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An alternative proof of general factor structure
theorem∗

Hongliang Lu
†

and Qinglin Yu

Abstract: Let G be a graph, and H : V (G) → 2N a set function
associated with G. A spanning subgraph F of graph G is called
a general factor or an H-factor of G if dF (x) ∈ H(x) for every
vertex x ∈ V (G). The existence of H-factors is, in general, an NP -
complete problem. H-factor problems are considered as one of most
general factor problem because many well-studied factors (e.g., per-
fect matchings, f -factor problems and (g, f)-factor problems) are
special cases of H-factors. Lovász [The factorization of graphs (II),
Acta Math. Hungar., 23 (1972), 223–246] gave a structure descrip-
tion of H-optimal subgraphs and obtained a deficiency formula. In
this paper, we introduce a new type of alternating path to study
Lovász’s canonical structural partition of graphs and consequently
obtain an alternative and shorter proof of Lovász’s deficiency for-
mula for H-factors. Moreover, we also obtain new properties re-
garding Lovász’s canonical structural partition of H-factors.
Keywords: degree constrained factor, alternating path, change-
able trail.

1. Introduction

In this paper, we consider finite undirected graphs without loops or multiple
edges. For a graph G = (V,E), the degree of x in G is denoted by dG(x), and
the set of vertices adjacent to x in G is denoted by NG(x). For S ⊆ V (G), the
subgraph of G induced by S is denoted by G[S] and G− S = G[V (G) − S].
For disjoint vertex subsets S and T , EG(S, T ) is the set of edges between S
and T in G. Given a trail P and a spanning subgraph R, let RΔP denote
the spanning subgraph with vertex set V (R) and edge set (E(R) − E(P )) ∪
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(E(P ) − E(R)). A trail of a graph G is called Eulerian trail if it contains
all edges of G. A graph is Eulerian if it has a closed Eulerian trail. For two
positive integers a, b with a < b, we denote {a, a+1, . . . , b} by [a, b]. Let P be
a trail. For x ∈ V (P ), let xi denote the i-th appearance of x on the trail and
let xe denote the last appearance of x. For u, v ∈ V (P ), let P uivj denote the
subtrail of P from ui to vj . We use P uv for P uivj when there is no confusion
arisen. Notations and terminologies are not defined here may be found in [5].

For a given graph G, we associate an integer set H(x) with each vertex
x ∈ V (G) (i.e., H is a set mapping from V (G) to 2N). Given a spanning
subgraph F of G, F is a general factor or an H-factor of G if dF (x) ∈ H(x)
for every vertex x ∈ V (G). By specifying H(x) to be an interval or a special
set, an H-factor would become an f -factor, an [a, b]-factor or a (g, f)-factor,
respectively. For a general mapping H, the decision problem of determining
whether a graph has an H-factor is known to be NP -complete. In fact, when
H(x) contains a “gap” with more than one element, H-factor problem is
an NP -complete problem. Interestingly, Lovász [4] showed that Four-Colors
Problem is reducible to H-factor problem with H(x) = {1} or {0, 3} for each
x ∈ V . So it is reasonable to conclude that finding a characterization for
H-factors in general is a challenging problem and hence it is natural to turn
our attention to H-factor problems in which H(x) contains only one-element
gaps. Furthermore, Lovász also conjectured that the general factor problem
with one-element gaps could be solved in polynomial time and Cornuéjols [1]
confirmed this conjecture. For H(x) being intervals, H-factor becomes (g, f)-
factor. By using alternative trails, the authors [6] gave a structure charac-
terization of Lovasz’s (g, f)-Factor Theorem [2], which also implied a simple
proof of (g, f)-Factor Theorem.

