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Geometric vs algebraic nullity for hyperpaths
Joshua Cooper and Grant Fickes

Abstract: We consider the question of how the eigenvarieties of
a hypergraph relate to the algebraic multiplicities of their corre-
sponding eigenvalues. Specifically, we (1) fully describe the irre-
ducible components of the zero-eigenvariety of a loose 3-hyperpath
(its “nullvariety”), (2) use recent results of Bao-Fan-Wang-Zhu to
compute the corresponding algebraic multiplicity of zero (its “nul-
lity”), and then (3) for this special class of hypergraphs, verify a
conjecture of Hu-Ye about the relationship between the geometric
(multi-)dimension of the nullvariety and the nullity.

1. Introduction

We begin with two questions:

1. What is the combinatorial meaning of the multiplicity of the zero eigen-
value of a (hyper)graph?

2. What is the relationship between the various notions of “multiplicity”
for an eigenvalue?

One may combine these two questions by asking, “What is the combina-
torial meaning of each notion of the multiplicity of the zero eigenvalue of
(hyper)graphs?” For the Laplacian matrix L(G) = D(G) − A(G) of a graph,
in the 1970s, Fiedler showed that the multiplicity – in both the algebraic and
geometric senses – of the zero eigenvalue is equal to the number of compo-
nents of G. Thus it is natural to ask this same question about the seemingly
simpler adjacency matrix A(G), and indeed considerable attention has been
given to Question 1 (e.g., [4, 6, 7, 11, 13]). Because A(G) is real symmetric
and therefore diagonalizable, the answer to Question 2 is simple for a graph,
however: they agree.

In contrast, these questions are nearly untouched for hypergraphs. The
first question has been investigated for some special graphs – for example,
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[1] implicitly provides an algorithm for computing the algebraic multiplic-
ity of zero as an eigenvalue of a hyperpath. In a related vein, [2] analyzes
which eigenvectors corresponding to the zero eigenvalue of a subgraph of G
are also such “null eigenvectors” for G. The second question is also almost
entirely unexplored for hypergraphs, and Sturmfels observed (see [8]) that the
relatively straightforward linear eigenspaces of matrices become complicated
“eigenvarieties” when one passes to adjacency tensors/hypermatrices to study
hypergraphs. Hu and Ye [8] take up this matter in earnest and pose a conjec-
ture about the relationship between the (multi-)dimension of such varieties
and their multiplicities as roots of a hypermatrix’s characteristic polynomial;
these are natural choices for analogizing “geometric” and “algebraic” multi-
plicity, respectively, and the conjecture is an attempt to generalize the fact
that the geometric multiplicity of a matrix eigenvalue is bounded above by
its algebraic multiplicity. Another notable contribution [5] by Fan-Bao-Huang
investigated properties of the eigenvariety associated with the spectral radius
of a hypergraph (and, more generally, certain hypermatrices/tensors).

The aforementioned Hu-Ye Conjecture can be stated as follows; definitions
follow below. Let am(λ) be the algebraic multiplicity of λ as an eigenvalue
of the hypermatrix M . Let V 1

λ , . . . , V
κ
λ denote the irreducible components of

Vλ, the eigenvariety correponding to λ.

Conjecture 1.1 ([8]). For any order-k hypermatrix M , define

gm(λ) :=
κ∑

j=1
dim(V j

λ )(k − 1)dim(V j
λ

)−1

Then gm(λ) ≤ am(λ).

Here we verify this for the zero eigenvalue of a simple class of 3-uniform
hypergraphs – sometimes called “loose paths” or “linear hyperpaths” – by
obtaining an explicit description of the irreducible components of their nul-
lvarieties, using this to obtain a generating function that encodes said irre-
ducible components’ dimensions, using results from [1] to obtain an explicit
expression for the multiplicity of zero as a root of their characteristic poly-
nomials, and comparing the resulting quantities to confirm the conjecture in
this special case.

We briefly define the multilinear algebra and spectral hypergraph theory
terminology and notation used throughout the paper. More detailed informa-
tion and references can be found in [3, 5]. An order-k hypermatrix1 M over

1Variously known as a “tensor” in some literature.
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a ring R is a k-dimensional array of values Mi1···ik ∈ R (usually R = C),
which we often identify with the function M : (i1, . . . , ik) �→ Mi1···ik . A hy-
permatrix is cubical if the ij , j = 1, . . . , k, all belong to the same index set
I, in which case we say that its dimension is |I|, and a cubical hyperma-
trix is symmetric if, for every permutation σ of I and i = (i1, . . . , ik) ∈ Ik,
Mi = Mσ(i), where σ(i) = (σ(i1), . . . , σ(ik)). An order-k cubical hyperma-
trix M of dimension n over R gives rise to a homogeneous k-form Mxk,
where x = (x1, . . . , xn), given by

∑
i∈[n]k Mix

i, where xi denotes
∏k

j=1 xij
if i = (i1, . . . , ik). The symmetric hyperdeterminant det(M) of a symmetric
hypermatrix M over R = C[{xi}i∈[n]k ] is the unique monic irreducible poly-
nomial over R which vanishes if and only if ∇(Mxk) = 0 for some nonzero
vector x ∈ Cn. The identity hypermatrix I of rank k and order n is the func-
tion so that I(i1, . . . , ik) = 1 if i1 = · · · = ik and 0 otherwise. Write λM
for the hypermatrix whose i entry is λMi for each valid multi-index i. Then
the characteristic polynomial of M is φM (λ) := det(λI − M) ∈ C[λ]. The
(homogeneous) spectrum of M is the multiset of roots of φM (λ); the elements
λ of the adjacency spectrum of M are referred to as eigenvalues of M , and
any nonzero x so that ∇[(M −λI)xk] = 0 is a corresponding eigenvector. The
set of all eigenvectors corresponding to an eigenvalue λ of a hypermatrix M
of dimension n is its λ-eigenvariety Vλ. Then Vλ is an affine algebraic variety
in Cn; indeed, since the equations defining eigenvectors are homogeneous, Vλ

can also be viewed as a projective variety, although we adhere to the affine
perspective presently. The multiplicity of λ as a root of φM (λ) is its algebraic
muliplicity, and the dimension of the variety Vλ is its geometric multiplicity.
Since the 0-eigenvariety of a matrix M – i.e., a hypermatrix of or-
der k = 2 – is its nullspace, we refer to the 0-eigenvariety as the
nullvariety of M . We also refer to the algebraic multiplicity of 0 as
the nullity of M .

A (uniform) hypergraph H of rank k is a pair (V,E), where E ⊂
(V
k

)
.

The adjacency hypermatrix of a hypergraph H is the symmetric hypermatrix
A(H) : V k → C so that A(H)v1···vk is 1/(k − 1)! if {v1, . . . , vk} ∈ E(H)
and 0 otherwise. The k-form p(x1, . . . , xk) = A(H)xk is sometimes known
as the Lagrangian polynomial of H; the coordinate ∂p/∂xi of ∇A(H)xk is
(k times) the Langrangian polynomial of the link of vertex vi in H, i.e., the
hypergraph whose edges are {e \ {xi}|vi ∈ e ∈ E(H)}. We will often abuse
notation slightly and refer to the multilinear algebraic properties of A(H)
by describing them as properties of H instead. For example, the (adjacency)
spectrum of a hypergraph H is the spectrum of A(H), the nullvariety of H
is the nullvariety of A(H), and φH(λ) := φA(H)(λ). A loose hyperpath P k

n is
the k-uniform hypergraph on n edges {e1, . . . , en} so that, for i �= j, |ei ∩ ej |
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is 1 if |i − j| = 1 and 0 otherwise. We label the vertex set V (P k
n ) with

{v1, . . . , v(k−1)n+1} so that ej = {v(k−1)(j−1)+1, . . . , v(k−1)j+1} for j ∈ [n].
Throughout, we also write V(S) for the affine variety over C defined as

the zero locus of the set of polynomials S, and V(p) for V({p}). We write 〈S〉
for the ideal generated by a set of polynomials S, and call S irredundant if
〈S′〉 �= 〈S〉 when S′ � S is any proper subset. Also, given p ∈ C[x1, . . . , xm]
and a vector c ∈ Cm, we will sometimes say “c satisfies p” if p(c) = 0.

