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A greedy algorithm for the connected positive influence
dominating set in k-regular graphs∗

Mengmeng He, Bo Hou, Wen Liu, Weili Wu,

Ding-Zhu Du, and Suogang Gao
†

Abstract: For a graph G = (V,E), a vertex subset C ⊆ V is a
connected positive influence dominating set of G if every node v in
V \C has at least a fraction ρ (0 < ρ < 1) of its neighbors in C and
the subgraph of G induced by C is connected. In this paper, let G
be a regular graph with degree k. We present a greedy algorithm
to compute a connected positive influence dominating set in G,
and it is proved that the approximation ratio of the algorithm is
2 + ln(k2 + 2k).
Keywords: Connected positive influence dominating set, greedy
algorithm, potential function.

1. Introduction

Online social network is a network composed of individuals who share the
same interest and purpose which provides a powerful medium of communicat-
ing, sharing and disseminating information, and spreading influence beyond
the traditional social interactions within a traditional social network setting.
Online social network has developed significantly in recent years. For example,
online social network sites like Facebook and MySpace are among the most
popular sites on the Internet; online social networks have also raised special
interest among commercial businesses, medical and pharmaceutical compa-
nies as a channel to influence the opinion of their customers; even police have
utilized the information in online social network sites to track down criminals.
A great number of research has been done to understand the properties of
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social networks and how to effectively utilize social networks to spread infor-
mation and influence. In social networks, both positive and negative influence
can spread. In this paper, we study how to optimize the global positive in-
fluence in the k-regular networks by identifying a small group of dominating
nodes which are positively influential.

In 2009, Wang et al. [9] first gave the concept of positive influence domi-
nating set (PIDS) in online social networks and in order to find the positive
influence dominating set they proposed a greedy algorithm. Furthermore,
Wang et al. [10] proved that finding the positive influence dominating set
(PIDS) with minimum cardinality is an APX-hard problem. They described
a greedy algorithm with an approximation ratio H(δ), where H(·) is the
harmonic function and δ represents the maximum node degree of the graph
representing a social network. In 2012, Zhang et al. [13] focused on the PIDS
problem in power-law graphs and proved that the greedy algorithm had a
constant approximation ratio, and simulation results also demonstrated that
greedy algorithm can effectively select a small scale PIDS. In 2014, Dinh et
al. [2] studied the positive influence dominating set (PIDS) problem that seeks
for a minimal set of nodes P such that all other nodes in the network had at
least a fraction ρ of their neighbors in P . They also studied a different formu-
lation, called total positive influence dominating set (TPIDS), in which even
nodes in PIDS were required to have a fraction ρ of neighbors inside PIDS.
In 2017, Ran et al. [8] presented an approximation algorithm for minimum
partial positive influence dominating set (MPPIDS) and gave an approxima-
tion algorithm with performance ratio γH(Δ), where γ = 1/(1 − (1 − ρ)η),
η ≈ Δ2/δ and Δ, δ are respectively the maximum and minimum node degrees
of the graph. In 2020, Yao et al. [12] studied the connected positive influence
dominating set (CPIDS) problem and partial positive influence dominating
set (PPIDS) problem with ρ = 1

2 in the k-regular graphs. When k = 3, they
proposed an algorithm with an approximation ratio of H(12) for CPIDS and
an algorithm with an approximation ratio of H(9) for PPIDS.

In this paper, we mainly focus on finding the minimum connected pos-
itive influence dominating set with 0 < ρ < 1 in the k-regular graph. We
design a greedy algorithm for the connected positive influence dominating
set (CPIDS) problem in the k-regular graph. The approximation ratio of the
greedy algorithm is 2 + ln(k2 + 2k), where k is the degree of the k-regular
graph.

2. Preliminaries

In this section, let G = (V,E) be an undirected graph and denote by NG(u)
the set of neighbors of a node u ∈ V and d(u) = |NG(u)| the degree of u.
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Definition 2.1 ([2]). Given an undirected graph G = (V,E), a subset C ⊆ V
is a positive influence dominating set (PIDS) of G, if for each u ∈ V \ C,
we have |NG(u) ∩ C| ≥ ρd(u) for some constant 0 < ρ < 1, where d(u) is
the degree of the node u. In the PIDS problem, our goal is to find a PIDS of
minimum cardinality.