Assume that H satisfies the property:

(∗) if i �∈ H(x), then i + 1 ∈ H(x), for mH(x) ≤ i ≤ MH(x),

where mH(x) = min{r | r ∈ H(x)} and MH(x) = max{r | r ∈ H(x)}. Let
MH(S) =

∑
u∈S MH(u), mH(S) =

∑
v∈S mH(v). Given an integer set X

and an integer a, let X ± a = {i ± a | i ∈ X}. Let f : V (G) → N and let
H ± f : V (G) → 2N be a set function such that (H ± f)(x) = H(x) ± f(x)
for all x ∈ V (G). Lovász [3] obtained a sufficient and necessary condition for
the existence of H-factors with the property (∗) and a deficiency formula for
H-optimal subgraphs. In this paper, we use the traditional matching theory
technique – alternative path – which has dealt effectively with other factor
problems to prove Lovász’s deficiency formula. However, we need to modify
the usual alternative paths to changeable trails to handle the more compli-
cated structures in this case.
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Let F be a spanning subgraph of G such that dF (v) ≤ MH(v) for all v ∈
V (G). A trail P = v0v1 . . . vk with dF (x) ∈ H(x) for every x ∈ V (P )−{v0, vk}
is called a FH-changeable trail (or changeable trail for simplicity when there
is no confusion arisen) if it satisfies the following conditions:

(a) v0v1 /∈ E(F ) and dF (v0) < mH(v0);
(b) dF�P (x) ∈ H(x), for every x ∈ V (P ) − {v0, vk};
(c) for all 1 ≤ l ≤ k, sub-trail P ′ = v0v1 . . . vl satisfies condition (b) as well.

Remarks:

(1) In fact, we could restrict the vertex degree of trail P to dP (x) ≤ 4,
because that the number of times of a vertex is repeated in a trail two
times is enough for us to construct augmenting subgraph to improve
the deficiency.

(2) Condition (c) is necessary, because a repeated vertex in a sub-trail of
P may not satisfy the condition (b). For instance, let P = v0v1v2v3v1v4
and P ′ = v0v1v2v3, where |H(v1)| = 1, v0v1, v1v2 /∈ E(F ) and
v1v3, v1v4 ∈ E(F ). One may see that if dF�P (v1) ∈ H(v1), then
dF�P ′(v1) /∈ H(v1). Hence the condition (c) is independent of the con-
dition (b).

(3) For any x ∈ V (P )−{v0, vk}, dF�P (x) ≡ dF (x) (mod 2) and if v0 = vk,
then dF�P (v0) ≡ dF (vk).

Let H be a set function satisfying the property (*) and F any spanning
subgraph of G. Given a subset S ⊆ V (G), the deficiency of subgraph G[S] in
F is defined as

defH [F ;S] =
∑

x∈S
min{|dF (x) − r| | r ∈ H(x)}.

In particular, defH [F ;x] = min{|dF (x) − r| | r ∈ H(x)} is the deficiency of
vertex x in F . We can measure F ’s “deviation” from H-factors by defining
the deficiency of F with respect to H as

defH [F ] =
∑

x∈V (F )
min{|dF (x) − r| | r ∈ H(x)}.

The total deficiency of G with respect to H is

defH(G) = min{defH [F ] | F is a spanning subgraph of G}.
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Note that defH [G] �= defH(G). Clearly, defH(G) = 0 if and only if there exists
an H-factor. A subgraph F is called H-optimal, if F is a spanning subgraph
of G and defH [F ] = defH(G). Of course, any H-factor is H-optimal.

Let IH(x) = {dF (x) | F is any H-optimal subgraph}. Lovász [3] studied
the structure of H-factors by introducing a Gallai-Edmonds type canonical
partition of V (G) as follows:

CH(G) = {x | IH(x) ⊆ H(x)},
AH(G) = {x | min IH(x) ≥ MH(x)},
BH(G) = {x | max IH(x) ≤ mH(x)},
DH(G) = V (G) − AH(G) −BH(G) − CH(G).

Based on this canonical partition, Lovász obtained the deficiency formula
for H-optimal subgraphs, which implied a sufficient and necessary condition
of H-factors, where H satisfies the property (*).

