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Ricci-flat 5-regular graphs
Heidi Lei and Shuliang Bai

Abstract: The notion of Ricci curvature of Riemannian manifolds
in differential geometry has been extended to other metric spaces
such as graphs. The Ollivier-Ricci curvature between two vertices
of a graph can be seen as a measure of how closely connected the
neighbors of the vertices are compared to the distance between
them. A Ricci-flat graph is then a graph in which each edge has
curvature 0. There has been previous work in classifying Ricci-
flat graphs under different definitions of Ricci curvature, notably
graphs with large girth and small degrees under the definition of
Lin-Lu-Yau, which is a modification of Ollivier’s definition of Ricci
curvature. In this paper, we continue the effort of classifying Ricci-
flat graphs and study specifically Ricci-flat 5-regular graphs under
the definition of Lin-Lu-Yau, we prove that a Ricci-flat 5-regular
symmetric graph must be isomorphic to a graph of 72 vertices
called RF 5

72.

1. Introduction

Ricci curvature is an important concept in differential geometry with wide
applications in theoretical physics, such as general relativity and superstring
theory. Essentially, Ricci curvature measures the amount of deviation in the
volume of a section of a geodesic ball in a Riemannian manifold compared to
its counterpart in Euclidean space. Naturally, a Ricci-flat manifold is a Rie-
mannian manifold in which the Ricci curvature vanishes everywhere. They
hold significance in physics as they represent vacuum solutions to the ana-
logues of Einstein’s equations generalized to Riemannian manifolds. One spe-
cial class of Ricci-flat manifolds is Calabi-Yau manifolds, whose existence was
conjectured by E. Calabi and proved by S.-T. Yau. There has been ongoing
research in determining and analyzing the structures of Ricci-flat manifolds.
One branch of such studies attempt to generalize the notion of Ricci curva-
ture to other metric spaces, including discrete settings, such that analogues
of important results in Riemannian manifolds such as Bonnet-Myers theorem
hold.
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Bakry-Emery-Ricci curvature generalizes Ricci curvature by defining a
diffusion process on the manifold, and it has been studied on graphs in [6]
and [11]. Y. Ollivier defines a sense of Ricci curvature using transportation
distance and Markov chains on metric spaces including graphs in [13] and
[12]. Ollivier-Ricci curvature on graph captures the idea that curvature de-
scribes the average distance between points inside small balls compared to
the distance between their centers by distributing masses on a vertex and
its neighbors, transferring the mass to another vertex and its neighbors, and
calculating the transportation distance between the two vertices using an op-
timal transport plan. Ollivier-Ricci curvature is parametrized by its idleness,
the amount of mass placed on the vertex themselves. The rest of the mass is
distributed evenly among its neighbors. The Ollivier-Ricci curvature that is
most studied is when the idleness is O. Y. Lin, L. Lu, and S.-T. Yau modified
Ollivier’s definition of Ricci curvature to be the negative derivative when the
idleness approaches 1 in Ollivier’s definition, thus eliminating the idleness pa-
rameter [10]. With the modified Lin-Lu-Yau-Ricci curvature, they were able
to study the Ricci curvature of Cartesian product graphs, random graphs,
and other special classes of graphs.

[2] studied the Ollivier-Ricci curvature of graphs as a function of the
chosen idleness parameter and showed that this idleness function is concave
and piece-wise linear with at most 3 linear parts on its domain [0,1], with at
most 2 linear parts in the case of a regular graph. Therefore, the Lin-Lu-Yau-
Ricci curvature is equivalent to the negative of the slope of the last linear
piece of the idleness function.

A graph is Ricci-flat if the Ricci curvature vanishes on all edges. It is no-
ticeable that the Ricci flat graphs under Lin-Lu-Yau’s definition are different
from the Ricci flat graphs defined in 1996 by Chung and Yau [3], in which
the definition is given by making connection with the algorithmic Harnack
inequality. In [3], a graph G is said to be Ricci-flat at vertex x if there is a
local k-frame in a neighborhood of x so that for all i,

⋃
j

(ηiηj)x =
⋃
j

(ηjηi)x,

where η1, . . . , ηk are injective mappings from a neighborhood of x into V so
that (1) x is adjacent to ηix for 1 ≤ i ≤ k and (2) ηix �= ηjx if i �= j.

An example of Ricci flat graph using above definition is the lattice type
graph, which is also Ricci flat under Lin-Lu-Yau’s definition.

Another related work by Hua and Lin in 2019 [8], they classified un-
weighted graphs satisfying the curvature dimension condition CD(0,∞)
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Figure 1.1: Ricci-flat 3-regular graphs.

whose girth are at least five, in which the infinite path Pk and cycle graphs
Cn (n ≥ 6) are also Ricci flat under Lin-Lu-Yau’s definition.