Definition 2.2. Given a graph G = (V,E), if a PIDS induces a connected
subgraph, it is called a connected positive influence dominating set (CPIDS).
In the CPIDS problem, our goal is to find a CPIDS of minimum cardinality.

Definition 2.3. A k-regular graph is a simple, undirected, connected graph
G = (V,E) with every node degree of k.

In this article, we mainly focus on designing an approximation algorithm
to solve the minimum connected positive influence dominating set problem
in k-regular graphs.

Definition 2.4 ([1]). Consider a finite set E and a function f : 2E → Z,
where 2E denotes the power set of E (i.e. the family of all subsets of E). The
function f is said to be submodular if for any two elements A and B in 2E,

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

Definition 2.5 ([1]). Assume that f(·) is a submodular function on subsets
of E. Define

ΔBf(A) ≡ f(A ∪B) − f(A)

for any subsets A and B of E; that is, ΔBf(A) is the extra amount of f(·)
value we gain by adding B to A. When B = {x} is a singleton, we simply
write

Δxf(A) = f(A ∪ {x}) − f(A)(1)

instead of Δ{x}f(A).

Definition 2.6 ([1]). A function f on 2E is said to be monotone increasing
if, for all A,B ⊆ E,

A ⊆ B ⇒ f(A) ≤ f(B).

Lemma 2.7 ([1, Lemma 2.24]). Let f be a function on all subsets of a set
E. Then f is submodular if and only if, for any two subsets A ⊆ B of E and
any element x /∈ B,

Δxf(A) ≥ Δxf(B).
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Definition 2.8 ([1]). Let G = (V,E) be a graph. For a node subset C ⊆ V ,
denote by G〈C〉 the subgraph with node set V and edge set D(C), where D(C)
is the set of all edges incident on some vertices in C.

Definition 2.9 ([1]). With reference to Definition 2.8, define q(C) to be the
number of connected components of the subgraph G〈C〉.

Lemma 2.10 ([1, Lemma 2.44]). Given a graph G = (V,E) and two node
subsets A,B ⊆ V . If A ⊆ B, then Δyq(A) ≤ Δyq(B) for any y ∈ V .

3. Potential function

In this section, we construct a potential function g(·) and give the properties
of the potential function. In the rest of this paper the graphs we mentioned
are k-regular graphs.

We now introduce the construction of the potential function g(·).
For a graph G = (V,E) and a node subset C ⊆ V , denote by NC(u) the

set of nodes in C which are adjacent with u in G for every node u ∈ V . In
particular, we use NG(u) to denote the node set adjacent with u in G. For a
given constant ρ (0 < ρ < 1), define

SC
i = {u ∈ V \ C | |NC(u)| = i} (i = 0, ..., �ρk� − 1),

SC
�ρk� = {u ∈ V \ C | |NC(u)| ≥ �ρk�}.

For a node subset C, we say that a node u is black if u ∈ C, gray if u ∈ SC
�ρk�,

red if u ∈ ∪�ρk�−1
i=1 SC

i , and white if u ∈ SC
0 . Denote by BC , GC , RC , and WC

the set of black, gray, red, and white nodes with respect to C, respectively.
We first define two functions n(·), p(·) on 2V . For a subset C ⊆ V , define

(2) n(C) =
∑
u∈V

nC(u),

where

(3) nC(u) =
{

0, u ∈ C,

�ρk� − i, u ∈ SC
i i = 0, ..., �ρk�.

Define p(C) to be the number of connected components of the subgraph G[C]
induced by C.

Let
m(·) = p(·) + q(·)
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and
g = n(·) + p(·) + q(·),

where q(·) is from Definition 2.9.
Suppose that f is a function on 2V . For a node subset C ⊆ V and a node

x ∈ V , define
Δ′

xf(C) = f(C) − f(C ∪ {x}).