In the next section, we enumerate the irreducible components of the null-
variety of P 3

n and capture their count and the quantity gm(0) as a generating
function. The following section repeats this exercise, but for the nullity am(0)
of P 3

n – in fact, more generally P k
n for k ≥ 3. The last section compares these

two functions of n, verifying the Hu-Ye Conjecture for the zero eigenvalue of
P 3
n .

2. Null variety for rank-3 loose hyperpaths

We examine the “geometric multiplicity” of the zero eigenvalue for a hy-
pergraph H, or more accurately, the multiset of dimensions of irreducible
components of the corresponding nullvariety. Our strategy will be as follows.
First, we describe the ideal whose zero locus is the nullvariety, generated by
the Lagrangian polynomials of the links of all vertices. Each of the degree-one
vertices contributes a polynomial to the ideal which is a simple product of
variables. Thus, the vanishing of these monomials reduces to the vanishing of
each of their constituent variables, one at a time. Considering the set of pos-
sible vanishing monomials – which correspond to vertices/coordinates where
portions of the nullvariety are zero – results in substantial simplification of
the set of polynomials in the ideal. Thus, taking the union of all such van-
ishing set possibilities gives a decomposition of the nullvariety into simpler
subvarieties. We then analyze these subvarieties to show that they are irre-
ducible. Next, it is necessary to identify which such irreducible subvarieties
are maximal in order to obtain an irredundant list of irreducible components.
Finally, we describe the multiset of these components’ dimensions by count-
ing the number of polynomials determining them, leading to an expression
for gm(0). As a warm-up, and for completeness, we start with the one-edge
and two-edge hyperpaths.

2.1. Small cases

Proposition 2.1. The 3-uniform hyperedge H = P 3
1 has three irreducible

components of dimension 1, and gm(0) = 3.



Geometric vs algebraic nullity for hyperpaths 2437

Proof. Let the vertices of H be v1, v2, v3. Given a null vector x, if the ad-
jacency tensor of H is A = A(H), then the i-th component of Ax2 is given
by

∑
{i,j,k}∈E(H) xjxk = x1x2x3/xi. Since x is a null vector, we have x1x2 =

x1x3 = x2x3 = 0, and we consider the variety V0 ⊂ C3 in three-dimensional
affine space defined by these equations. If p, q are polynomials, then V(p, q) =
V(p) ∩ V(q) and V(pq) = V(p) ∪ V(q). Therefore, we have the following.

V(x1x2, x1x3, x2x3) = V(x1x2) ∩ V(x1x3) ∩ V(x2x3)
= [V(x1) ∪ V(x2)] ∩ [V(x1) ∪ V(x3)] ∩ [V(x2) ∪ V(x3)]

This is equal to the union over all choices of V(xi)∩V(xj)∩V(xk) =V(xi, xj , xk)
where i ∈ {1, 2}, j ∈ {1, 3}, and k ∈ {2, 3}. Thus, maximal subvarieties of V0
correspond to minimal sets {i, j, k} given these conditions, i.e.,

V(x1x2, x1x3, x2x3) = [V(x1) ∪ V(x2)] ∩ [V(x1) ∪ V(x3)] ∩ [V(x2) ∪ V(x3)]
= V(x1, x2) ∪ V(x1, x3) ∪ V(x2, x3).

Since V(xi, xj) is the xk-axis, V0 is the union of three lines.

Proposition 2.2. If H = P 3
2 , then V0 has one component of dimension 1

and another of dimension 3, so that gm(0) = 13.

Proof. Let the vertices of H be v1, v2, v3, v4, v5. Let x be a null vector. The
equations defining V0 ⊂ C5 are x1x3 = x2x3 = x1x2 + x4x5 = x3x4 = x3x5.
Decompose this system as follows:

V0 = V(x1x3, x2x3, x3x4, x3x5) ∩ V(x1x2 + x4x5).

In the first conjunct, we have intersections of unions, namely

V(x1x3, x2x3, x3x4, x3x5) = [V(x1) ∪ V(x3)] ∩ [V(x2) ∪ V(x3)]
∩ [V(x3) ∪ V(x4)] ∩ [V(x3) ∪ V(x5)] .

Expand the expression on the right to obtain the union over all choices of
V(xi) ∩ V(xj) ∩ V(xk) ∩ V(x�) = V(xi, xj , xk, x�) where i ∈ {1, 3}, j ∈ {2, 3},
k ∈ {3, 4}, and � ∈ {3, 5}. The union

⋃
{i,j,k,�} V(xi, xj , xk, x�) is the union

over the minimal sets {i, j, k, �} of this form, i.e.,

[V(x1) ∪ V(x3)] ∩ [V(x2) ∪ V(x3)] ∩ [V(x3) ∪ V(x4)] ∩ [V(x3) ∪ V(x5)]
=V(x3) ∪ V(x1, x2, x4, x5).
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The second variety has dimension four, while the first variety is the x3 axis.
It remains to intersect each such set with V(x1x2 + x3x4). Note the inclusion
V(x1, x2, x4, x5) ⊆ V(x1x2+x4x5), so that intersection yields V(x1, x2, x4, x5).
The intersection of V(x1x2 +x4x5) and V(x3) gives V(x1x2 +x4x5, x3), which
is a three-dimensional variety. Thus,

V0 = V(x1, x2, x4, x5) ∪ V(x1x2 + x4x5, x3),

which is the union of a one-dimensional and a three-dimensional irreducible
component.

2.2. General 3-uniform case

We now generalize the above approach to all 3-uniform loose hyperpaths.
Define pk to be xk−2xk−1 + xk+1xk+2 for some integer k. For integer n ≥ 1,
define A′

n := {2k + 1 : 1 ≤ k ≤ n− 1}, and let An = A′
n \ {3, 2n− 1}. Define

Fn be the collection of “Fibonacci subsets” of A′
n, i.e., sets containing at least

one of each two consecutive elements:

Fn = {S ⊂ A′
n : ∀k ∈ [n− 2], (2k + 1 ∈ S) ∨ (2k + 3 ∈ S)}

Let S be any element of Fn. We say that a set of polynomials B ⊂ {xi : i ∈
[2n+ 1]} ∪ {pi : i ∈ A′

n} is S-admissible if it can be obtained in the following
manner. Define Ui, i = 1, 2, 3, 4, in the following way.

1. U1 = {xi : i ∈ S}

2. U2 =

⎧⎪⎪⎨
⎪⎪⎩
{x1, x2} if x3 /∈ U1, x5 ∈ U1

{x1} or {x2} if {x3, x5} ⊆ U1

{p3} if x3 ∈ U1, x5 /∈ U1

3. U3 =

⎧⎪⎪⎨
⎪⎪⎩
{x2n, x2n+1} if x2n−1 /∈ U1, x2n−3 ∈ U1

{x2n} or {x2n+1} if {x2n−3, x2n−1} ⊆ U1

{p2n−1} if x2n−1 ∈ U1, x2n−3 /∈ U1

4. U4 =
⋃

a∈A

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if {xa−2, xa+2} ⊆ U1

{xa+1} if xa−2 ∈ U1, xa+2 /∈ U1

{xa−1} if xa−2 /∈ U1, xa+2 ∈ U1

{pa} if {xa−2, xa+2} ⊆ {xj : j ∈ A′
n} \ U1

Note that the only choices that do not depend only on S arise from cases of
U2 and U3. If we let Ui denote the collection of all allowable Ui, i = 2, 3, then
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TS = {U1 ∪ U2 ∪ U3 ∪ U4 : U2 ∈ U2, U3 ∈ U3} is the collection of S-admissible
sets. We also remark that for each B ∈ TS , B ⊆ C[x1, . . . , x2n+1]. Define IB as
the ideal in C[x1, . . . , x2n+1] generated by the polynomials in B. Furthermore,
let In denote the collection of all such ideals generated by S-admissible sets
in Fn, i.e.,

In = {IB : B ∈ TS for some S ∈ Fn}.
Before proceeding, we note the following useful fact.

