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Abstract: A cornerstone contribution due to Chung, Graham and
Wilson (1989) implies that many graph properties of different na-
ture are equivalent. Graphs that satisfy any (and thus all) of the
properties are called quasi-random graphs. In this paper, we con-
struct families of quasi-random graphs for any given edge density,
which are regular but not strongly regular. Moreover, we obtain
a lower bound for Ramsey number r(K1 + G) in which the graph
G contains no isolated vertex, which extends a classical result by
Shearer (1986) and independently Mathon (1987).
Keywords: Ramsey number, quasi-randomness, Weil bound.

1. Introduction

Random graphs have been proven to be one of the most important tools in
modern graph theory. How can we tell when a given graph behaves like a
random graph and how does one construct such graphs? This leads us to a
concept of quasi-random graphs (or pseudo-random graphs).

It was Thomason [33, 34] who introduced the notation of jumbled graphs
in order to measure the similarity between the edge distribution of quasi-
random graphs and random graphs. Another cornerstone contribution on this
topic due to Chung, Graham and Wilson [11] revealed the equivalence of a
number of disparate graph properties with respect to a constant p ∈ (0, 1),
all possessed asymptotically almost surely by random graph G(n, p) in which
each edge appears randomly with probability p. This fundamental result
opened many new horizons.
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Let G = (V,E) be a graph. Write e(G) for the number of edges of G and
p = e(G)/

(n
2
)

for the edge density, or density simply, of G. For a subset U
of V , write e(U) for the number of edges in the subgraph induced by U . Let
(Gn) be a sequence of graphs, where Gn has n vertices, and let p = p(n) be
a parameter. Let λ1, λ2, . . . , λn be eigenvalues of G with |λ1| ≥ |λ2| ≥ · · · ≥
|λn|. For fixed 0 < p < 1, two of these equivalent properties are as follows.

P(λ): e(G) ≥ pn2

2 + o(n2), λ1 ∼ pn and λ2 = o(λ1).

P(U): For each U ⊆ V (G), e(U) = p
(|U |

2
)
+ o(n2).

Graphs that satisfy any (and thus all) of the properties are called quasi-
random graphs, see [8, 9, 10] and other related references. Quasi-randomness
is a limit property, and quasi-random graphs are refereed to a sequence of
graphs (Gn). For convenience, we also simply call Gn p-quasi-random if the
sequence of graphs (Gn) is p-quasi-random when there is no confusion. A
survey on this topic is that of Krivelevich and Sudakov [23].

The following fact follows easily from the property P(U).

Proposition 1.1. For a sequence of graphs (Gn) of order n, let 0 < p < 1 be
fixed and (pn) be a sequence of numbers with 0 < pn < 1. If Gn is pn-quasi-
random, and pn → p as n → ∞, then Gn is p-quasi-random as n → ∞.

We also have the following simple property.

Proposition 1.2. Consider two sequences of quasi-random graphs (Gn) and
(G′

n) with densities p and p′, respectively, where Gn and G′
n have the same

vertex set Vn of size n, whose edge sets are disjoint. Let G′′
n be the graph

on vertex set Vn whose edge set consists of that of Gn and G′
n. Then G′′

n is
(p + p′)-quasi-random.

Proof. Let U be a subset of Vn. Then the edges of G′′
n in U consists of that of

Gn and G′
n. As Gn and G′

n satisfies the property P(U), and thus the number
of edges of G′′

n in U is

p

(
|U |
2

)
+ p′

(
|U |
2

)
+ o(n2) = (p + p′)

(
|U |
2

)
+ o(n2).

So G′′
n satisfies the property P(U) for the edge density p + p′.

We call a graph G strongly regular with parameters n, d, γ1, γ2, denoted by
srg(n, d, γ1, γ2), if it has order n, and it is d-regular, and any pair of vertices
have γ1 common neighbors if they are adjacent, and γ2 common neighbors
otherwise. For a strongly regular graph G, the following well-known result
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gives the spectrum of G, whose proof can be found in [19] and from which it
is easy to verify whether or not a sequence of strongly regular graphs satisfies
P(λ).