Observe that

Δ′
xf(C) = −Δxf(C),

Δ′
xm(C) = Δ′

xp(C) + Δ′
xq(C),

and
Δ′

xg(C) = Δ′
xn(C) + Δ′

xp(C) + Δ′
xq(C).

In the following, we give the properties of the functions above.

Lemma 3.1. If C ⊆ V , then Δ′
xm(C) ≥ 0 for every x ∈ V .

Proof. Note that Δ′
xm(C) = Δ′

xp(C) + Δ′
xq(C). Let x be any node of V . We

consider two increments Δ′
xp(C) and Δ′

xq(C). We divide possibilities into the
following three cases according with the color of x.

(i) Suppose that x is black. Then we have C ∪ {x} = C. Therefore,

Δ′
xp(C) = Δ′

xq(C) = 0,
Δ′

xm(C) = Δ′
xp(C) + Δ′

xq(C) = 0.

(ii) Suppose that x is white. This means that x has no neighbors in C.
We first consider Δ′

xp(C). Since x is white, the number of connected
components in G[C] will increase by one after we put the node x into set C.
Therefore,

Δ′
xp(C) = p(C) − p(C ∪ {x}) = p(C) − (p(C) + 1) = −1.

Next, we consider Δ′
xq(C). If x is adjacent to other white nodes, then at least

two white connected components in G〈C〉 are merged into one after we put
the node x into set C; if x is not adjacent to other white nodes, then the
connected components adjacent to x are merged into one with x. Therefore,

Δ′
xq(C) = q(C) − q(C ∪ {x}) ≥ q(C) − (q(C) − 1) = 1.
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Combining the above discussions of the two increments, we have

Δ′
xm(C) = Δ′

xp(C) + Δ′
xq(C) ≥ (−1) + 1 = 0.

(iii) Suppose that x is red or gray. This means that x has neighbors in C.
We first consider Δ′

xp(C). Since x has neighbors in C, the number of
connected components in G[C] doesn’t increase after we put x in C. Therefore,

Δ′
xp(C) = p(C) − p(C ∪ {x}) ≥ p(C) − p(C) = 0.

Next, we consider Δ′
xq(C). If x is adjacent to other white nodes, the number

of white connected components in G〈C〉 will be reduced by at least one; if x
is not adjacent to other white nodes, the number of connected components
in G〈C〉 doesn’t change. Therefore,

Δ′
xq(C) = q(C) − q(C ∪ x) ≥ 0.

Combining the above discussions of the two increments, we have

Δ′
xm(C) = Δ′

xp(C) + Δ′
xq(C) ≥ 0 + 0 = 0.

Combining the above discussions of the three cases, we have Δ′
xm(C) ≥ 0

for every x ∈ V .

Lemma 3.2. If C ⊆ V , then Δ′
xg(C) ≥ 0 for every x ∈ V .

Proof. Note that

Δ′
xg(C) = Δ′

xn(C) + Δ′
xp(C) + Δ′

xq(C)
= Δ′

xn(C) + Δ′
xm(C).

We consider two increments Δ′
xn(C) and Δ′

xm(C). Let x be any node of V .
We divide possibilities into the following four cases according with the color
of x.

(i) Suppose that x is black. Then we have C ∪ {x} = C. Therefore,

Δ′
xn(C) = Δ′

xp(C) = Δ′
xq(C) = 0,

Δ′
xg(C) = Δ′

xn(C) + Δ′
xp(C) + Δ′

xq(C) = 0.

(ii) Suppose that x is white. Then we have nC(x) = �ρk�.
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We consider Δ′
xn(C). By the definition of Δ′

xn(C), we have

Δ′
xn(C) =

∑
u∈V

(nC(u) − nC∪{x}(u)).

We consider each of the terms in this summation. We divide possibilities into
the following three cases:

Case 1. u ∈ C. In this case, we have

nC(u) − nC∪{x}(u) = 0.

Case 2. u = x. In this case, we have

nC(u) − nC∪{x}(u) = nC(x) − nC∪{x}(x) = �ρk� − 0 = �ρk� > 0.