Theorem 1.1 (Lovász, [5]). The deficiency formula is

defH(G) = mH(BH(G)) + c(DH(G)) −MH(AH(G)) −
∑

x∈BH(G)
dG−AH(G)(x),

(1)

where c(DH(G)) denotes the number of components of G[DH(G)].

In this paper, we firstly give an alternative description of the canonical
partition (A,B,C,D) by deploying changeable trails and then provide a new
proof of Theorem 1.1.

A changeable trail P is odd if the last edge doesn’t belong to F ; otherwise,
P is even. We call a changeable trail P an augmenting changeable trail if
defH [F�P ] < defH [F ]. Moreover, the trails of length zero are considered as
even changeable trails.

Suppose that G does not have H-factors. Let F be an H-optimal spanning
subgraph of G such that E(F ) is minimal. Clearly, there is a vertex v ∈ V
such that dF (v) �∈ H(v), so the deficiency of F is positive. Let

B0 = {x ∈ V (G) | dF (x) �∈ H(x)}.

Since E(F ) is minimal and H satisfies (*), we have dF (v) ≤ MH(v) for all
v ∈ V (G) and

B0 = {x ∈ V (G) | dF (x) < mH(x)}.
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We define D(G) to be a vertex set consisting of three types of vertices as
follows:

(i) {v | ∃ both of an even changeable trail and an odd changeable trail
from B0 to v};

(ii) {v | mH(v) < dF (v) ≤ MH(v) and ∃ an even changeable trail from
B0 to v};

(iii) {v | mH(v) ≤ dF (v) < MH(v) and ∃ an odd changeable trail from B0
to v}.

The sets A(G) and B(G) are defined as follows:

A(G) = {v | dF (v) = MH(v) and ∃ an odd but not even changeable trail
from B0 to v}

B(G) = {v | dF (v) ≤ mH(v) and ∃ an even but not odd changeable trail
from B0 to v},

and C(G) = V (G)−A(G)−B(G)−D(G). We abbreviate D(G), A(G), B(G)
and C(G) by D,A,B and C, respectively.

We claim that A,B,C,D is indeed a partition of V (G). From the defi-
nitions of A and B, clearly A ∩ B = ∅. Let x ∈ A. Since dF (x) = MH(x),
it does not satisfy condition (iii) in the definition of D. Note that there does
not exist an even changeable trail from B0 to x. So x can not satisfy (i) or
(ii) of D. Hence we infer that A ∩ D = ∅. With similar discussion, one can
see that B ∩D = ∅. Hence they form a partition of V (G).

Since every trail of length zero is considered as an even trail, by the
definitions of B and D, B0 ⊆ B ∪ D. So for v ∈ C, we have dF (v) ∈ H(v).
Following the above discussion, if H(v) is an integer interval with more than
one element, then v /∈ D.

Though the definition of (A,B,C,D) depends on the subgraph F , the
partition (A,B,C,D) of graph G is independent of the choice of F . The proof
of independence will be given at the very end of this paper (Theorem 3.13).

To illustrate the new concepts introduced in this section, here is an
example (Fig. 1). Let H : V (G) → 2N be a set function defined as fol-
lows: H(ui) = {0, 2} for i = 1, . . . , 8; H(vj) = {1} for j = 1, . . . , 10; and
H(xk) = H(wk) = {1} and H(yk) = {3} for k = 1, 2. Let F be the span-
ning subgraphs with bold edges in Figure 1. It is not hard to verify that
defH(G) = 2 and F is an H-optimal subgraph. Clearly, B0 = {y1, y2}.
Then P1 = y1u5v5u4v4x2v8u8v9u9u8v6 is an odd changeable trail and P2 =
y1u5v4u4v5x1v1 is an even changeable trail. By definitions, the partition is
A = {x1, x2}, B = {y1, y2}, C = {w1, w2} and D consists of the remaining
vertices.
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Figure 1: Changeable trails and partition (A,B,C,D).

2. Technical preparations

As technical preparations, we present a lemma and an observation about
changable trails.

