxdy − δ

for all α1, α2 : V → [0, 1].

Summary of what needs to be proved. To prove that F is countable, it
suffices to show that there is a constant c > 0 such that for every ε > 0 there
exists δ > 0 satisfying the following. Let G be an n-vertex C4-free graph on
vertex set V with maximum degree at most 2

√
n. Let g = c

√
nG and let

h : V × V → [0, 1] be a symmetric function satisfying (4.2). Then, for every
vertex weight function α on F , one has (4.1).

The reason that we scale by a factor of c in defining g is so that the
various tameness hypotheses on subgraphs of G can be made to have the
form t(F ′, g) ≤ 1. Furthermore, as long as c ≤ 1/2, the hypothesis that G has
maximum degree at most 2

√
n implies that

(4.3)
∫

g(x, y) dy ≤ 1 for all x ∈ V.

5. Counting lemma proofs

We follow without further comment the framework discussed in the previous
section.

Proof of Proposition 2.1 (adding a pendant edge preserves countability). Let
F be a graph with a leaf vertex u. Let F ′ be F with u removed and assume
that F ′ is countable. Suppose that

(5.1)
∫

g(x, y)α1(x)α2(y)dxdy ≥
∫

h(x, y)α1(x)α2(y)dxdy − ε

for all α1, α2 : V → [0, 1]. Since F ′ is countable, we may also assume that



2426 David Conlon et al.

(5.2) tα
′(F ′, g) ≥ tα

′(F ′, h) − ε

for every vertex weight function α′ on F ′.
It suffices to show that these two inequalities imply that

(5.3) tα(F, g) ≥ tα(F, h) − 2ε

for every vertex weight function α on F . For this, define a vertex weight
function α′ on F ′ by α′

v = αv unless v is the neighbor of u, in which case
α′
v(xv) = αv(xv)

∫
g(xv, xu)αu(xu)dxu ∈ [0, 1] by (4.3). Then, by (5.2) applied

with this α′,
tα(F, g) = tα

′(F ′, g) ≥ tα
′(F ′, h) − ε.

Furthermore, we have

tα
′(F ′, h) =

∫
hα
F ′,v(xv)g(xv, xu)αu(xu)αv(xv) dxudxv

≥
∫

hα
F ′,v(xv)h(xv, xu)αu(xu)αv(xv) dxudxv − ε

= tα(F, h) − ε,

where the inequality step uses (5.1). Combining the last two displayed in-
equalities yields (5.3), as desired.

Proof of Theorem 2.11 (islands and bridges). By the tameness assumptions,
we can choose a sufficiently small constant c ∈ (0, 1] (depending only on F )
such that, setting g = c

√
nG : V × V → [0,∞), we have

(5.4) t(Fi, g) ≤ 1 for all i ∈ [k−1] and t(Jj∨Ij Jj , g) ≤ 1 for all j ∈ [�].

Let ε ∈ (0, 1] and let

(5.5) ηi = ε2
i for each i ∈ [�] and η = ε2

�+1
.

By the countability assumption on F1, . . . , Fk, J1, . . . , J�, it suffices to show
that if h : V × V → [0, 1] satisfies

(5.6) tα(L, g) ≥ tα(L, h) − η

for each L ∈ {F1, . . . , Fk, J1, . . . , J�} and vertex weight function α on L, then

(5.7) tα(F, g) ≥ tα(F, h) − (2� + k)ε

for every vertex weight function α on F .
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Write

f≤t(x) =
{
f(x) if f(x) ≤ t,

0 otherwise
and f>t(x) =

{
f(x) if f(x) > t,

0 otherwise.

For each connector (J, I) = (Jj , Ij) (temporarily dropping the subscript
j to avoid notational clutter), writing

gαJ,I,>δ−1 = (gαJ,I)>δ−1 ,

we have, using t(J ∨I J, g) ≤ 1 from (5.4), that∫
gαJ,I,>δ−1(xI) dαxI ≤ δ

∫
g2
J,I(xI) dαxI ≤ δt(J ∨I J, g) ≤ δ.

Thus, using (5.6),
(5.8)∫

gαJ,I,≤δ−1(xI) dαxI ≥
(∫

gαJ,I(xI) dαxI
)
− δ ≥

(∫
hα
J,I(xI) dαxI

)
− η − δ.

Step I. Swapping out the islands one at a time.

Write F ′ = ∪iFi (islands without connectors). We have

tα(F, g) =
∫

gF (xF ) dαxF

=
∫ k∏

i=1
gFi(xFi)

�∏
j=1

gαJj ,Ij (xIj ) d
αxF ′

≥
∫ k∏

i=1
gFi(xFi)

�∏
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj ) dαxF ′

=
∫ ⎛

⎝∫
gFk

(xFk
)

�∏
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj )dαxFk

⎞
⎠ k−1∏

i=1
(gFi(xFi)dαxFi) .