Lemma 1.1. Let G be a connected srg(n, d, γ1, γ2) with n ≥ 3. Then λ1 = d
is an eigenvalue with multiplicity m1 = 1, and any eigenvalue λ 	= λ1 satisfies

λ2 + (γ2 − γ1)λ + (γ2 − d) = 0.

The equation has two distinct solutions λ2 and λ3 with λ2 > 0 > λ3, and
λ3 is an eigenvalue. If d + (n − 1)λ3 	= 0, then λ2 is also an eigenvalue.
The multiplicities of m2 and m3 can be determined by m2 + m3 = n− 1 and
d + m2λ2 + m3λ3 = 0.

The existence of quasi-random graphs for any given density p is ensured by
random graph G(n, p). However, only a few explicit constructions for quasi-
random graphs are known. The most mentioned quasi-random graphs are
the Paley graphs with edge density p = 1/2. For a prime power q and an
integer k ≥ 2, Delsarte and Goethals and to Turyn (unpublished, reported in
[30]) defined srg

(
q2, k(q − 1), q + k2 − 3k, k(k − 1)

)
, which is quasi-random

by checking P(λ) as its spectrum can be determined by Lemma 1.1.
The edge density of the above srg

(
q2, k(q − 1), q + k2 − 3k, k(k − 1)

)
is

k
q+1 . Hence, for any fixed p ∈ (0, 1), if we take q and k = k(q) such that
k/q → p as q → ∞, then this strongly regular graph is p-quasi-random as
q → ∞.

2. Quasi-random graphs with any given edge density

In this section, we shall construct new families of quasi-random graphs for any
given edge density. The idea of the following construction comes from Shearer
[31], Mathon [22], Füredi [17], and Axenovich, Füredi and Mubayi [4].

Let k ≥ 3 and q ≡ 1 (mod 2k) be a prime power. Denote q = sk + 1. Let
β be a primitive element of Fq,

F0 = {0}, F1 =
{
1, βk, . . . , β(s−1)k

}
, and Fi = βi−1F1 for i = 1, 2, . . . , k.

(1)

The cyclotomic association scheme with k classes corresponds to the edge
coloring of Kq on Fq: an edge {x, y} of Kq is assigned color i if and only if
x− y ∈ Fi, 1 ≤ i ≤ k. Hi(q, k) are the cyclotomic graphs generated by edges
in color i for 1 ≤ i ≤ k.
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One can find the following result in [5, p. 66], and we include a proof for
completeness.

Lemma 2.1. Let q ≡ 1 (mod 2k) be a prime power and Hi(q, k), 1 ≤ i ≤ k,
be defined as above. They are isomorphic to each other, and form an edge par-
tition of Kq. Furthermore, each of them is (q− 1)/k-regular, and the number
of common neighbors of each pair of adjacent vertices is the same.

Proof. We shall verify that H1(q, k) is isomorphic to Hi(q, k). Define a bijec-
tion φ(z) = βi−1z on F (q). Then φ(x)−φ(y) = βi−1(x−y), and thus x and y
are adjacent in H1(q, k) if and only if φ(x) and φ(y) are adjacent in Hi(q, k).

Note that F1, F2, . . . , Fk form a partition of F ∗
q , where F ∗

q = Fq \ {0}.
Thus any edge of Kq is colored by one from {1, 2, . . . , k}.

Since the neighborhood of a vertex x in H1(q, k) is x+F1, which contains
(q − 1)/k vertices, so H1(q, k) is (q − 1)/k-regular.

Now, let {u, v} be an edge of H1(q, k) with u−v = βtk. Define a bijection
ψ on Fq as ψ(z) = z−u

v−u . For any distinct vertices x and y, as

ψ(x) − ψ(y) = x− y

u− v
= (x− y)β(q−1−t)k = (x− y)βt1k,

where 0 ≤ t1 ≤ s − 1 with q − 1 − t ≡ t1 (mod s), we have that x and y
are adjacent in H1(q, k) if and only if ψ(x) and ψ(y) are adjacent in H1(q, k),
and thus ψ is an automorphism of H1(q, k). Since ψ(u) = 0 and ψ(v) = 1, we
have the number of common neighbors of u and v in H1(q, k) is as same as
that of 0 and 1.