We will focus on the Ricci flat graphs under the Lin-Lu-Yau’s definition.
The problem of classifying Ricci-flat graphs under Lin-Lu-Yau’s definition has
been tackled through different angles and additional constraints. [9] classified
Ricci-flat graphs with girth at least 5. [4] classified Ricci-flat cubic graphs
of girth 5. [7] constructed an infinite family of distinct Ricci-flat graphs of
girth four with edge-disjoint 4-cycles and completely characterize all Ricci-flat
graphs of girth four with vertex-disjoint 4-cycles. [1] classified Ricci-flat graphs
with maximum degree at most 4. The previous results on the classification
of Ricci-flat regular graphs of small degree under Lin-Lu-Yau’s definition is
summarized below:

1. The Ricci flat 2-regular graphs are isomorphic to the infinite path and
the cycle graph Cn with n ≥ 6.

2. The Ricci flat 3-regular graphs are isomorphic to the Petersen graph,
the Triplex graph and the dodecahedral graph.

3. The Ricci flat 4-regular graphs are isomorphic to one of two finite
graphs: the icosidodecahedral graph and G20; or are isomorphic to in-
finitely many lattice-type graphs in the terms of [1] in which each graph
is locally a 4-regular grid.

[9] showed that Cartesian products of Ricci-flat regular graphs are Ricci-
flat with the following theorem.

Theorem 1.1 ([9]). Suppose that G is dG-regular and H is dH-regular. Then
the Ricci curvature of G � H is given by

κG�H(
(u1, v), (u2, v)

)
= dG

dG + dH
κG(u,u2),
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Figure 1.2: Ricci-flat 4-regular graphs.

κG�H(
(u, v1), (u, v2)

)
= dH

dG + dH
κH(v,v2)

where u ∈ V (G), v ∈ V (H), u1u2 ∈ E(G), and v1v2 ∈ E(H).

Corollary 1.1.1. If both G and H are Ricci-flat regular graphs, so is the
Cartesian product graph G � H.

Therefore, one class of Ricci-flat 5-regular graphs is the Cartesian product
of a Ricci-flat 3-regular graph and a Ricci-flat 2-regular graph. As shown by
[9] and [1], the Ricci-flat 3-regular graph has girth 5 and is either the Petersen
graph, the Triplex graph, or the dodecahedral graph. The Ricci-flat 2-regular
graph is either the cycle of length at least six or the infinite path.

In this paper, we study Ricci-flat 5-regular graphs that are not of the
Cartesian product type. The paper is organised as follows: In Section 2, we
formalize the definition of Ricci curvature on graphs outlined in the introduc-
tion following the notations of Lin-Lu-Yau in [10].

In Section 3, we analyze the local structure of a 5-regular graph by proving
a more general result concerning regular graphs. Deferring the definition of
local characteristics to Section 3, Lemma 3.1 essentially determines the Ricci
curvature of an edge in a regular graph given its local environment. As a
straightforward corollary, the local structure of any Ricci-flat regular graph
can be determined by setting κ(x, y) = 0. There are five possible sets of local
characteristics for a Ricci-flat 5-regular graph, and refer to them by type-A
to type-E. See Fig. 3.1 for a schematic representation of the local structure
of the edges.
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Figure 1.3: Ricci-flat 5-regular symmetric graph of order 72.

Lemma 3.1. Let xy be an edge in a d-regular graph G with local character-
istics (N0, N1, N2). Then the Ricci-curvature of the edge xy is given by

κ(x, y) = −2 + 4 + 3N0 + 2N1 + N2

d
.

Corollary 3.1.1. Let xy be an edge in a Ricci-flat 5-regular graph G. Then
the local characteristics (N0, N1, N2) of edge xy must be one of the following
five types listed in Table 3.1.

When the symmetry condition for Ricci-flat graphs is not imposed, the
possible cases for the construction of the graph grow enormously. The main
difficulty of such a classification lies in the lack of leverageable symmetries. In
Section 4, we restrict our attention to symmetric graphs and found that Ricci-
flat 5-regular symmetric graph must be isomorphic to a 5-regular symmetric
graph of order 72, which we denote RF 5

72. Fig. 1.3 shows the subgraph induced
by 2-neighborhood and 3-neighborhood of a vertex in RF 5

72, i.e. the subgraph
induced by all vertices within a distance of 2 and 3, respectively, from the
central vertex. The type-E local structure of an edge is highlighted in (a) and
the the 2-neighborhood graph of RF 5

72 shown in (a) is highlighted in (b). An
adjacency list for RF 5

72 can be found in the appendix.

Theorem 4.1. If G is a Ricci-flat 5-regular symmetric graph, then G is
isomorphic to RF 5

72.
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2. Notations and definitions

Let G = (V,E) represent an undirected connected graph with vertex set V

and edge set E without multiple edges or self loops. A vertex y is a neighbor
of x if xy ∈ E. For a vertex x ∈ V , we denote the neighbors of x as Γ(x) and
the degree of x, i.e. the number of its neighbors, as dx. If two vertices x, y are
neighbors, we use x ∼ y to represent this relation. Let Cn represent a cycle
of length n.