Case 3. u ∈ SC
i (i = 0, ..., �ρk� − 1) and u �= x. In this case, we have

nC(u) − nC∪{x}(u) = �ρk� − i− (�ρk� − i) = 0,

or
nC(u) − nC∪{x}(u) = �ρk� − i− (�ρk� − i− 1) = 1.

Therefore,
Δ′

xn(C) =
∑
u∈V

(nC(u) − nC∪{x}(u)) > 0.

By Lemma 3.1, we have

Δ′
xg(C) = Δ′

xn(C) + Δ′
xm(C) > 0 + 0 = 0.

(iii) Suppose that x is gray. Then we have nC(x) = 0.
We consider Δ′

xn(C). By the definition of Δ′
xn(C), we have

Δ′
xn(C) =

∑
u∈V

(nC(u) − nC∪{x}(u)).

We consider each of the terms in this summation. We divide possibilities into
the following three cases:

Case 1. u ∈ C. In this case, we have

nC(u) − nC∪{x}(u) = 0.

Case 2. u = x. In this case, we have

nC(u) − nC∪{x}(u) = nC(x) − nC∪{x}(x) = 0 − 0 = 0.
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Case 3. u ∈ SC
i (i = 0, ..., �ρk� − 1) and u �= x. In this case, we have

nC(u) − nC∪{x}(u) = �ρk� − i− (�ρk� − i) = 0,

or
nC(u) − nC∪{x}(u) = �ρk� − i− (�ρk� − i− 1) = 1.

Therefore,
Δ′

xn(C) =
∑
u∈V

(nC(u) − nC∪{x}(u)) ≥ 0.

By Lemma 3.1, we have

Δ′
xg(C) = Δ′

xn(C) + Δ′
xm(C) ≥ 0 + 0 = 0.

(iv) Suppose that x is red. Then we have nC(x) = �ρk� − i.
We consider Δ′

xn(C). By the definition of Δ′
xn(C), we have

Δ′
xn(C) =

∑
u∈V

(nC(u) − nC∪{x}(u)).

We consider each of the terms in this summation. We divide possibilities into
the following three cases:

Case 1. u ∈ C. In this case, we have

nC(u) − nC∪{x}(u) = 0.

Case 2. u = x. In this case, we have

nC(u) − nC∪{x}(u) = nC(x) − nC∪{x}(x) = �ρk� − i− 0 = �ρk� − i > 0.

Case 3. u ∈ SC
i (i = 0, ..., �ρk� − 1) and u �= x. In this case, we have

nC(u) − nC∪{x}(u) = �ρk� − i− (�ρk� − i) = 0,

or
nC(u) − nC∪{x}(u) = �ρk� − i− (�ρk� − i− 1) = 1.

Therefore,
Δ′

xn(C) =
∑
u∈V

(nC(u) − nC∪{x}(u)) > 0.

By Lemma 3.1, we have

Δ′
xg(C) = Δ′

xn(C) + Δ′
xm(C) > 0 + 0 = 0.
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Combining the above discussions of the four cases, we have

Δ′
xg(C) ≥ 0

for every x ∈ V .

4. Approximation algorithm

In this section, we give a greedy algorithm for the connected positive influence
dominating set problem.

Lemma 4.1. Suppose C ⊆ V . Then C is a connected positive influence
dominating set if and only if Δ′

xg(C) = 0 for every x ∈ V .

Proof. Suppose C is a connected positive influence dominating set. Then
p(C) = q(C) = 1. By (2), (3) we have

n(C) =
∑
u∈V

nC(u) =
∑
u∈V

0 = 0.

Hence,
g(C) = n(C) + p(C) + q(C) = 2.

Since V is a connected positive influence dominating set, we have g(V ) = 2.
By Lemma 3.2, we have g(C) ≥ g(C ∪ {x}) for every x ∈ V . Then

g(C) ≥ g(C ∪ {x}) ≥ g(V ).