Lemma 2.1. Let G be Eulerian. Let R be a subgraph of G. Then G has a
closed Eulerian trail C such that for every v ∈ V (G), the number of pairs of
consecutive edges through vertices v and alternatively in E(R) and E(G) −
E(R) is equal to min{dR(v), dG−E(R)(v)}.

Proof. Let V1 = {v ∈ V (G) | dR(v) < dG(v)/2} and V2 = V (G)−V1. Let U =
∪v∈V (G){vi1, vi2 | 1 ≤ i ≤ lv} and M = ∪v∈V (G){vi1vi2, vvi1, vvi2 | 1 ≤ i ≤ lv},
where lv = |dR(v) − dG−E(R)(v)|/2. Let M ′ = ∪v∈V1{vvi1, vvi2 | 1 ≤ i ≤ lv}
and M ′′ = ∪v∈V2{vi1vi2 | 1 ≤ i ≤ lv}. Let G′ be a graph with vertex set
V (G) ∪ U and edge set E(G) ∪ M . Let R′ be a subgraph with vertex set
V (G)∪U and edge set E(R)∪M ′ ∪M ′′. One can see that dR′(x) = dG′(x)/2
for all x ∈ V (G′).

Claim 1. Let G be an Eulerian graph and let M ⊆ E(G) such that dG(x) =
2dG−M(x) for all x ∈ V (G). Then G has an Eulerian trail that is an M-
alternative trail.

By induction on |E(G)|. Note that |M| = |E(G)|/2 and |E(G)| ≡ 0
(mod 2). The result is true for |E(G)| ∈ {2, 4}, because G is a cycle of length
two or four in this case. Suppose that the result holds for any |E(G)| ≤ m,
where m ≥ 4. Let G be an Eulerian graph with |E(G)| = m+2, where m ≥ 4.
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Let C0 be a maximal M-alternative trail of G. Since dG(x) = 2dG−M(x) for
all x ∈ V (G), then C0 is a closed trail. Suppose that E(G) \ E(C0) �= ∅.
Let G1, . . . ,Gr be non-trivial components of G − E(C0). Note that for every
x ∈ V (G), dG−E(C0)(x) = 2dG−E(C0)−M(x). So for every x ∈ V (Gi), dGi(x) =
2dGi−M(x) and |E(Gi)| ≡ 0 (mod 2). By induction hypothesis, Gi has an M-
alternative trail Ci for 1 ≤ i ≤ r. Since G is connected, we may obtain an
M-alternative trail of G from C0, . . . , Cr. This completes the proof of Claim 1.

By Claim 1, G′ has an R′-alternative Eulerian trail C ′. By deleting the
edge set M and vertex set U from M, the resulted trail is the desired trail.
This completes the proof.

Eulerian trails in Lemma 2.1 are closed. Clearly, we have a similar result
for open Eulerian trails. We state it as corollary below.

Corollary 2.2. Let G be a connected graph with Eulerian trails and let x, y ∈
V (G) such that dG(x) and dG(y) are odd. Let R be a subgraph of G. Then G
has an Eulerian trail P from x to y such that for every v ∈ V (G), the number
of pairs of consecutive edges through vertices v and alternatively in E(R) and
E(G) − E(R) is equal to min{dR(v), dG−E(R)(v)}.

Let G be a graph and let R be a subgraph of G. By Lemma 2.1 and
Corollary 2.2, for every changeable trail P with starting vertex v0 and x ∈
V (P ), we may make the following assumptions.

Observation 2.3. (i) If dP (x) = 2dP−E(R)(x), then the two consecutive
edges on P incident to x are alternatively in E(R) and E(G) − E(R).

(ii) If dP (x) > 2dP−E(R)(x), then the two consecutive edges on P incident
to x belong to E(R) or are alternatively in E(R) and E(G) − E(R).

(iii) If dP (x) < 2dP−E(R)(x), then the two consecutive edges on P incident to
x belong to E(G)−E(R) or are alternatively in E(R) and E(G)−E(R).