Definition 2.1. A probability distribution over the vertex set V (G) is a map-
ping μ : V → [0, 1] satisfying

∑
x∈V μ(x) = 1. Suppose that two probability

distributions μ1 and μ2 have finite support. A coupling between μ1 and μ2 is
a mapping A : V × V → [0, 1] with finite support such that for any x, y ∈ V

∑
y∈V

A(x, y) = μ1(x) and
∑
x∈V

A(x, y) = μ2(y).

Definition 2.2. The transportation distance between two probability distri-
butions μ1 and μ2 is defined as follows:

W (μ1, μ2) = inf
A

∑
x,y∈V

A(x, y)d(x, y),

where the infimum is taken over all coupling A between μ1 and μ2.

By the theory of linear programming, the transportation distance is also
equal to the optimal solution of its dual problem. Thus, we also have

W (μ1, μ2) = sup
f

∑
x∈V

f(x)
[
μ1(x) − μ2(x)

]

where f is a Lipschitz function satisfying

|f(x) − f(y)| ≤ d(x, y).

Definition 2.3 ([13]). Let G = (V,E) be a simple graph, for any x, y ∈ V

and α ∈ [0, 1], the α-Ricci curvature κα is defined to be

κα(x, y) = 1 −
W (μα

x , μ
α
y )

d(x, y) ,
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where the probability distribution μα
x is defined as:

μα
x(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α, if z = x,
1 − α

dx
, if z ∼ x,

0, otherwise.

Definition 2.4 ([10]). Let G = (V,E) be a simple graph, for any x, y ∈ V ,
the Lin-Lu-Yau Ricci curvature κ(x, y) is defined as

κ(x, y) = lim
α→1

κα(x, y)
1 − α

,

where κα(x, y) is the α-Ricci curvature defined in above definition.

Naturally, a Ricci-flat graph is defined to be a graph in which the Ricci
curvature of each edge is zero.

Definition 2.5 ([10]). A graph G is Ricci-flat if κ(x, y) = 0 for all edges
xy ∈ E.

Next, we provide definitions for some properties of a graph that concern
its symmetries, more precisely, its automorphism group, which is the group
of permutations of vertices preserving edge connectivity.

Definition 2.6. A graph G is edge-transitive if its automorphism group acts
transitively on its edges, i.e., for all pairs of edges e1, e2 ∈ E there exists an
automorphism ϕ : e1 	→ e2.

Definition 2.7. A graph G is vertex-transitive if its automorphism group
acts transitively on its vertices, i.e., for all pairs of vertices v1, v2 ∈ V there
exists an automorphism ϕ : v1 	→ v2.

Definition 2.8. A graph G is symmetric if it is both edge-transitive and
vertex-transitive.

Definition 2.9. A graph G is arc-transitive (also called symmetric by some
authors) if its automorphism group acts transitively on ordered pairs of ad-
jacent vertices, i.e., for all ordered pairs of adjacent vertices (u1, v1), (u2, v2),
there exists an automorphism ϕ : u1 	→ u2, v1 	→ v2.

Although in general symmetric graphs are not necessarily arc-transitive,
for graphs of odd degree, the two notions are equivalent. Thus in our case of
5-regular symmetric graphs, we can simply consider arc-transitive graphs.
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Lemma. If a graph G is of odd degree, then it is arc-transitive if and only if
it is symmetric.

Proof. Let G be a symmetric graph of odd degree. Suppose to the contrary G
is not arc-transitive. Then, there are two distinct orbits of the arcs of G under
the automorphism group. Since G is vertex transitive, then the directed graph
induced by one orbit of the arcs has the same indegree and outdegree for each
vertex. However, in a directed graph, the sums of outdegree and indegree over
all vertices must be equal, so the degree of G must be even.

3. Local structures with zero curvature

The Ricci-curvature of an edge xy describes roughly the “closeness” of the
neighbors of vertices x and y. In order to formulate how close the two sets of
neighbors Γ(x) and Γ(y) are, we define the local characteristics of edge xy as
follows.

Consider all possible bijective pairings p : Γ(x)\{y} → Γ(y)\{x} between
neighbors of x and y excluding themselves such that each neighbor of x is
paired uniquely with a neighbor of y. Sort all the distances between paired
vertices d(xi, p(xi)) into a non-decreasing sequence S(p). Let S(p′) be the least
sequence by lexicographic order taken from all possible pairings p between
the neighbor sets. The local characteristics (N0, N1, N2) of edge xy is defined
such that Ni is the number of occurrences of i in the sequence S(p′). In other
words, Ni describes the number of (i+3)-cycles Ci+3 supporting edge xy with
disjoint pairs of neighbors of x and y.

The curvature of an edge in a regular graph is then completely determined
by its local characteristics.

Lemma 3.1. Let xy be an edge in a d-regular graph G with local character-
istics (N0, N1, N2). Then the Ricci-curvature of the edge xy is given by

κ(x, y) = −2 + 4 + 3N0 + 2N1 + N2

d
.

Proof. Since G is d-regular, we have μα
x(x) = μα

y (y) = α, μα
x(y) = μy(x) =

1−α
d , and μα

x(vx) = μy(vy) = 1−α
d for vx ∈ Γ(x) − {y} and vy ∈ Γ(y) − {x}.