Now, using (5.6) for Fk and noting that the inner integral inside the paren-
thesis has the form

∫
gFk

(xFk
)dα′

xFk
·∏�

j=1 η
−1
j for some other vertex weight

function α′ (absorbing the connector factors by using the fact that each con-
nector uses at most one vertex from the island Fk), we have, continuing from
above, that the last expression is

≥
∫ ⎛

⎝∫
hFk

(xFk
)

�∏
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj )dαxFk

− η
�∏

j=1
η−1
j

⎞
⎠ k−1∏

i=1
(gFi(xFi)dαxFi) .
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Since η
∏�

j=1 η
−1
j ≤ ε by (5.5) and

∫
gFi(xFi)dαxFi ≤ t(Fi, g) ≤ 1 for each

i ∈ [k − 1] by (5.4), we can continue the above as

≥
∫

hFk
(xFk

)
k−1∏
i=1

gFi(xFi)
�∏

j=1
gα
Jj ,Ij ,≤η−1

j
(xIj ) dαxF ′ − ε.

We can now repeat this process to successively replace each remaining gFi

factor by hFi , losing at most an additive error of ε at each step. (Note that
even though we do not assume that t(Fk, g) ≤ 1, it is no longer needed, since
what matters from now on is that t(Fk, h) ≤ 1 and this is automatically
true for h, which takes values in [0, 1]). We may therefore continue the above
as

≥
∫ k∏

i=1
hFi(xFi)

�∏
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj ) dαxF ′ − kε.

Step II. Swapping out the connectors one at a time.

Continuing, we have, applying (5.8) to replace gα
J�,I�,≤η−1

�

(xI�) by hα
J�,I�

(xJ�
)

(here we are applying (5.8) for each fixed xF\J�
and with a different α which

absorbs additional factors; this step works only because each J� intersects each
of F1, . . . , Fk, J1, . . . , J�−1 in at most one vertex and all these intersections
are contained in I�), that the last expression above is

≥
∫ k∏

i=1
hFi(xFi) · hα

J�,I�
(xI�)

�−1∏
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj ) dαxF ′ − (η + η�)

�−1∏
j=1

η−1
j − kε.

We have (η + η�)
∏�−1

j=1 η
−1
j ≤ 2ε by (5.5). Continuing, we can replace

gα
Jj ,Ij ,≤η−1

j

(xIj ) by hα
Jj ,Ij

(xIj ) one at a time in decreasing order of j, so that
the additive error at j is at most (η + ηj)η−1

1 · · · η−1
j−1 ≤ 2ε (this is why we

need η1, . . . , η� to be rapidly decreasing). Finally, we can continue the above
as

≥
∫ k∏

i=1
hFi(xFi)

�∏
j=1

hα
Jj ,Ij (xIj ) d

αxF ′ − (k + 2�)ε

= tα(F, h) − (k + 2�)ε,

thereby proving (5.7).
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6. Concluding remarks

We conclude by exploring some of the problems that arose from our study of
countability.

Classifying countable graphs

We have made partial progress on our Question 1.1 by producing a family of
graphs F for which there is an F -counting lemma in C4-free graphs. However,
our results are likely far from a complete classification. We saw one necessary
condition on any such F in Remark 1.6, namely, that F should have girth at
least 5. It also seems necessary that the 2-density of F should be less than 2,
that is, that any subgraph F ′ of F should satisfy |E(F ′)| ≤ 2|V (F ′)| − 4. In
particular, this would imply that any d-regular countable graph has d ≤ 3.

Though not a formal proof, the intuition here is that the number of copies
of F ′ in our C4-free graph should not be smaller than the number of edges
(otherwise, we can delete all copies of F ′, and hence F , by removing an edge
from each copy) and, for a random graph of the same density n−1/2, the condi-
tion that the 2-density be less than 2 is necessary for this to hold. Most likely,
the true conditions for countability are even more stringent than this argu-
ment suggests. Perhaps resolving the cases highlighted in Open Problem 2.17
would be a good starting point for further progress.

We remark in passing that we expect any progress on Question 1.1 to also
impinge on the closely related question where we assume that there are O(n2)
copies of C4 in our n-vertex graph rather than none. Indeed, the arguments
in [7] showing that C5 is countable apply in this more general situation and
the proofs here may also be adapted to this context. We suspect that the
same will be true of any countable graph.

Variations on countability

There are several variants of our basic question which may be interesting. For
instance, for which graphs F is there a two-sided counting lemma in C4-free
graphs? Our results are fundamentally one-sided, so new ideas are probably
necessary to make progress on this question. However, we do know that for
F to satisfy a two-sided counting lemma, it must, at the very least, be tame.
As observed in Example 2.8, this already rules out two-sided counting for the
family of subdivisions K ′

t with t ≥ 5.
Another natural variant is to ask which graphs F have an F -counting

lemma in H-free graphs when H is a bipartite graph other than C4? Our



2430 David Conlon et al.

arguments apply just as well to K2,t-free graphs as they do to C4-free graphs,
but further extensions are less obvious. We do expect our methods to extend
to prove counting lemmas in C2k-free graphs for any k ≥ 3, but here the
real difficulty passes back to the regularity side. Indeed, in order to apply a
C2k+1-counting lemma in C2k-free graphs to prove a corresponding removal
lemma, we also need to show that any regular partition of a C2k-free graph
has few edges between irregular pairs. However, we do not at present know
how to do this for any k ≥ 3. As in [7], resolving this issue would have
several consequences. To give just one example, it would allow us to show
that any 3-uniform hypergraph with n vertices and girth greater than 2k + 1
has o(n1+1/k) edges, extending both the classic Ruza–Szemerédi theorem [19],
which is equivalent to the case k = 1, and a recent result of the authors [7,
Corollary 1.10] resolving the case k = 2.
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