Definition 2.1. Let A be an additive group, and let S ⊆ A \ {0} be an
inverse-closed subset. The Cayley graph Γ(A, S) is defined on vertex set A,
in which a pair of vertices u and v are adjacent if u− v ∈ S.

Remark. If we set Si = {βi−1, βi−1+k, βi−1+2k, . . . }, then Hi(q, k) is just the
Cayley graph Γ(Fq, Si).

The following well-known result establishes a simple and elegant relation
between eigenvalues of the Cayley graph Γ(A, S) and the character on S, see
e.g. Alon [1].

Lemma 2.2. Let A be an additive group, and let S ⊆ A \ {0} be an inverse-
closed subset. Then each eigenvalue λ of the Cayley graph Γ(A, S) has the
form

λ =
∑
s∈S

ψ(s),

where ψ is a character of A.
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Now, we construct new families of quasi-random graphs for any given edge
density as follows.

Theorem 2.1. Let qn ≡ 1 (mod 2kn), and let the Cayley graph Γ(Fqn , Si) be
defined as above. For any fixed real number 0 < p < 1, there exists a rational
sequence (rn) such that

Gn = Γ(Fqn , Tn),

where Tn =
rn−1⋃
i=0

Si, is p-quasi-random as n → ∞.

In order to prove Theorem 2.1, we also need the following Weil bound.
The characters of a finite field Fq are group homomorphisms from Fq or
F ∗
q = Fq \ {0} to

S1 = {z : |z| = 1} = {eiθ : 0 ≤ θ < 2π}

respectively, where S1 is a multiplicative group of complex numbers.
An additive character of Fq is a function ψ : Fq → S1 such that for any

x, y ∈ Fq,
ψ(x + y) = ψ(x)ψ(y).

Clearly ψ(0) = 1 and ψ(−x) = ψ(x). The trivial function ψ0 with ψ0(x) ≡ 1
is also called the principle additive character of F (q).

If an additive character ψ on Fq is nontrivial (ψ 	= ψ0) and S = {xk : x ∈
Fq} for k ≥ 1, then ∣∣∣∣∣

∑
y∈S

ψ(y)
∣∣∣∣∣ ≤ (k − 1)√q,

which is the Weil bound [35]. In particular, if S is a multiplicative subgroup
of Fq, then we have a slightly better bound for this special case which is due
to Alon and Bourgain [2, Lemma 2.7] as follows,

(2)
∣∣∣∣∣
∑
y∈S

ψ(y)
∣∣∣∣∣ ≤ √

q.

Proof of Theorem 2.1. Let (pn) be a sequence of positive rational numbers
such that pn → p as n → ∞. Suppose pn = rn/kn, where rn and kn are
positive integers with kn ≥ 2 and (rn, kn) = 1. Note that there are infinitely
many primes q ≡ 1 (mod 2kn), so we can take a large prime qn ≡ 1 (mod 2kn)
such that q1 < q2 < · · · and

rnkn
√
qn = o(qn), (n → ∞).



2542 Qizhong Lin and Yusheng Li

Let βn be a primitive element of Fqn , Si = {βi−1
n , βi−1+kn

n , · · · } and Tn =
∪rn−1
i=0 Si. Let

Gn = Γ(Fqn , Tn).
The vertex set of Gn is Fqn , whose edge set consists of all edges of Hi(qn, kn)
for 0 ≤ i ≤ rn − 1.

By Lemma 2.2, each eigenvalue λ of H1(qn, kn) has the form

λ =
∑
s∈S1

ψ(s),

where ψ is an additive character of Fqn . The trivial character ψ0 determines
the largest eigenvalue λ1 = |S1| = (qn − 1)/k. For each other eigenvalue λ of
H1(qn, kn), we have an additive character ψ 	= ψ0 such that

|λ| =
∣∣∣∣∣
∑
s∈S1

ψ(s)
∣∣∣∣∣ ≤ √

qn = o(λ1),

in which the inequality follows from (2) since S1 = {1, βk, . . . , βq−1} is a
multiplicative group. Thus H1(qn, kn) and hence any Hi(qn, kn) is 1/kn-quasi-
random by noting that Hi(qn, kn) is (qn−1)/kn regular, which implies that the
density of Gn is pn = rn/kn by Lemma 1.2. Therefore, from Lemma 1.1, Gn

is p-quasi-random as n → ∞. This completes the proof of Theorem 2.1.