The main idea of the proof is to show that the optimal transport plan is to
transfer α− 1−α

d from vertex x to y, and 1−α
d from vertices in Γ(x) − {y} to

their paired vertex in Γ(y) − {x} in the distance-minimizing pairing p′.
Let S(p′) be the least sequence associated with the pairing p′ used in the

above definition of the local characteristics of edge xy. Let A(u, v) : V ×V →
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[1, 0] be a coupling function such that

A(u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α− 1 − α

d
, if u = x, v = y,

1 − α

d
, if v = p′(u),

0, otherwise.

Since we’ll be taking the limit as α → 1, assume that α > 1−α
d . Then the

transportation distance is bounded above by

W
(
μα
x , μ

α
y

)
≤

∑
u,v∈V

A(u, v)d(u, v)

= A(x, y)d(x, y) +
∑

d(u,p′(u))=1,2,3
A
(
u, p′(u)

)
d
(
u, p′(u)

)

=
(
α− 1 − α

d

)
· 1+ 1 − α

d
·
(
N1+2N2+3(d−1−N0 −N1 −N2)

)
= 3 − 2α− 1 − α

d
(4 + 3N0 + 2N1 + N2).

In order to differentiate between the paired neighbors of x and y, define
the following sets of vertices:

V0 =
{
v ∈ Γ(x) − {y} | d

(
v, p′(v)

)
= 0

}
,

X1 =
{
v ∈ Γ(x) − {y} | d

(
v, p′(v)

)
= 1

}
,

X2 =
{
v ∈ Γ(x) − {y} | d

(
v, p′(v)

)
= 2

}
,

X3 =
{
v ∈ Γ(x) − {y} | d

(
v, p′(v)

)
= 3

}
,

Y3 =
{
v ∈ Γ(y) − {x} | d

(
p′ −1(v), v

)
= 3

}
.

We define a Lipschitz function f : V → R by the following procedure:

1. f(x) = 2, f(y) = 1, f(x2) = 3 for x3 ∈ X3, and f(y3) = 0 for y3 ∈ Y3.
2. For v0 ∈ V0, if v0 ∈ Γ(X3), then f(v0) = 2; otherwise f(v0) = 1. For

x1 ∈ X1, if x1 ∈ Γ(X3), then f(x1) = 2 and f(p′(x1)) = 1; otherwise
f(x1) = 3 and f(p′(x1)) = 2. For x2 ∈ X2, if x2 ∈ Γ(X3), then f(x2) =
2, f(p′(x2)) = 0, and f(v2) = 1 for all v2 ∈ Γ(x2)∪Γ(p′(x2)); otherwise
f(x1) = 3, f(p′(x2)) = 1, and f(v2) = 2.

3. For the remaining vertices v, if v ∈ Γ(x) for f(X) = 3, then f(v) = 2;
otherwise f(v) = 1.



2520 Heidi Lei and Shuliang Bai

It is easy to check that f is indeed 1-Lipschitz, and as a result the trans-
portation distance is bounded below by

W
(
μα
x , μ

α
y

)
≥

∑
v∈V

f(v)
[
μα
x(v) − μα

y (v)
]

= f(x)
(
α− 1 − α

d

)
+ f(y)

(1 − α

d
− α

)
+

∑
v∈V0

(1 − α

d
− 1 − α

d

)

+
∑

v∈Γ(x)−{y}−V0

f(v)
(1 − α

d
− 0

)
+

∑
v∈Γ(y)−{x}−V0

f(v)
(

0 − 1 − α

d

)

=
(
f(x) − f(y)

)(
α− 1 − α

d

)
+ 1 − α

d

( 3∑
i=1

∑
xi∈Xi

(
f(xi) − f

(
p′(xi)

)))

= 1 − α

d
·
(
N1 + 2N2 + 3(d− 1 −N0 −N1 −N2)

)
= 3 − 2α− 1 − α

d
(4 + 3N0 + 2N1 + N2).

Since the two bounds are equal, we have

W
(
μα
x , μ

α
y

)
= 3 − 2α− 1 − α

d
(4 + 3N0 + 2N1 + N2).

Therefore, the Ricci curvature of edge xy is

κ(x, y) = lim
α→1

1 −W (μα
x , μ

α
y )

1 − α
= −2 + 4 + 3N0 + 2N1 + N2

d
.

Corollary 3.1.1. Let xy be an edge in a Ricci-flat 5-regular graph G. Then
the local characteristics (N0, N1, N2) of edge xy must be one of the following
five types listed in Table 3.1.

Proof. With κ = 0 and dx = 5, Lemma 3.1 gives

3N0 + 2N1 + N2 = 6.

Table 3.1: Local characteristics for edges in Ricci-flat 5-regular graphs
Type-A (2, 0, 0)
Type-B (1, 1, 1)
Type-C (1, 0, 3)
Type-D (0, 3, 0)
Type-E (0, 2, 2)
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Figure 3.1: Local structures of edge xy in Ricci-flat 5-regular graphs.