Proposition 2.3 (Prop. 5.20 in [9]). If V and W are irreducible affine vari-
eties over an algebraically closed field, then V ×W is as well.

In fact, the way we will often use Proposition 2.3 is: if I ⊂ C[x1, . . . , xn]
and J ⊂ C[y1, . . . , ym] are prime ideals and I ′, J ′ are the ideals they generate
in C[x1, . . . , xn, y1, . . . , ym], respectively, then I ′+J ′ is also a prime ideal, and
V(I ′ + J ′) = V(I)×V(J). The following lemma establishes that the ideals in
In are prime.

Lemma 2.4. For n ≥ 3 and each IB ∈ In, IB is a prime ideal in C[{xi}2n−1
i=1 ],

and B is an irredundant set of generators for it.

Proof. First, since polynomial rings over C are UFDs, primality is equivalent
to irreducibility throughout. Note that the generators of IB are a finite col-
lection of variables and polynomials of the form pk for some odd integer(s)
k. Let X = {xi : xi ∈ IB} and X ′ = {x1, . . . , x2n+1} \ X . Furthermore, let
K = {pk : pk ∈ IB}. By Proposition 2.3, it suffices to show the primality of
the ideal generated by K in the ring C[X ′], since the variables appearing in
K are disjoint from those of X . The base case |K| = 1 holds if and only if the
polynomial in K is irreducible. Let i ∈ Z so that pi ∈ K. It is easy to see that
pi = xi−2xi−1 +xi+1xi+2 is irreducible. Fix an integer k ≥ 1 and suppose that
the result holds for all K′ with |K′| = k. Let |K| = k + 1 and let pi be any
element of K. By the induction hypothesis, K \ {pi} generates a prime ideal.
From here we split into the following two cases.

Case 1: The variables of pi are disjoint from those of K \ {pi}. As noted
above, pi generates a prime ideal in C[xi−2, xi−1, xi+1, xi+2], so it also gen-
erates a prime ideal in C[X ]. Moreover, the induction hypothesis gives that
K \ {pi} generates a prime ideal in C[X ′ \ {xi−2, xi−1, xi+1, xi+2}], further
implying that K \ {pi} generates a prime ideal in C[X ] by Proposition 2.3.

Case 2: Some variables of pi also occur as variables of polynomials in
K\{pi}. Since i is odd, i− 1 and i+ 1 are even. Moreover, the variables xi−1
(and xi+1) appear in no other polynomial of K, since pi, pi−2 ∈ K (respectively,
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pi and pi+2) implies both i and i−2 (respectively, i and i+2) are outside the
set B used to generate the original ideal IB, contradicting that B is generated
by a Fibonacci subset of A′

n. Therefore, the only overlap in variables comes
from xi−2 and xi+2.

Let X be the collection of variables in pi that also appear in polynomials
of K\{pi}. Define Y := {xi−2, xi−1, xi+1, xi+2}\X, and let Z be the collection
of variables in polynomials of K except the variables contained in X. Define a
collection of new variables X ′ := {x′m : xm ∈ X}. Let the polynomial p′i be pi
evaluated at the variables of X ′ and Y , where each input variable matches the
index of the existing variable. Let I be the ideal generated by K \ {pi}. The
induction hypothesis gives that I is prime. The ideal 〈p′i〉 is prime because
p′i is irreducible. Proposition 2.3 gives the primality of the ideal generated by
I + 〈p′i〉. Let σ : C[X ∪ Z] × C[X ′ ∪ Y ] → C[X ∪ Y ∪ Z] be the quotient
homomorphism σ : f �→ f + 〈{xi − x′i : xi ∈ X}〉. Clearly, σ is surjective, so
Proposition 3.34b in [9] (that surjective homomorphisms preserve primality)
completes the proof of primality.

The second claim, that B is irredundant, is straightforward to check from
the conditions defining Ui, i = 1, . . . , 4: with respect to the variable ordering

x1 ≺ x3 ≺ · · · ≺ x2n+1 ≺ x2 ≺ x4 ≺ · · · ≺ x2n,

the set B is triangular (its ≺-main variables are distinct), so form a basis of
IB = 〈B〉.

If we let Wn denote the collection of affine varieties generated by ide-
als of In, i.e., Wn :=

⋃
I∈In

V(I), then the previous lemma implies that all
varieties in Wn are irreducible. However, some of these varieties may not
be inclusion-maximal, so they are not irreducible components, a matter we
address presently.

Lemma 2.5. Let IV denote the ideal in In which generates the variety V .
Furthermore, let ΘV denote the collection of all maximal sets of consecutive
odd-indexed xi ∈ IV whose indices are contained in A′

n. Then, the variety
V ∈ Wn is inclusion-maximal if and only if ΘV does not contain a set with
odd cardinality m ≥ 3.

Proof. We begin by proving the forward direction by contraposition, so sup-
pose there exists an odd m ≥ 3 so that X := {xa, xa+2, . . . , xa+2(m−1)} ∈ ΘV .
Let B be the generating set for IV which corresponds to an S-admissible set
for some S ∈ Fn. If a > 3, then the maximality of X implies xa−2 /∈ IV ,
giving that xa−1 ∈ IV by condition (4) in the definition of S-admissible. On
the other hand, if a = 3, then condition (2) gives the presence of either x1 or



Geometric vs algebraic nullity for hyperpaths 2441

x2 in IV . In either case, there exists q1 ∈ N so that xq1 ∈ IV ∩ {xa−2, xa−1}.
Similarly, there exists q2 so that xq2 ∈ IV ∩ {xa+2m−1, xa+2m}. Now, define
X ′ := {xq1 , xq2}∪{xa+2, xa+6, . . . , xa+2(m−2)}, which is well-defined since |X|
is odd, and, let P ′ = {pa, pa+4, . . . , pa+2(m−1)}. Note that |X ′| = |P ′| + 1,
so that |B| > |(B \ X ′) ∪ P ′|. Inspection shows that (B \ X ′) ∪ P ′ is an S-
admissible set for some S ∈ Fn. Moreover, if every polynomial in B yields 0
when evaluated at a tuple (c1, c2, . . . , c2n+1) ∈ C2n+1, then (c1, c2, . . . , c2n+1)
is also a common zero of all polynomials in (B\X ′)∪P ′, since all polynomials
of P ′ evaluate to zero if those of X ∪ {xq1 , xq2} ⊆ B do as well. Then V is
not maximal.

It remains to establish the converse. If n ≤ 3, it is straightforward to
check that the varieties in Wn are maximal. Suppose now that n ≥ 4 and
that V ∈ Wn is not maximal, so there exists V ′ ∈ Wn with V � V ′. Let B
and B′ be the admissible sets which generate IV and IV ′ respectively, meaning
B and B′ also generate V and V ′. Since V ⊂ V ′, if values for x1, . . . , x2n+1
are chosen so that all polynomials in B are zero, then all the polynomials
in B′ are also zero for the same choice of values for x1, . . . , x2n+1. By the
definition of admissible sets, B and B′ are each minimal generating sets of
their respective ideals, and additionally B ∩ B′ /∈ {B,B′}, i.e., neither is a
subset of the other.

Next, we establish the following claim regarding the inclusion of single-
variable monomials between B and B′. Let i ∈ [2n− 1].

Claim 2.6. If xi /∈ B, then xi /∈ B′.

Proof of claim. Suppose i ∈ [2n−1] and xi /∈ B. Let c = (c1, . . . , c2n+1) ∈ V .
If ci �= 0, then xi /∈ B′, as otherwise c �∈ V ′, contradicting that V ⊂ V ′.
Suppose now that ci = 0. The following cases construct another point c′ so
that c′ ∈ V with c′i �= 0, again obtaining a contradiction to V ⊂ V ′.