Therefore, g(C ∪ {x}) = g(C) for every x ∈ V , that is, Δ′
xg(C) = 0 for every

x ∈ V . The necessity is proved.
Conversely, suppose Δ′

xg(C) = 0 for every x ∈ V . By Lemmas 3.1, 3.2
and since Δ′

xg(C) = Δ′
xn(C) + Δ′

xm(C), we have

Δ′
xn(C) = 0,

Δ′
xm(C) = 0

for every x ∈ V .
Claim 1. C �= ∅.
Assume C = ∅ for a contradiction. By the definitions of n(·), p(·), q(·),

we have n(∅) = �ρk�|V |, p(∅) = 0, q(∅) = |V |. Let x be a node in G, we have

n({x}) = (�ρk� − 1)|NG(x)| + �ρk�(|V | − |NG(x)| − 1),
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p({x}) = 1,
q({x}) = |V | − |NG(x)|.

Then

Δ′
xg(∅) =g(∅) − g({x})

=(n(∅) − n({x})) + (p(∅) − p({x})) + (q(∅) − q({x}))
=(�ρk�|V | − ((�ρk� − 1)|NG(x)| + �ρk�(|V | − |NG(x)| − 1)))

+ (0 − 1) + (|V | − (|V | − |NG(x)|))
=2|NG(x)| + �ρk� − 1.

Since G is a k-regular graph, we have |NG(x)| = k ≥ 1. Then

Δ′
xg(∅) = �ρk� + 2k − 1 ≥ �ρk� + 2 − 1 > �ρk� > 0.

This contradiction establishes Claim 1.
Claim 2. For any node u ∈ V , nC(u) = 0.
Suppose that there exists a node u0 ∈ V such that nC(u0) > 0 for a

contradiction. By the definition of nC(·) and node shading, we have u0 is a
red node or a white node. If u0 is a red node, we have

Δ′
u0n(C) =

∑
u∈V

(nC(u) − nC∪{u0}(u)) ≥ nC(u0) − nC∪{u0}(u0)

= nC(u0)
= �ρk� − i > 0,

which contradicts Δ′
xn(C) = 0. If u0 is a white node, by the proof of Lemma 3.2,

we have
Δ′

u0n(C) ≥ nC(u0) − nC∪{u0}(u0) = �ρk� > 0,

which contradicts Δ′
xn(C) = 0. Claim 2 holds.

By the definition of n(·) and Claim 2, we have C is a positive influence
dominating set.

Claim 3. G[C] is a connected graph.
Let C be a connected component of the subgraph G[C]. Denote by B the

node set of C. Let A be a subset of V \B in which the node is adjacent to at
least one node of B.

To prove that G[C] is a connected graph, it suffices to prove that V =
A ∪ B. To do this, suppose, by way of contradiction, that V �= A ∪ B. Since
G is connected, there exists a node x /∈ A ∪ B that is adjacent to a node
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y ∈ A ∪ B. Since all nodes adjacent to B are in A, we know that y must
be in A. Since C is a positive influence dominating set, then x must be of
gray or black. Now, if x is of gray, then we have p(C ∪ {y}) ≤ p(C) and
q(C ∪ {y}) < q(C). If x is of black, then we have p(C ∪ {y}) < p(C) and
q(C ∪ {y}) ≤ q(C). In either case, we get Δ′

ym(C) = Δ′
yp(C) + Δ′

yq(C) > 0,
which contradicts Δ′

xm(C) = 0. Claim 3 holds.
Combining the above three claims, C is a connected positive influence

dominating set.

Based on Lemma 4.1, we give the following Algorithm 1 for the connected
positive influence dominating set problem.

Algorithm 1 Algorithm for the CPIDS
Input: A k-regular graph G = (V,E).
Output: A connected positive influence dominating set of G.
1: Set C ← ∅;
2: while there exists a node x ∈ V \ C such that Δ′

xg(C) > 0 do
3: Choose a node x ∈ V \ C such that Δ′

xg(C) is maximized;
4: end while
5: C ← C ∪ {x}
6: return Cg ← C

Theorem 4.2. Cg is a connected positive influence dominating set of G.