Since there are only 4 vertices in Γ(x) − y, we have N0 + N1 + N2 ≤ 4.
All solutions of the above are given in Table 3.1. A schematic drawing of
each local structure is shown in Fig. 3.1. Note that the vertices that are not
neighbors of x and y (in this case the middle vertex in a 5-cycle) may be the
same vertex as other vertices in the graph as long as the local characteristic
of xy remains the same. For example, in Type-B, the top vertex in the 5-
cycle can coincide with the vertex in the 3-cycle without changing the local
characteristic of xy.

It is worth noting that in each type of local structure, at least two pairs of
vertices given by the pairing p′ have to have distance less than 3. Moreover,
excluding type-A, each type requires at least three pairs of vertices with
distance less than 3.

4. Ricci-flat 5-regular symmetric graphs

In this section, we classify Ricci-flat 5-regular graphs G that are symmetric.

Theorem 4.1. If G is a Ricci-flat 5-regular symmetric graph, then G is
isomorphic to RF 5

72.

For a symmetric graph G, every edge in G must have the same local
structure. Therefore, we classify G based on the local structure of its edges.



2522 Heidi Lei and Shuliang Bai

4.1. Ricci-flat 5-regular symmetric graphs of girth 3

We show that Ricci-flat 5-regular graphs cannot contain 3-cycles and hence
cannot have girth 3.

Lemma 4.2. If G is a Ricci-flat 5-regular symmetric graph, then the edges
in G are not type-A.

Proof. Let xy be an edge in G, v1, v2 be common vertices of x and y, and
x1, x2, y1, y2 be the neighbors of x and y respectively, as shown in Fig. 4.1.
Consider edge xx1, which needs to be in two C3 for it to be type-A. Clearly,
x1 � y considering edge xy, so x1 must be connected to two of the vertices
in the set {v1, v2, x2}. Since v1 and v2 are interchangeable, i.e., there exists
an automorphism ϕ : v1 	→ v2, we have wlog x1 ∼ v1. However, this is a
contradiction since connecting x1v1 forms a C5 on edge v1y, which makes v1y
no longer type-A.

Figure 4.1: Type-A.

Lemma 4.3. If G is a Ricci-flat 5-regular symmetric graph, then the edges
in G are not type-B or type-C.

Proof. Consider a vertex x0 in G and its neighbors xi, 1 ≤ i ≤ 5. Since every
edge is type-B or type-C, it is in a C3. For edge x0x1, wlog x1 ∼ x2. For edge
x0x3, wlog x3 ∼ x4. Then, edge x0x5 cannot be in a C3 since connecting x5
with any other vertex will result in two C3 on an edge, which is a contradiction
since none of the edges are type-A.

Figure 4.2: Type-B or Type-C.
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4.2. Ricci-flat 5-regular symmetric graphs of girth 4

Before proving that Ricci-flat 5-regular symmetric graphs with type-D edges
do not exist, we prove a short lemma using the technique of double counting
to show that a Ricci-flat graph containing only type-D edges must contain
two 4-cycles sharing two edges, that is, the subgraph shown in Fig. 4.3 which
is isomorphic to the complete bipartite graph K3,2.

Figure 4.3: Complete bitartite graph K3,2.

Lemma 4.4. If G is a Ricci-flat 5-regular graph containing only type-D edges,
then it contains K3,2 as a subgraph.

Proof. We show by contradiction that there doesn’t exist a Ricci-flat 5-regular
graph with only type-D edges that does not contain K2,3, i.e., in which all
4-cycles share at most one edge. Suppose such a graph G exists. Consider a
vertex x0 in G and its neighbors xi, 1 ≤ i ≤ 5. Since all C4 share at most
one edge, each one of the five edges x0xi is in exactly three C4. Thus, the
number of ordered pair (x0xi, C

∗
4 ) where x0xi ∈ C∗

4 should be 15. On the
other hand, each C4 through vertex x0 contains two edges xi and xixj . Thus,
the number of ordered pairs (x0xi, C

∗
4 ) should be even, and we have reached

a contradiction.

Lemma 4.5. If G is a Ricci-flat 5-regular symmetric graph, then the edges
in G are not type-D.

Proof. Since G is symmetric and of odd degree, it must be arc-transitive. As
a result, the neighborhood of an edge u1v1 ∈ G denoted by Γ(u1v1), i.e., the
subgraph induced by Γ(u1) ∪ Γ(v1) must be isomorphic to the neighborhood
of any other edge Γ(u2v2). Since by Lemma 4.4, G must contain K3,2 as a
subgraph. Symmetry implies that each edge of G is contained in a K3,2. We
classify all possible neighborhoods of an edge xy such that xy is in a K3,2
and there is an automorphism ϕ : Γ(xy) → Γ(xy) mapping xy to yx. Let xi
and yi be the neighbors of x and y excluding themselves, and wlog xi ∼ yi
for i = 1, 2, 3 and d(x4, y4) = 3. In order to form a K3,2 on xy, we have wlog
either x1 ∼ y2 or x1 ∼ y4.
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Assume that x1 ∼ x2 and x1 � y4, we break into two cases based on the
number of connections between xi and yj .