Case 1: i ∈ {1, 2, 2n, 2n + 1}. Without loss of generality, suppose i = 1,
and note that the only polynomials of any admissible set in which x1 occurs
are x1 and p3, and, in this case, x1 �∈ B. If p3 ∈ B, define c′ so that c′i = ci
for i �∈ {1, 2}, but c′1 = 1 and c′2 = −x4x3. The choice of c′2 gives p3(c′) = 0.
Since p3 ∈ B implies x2 /∈ B, c′ ∈ V . If p3 /∈ B, define c′ so that c′j = cj for
j �= 1, but c′1 = 1. All polynomials of B are satisfied by c′.

Case 2: 3 ≤ i ≤ 2n−1 and i odd. Note that the only possible polynomials
containing xi are pi−2, pi+2, and xi. By assumption, xi /∈ B, leaving only pi−2
and pi+2. Define c′ so that c′j = cj for j �∈ {i − 1, i, i + 1} and c′i = 1. If
pi−2 ∈ B (resp. pi+2 ∈ B), define c′i−1 = −xi−4xi−3 (resp. c′i+1 = −xi+4xi+3),
so that pi−2(c′) = 0 (resp. pi+2(c′) = 0). The existence of pi−2 ∈ B (resp. pi+2)
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implies xi−1 /∈ B (resp. xi+1 /∈ B). Clearly, pi is the only other polynomial
containing either xi−1 or xi+1, but xi /∈ B implies xi−2, xi+2 ∈ B, further
giving that pi /∈ B. Therefore, all polynomials of B are satisfied by c′.

Case 3: 3 ≤ i ≤ 2n−1 and i even. Note that the only possible polynomials
containing xi are pi−1, pi+1, and xi. By assumption, xi /∈ B, leaving only pi−1
and pi+1. If xi−1, xi+1 ∈ B, then pi−1, pi+1 /∈ B, so defining c′j = cj for j �= i
and c′i = 1 yields a c′ satisfying all polynomials of B. Suppose now that not
both of xi−1 and xi+1 are in B. Condition (1) gives that at least one of xi−1
and xi+1 are in B, so B cannot contain both of pi−1 and pi+1. Without loss
of generality, suppose pi−1 ∈ B, giving that xi+1 /∈ B. In this case, define c′
so that c′j = cj for j �∈ {i, i + 1, i + 2}, c′i = 1, and c′i+1 = −ci−3ci−2. Then
pi−1(c′) = 0, so the only other polynomial containing xi+1 is pi+3. If c′i+1 = 0,
then we already have c′ ∈ V . Suppose now that c′i+1 �= 0. If pi+3 /∈ B, then
take c′i+2 = ci+2, and c′ ∈ V . Otherwise, take c′i+2 = −ci+4ci+5/c

′
i+1. In

this case, xi+3, pi+3 ∈ B gives that xi+2 /∈ B. Furthermore, xi+3 ∈ B also
implies pi+1 /∈ B, meaning pi+3 is the only polynomial of B containing xi+2.
Therefore, in this case, c′ ∈ V . ♦

We will often use the above claim in contrapositive form, i.e., if xi ∈ B′,
then xi ∈ B.

Suppose the polynomial pa is an element of B′\B. Thus, xa−2 ∈ B \B′ or
xa−1 ∈ B \B′ by condition (4). The same conclusion can be drawn of xa+1 or
xa+2. Without loss of generality, there are three cases: xa−2, xa+2 ∈ B\B′ and
xa−1, xa+1 �∈ B \ B′, xa−1, xa+1 ∈ B \ B′, and xa−1, xa+2 ∈ B \ B′. Suppose,
by way of contradiction, that ΘV does not contain a set of odd cardinality
greater than 1.

Case 1: {xa−2, xa+2} ⊂ B \ B′ and xa−1, xa+1 �∈ B \ B′. Since B′ is an
admissible set, then xa ∈ B′, further implying xa ∈ B by the above claim. Let
Ma be the element of ΘV containing xa. By assumption, |Ma| is even. If ML

a

denotes the subset of variables in Ma with indices less than a and MR
a denotes

the subset of variables in Ma with indices greater than a, then exactly one of
|ML

a | and |MR
a | is odd. Without loss of generality, suppose |MR

a | is odd, and
let xa+2q be the variable of largest index in Ma. Clearly q ≥ 1.

Since xa+2m ∈ B for all 0 ≤ m ≤ q, we have that xa+2m+1 /∈ B for each
0 ≤ m ≤ q−1 by condition (4). The above claim gives that xa+2m+1 /∈ B′ for
each 0 ≤ m ≤ q − 1. Therefore, xa+2, xa+3 �∈ B′, so pa+4 ∈ B′ by condition
(4), so xa+6 �∈ B′. Repeating this argument, B′\B contains polynomials pi for
i ∈ {a, a+4, a+8, . . . , a+2(q−1)}, since |MR

a | odd implies q odd. Furthermore,
xa−2, xa+2, xa+6, . . . , xa+2q /∈ B′. If a+2(q+1) ≤ 2n−1, then xa+2q being the
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variable with maximum index in Ma implies xa+2(q+1) /∈ B. The above claim
gives xa+2(q+1) /∈ B′, and this together with xa+2q /∈ B′ contradicts condition
(1). Therefore, a + 2q = 2n + 1. Since xa+2(q−1), xa+2q ∈ B, then exactly one
of x2n and x2n+1 are not in B. Without loss of generality, suppose x2n /∈ B.
By the above claim, we have that x2n /∈ B′. This together with xa+2q /∈ B′

contradicts condition (3), completing the case.

Case 2: {xa−1, xa+1} ⊆ B \ B′. By the definition of an admissible set,
we have xa /∈ B (as otherwise implies xa−2 /∈ B and xa+2 /∈ B, giving that
pa ∈ B, a contradiction). The absence of xa in B further implies that xa /∈ B′

by the above claim. If 3 < a < 2n − 1, then {xa−2, xa+2} ⊆ B. If a = 3
or a = 2n − 1, suppose without loss of generality that a = 3, in which
case xa+2 ∈ B. For any a, there exists xj with j ∈ {a + 2, a − 2} so that
3 ≤ j ≤ 2n − 1 and xj ∈ B. The presence of pa ∈ B′ requires xj /∈ B′. This
together with xa /∈ B′ contradicts the definition of an admissible set.

Case 3: Without loss of generality, {xa−1, xa+2} ⊆ B \ B′. Suppose that
3 < a < 2n− 1. Since B′ is an admissible set, xa+2 /∈ B′ implies xa ∈ B′, so
xa ∈ B by the above claim. Furthermore, {xa, xa−1} ⊂ B implies xa−2 /∈ B,
giving that xa−2 /∈ B′, again by the above claim. Let Ma be the element of
ΘV containing xa. We have that xa is the variable with smallest index in Ma,
since xa−2 /∈ B. Let xa+2q be the variable with largest index in Ma. Since
|Ma| is even, we have that q ≥ 1 is odd. Therefore, applying the argument
from case 1 completes this case as well.

Since this considers all cases, this completes the proof that, if V is not
maximal, then B contains a maximal odd order collection of monomials with
consecutive indices in A′

n.

Let Jn denote the collection of all ideals in In which generate inclusion-
maximal irreducible varieties. Furthermore, define Tn to be the subcollection
of

⋃
S∈Fn

TS containing all admissible sets which generate ideals in Jn. Lastly,
define F̂n to be the subcollection of Fn containing all Fibonacci subsets of
A′

n which give rise to at least one admissible set in Tn, i.e., subsets S of
A′

n = {3, 5, . . . , 2n−1} so that at least one of every two consecutive elements
of A′

n belong to S, and so that maximal intervals of A′
n contained in S are

either a single element or have even length.

Theorem 2.7. If H = P 3
n for some n ≥ 3, then the null variety V0 of H can

be written ∪J∈JnV(J), where Jn is as defined above and each J ∈ Jn is an
irreducible component of V0.
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Proof. Recall that the hyperpath H has exactly 2n+ 1 vertices, and we label
them with {v1, . . . , v2n+1} so that the j-th edge is ej = {v2(j−1)+1, . . . , v2j+1}
for j = 1, . . . , n.