Remarks. Lemma 2.1 tells us that Hi(q, k) is “half” strongly regular. How-
ever, Hi(q, k) is not strongly regular generally. For example, consider the
graph H1(13, 3) with respect to primitive element β = 2 of F13. Let us list
neighborhoods of some vertices as follows.

N(0) = {1, 5, 8, 12}, N(2) = {1, 3, 7, 10}, N(4) = {3, 5, 9, 12}.

For non-adjacent pairs {0, 2} and {0, 4}, we have |N(0) ∩ N(2)| 	= |N(0) ∩
N(4)|.

For sparse graphs with density p = o(1), the situation is significantly more
complicated as revealed by Chung and Graham [10]. The first remarked fact
is that the properties defined for quasi-random graphs with fixed density may
not equivalent. They found some equivalent properties under certain condi-
tions. One of the properties is that λ1 ∼ pn and λ2 = o(pn). For a given posi-
tive function f(n) with f(n) = o(1), it is similar to construct Gn = Γ(Fqn , S)
of density pn such that pn ∼ f(n). Naturally, we may ask which properties
(in which form) of quasi-randomness for fixed density can be preserved for
sparse quasi-random graphs.
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3. Lower bounds for Ramsey numbers r(K1 + G)

For a graph G, the Ramsey number r(G) is the minimum integer N such that
any red/blue edge coloring of KN contains a monochromatic copy of G.

Let q ≡ 1 (mod 4) be a prime power, and Fq the finite field of order q.
Define a function χ : Fq → Z by χ(x) = x(q−1)/2, called the quadratic residue
character, namely

(3) χ(x) =

⎧⎪⎨
⎪⎩

1 x is quadratic, x 	= 0,
0 x = 0,
−1 x is non-quadratic.

The Paley graph Pq is defined on vertex set Fq, in which a pair of vertices
u, v ∈ Fq are adjacent if and only if χ(u − v) = 1. Let us point out that the
cyclotomic graphs H1(q, 2) and H2(q, 2) are exactly the Paley graph Pq.

A result of Shearer [31] and independently Mathon [22] was that if the
Paley graph Pq contains no Kt, then

(4) r(Kt+1) ≥ 2(q + 1) + 1.

This can give the currently best lower bounds of r(Kt) for small t, except for
t = 4, 5, 6, 8, see [18, 15, 21, 6]. It is clear that r(K2) = 2 and r(K3) = 6.
In [18], Greenwood and Gleason proved r(K4) = 18, and there is no other
known exact values r(Kt) for t ≥ 5. For r(K5), we know that 43 ≤ r(K5) ≤ 48
in Exoo [15] and Angeltveit and McKay [3] for the lower and upper bounds
respectively.

For vertex disjoint graphs G and H, let H +G be a graph obtained from
H and G by adding new edges to connect H and G completely. The family
of graphs in the form K1 + G contains graphs in the form of Km + H such
as the book graph B

(m)
n = Km + Kn, and we shall give a constructive lower

bound for r(K1 + G) as follows.

Theorem 3.1. Let q ≡ 1 (mod 4) be a prime power. If the Paley graph Pq

contains no G with minimum degree δ(G) ≥ 1, then r(K1 +G) ≥ 2(q+1)+1.