1. Suppose each xi, i = 1, 2, 3 is connected to at most one yj , j �= i.

Figure 4.4

(a) Assume that xy has the neighborhood shown in Fig. 4.4(a). Con-
sider edge xx4, which cannot form a C4 through xy as it has dis-
tance 3 to all the non-adjacent vertices. Thus, it must form a C4
with each xi, i = 1, 2, 3 by connecting x4 to a new neighbor of xi
namely zi. For the neighborhood of xx4, we need to connect one
of zi to xj , i, j ∈ {1, 2, 3}. Note that xx1 is already in three C4,
namely x1y1yx, x1y2x2x and x1z1x4x. Since we have y2 ∼ y, its
neighborhood including the fifth neighbor of x1 is isomorphic to
Γ(xy). Thus, the neighbors of x1 and x are not further connected,
and we have x1 � z2, z3 and z1 � x2, x3. Therefore, we must have
either x2 ∼ z3 or z2 ∼ x3.

Figure 4.5: Type-D.

If x2 ∼ z3 as in Fig. 4.5(a), consider edge xx2, which is already in
three C4. Let v be the fifth neighbor of x2, we have d(v, x1) = 3.
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However, as x1 is connected to y2, a neighbor of x2, the neighbor-
hood of xx2 is not isomorphic to Γ(xy), contradiction.
If z2 ∼ x3 as in Fig. 4.5(b), then edge xx3 is in three C4 and has
isomorphic neighborhood to xy. Consider edge xx2, which needs
another C4 formed through a new neighbor of x2 namely v since
x2 cannot connect to any of the existing vertices. However, v � x1
considering the neighborhood of xx1, v � x3 considering the neigh-
borhood of xx3. Thus, the third C4 on edge xx2 cannot be formed,
a contradiction.

(b) Assume that xy has the neighborhood shown in Fig. 4.4(b). Similar
to Case 1(a), we have zi ∼ xi for i = 1, 2, 3 where zi are neighbors
of x4 as in Fig. 4.6(a). Since the neighborhood of edge xx4 needs to
be isomorphic to Γ(xy), we must have wlog either z1 ∼ x2 or z1 ∼
x3. However, d(z1, x3) = 3 considering edge xx1, which is already
in three C4, so we must have z1 ∼ x2 and also z2 ∼ x1. Next,
we consider edge xx3, which is in two C4 and needs to form a C4
through either xx1 or xx2. Since xx1 and xx2 are equivalent edges
under an automorphism, let the C4 pass through xx1. Since x1 is
at maximum degree, x3 must be connected to one of the neighbors
of x1. However, none of the neighbors of x1 can be connected to
x3 given the neighborhood structure of edges xy and xx4, and we
have reached a contradiction.

Figure 4.6: Type-D.

(c) Assume that xy has the neighborhood shown in Fig. 4.4(c). Similar
to Case 1(a), we have zi ∼ xi for i = 1, 2, 3 where zi are neighbors
of x4 as in Fig. 4.6(b), and we need to connect neighbors of x4 and
x so that the neighborhood of xx4 is isomorphic to Γ(xy). Since
xx1 is already in three C4, we have x1 � z2, z3. Thus, we have
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either x2 ∼ z3 and x3 ∼ z1 (shown with dashed lines), or x2 ∼ z1
and x3 ∼ z2 (shown with dotted lines). However, in each case four
C4 are created on edge xx1 and xx3 respectively, a contradiction.

(d) Assume that xy has the neighborhood shown in Fig. 4.4(d) respec-
tively. The argument for Case 1(c) applies similarly.

2. Suppose each xi, i = 1, 2, 3 is connected to at most two yj , j �= i. Wlog,
let x1 ∼ y2, y3, and by the automorphism ϕ there needs to be a vertex
yj such that it is connected to two xi, i �= j. By casework, we have
the following potential neighborhoods of xy shown in Fig. 4.7 in which
there exists an automorphism ϕ.

Figure 4.7: Type-D.

(a) Assume that xy has the neighborhood shown in Fig. 4.7(b). We
relabel the vertices by interchanging y1 and y2 and redraw the
graph in Fig. 4.8 to highlight the symmetry and its similarity to
the following cases.

Figure 4.8: Type-D.

Consider edge xx4 and note that x4 has distance 3 to y4 and the
fifth neighbor of x1. Since it does not connect to any existing vertex
either, it cannot form a C4 through both xx1 and xy, a contradic-
tion.
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(b–d) Assume that xy has the neighborhood shown in Fig. 4.7(b)–(d)
respectively. Consider edge xx4 and a similar contradiction arises
as in Case 2(a).