In constructing the equations that define V0, there are n − 1 vertices
giving rise to equations of the form pk = 0, while the other n+2 vertices give
equations of the form xixj = 0. We begin by considering the variety defined
by all polynomials of the second form. Let xikxjk for 1 ≤ k ≤ n + 2 be the
n + 2 polynomials of this form. Then

V
(
{xikxjk}n+2

k=1

)
=

n+2⋂
k=1

V(xikxjk) =
n+2⋂
k=1

(V(xik) ∪ V(xjk)) .

Let �k ∈ {ik, jk} for each 1 ≤ k ≤ n + 2, so that

n+2⋂
k=1

(V(xik) ∪ V(xjk)) =
⋃

{�k}n+2
k=1

V({x�k}n+2
k=1).

Let L be the collection of all choices of {�k}. To facilitate analysis of the sets
in L, we construct a graph G, where the vertices of G are labeled with the
distinct �k, and edges connect �k and �k′ if and only if x�kx�k′ ∈ {xikxjk}n+2

k=1 .
Based on the structure of H and the vertex labeling given originally, G has
the following form.

· · ·

1

2

3
5

2n + 1

2n

2n− 1
2n− 3

An element of L corresponds to a set of vertices in G covering E(G), since
the vertices of G are labeled by variable indices, edges are given by pairs of
indices in a term of

⋂2n+1
k=1 (V(xik) ∪ V(xjk)), and

⋂2n+1
k=1 (V(xik) ∪ V(xjk)) is

the union of intersections over one term from each element of L.
A subset S of vertices in G which is an edge cover must, in particular,

cover the edges {3, 5}, {5, 7}, . . . , {2n − 3, 2n − 1}, so no two consecutive
elements of A′

n are absent from any such set. In particular, S ∩A′
n ∈ Fn. Let

XS = {xi : i ∈ S}. Since 3 �∈ S implies 1, 2 ∈ S so that S covers the edges
{1, 3} and {2, 3}, if x3 �∈ XS , then x1, x2 ∈ XS . Similarly, if x2n−1 �∈ XS , then
x2n, x2n+1 ∈ XS . Note that, for any odd a, if

(1) [(xa−2 = 0) ∨ (xa−1 = 0)] ∧ [(xa+1 = 0) ∨ (xa+2 = 0)]



Geometric vs algebraic nullity for hyperpaths 2445

then pa = 0. Then let P be the set of pa so that (1) is not satisfied, and define
B = XS ∪ P . Then, for each i ∈ A′

n:

1. If i �∈ S and i− 4 �∈ S, then xi �∈ B, xi−4 �∈ B, and pi−2 ∈ B.
2. If i �∈ S and i + 4 �∈ S, then xi �∈ B, xi+4 �∈ B, and pi+2 ∈ B.
3. If i �∈ S and i− 4 ∈ S, then xi �∈ B, xi−4 ∈ B, and xi−1 ∈ B.
4. If i �∈ S and i + 4 ∈ S, then xi �∈ B, xi+4 ∈ B, and xi+3 ∈ B.
5. If 5 �∈ S and x1 �∈ B, then p3 ∈ B.
6. If 2n− 3 �∈ S and x2n+1 �∈ B, then p2n−1 ∈ B.
7. If 5 ∈ S and x1 /∈ B, then x2 ∈ B.
8. If 5 ∈ S and x2 /∈ B, then x1 ∈ B.
9. If 2n− 3 ∈ S and x2n /∈ B, then x2n+1 ∈ B.

10. If 2n− 3 ∈ S and x2n+1 /∈ B, then x2n ∈ B.

Let B be the set of all such B generated by the above conditions. Then,
we have that the null variety of H is ∪B∈BV(B), and it is easy to see that this
is exactly the same as the construction given by

⋃
I∈In

V(I). Since Lemma 2.4
gives that each of these ideals are prime, the corresponding varieties are irre-
ducible, giving that

⋃
I∈In

V(I) is a decomposition of V0 into irreducible va-
rieties. Furthermore, Lemma 2.5 determines the inclusion-maximal varieties
under the inclusion relation, implying that ∪J∈JnV(J) is a decomposition of
V0 into its irreducible components.

Corollary 2.8. For n ≥ 3, the null variety V0 of P 3
n has dimension 2�n/2�+1.

As an illustration of Theorem 2.7, we list all the ideals that generate
irreducible components of V0 for P 3

5 :

〈x1, x2, x5, x9, p5, p9〉 〈x1, x2, x4, x5, x7, x8, x10, x11〉
〈x3, x7, x10, x11, p3, p7〉 〈x3, x6, x7, x9, x10, p3〉
〈x3, x6, x7, x9, x11, p3〉 〈x1, x3, x5, x6, x9, p9〉
〈x2, x3, x5, x6, x9, p9〉 〈x1, x3, x5, x7, x9, x10〉
〈x1, x3, x5, x7, x9, x11〉 〈x2, x3, x5, x7, x9, x10〉
〈x2, x3, x5, x7, x9, x11〉

2.3. Enumeration of components by dimension

From here we work to determine the quantity of irreducible components of
V0 of different dimensions for each P 3

n . Fix an n. Let B ∈ Tn, and let S be
such that S ∈ F̂n with B an S-admissible set. Let U1, U2, U3, U4 be given so
that B = U1 ∪U2 ∪U3 ∪U4 as in the definition above. Noting that |U1| = |S|,
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|U2| =
{

2 if x3 /∈ U1

1 otherwise
, |U3| =

{
2 if x2n−1 /∈ U1

1 otherwise
, and |U4| = |{a ∈ An :

a − 2 /∈ S or a + 2 /∈ S}|, the following computation gives an expression for
|B|.

|B| = |S| +
{

2 if x3 /∈ U1

1 otherwise
+

{
2 if x2n−1 /∈ U1

1 otherwise
+ |{a ∈ An : a− 2 /∈ S or a + 2 /∈ S}|

= |S| + 13/∈S + 12n−1/∈S + |(A′
n − 2) ∩ S| + |(A′

n + 2) ∩ S|
− |(A′

n − 2) ∩ (A′
n + 2) ∩ S|

= |S| + 13/∈S + 12n−1/∈S + |(A′
n − 2) ∩ S| + |(A′

n + 2) ∩ S| − |An ∩ S|
= |S| + 13/∈S + 12n−1/∈S + |A′

n| − |(S − 2) ∩ (S + 2)|
= |S ∩ A| + n + 1 − |S ∩ (S + 4)|

Additionally, let μn(S) denote |TS ∩ Jn|, i.e., the number of irreducible
components of V0 generated by sets in TS . It is clear that μn(S) ∈ {1, 2, 4}. All
irreducible components generated by sets in TS have dimension 2n+1−|B| for
some B ∈ TS , since the irreducible components all reside in C[x1, . . . , x2n+1],
|B1| = |B2| for all B1, B2 ∈ TS , and the sets B ∈ TS are irredundant by
Lemma 2.4. Consider the generating function

g(y, z) =
∑
n≥0

∑
S∈F̂n

y|B|zn.