Proof. The terminating condition of Algorithm 1 is Δ′
xg(Cg) = 0 for every

node x ∈ V , which implies Cg is a connected positive influence dominating
set by Lemma 4.1.

5. Theoretical analysis

In this section, we first show that the function −n(·) is submodular. Then we
show that the approximation ratio of Algorithm 1 is 2 + ln(k2 + 2k).

We assume that the output of the algorithm is Cg = {x1, x2, ..., xg}, where
x1, x2, ..., xg are selected in order. Set C0 = ∅. For i = 1, 2, ..., g, denote Ci =
{x1, x2, ..., xi}. Note that g(C0) = (�ρk� + 1)|V |, g(Cg) = 2. In addition, let
C∗ = {y1, y2, ..., ym} be a minimum connected positive influence dominating
set of the graph G.

Lemma 5.1. The function −n(·) is submodular.

Proof. By Lemma 2.7 and the definitions of Δ′
xn(·),Δxn(·), we only show

that Δ′
xn(A) ≥ Δ′

xn(B), for any two subsets A ⊆ B of V and any element
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x /∈ B. Observe that

Δ′
xn(A) =

∑
u∈V

(nA(u) − nA∪{x}(u))

and

nA(u) − nA∪{x}(u) =

⎧⎪⎪⎨
⎪⎪⎩
nA(u), u = x,

0, u /∈ NG(x) ∪ u ∈ A ∪ SA
�ρk�,

1, u ∈ NG(x) ∩ SA
i (i = 0, ..., �ρk� − 1).

Then

Δ′
xn(A) = nA(x) + |NG(x) ∩ (∪�ρk�−1

i=0 SA
i )| = nA(x) + |NG(x) ∩ (RA ∪WA)|.

Similarly,
Δ′

xn(B) = nB(x) + |NG(x) ∩ (RB ∪WB)|.
For simplicity, write t = Δ′

xn(A) − Δ′
xn(B). Then

t = (nA(x) − nB(x)) + (|NG(x) ∩ (RA ∪WA)| − |NG(x) ∩ (RB ∪WB)|).

By the definition of nA(·) and since A ⊆ B, we have

nA(x) ≥ nB(x).

Notice that
WB ⊆ WA

and
RB = ∪�ρk�−1

i=1 SB
i ⊆ ∪�ρk�−1

i=0 SA
i = RA ∪WA.

Thus t ≥ 0, and hence the result follows.

Lemma 5.2. For i = 1, 2, ..., g,

g(Ci) ≤ g(Ci−1) −
g(Ci−1) − 2

m
+ 1.(4)

Proof. Set C∗
0 = ∅. For j = 1, 2, ...,m, denote C∗

j = {y1, y2, ..., yj}. We note
that

g(Ci−1) − 2 = g(Ci−1) − g(Cg)
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=
m∑
j=1

(Δ′
yjg(Ci−1 ∪ C∗

j−1))

= Δ′
C∗g(Ci−1).

By the definition of Δ′
xg(C), for a node x ∈ V , we have

Δ′
xg(C) = Δ′

xn(C) + Δ′
xp(C) + Δ′

xq(C).

For every yj ∈ C∗, we have

Δ′
yjg(Ci−1 ∪ C∗

j−1) = Δ′
yjn(Ci−1 ∪ C∗

j−1) + Δ′
yjp(Ci−1 ∪ C∗

j−1)
+ Δ′

yjq(Ci−1 ∪ C∗
j−1).

By Lemmas 2.10 and 5.1, we have

Δ′
yjn(Ci−1 ∪ C∗

j−1) ≤ Δ′
yjn(Ci−1)(5)

and

Δ′
yjq(Ci−1 ∪ C∗

j−1) ≤ Δ′
yjq(Ci−1).(6)

Next we show the relationship between Δ′
yjp(Ci−1∪C∗

j−1) and Δ′
yjp(Ci−1).