Therefore, we proved that we must have wlog x1 ∼ y4. Then, x4 must
also be connected to a neighbor of y given the automorphism ϕ. Note that
x4 � y1 or else d(x4, y4) = 1, so we have wlog x4 ∼ y3. Moreover, note that
x4 � y2, since if X4 is connected to two neighbors of y, y4 must be connected
two neighbors of x as well, resulting in d(x4, y4) = 1. Similarly, y4 � x2, x3.
Therefore, we have x1 ∼ y4 and x4 ∼ y3. We combine this with the discussion
of whether xi and yj where i, j ∈ {1, 2, 3}, i �= j is connected above, and
arrive at several possibility for Γ(xy).

1. Suppose xi � yj for all i, j ∈ {1, 2, 3} and i �= j as in Fig. 4.9.

Figure 4.9: Type-D.

Consider edge xx1. Let z1, z2 be the two new neighbors of x1. Then,
for Γ(xx1) to be isomorphic to Γ(xy), wlog we have z1 connected to
two neighbors of x excluding x1, and z2 connected to the remaining
neighbor of x. Since x3 and x4 are interchangeable, there are two cases.
(a) Assume wlog that z1 ∼ x2, x4 and z2 ∼ x3. Consider edge xx4.

Note that it cannot have an isomorphic neighborhood to xy be-
cause y3 and z1, two neighbors of x4, have degree 3 in the neigh-
borhood of xx4, a contradiction.

(b) We have that z1 ∼ x3, x4 and z2 ∼ x2. Consider edge z1x4, which
is in two C4, namely z1x1xx4 and z1x3y3x4. However, we also have
xx3, which makes it impossible for Γ(z1x4) to be isomorphic to
Γ(xy), a contradiction.

2. Suppose there exists xi, i ∈ {1, 2, 3} such that xi ∼ yj for some j ∈
{1, 2, 3} − {i}, then there are only two non-isomorphic possibilities for
Γ(xy) by noticing that the automorphism ϕ sending xy to yx must be
ϕ : x1 	→ y3, x2 	→ y2, x3 	→ y1, x4 	→ y4.
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Figure 4.10: Type-D.

(a) Assume that xy has the neighborhood shown in Fig. 4.10(a). Let
the fifth neighbor of x1 be z1 and the fifth neighbor of y3 be z2. Con-
sider edge x1y3, which needs one more C4 and it must be formed
by connecting z1 ∼ z2. This way, edges xx1 and yy3 have isomor-
phic neighborhoods to xy. Next, we consider edge xx1, which is
already in three C4. To make Γ(xx1) isomorphic to Γ(xy), we must
have x2 ∼ z1.
Next, we consider edge x4x. Notice that y3, a neighbor of x4, is
connected to four neighbors of x, thus it must be mapped to x1
by the automorphism sending edge x4x to xy. Thus, x2, the only
neighbor of x not connected to y3, must be connected to a new
neighbor of x4 namely w1. Similarly, since vertices x3 and x4 are
interchangeable, the same analysis applies and x2 must be con-
nected to a neighbor of x4. Note that x4 � w1 since if so, w1 as a
neighbor of x3 would be connected to two neighbors of x, resulting
in Γ(xx3) no longer possible to be isomorphic to Γ(xy). Thus, we
must have x2 ∼ w2 ∼ x4. However, in this case, xx2 would be in
four C4, a contradiction.

Figure 4.11: Type-D.
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(b) Assume that xy has the neighborhood shown in Fig. 4.10(b). Let
the fifth neighbor of x1 be z. Consider edge xx1, which is in two
C4, so another C4 needs to be formed through x1z. Since x3 and
x4 are interchangeable, let z ∼ x4. To make the Γ(xx1) isomorphic
to Γ(xy), we must have z ∼ x2, x3. However, in this way, Γ(xx2)
cannot be isomorphic to Γ(xy), a contradiction.

Figure 4.12: Type-D.

Next, we move onto symmetric graphs with type-E edges.

Lemma 4.6. If G is a Ricci-flat 5-regular symmetric graph with type-E edges,
then it is isomorphic to RF 5

72.

Proof. We start by considering a C5 in G and denote its vertices xi, 1 ≤ i ≤ 5.
Since each edge is type-E, it needs to be supported on two C4. There are only
three arrangements of the C4 on edges in the C5 under consideration such
that each arc in the C5 are in the same orbit under the automorphism group
of this subgraph, since for the two C4 on an edge xixi+1, at least one of them
is adjacent to a C4 on the neighboring edge xi+1xi+2. If both C4 on an edge
are adjacent to the two C4 on neighboring edges of the C5, we have the first
case in Fig. 4.13(A). When only one C4 is adjacent to a C4 on the neighboring
edges, if there are no three adjacent C4 in a row, that is, adjacent C4 on edges
xixi+1, xi+1xi+2, xi+2xi+3, we have the second case shown in Fig. 4.13(B);
otherwise, we have the third case shown in Fig. 4.13(C).