Note that g(y, z) does not incorporate the multiplicity μn(S). We first consider
the expression given by the inner sum, namely

gn(y) :=
∑
S∈F̂n

y|B|

for a given n ∈ N. Computation gives the following results for small values of
n.

g0(y) = y g3(y) = 3y4

g1(y) = y2 g4(y) = 3y6 + y4

g2(y) = 2y3 g5(y) = y8 + 5y6

We develop a recurrence for gn(y) aided by two new sequences of functions,
bn(y) and cn(y), defined in the following way:

bn(y) =
∑

S∈F̂n,{2n−3,2n−1}⊆S

y|B|
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cn(y) =
∑

S∈F̂n,2n−3/∈S,2n−1∈S

y|B|

For clarity, we define b0 = b1 = b2 = c0 = c1 = c2 = 0. Otherwise, we have
the following small values of the two new sequences.

b3(y) = y4 c3(y) = y4

b4(y) = y6 c4(y) = y4

b5(y) = 2y6 c5(y) = 2y6

Note that, for each S a Fibonacci subset of A′
n, at least one of 2n− 3 and

2n− 1 are included in S, so there are three options for {2n− 1, 2n− 3} ∩ S.
All three can be expressed in terms of bn, cn, and gn. A straightforward
(if laborious) case analysis provides the following recurrences for the three
sequences of functions. Note that these recurrences are valid only for n ≥ 5.

gn(y) = 2y2gn−2(y) + y4bn−3(y) + y2(y2 − 1)cn−2(y)(2)
bn(y) = y2gn−2(y) − y2cn−2(y)
cn(y) = y2bn−2(y) + y2cn−2(y)

Recall that g(y, z) is the generating function for gn(y). Analogously, we let
b(y, z) =

∑
n≥0 bn(y)zn and c(y, z) =

∑
n≥0 cn(y)zn. The following computa-

tions work towards closed forms for b, c, and g.

g =
4∑

n=0
gnz

n + 2y2 ∑
n≥5

gn−2z
n + y4 ∑

n≥5
bn−3z

n + y2(y2 − 1)
∑
n≥5

cn−2z
n

=
4∑

n=0
gnz

n + 2y2z2(g −
2∑

n=0
gnz

n) + y4z3b + y2(y2 − 1)z2c

g = 3y6z4 − 4y5z4 + y4z4 + y4z3 + y2z + y + y4z3b + y2(y2 − 1)z2c

1 − 2y2z2

b =
4∑

n=0
bnz

n + y2 ∑
n≥5

gn−2z
n − y2 ∑

n≥5
cn−2z

n

=
4∑

n=0
bnz

n + y2z2(g −
2∑

n=0
gnz

n) − y2z2c

b = y6z4 − 2y5z4 − y3z2 + y2z2g − y2z2c

c =
4∑

n=0
cnz

n + y2 ∑
n≥5

bn−2z
n + y2 ∑

n≥5
cn−2z

n
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=
4∑

n=0
cnz

n + y2z2b + y2z2c

c = y4z4 + y4z3 + y2z2b

1 − y2z2

Solving the system for g gives the following.

g = −
(
y8 − 2 y7 + y6)z6 −

(
y8 − 2 y7)z5 −

(
2 y6 − 3 y5 + y4)z4

y4z4 − y4z3 − 2 y2z2 + 1

−
(
y5 − y4)z3 − y2z − y

y4z4 − y4z3 − 2 y2z2 + 1

Recall that the exponent on y in g(y, z) is the co-dimension of the ir-
reducible component of V0 for P 3

n . Since we are interested in the dimension
of these components, we make the following transformation. The dimension
of each component is 2n + 1 minus its co-dimension. Thus, the function we
want is given by h(y, z) = y ·g(1/y, y2z), expressible as follows (computations
throughout performed by SageMath [12]).

h = −y7z6 + 2y6z6 − y5z6 + y5z4 − 2y4z5 − 3y4z4

y4z4 − y2z3 − 2y2z2 + 1

+ y3z5 + 2y3z4 + y3z3 − y2z3 + yz + 1
y4z4 − y2z3 − 2y2z2 + 1

To help later with verifying Conjecture 1.1, differentiating with respect to y

gives the following expression and then plugging in y = 2, because

H(z) := ∂

∂y
h(y, z)

∣∣∣∣
y=2

=
∑
n≥0

∑
S∈F̂n

(dimV(B))2dimV(B)−1zn.

The generating function obtained in this way encodes a lower bound on
gm(0) of the conjecture, but four times this function is an upper bound. We
get the following expression when substituting y = 2:

4(−320z10 + 96z9 + 284z8 + 48z7 − 56z6 − 33z5 − 5z4 + 5z3 + 2z2) + z

256z8 − 128z7 − 240z6 + 64z5 + 96z4 − 8z3 − 16z2 + 1

= z + 8z2 + 36z3 + 116z4 + 412z5 + 1088z6 + · · ·
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The smallest-magnitude root of the denominator lies within the interval
(0.37, 0.371). This implies that the coefficients of H(z) have growth rate in
the interval (2.69, 2.71). We upper-bound the coefficients {ηn}n≥0 of H(z).
Recall that Corollary 2.8 gives that the maximum dimension of an irreducible
component of V0 for P 3

n is 2�n/2�+1. Since we counted at most one component
for each Fibonacci subset of A′

n, there are at most Fn (the n-th Fibonacci
number) terms which contribute to ηn. Therefore, ηn is bounded above in the
following way, given that φ = (1 +

√
5)/2:

ηn ≤ φn − (−φ)−n

√
5

· (n + 1) · 2n

2.4. Incorporating multiplicity

Recall that μn(S) ∈ {1, 2, 4} for S ∈ F̂n, but the above sums ignore this
factor. Note that μn(S) > 1 when either pair {3, 5} or {2n − 3, 2n − 1} are
subsets of S. The sequence bn given above accounts for the subcollection of F̂n

containing both 2n− 3 and 2n− 1, so b is the generating function where the
ymzn coefficient counts the number of irreducible components of codimension
m from a hyperpath of length n generated from a given S containing both
2n−3 and 2n−1. By the symmetry of these Fibonacci subsets, the coefficients
of b also count the same quantity, where now the Fibonacci set S contains both
3 and 5. So, 2b counts the {3, 5} ⊆ S and {2n− 3, 2n− 1} �⊆ S components
once, the {2n − 3, 2n − 1} ⊆ S and {3, 5} �⊆ S components once, and the
{3, 5, 2n − 3, 2n − 1} ⊆ S components twice. It only remains to count the
{3, 5, 2n− 3, 2n− 1} ⊆ S components one additional time.

We now define g′n, b′n, and c′n to have the same conditions on the presence
of 2n− 3 and 2n− 1 in S as was given for gn, bn, and cn above, but now we
require that 3 and 5 be in S, i.e.,

g′n(y) :=
∑
S∈F̂n
3,5∈S

y|B|

and analogously for b′n and c′n. We define all three sequences for n ≥ 0,
although some initial values are zero. These modified sequences satisfy the
exact same recurrences as displayed in (2) for n ≥ 5.

Let g′, b′, and c′ be the generating functions with respect to the variable
z for the three sequences defined. Then, the generating function b′ counts
exactly the {3, 5, 2n − 3, 2n − 1} ⊆ S components once. Computation gives
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the following rational expression for g′ and b′:

g′ = y6z4 + y4z3

y4z4 − y4z3 − 2 y2z2 + 1

b′ = − y6z5 − y4z3

y4z4 − y4z3 − 2 y2z2 + 1

Note that the generating function for g′ counts the same irreducible compo-
nents as b from above. Therefore, the generating function of gm(0), which
incorporates multiplicity (aside from some initial terms), is given by G =
g + 2g′ + b′, and is given by the following rational function.

G =
(
−y8z6 + y8z5 + 2y7z6 − 2y7z5 − y6z6 − y6z5 + 4y6z4 − 3y5z4 − y5z3

+ y4z4 + 4y4z3 + y2z + y
)
/(y4z4 − y4z3 − 2y2z2 + 1)

Similarly to the previous subsection, we compute h′ = y ·G(1/y, y2z), which
is the generating function for the number of irreducible components of di-
mension given by the exponent on y in V0 for P 3

n , if n is the exponent on
z.

h′ =
(
−y7z6 + 2y6z6 − y5z6 − y5z5 + y5z4 − 2y4z5 − 3y4z4 + y3z5

+ 4y3z4 + 4y3z3 − y2z3 + yz + 1
)
/(y4z4 − y2z3 − 2y2z2 + 1).