Remark. Since Kt+1 = K1+Kt, Theorem 3.1 generalizes the lower bound (4).
Let B

(m)
n be the book graph that consists of n copies of Km+1 sharing a

common Km. The study of Ramsey numbers of books goes back to [14, 29].
Erdős, Faudree, Rousseau and Schelp [14] using the random graph G(N, 1/2),
and later Thomason [32] using the Paley graph obtained that r(B(k)

n , B
(k)
n ) ≥

(2k + ok(1))n. Recently, Conlon [12] establishes that r(B(k)
n , B

(k)
n ) = (2k +
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ok(1))n, which confirms a conjecture of Thomason [32] asymptotically and
also gives an answer to a problem proposed by Erdős [14]. Using a different
method, the upper bound has been improved slightly to that r(B(k)

n , B
(k)
n ) ≤

2kn+Ok( n
(log log logn)1/25 ), see Conlon, Fox and Wigderson [13]. For more Ram-

sey numbers on books, we refer the reader to [7, 16, 26, 27, 28] and other
related references.

When m = 2, it is shown that if 4n + 1 is a prime power, then r(B(2)
n ) =

4n + 2; see Rousseau and Sheehan [29]. As a corollary, the following result
improves the lower bound in [14, 32, 24, 25] when m = 3.

Corollary 3.1. If 4n + 1 is a prime power, then r(B(3)
n ) ≥ 8n + 5.

Proof. As B
(3)
n = K1 + B

(2)
n , the assertion follows by considering the largest

B
(2)
n in Pq when q = 4n + 1.

Remark. From Corollary 3.1 and the upper bound due to Conlon, Fox and
Wigderson [13], we know that if 4n + 1 is a prime power, then 8n + 5 ≤
r(B(3)

n ) ≤ 8n+O
(

n
(log log logn)1/25

)
. It is natural to ask that whether r(B(3)

n ) ≤
8n + c and 2mn + cm ≤ r(B(m)

n ) ≤ 2mn + dm for infinitely many n, where
c, cm and dm are constants. For the upper bound, Thomason [32] indeed
conjectured that r(B(m)

n ) ≤ 2m(m+ n− 2) + 2 for all m ≥ 1. This conjecture
is trivially true when m = 1 and its truth for m = 2 due to Rousseau and
Sheehan [29] follows from Goodman’s theorem [20]. If Thomason’s conjecture
holds for m = 3, then we can get 8n + 5 ≤ r(B(3)

n ) ≤ 8n + 10 if 4n + 1 is a
prime power.

In the following, we shall give a proof for Theorem 3.1. We will apply the
construction due to Shearer [31] and Mathon [22] independently. Write (u, v)
for an edge that connects vertices u and v. Let Pq and P ′

q be two disjoint
copies of Paley graphs. Let V, V ′ and E,E′ be their corresponding vertex and
edge sets, respectively, and let λ, λ′ be two additional vertices. We define a
new graph Hq with vertex set {λ, λ′} ∪ V ∪ V ′ and containing the edges

(λ, x), (λ′, x′) x ∈ V ;
(x, y), (x′, y′) (x, y) ∈ E;
(x, y′), (x′, y) (x, y) ∈ E′.

Proof of Theorem 3.1. Let Hq be constructed as above with vertex set
{λ, λ′} ∪ V ∪ V ′. We aim to show that both Hq and Hq contain no K1 + G
as a subgraph. The fact that Hq contains no copy of K1 + G as a subgraph
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follows from the following claim since the Paley graph Pq contains no G from
the assumption.

Claim. The neighborhood of any vertex of Hq induces a subgraph that is
isomorphic to the Paley graph Pq.

Proof. The assertion holds clearly if the vertex u is either λ or λ′. Recall
the definition of the Paley graph Pq, V = Fq, where q = 4n + 1 is a prime
power. Let β be a primitive element of Fq. Since for any a, b ∈ V , the map
ψ(x) = a+ b−x is an automorphism mapping a to b, we have that the Paley
graph is vertex transitive. Therefore, it suffices to verify the neighborhood
of the vertex 0 ∈ V in Hq by symmetry. From the definition of Hq, the
neighborhood of 0 is

U =
{
λ, 1, β2, . . . , β4n−2; β′, β3′, . . . , β4n−1′

}
.

Denote Hq[U ] by the subgraph induced by the vertices of U in Hq. Define an
bijection ϕ from V to U such that

ϕ(0) = λ, ϕ(β2i) = 1
β2i and ϕ(β2i+1) =

( 1
β2i+1

)′
, i = 0, 1, . . . , 2n− 1.