For y ∈ V , Δyp(C) is equal to the number of connected components of G[C]
which are adjacent to y minus 1. We consider the number of connected com-
ponents which are adjacent to any node yj ∈ C∗ in graph G[Ci−1 ∪ C∗

j−1]
and G[Ci−1]. Since C∗ is a connected positive influence dominating set, we
can always arrange the elements of C∗ in an ordering y1, y2, ..., ym such
that y1 is adjacent to a node in Ci−1 and, for each j ≥ 2, yj is adja-
cent to a node in {y1, y2, ..., yj−1}. For each j = 1, 2, ...,m, we note that
yj can dominate at most one additional connected component in the sub-
graph G[Ci−1 ∪ C∗

j−1] than in G[Ci−1], which is the one that contains C∗
j−1,

since all nodes y1, y2, ..., yj−1 in C∗
j−1 are connected. Then

Δ′
yjp(Ci−1 ∪ C∗

j−1) ≤ Δ′
yjp(Ci−1) + 1.

Moreover, by inequalities (5) and (6), we have

Δ′
yjg(Ci−1 ∪ C∗

j−1) ≤ Δ′
yjg(Ci−1) + 1.

Then

g(Ci−1) − 2 = Δ′
C∗g(Ci−1)
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=
m∑
j=1

Δ′
yjg(Ci−1 ∪ C∗

j−1)

≤
m∑
j=1

(Δ′
yjg(Ci−1) + 1).

By the pigeonhole principle, there exists an element yj ∈ C∗ such that

Δ′
yjg(Ci−1) + 1 ≥ g(Ci−1) − 2

m
.

By the greedy strategy of Algorithm 1,

Δ′
xi
g(Ci − 1) ≥ Δ′

yjg(Ci − 1) ≥ g(Ci−1) − 2
m

− 1.

Or, equivalently,

g(Ci) ≤ g(Ci−1) −
g(Ci−1) − 2

m
+ 1.

Theorem 5.3. Algorithm 1 has an approximation ratio 2+ln(k2+2k), where
k is the degree of the k-regular graph.

Proof. If g ≤ 2m, then the proof is already done. So we assume that g > 2m.
Rewrite the inequality (4) as

g(Ci) ≤ g(Ci−1) −
g(Ci−1) − 2

m
+ 1.

Solving this recurrence relation, we have

g(Ci) − 2 ≤ (g(Ci−1) − 2)(1 − 1
m

) + 1

≤ (g(Ci−2 − 2))(1 − 1
m

)2 + (1 − 1
m

) + 1

≤ (g(C0) − 2)(1 − 1
m

)i +
i−1∑
k=0

(1 − 1
m

)k

= (g(C0) − 2)(1 − 1
m

)i + m(1 − (1 − 1
m

)i)

= (g(C0) −m− 2)(1 − 1
m

)i + m
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≤ (g(C0) −m− 2)e−
i
m + m

= ((�ρk� + 1)|V | −m− 2)e−
i
m + m.

From the greedy strategy of Algorithm 1, we reduce the value g(Ci−1) in each
stage i (i ≤ g). Therefore, g(Ci) ≤ g(Ci−1)− 1. In addition, g(Cg) = 2. So we
have 2m + 2 ≤ g(Cg−2m). Set i = g − 2m, and observe that

2m ≤ g(Ci) − 2 ≤ ((�ρk� + 1)|V | −m− 2)e−
i
m + m,

i ≤ m · ln (�ρk� + 1)|V | −m− 2
m

.

Note that each node has at most k neighbors and so can dominate at most
k + 1 nodes. Hence, |V |

m ≤ k + 1. It follows that

g = 2m + i ≤ m(2 + ln(k(�ρk� + 1) + �ρk�)).

Since 0 < ρ < 1, then �ρk� ≤ k, we have

g ≤ m(2 + ln(k(�ρk� + 1) + �ρk�))
≤ m(2 + ln(k2 + 2k)).

6. Conclusion

In this paper, we consider the connected positive influence dominating set
problem. Firstly, we construct a potential function g(·) and study the prop-
erties of g(·). And then, based on the potential function g(·), we present
a greedy algorithm for this problem and show the approximation ratio is
(2 + ln(k2 + 2k)). Further, we will study the connected positive influence
dominating set problem in general graphs.
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