Computing ∂
∂yh

′(y, z)
∣∣∣
y=2

yields the following generating function:

4(−320z10 + 32z9 + 300z8 + 88z7 − 84z6 − 77z5 + z4 + 14z3 + 2z2) + z

256z8 − 128z7 − 240z6 + 64z5 + 96z4 − 8z3 − 16z2 + 1
= z + 8z2 + 72z3 + 140z4 + 812z5 + 1648z6 + 7280z7

+ 18064z8 + 60928z9 + 176576z10 + · · ·

Here the linear and quadratic coefficients are incorrect, however, because
incorporation of multiplicity only adjusts for n ≥ 3. Modifying this expression
via Propositions 2.1 and 2.2, we obtain

H ′(z) = −256z8 + 192z7 + 272z6 − 156z5 − 92z4 + 24z3 + 13z2 + 3z
256z8 − 128z7 − 240z6 + 64z5 + 96z4 − 8z3 − 16z2 + 1

= 3z + 13z2 + 72z3 + 140z4 + 812z5 + 1648z6 + 7280z7

+ 18064z8 + 60928z9 + 176576z10 + · · ·
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3. Algebraic multiplicity of zero

Let Dn,k be the algebraic multiplicity of zero in the characteristic polynomial
of φP k

n
(λ) (the k-uniform linear hyperpath with n edges). We are given the

following by the paper of Bao, Fan, Wang, and Zhu.

Theorem 3.1 ([1]). For n ≥ 2,

φP k
n
(λ) = λ(k−2)(k−1)n(k−1)

n∏
s=0

(
λ− f s−1(1)

λk−1

)νn,k(s)

φP k
n−1

(λ)(k−1)k−1
,

where

νn,k(s) =
{
ks(k−2)((k − 1)k−1 − kk−2)(k − 1)(n−s−1)(k−1) if s ∈ [0, n− 1],
ks(k−2) if s = n,

and

f i(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i = −1,
1 if i = 0,
f(x) = 1

1−xλ−k = λk

λk−x
if i = 1,

f i−1(f(x)) if i > 1.

We use these facts to prove the following. We start by proving the follow-
ing lemma concerning the degree of the zero root in f(x).

Lemma 3.2. Let k ≥ 2 be given. Let ds be the degree of the zero root in the
rational function f s(1). If s ≥ 1, then ds = 0 if s is even and ds = k if s is
odd.

Proof. We proceed by induction on s, with the base cases given by s = 1 and
s = 2. The definition of f s(x) includes that f(1) = λk

λk−1 , giving that d1 = k.
For s = 2, then,

f2(1) = f(f(1)) = f

(
λk

λk − 1

)
= λk − 1

λk − 2 .

Now suppose that the result holds for some s ≥ 1. Consider the value of ds+1.
Since composition of functions is associative, f s+1(1) = f s(f(1)) = f(f s(1)).
Let qs(x) denote the denominator of f s(x). Since f(x) = λk

λk−x , we can think
of f s+1(1) as λkqs(1) divided by λkqs(1) minus the numerator of f s(1).
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If f s(1) is rational in λ with ds = 0, then the denominator of f s+1(1)
will not be divisible by λ, but the degree of λ in the numerator is k. Thus
ds+1 = k. On the other hand, if ds = k, then f s(1) is rational in λ with the
power of λ in the numerator equal to k. Then, f s+1(1) will have k factors of λ
in the numerator after multiplying through by qs(1), but the denominator is
the difference of two polynomials both of which have λ occurring k times as
a factor. Factor out the term λk from the denominator and cancel it within
f s+1(1). This leaves zero factors of λ in the numerator. In the denominator,
we have zero factors of λ if and only if the constant term in qs(1) differs from
the coefficient of λk in the numerator of f s(1). This inequality of coefficients
is established by the following inductive argument, which need only handle
the case of s odd. In fact, we include in the inductive hypothesis as well that
the numerator and denominator have no nonzero coefficients of terms of the
form λj with 0 < j < k.

By definition, f(1) = λk

λk−1 , so the constant term in the denominator
(namely, −1) and the coefficient of λk (namely, 1) in the numerator differ,
giving the base case. Suppose now that the result holds for some odd i ≥ 1.
Let f s(1) have numerator α(λ) + α1λ

k and denominator β(λ) + β1λ
k + β2,

where α and β are both polynomials of degree greater than k, and α1 �= β2.
Then, we have the following.

f s+2(1) = f ◦ f
(

α(λ) + α1λ
k

β(λ) + β1λk + β2

)

= f

⎛
⎝ λk

λk − α(λ)+α1λk

β(λ)+β1λk+β2

⎞
⎠

= f

(
β(λ) + β1λ

k + β2

β(λ) + β1λk + β2 − α(λ)λ−k − α1

)

= λk

λk −
(

β(λ)+β1λk+β2
β(λ)+β1λk+β2−α(λ)λ−k−α1

)

= λk(β(λ) + β1λ
k + β2 − α(λ)λ−k − α1)

λk(β(λ) + β1λk + β2 − α(λ)λ−k + α1) − β(λ) − β1λk − β2

From this, we see that the coefficient of λk in the numerator is β2 − α1, and
the constant term in the denominator is −β2. Since α1 = 1 and β2 = −1 in
f(1), we have that the constant term in the denominator flips back and forth
between −1 and 1 as the powers of f increase by two. On the other hand,
β2 − α1 takes values of the form (−1)(s−1)/2 · (s − 1)/2 for odd s ≥ 1. Then
the two desired coefficients are never equal, completing the proof.
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Corollary 3.3. The multiplicity of the zero root of λk − f s(1) is the same as
the multiplicity of zero in f s(1).

Proof. The even case is trivial, because both multiplicities are zero. In the
odd case, the ratio of the coefficient of λk in the numerator of f s(1) divided
by the constant coefficient in the denominator has absolute value less than 1
except when s = 1. However, in that case λk−f(1) = λk− λk

λk−1 = λ2k−2λk

λk−1 .

We now use the preceding lemma and corollary to fully describe the nullity
of P k

n .

Theorem 3.4. Let k ≥ 1 and n ≥ 1. Additionally, let u = (k − 1)k−1 and
v = kk−2. If Dn,k denotes the multiplicity of λ in the k-uniform hyperpath
characteristic polynomial φP k

n
(λ), then

Dn,k = un
(
[nk − n + 1]u2 + [nk − 2n + 2]uv − [k + n− 1]v2) + k(−v)n+2

(u + v)2 .

Proof. We first separate the n = 1 case. Cooper and Dutle [3] showed that
D1,k = k(k − 1)k−1 − kk−1 = k(u − v). Plugging n = 1 into the suggested
formula gives the same expression, verifying the result for the base case.
Suppose now that n ≥ 2. From Theorem 3.1, we have

(3) φP k
n
(λ) = λ(k−2)(k−1)n(k−1)

n∏
s=0

(
λ− f s−1(1)

λk−1

)νn,k(s)

φP k
n−1

(λ)(k−1)k−1
,

so we develop a recurrence that gives Dn,k knowing Dn−1,k. From the preced-
ing formula, we see

Dn,k = (k − 2)un + u ·Dn−1,k + Fn,k,

where we define Fn,k to be the multiplicity of the zero root in the simplified
rational function

∏n
s=0

(
λ− fs−1(1)

λk−1

)νn,k(s)
(taking the parameter to be nega-

tive if there are excess powers of λ in the denominator). As above, let ds be
the multiplicity of the zero root in f s(1). By Lemma 3.2, we have that ds−1 is
zero when s− 1 is even, and ds−1 = k when s− 1 is odd. Since the s-th term
of the product in (3) is [λ−(k−1)(λk − f s−1(1))]νn,k(s), and Corollary 3.3 gives
that the degree of the zero root in f s−1(1) and λk − f s−1(1) are the same, we
have

Fn,k = −(k − 1)
n∑

s=0
νn,k(s) +

n∑
s=0

νn,k(s) · ds−1.
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We start by considering the value of the first term above. We have the fol-
lowing.

n∑
s=0

νn,k(s) = νn,k(n) +
n−1∑
s=0

νn,k(s)