Table 1: Four types of edges
Pq (0, β2i) (β2i, β2j) (β2i+1, β2j+1) (β2i, β2j+1)

H[U ] (λ, 1
β2i ) ( 1

β2i ,
1

β2j ) (( 1
β2i+1 )′, ( 1

β2j+1 )′) ( 1
β2i , ( 1

β2j+1 )′)

Clearly, ϕ is an isomorphism from the Paley graph Pq to Hq[U ] from the
definition of Hq. e.g., β2i+1 − β2j+1 is quadratic if and only if 1

β2i+1 − 1
β2j+1 =

β2j+1−β2i+1

β2i+1β2j+1 is quadratic by noting −1 = β2n is quadratic as q = 4n + 1. i.e.,
(β2i+1, β2j+1) is an edge in Pq if and only if ( 1

β2i+1 ,
1

β2j+1 ) is an edge in Pq

hence an edge in Hq. This completes the proof of the claim.

It remains to verify that Hq contains no copy of K1 + G. Suppose to the
contrary that Hq contains a copy of K1+G. Let u be the K1 of the K1+G, i.e.,
the center of K1 +G. We claim u 	= λ. Otherwise, G is contained in V ′∪{λ′}
completely. Note that λ′ has no neighbor in V ′, G must be contained in V ′

completely as δ(G) ≥ 1. However, this will lead to a contradiction since V ′

induces the Paley graph Pq containing no copy of G in Hq. Similarly, u 	= λ′.
Thus, we assume u ∈ V , say u = 0 without loss of generality. From the

definition of Hq, the neighborhood of 0 in Hq is{
β, β3, . . . , β4n−1;λ′, 1′, β2′, . . . , β4n−2′

}
∪ {0′}.



2546 Qizhong Lin and Yusheng Li

Let
W =

{
β, β3, . . . , β4n−1;λ′, 1′, β2′, . . . , β4n−2′

}
,

and denote Hq[W ] by the subgraph induced by the vertices of W in Hq. Define
an bijection ϕ from V to W such that

ϕ(0) = λ′, ϕ(β2i) =
( 1
β2i

)′
and ϕ(β2i+1) = 1

β2i+1 , i = 0, 1, . . . , 2n− 1.

Similarly, ϕ is an isomorphism from the Paley graph Pq (= Pq) to Hq[W ]
from the definition of Hq. e.g., β2i − β2j+1 is non-quadratic if and only if
1
β2i − 1

β2j+1 = β2j+1−β2i

β2iβ2j+1 is quadratic. i.e., (β2i, β2j+1) is an edge in Pq if and
only if ( 1

β2i ,
1

β2j+1 ) is an edge in Hq, equivalently, (( 1
β2i )′, 1

β2j+1 ) is an edge in
Hq[W ].

Now, note that, in Hq, the neighborhood of the vertex 0′ is
{
λ, 0, 1, β2, . . . , β4n−2; β′, β3′, . . . , β4n−1′

}
,

which is disjoint from W . It follows that G must be contained in W completely
as δ(G) ≥ 1. However, this is a contradiction since Hq[W ] is isomorphic to
the Paley graph Pq which contains no copy of G. The proof of Theorem 3.1
is completed.

Remark. For a graph G, the k-color Ramsey number rk(G) is defined to be
the least integer N such that any edge-coloring of KN with k colors contains
a monochromatic copy of G. Applying the cyclotomic graphs defined as in
Section 2, we can similarly obtain that for fixed integer k ≥ 3 and prime
power q ≡ 1 (mod 2k), if G is a graph without isolated vertex and the graph
H1(q, k) contains no G, then rk(K1 + G) ≥ k(q + 1) + 1. In particular, Xu
and Radziszowski [36] obtained that for fixed k ≥ 3 and prime power q ≡ 1
(mod 2k), if the graph H1(q, k) contains no Km, then rk(Km+1) ≥ k(q+(k−
1)!) + 1, which improves that in [31, 22].
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