All the C5 in G must have a local structure that is isomorphic to the
subgraph shown above in each case. We construct the graph with the aid
of a curvature calculator [5]. In the first two cases, contradiction arises in
the construction process, while the local structure of a C5 in the third case
can be successfully expanded into a Ricci-flat 5-regular graph on 72 vertices,
denoted by RF 5

72. The 2-neighborhood and 3-neighborhood of a vertex in
RF 5

72 are shown in Fig. 1.3.
The first case is rejected as the fifth edge adjacent to vertex x1 cannot be

in C4 while maintaining symmetry and Ricci flat. In fact, the local structure
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Figure 4.13: Three cases of construction using Type-E edges.

around one vertex must consists of the rotations in C4 and C5, together with
reflectional symmetry because of arc-transitivity. In Fig. 4.13(B), a common
vertex for y1 and w1 is needed, similarly to other pairs yi, wi for i = 2, 3, 4, 5.
Thus there can be five C4s around every vertex, see the rotation order of C4s
from the first two subgraphs of Fig. 4.14. And there is also a unique way to
generate C5 around each vertex according to Fig. 4.13(B).

Figure 4.14: Construction Process using (B) of Fig. 4.13, bold edges are newly
added at every step.

However, the lack of reflectional symmetry in Fig. 4.13(B) highlights the
fact that edges are not equivalent to their inverse, thus it cannot be extended
to an arc-transitive graph.
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One can see from above construction stage that vertex A reaches degree 6.
By the rotations of C4 around vertices A, B, C, we can determine that edges
AB and BC are in a C4, edges BC and CD are in a C4. Call the fifth neighbor
of A as A5, then edges A5A and AB have to be in a C4. Since B−B1−A1−A

is already in one C4, then A5 has to be D. Similarly, A has to be adjacent to
vertex G. Thus the degree of A is 6.

Figure 4.15: Construction Process using (C) of Fig. 4.13.
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For the third case, by edge-transitivity, {z1, x1, y1} share one C4,
{z1, x1, x2}, {w1, x1, z1}, {y1, x1, x5} and {y1, x1, w1} share one C5 respec-
tively. That is, there are five 4-cycles and five 5-cycles meeting at each ver-
tex. Thus there is a unique way to generate five C4s around any vertex. To
construct C5 around one vertex, we have to match the induced subgraph on
{w1, . . . , w5, x1, . . . , x5} as shown on Fig. 4.13(C), then there is still only one
way to generate these C5s around each vertex.

Fig. 4.15 shows the construction process. We show as many vertices as
possible but not all of them, otherwise the picture won’t look clear. Eventually
Fig. 4.13 (C) will be extended to RF 5

72.
This concludes our proof of Theorem 4.1.

Appendix A. Adjacency list for RF 5
72

1:[2,3,4,5,8],
2:[1,12,6,7,9],
3:[11,1,13,7,18],
4:[1,14,6,19,10],
5:[11,1,16,28,20],
6:[2,4,17,29,21],
7:[22,2,3,15,26],
8:[1,23,16,30,10],
9:[2,25,17,30,41],
10:[4,27,8,31,42],
11:[24,3,5,38,32],
12:[33,2,25,15,20],
13:[3,36,26,19,53],
14:[4,37,27,28,54],
15:[55,12,38,39,7],
16:[34,5,40,8,43],
17:[44,35,6,9,31],
18:[23,45,24,3,36],
19:[13,46,4,37,21],
20:[12,5,38,49,62],
21:[26,6,50,19,64],
22:[45,48,39,7,41],
23:[18,40,51,8,65],
24:[11,44,35,18,40],
25:[12,56,47,52,9],
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26:[13,57,48,7,21],
27:[55,34,14,39,10],
28:[34,14,58,5,49],
29:[33,35,6,50,54],
30:[59,51,8,9,31],
31:[66,17,61,30,10],
32:[11,35,58,61,53],
33:[12,69,29,62,52],
34:[57,48,16,27,28],
35:[24,17,29,52,32],
36:[56,13,18,52,63],
37:[56,14,47,60,19],
38:[11,66,15,61,20],
39:[22,47,15,27,42],
40:[23,24,16,50,64],
41:[22,67,47,59,9],
42:[46,39,61,10,65],
43:[48,59,16,50,62],
44:[66,67,24,17,64],
45:[22,67,18,63,65],
46:[47,72,19,42,53],
47:[46,25,37,39,41],
48:[22,34,26,63,43],
49:[56,68,28,63,20],
50:[60,29,40,21,43],
51:[23,56,68,60,30],
52:[33,35,25,36,53],
53:[13,46,70,52,32],
54:[14,58,69,60,29],
55:[66,57,69,15,27],
56:[25,36,37,49,51],
57:[55,34,26,70,64],
58:[68,70,28,32,54],
59:[60,71,30,41,43],
60:[37,59,50,51,54],
61:[68,38,31,42,32],
62:[33,71,63,20,43],
63:[45,36,48,49,62],
64:[44,57,72,40,21],
65:[23,45,68,72,42],
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66:[44,55,38,71,31],
67:[44,45,71,72,41],
68:[58,49,61,51,65],
69:[33,55,70,71,54],
70:[57,58,69,72,53],
71:[66,67,69,59,62],
72:[67,46,70,64,65]
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