= vn +
n−1∑
s=0

vs(u− v)un−s−1

= vn + (u− v)un−1 1 −
(
v
u

)n
1 − v

u

= un

When considering the second summand in the expression for Fn,k, we split
into cases initially based on the parity of n. Starting with n odd, we have the
following simplification of

∑n
s=0 νn,k(s) · ds−1:

n∑
s=0

νn,k(s) · ds−1 =
(n−1)/2∑

s=0
νn,k(2s) · k

= k ·
(n−1)/2∑

s=0
v2s(u− v)un−1−2s

= k(u− v)un−1
1 −

(
v2

u2

)(n+1)/2

1 − v2

u2

=
(

k

u + v

)
(un+1 − vn+1)

On the other hand, if n is even, we have the following.

n∑
s=0

νn,k(s) · ds−1 =
n/2∑
s=0

νn,k(2s) · k

= k · vn + k ·
(n−2)/2∑

s=0
v2s(u− v)un−1−2s

= k · vn + k(u− v)un−1
1 −

(
v2

u2

)(n)/2

1 − v2

u2

=
(

k

u + v

)
(un+1 + vn+1)
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Thus, for general n, we have
n∑

s=0
νn,k(s) · ds−1 =

(
k

u + v

)
(un+1 − (−v)n+1).

This gives the following closed form for Fn,k.

Fn,k = −(k − 1)un +
(

k

u + v

)
(un+1 − (−v)n+1)

Substituting this back into the original expression for Dn,k, we have the fol-
lowing simplification.

Dn,k = (k − 2)un + u ·Dn−1,k + Fn,k

= (k − 2)un + uDn−1,k − (k − 1)un +
(

k

u + v

)
(un+1 − (−v)n+1)

= uDn−1,k + un[(k − 1)u− v] − k(−v)n+1

u + v

For n = 1, we noted earlier that D1,k = k(u − v). We continue with the
following, completing the proof.

Dn,k = kun−1(u− v) + un[(k − 1)u− v] − k(−v)n+1

u + v

+
n−2∑
i=1

ui
un−i[(k − 1)u− v] − k(−v)n−i+1

u + v

= kun−1(u− v) +
n−2∑
i=0

ui
un−i[(k − 1)u− v] − k(−v)n−i+1

u + v

= kun−1(u− v) +
n−2∑
i=0

un[(k − 1)u− v]
u + v

−
n−2∑
i=0

kui(−v)n+1−i

u + v

= kun−1(u− v) + un(n− 1)[(k − 1)u− v]
u + v

− k(−v)n+1

u + v
·
1 −

(
u
−v

)n−1

1 − u
−v

= un([nk − n + 1]u2 + [nk − 2n + 2]uv − [k + n− 1]v2) + k(−v)n+2

(u + v)2 .

The next result applies the above theorem to obtain an asymptotic ex-
pression for Dn,k.
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Corollary 3.5. Let k ≥ 3 be fixed and n ≥ 1. Then limn→∞
Dn,k

n(k−1)n(k−1)+1 = 1.
In particular, the fraction of eigenvalues of P k

n which are zero approaches
1/(k − 1) as n → ∞.

Proof. We have the following expression for Dn,k, where u = (k − 1)k−1 and
v = kk−2:

Dn,k = un
(
[nk − n + 1]u2 + [nk − 2n + 2]uv − [k + n− 1]v2) + k(−v)n+2

(u + v)2

Noting that k ≥ 2, we first show that u > v. We have the following compu-
tation.

u

v
= (k − 1)k−1

kk−2 = k2

k − 1

(
1 − 1

k

)k

≥ k2

k − 1 · 1
4 = k2

4k − 4 .

Note that for k ≥ 2, the function
(
k−1
k

)k
is increasing, so its value for any

k ≥ 2 is bounded below by its value when k = 2, namely, 1/4. Furthermore,
the rightmost expression is greater than one if and only if k2 ≥ 4k−4, which is
true because (k−2)2 ≥ 0. Therefore, u > v, so u dominates v asymptotically.
Then the rational expression is asymptotically the same as a ratio of two
polynomials just in the variable u, from which it follows that

lim
n→∞

Dn,k

[n(k − 1) + 1]un = 1.

Since k is constant, this gives the desired result. The second claim in the
proof follows because (see [10]) the total number of eigenvalues (counted with
algebraic multiplicity) is N(k − 1)N , where N is the number of vertices; in
this case, N = n(k − 1) + 1 and, as n → ∞,

n(k − 1)n(k−1)+1

(n(k − 1) + 1)(k − 1)n(k−1)+1 ∼ n(k − 1)n(k−1)+1

n(k − 1)n(k−1)+2 = 1
k − 1 .

From this, we observe the following lower bound for Dn,3 when n ≥ 12.

Dn,3 ≥ 4n

7 (5n + 3)
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4. Conjecture verification

Theorem 4.1. Let V 1
0 , . . . , V

κ
0 denote the irreducible components of V0 for

P 3
n . For n ≥ 1, Dn,3 ≥ ∑κ

i=1 dim(V i
0 )(2)dim(V i

0 )−1.

Proof. Recall the following bounds on Dn,3 and ηn, where ηn is the zn coeffi-
cient of the generating function H(z) found in Section 2.

Dn,3 ≥ 4n

7 (5n + 3)

ηn ≤ φn − (−φ)−n

√
5

· (n + 1) · 2n

It is easy to check that 4(φn + 1) ≤ 2n for any n ≥ 7. Furthermore,

2n ≤ 4
√

5
7 · 2n ≤

√
5

7 · 2n · 5n + 3
n + 1

4(φn + 1) ≥ 4(φn − (−φ)−n)

Combining the inequalities shows that Dn,3 ≥ 4ηn for n ≥ 12:

4(φn − (−φ)−n) ≤
√

5
7 · 2n · 5n + 3

n + 1

4 · φ
n − (−φ)−n

√
5

· (n + 1) ≤ 2n

7 · (5n + 3)

4 · φ
n − (−φ)−n

√
5

· (n + 1) · 2n ≤ 4n

7 · (5n + 3)

Therefore, this gives us that the conjecture holds for n ≥ 12, since gm(0) ≤
4ηn. The following table computes values for n < 12 exactly, completing the
proof.

n 1 2 3 4 5 6 7
Dn,3 3 35 151 891 3983 19795 88071

gm(0) 3 13 72 140 812 1648 7280
n 8 9 10 11

Dn,3 407531 1792063 7993155 34740791
gm(0) 18064 60928 176576 509376
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5. Conclusion

We have shown how to compute the multiplicities of the zero eigenvalue of
linear hyperpaths of rank 3 and the dimensions of the irreducible components
of the corresponding nullvarieties. This enables us to compute gm(0) and
am(0) so that they can be compared in order to verify the Hu-Ye conjecture
in this special case. The above analysis can be extended by straightforward
generalization to higher rank hyperpaths. Furthermore, some of the issues
encountered in carrying out this analysis invite new questions:

1. In general, linear hypertrees have many of the properties taken advan-
tage of above for hyperpaths. Therefore, we ask: can these methods
be used to answer Conjecture 1.1 for this much more general class of
hypergraphs?

2. The set of vertices/coordinates where hypergraphs’ nullvectors are zero
is combinatorially interesting and plays an integral role in our classifi-
cation of irreducible components. For example, it is not hard to see that
these vertex sets are transversals of the hypergraph’s edge set when it
is any hypertree. What is possible to say in general about these sets
and their relation to the nullvariety’s components?

3. We have made no attempt to understand eigenvarieties corresponding
to nonzero eigenvalues λ, nor have we attempted to compute their al-
gebraic multiplicities. Doing so would require answering: what are the
rest of the root multiplicities of the characteristic polynomials of linear
hyperpaths, and how does the structure of non-zero eigenvarieties differ
from the nullvariety?

4. Is Conjecture 1.1 tight? The quantity proposed for gm(λ) is perhaps
not the maximum function of the multiset of eigenvariety component
dimensions which still provides a lower bound on am(λ).
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