(iv) For every subtrail P ′ of P and x ∈ V (P ′), if dR�E(P )(x) > dR(x) (or
dR�E(P )(x) < dR(x)), then dR�E(P ′)(x) ≥ dR(x)− 1 (or dR�E(P ′)(x) ≤
dR(x) + 1, resp.), with equality if and only if P ′ is an even (odd, resp.)
changeable trail and dP ′(x) = 1.

(v) If P is a closed odd trail, then every subtrail back along opposite direction
of P starting vertex v0 is a changeable trail.

3. Main theorem

In the following lemmas, let F be an H-optimal subgraph of graph G with
minimal E(F ). Without loss generality, we may assume that G contains no
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H-factors, i.e., B0 �= ∅. Let τ denote the number of components of graph
G[D] and D1, . . . , Dτ be the components of the subgraph induced by D.

From the definition of augmenting changeable trail, it is easy to see the
next lemma.

Lemma 3.1. An H-optimal subgraph F does not contain an augmenting
changeable trail.

For changeable trails, we have the following lemma.

Lemma 3.2. Let P1 be a changeable trail from x to y such that dP1(y) = 1
and let P2 be a changeable trail from v to y. Suppose that V (P1)∩V (P2) = {y}
and dF (y) ∈ H(y). Then P1 ∪ P2 is a changeable trail if one of the following
three conditions holds.

(i) One of P1 and P2 is an odd changeable trail and other is an even change-
able trail.

(ii) Both P1 and P2 are odd changeable trails, and dF�E(P2∪P1)(y) ∈ H(y).
(iii) Both P1 and P2 are even changeable trails, and dF�E(P2∪P1)(y) ∈ H(y).

Proof. We may assume that both P1 and P2 are changeable trails satisfying
the result in Corollary 2.2. Let P := P1 ∪ P2 be a trail from x to v along P1
and reverse order of P2. Now we show that P is a changeable trail from x to
v. For any u ∈ V (P2), since F is H-optimal and P2 is a changeable trail, we
may assume that one of the following results holds.

(1) If dF�E(P2)(u) = dF (u), then the two consecutive edges on P2 incident
to u are alternatively in E(F ) and E(G) − E(F );

(2) If dF�E(P2)(u) > dF (u) and u /∈ {v, x}, then dF (u) ≡ dF�E(P2)(u)
(mod 2), and
[dF (u), dF�E(P2)(u)] ∩H(u) = {dF (u), dF (u) + 2, . . . , dF�E(P2)(u)};

(3) If dF�E(P2)(u) < dF (u) and u /∈ {v, x}, then dF (u) ≡ dF�E(P2)(u)
(mod 2), and
[dF�E(P2)(u), dF (u)]∩H(u) = {dF�E(P2)(u), dF�E(P2)(u)+2, . . . , dF (u)}.

Let z ∈ V (P2) − y and w ∈ V (P yz
2 ) − z − y. So by (1), (2) and (3), we have

dF�E(P1∪P yz
2 )(w) ∈ H(w) and dist(H(z), dF�(E(P1∪P yz

2 )(z)) = 1.
For any subtrail P ′ of P started from x to t such that y ∈ V (P ′)− x− t,

we have dF�E(P ′)(y) ≡ dF (y) (mod 2) and

min{dF�E(P2)(y), dF (y)} − 1 ≤ dF�E(P ′)(y) ≤ max{dF�E(P2)(y), dF (y)} + 1.

Note that dF�E(P2)(y) �= dF (y) (mod 2)
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Consider (i). Then we have

min{dF�E(P2)(y), dF (y)} ≤ dF�E(P ′)(y) ≤ max{dF�E(P2)(y), dF (y)}.

By parity, one can see that

min{dF�E(P2)(y) + 1, dF (y)} ≤ dF�E(P ′)(y) ≤ max{dF�E(P2)(y) − 1, dF (y)}.

Hence if dF�E(P2)(y) + 1 ≤ dF (y), then dF�E(P ′)(y) ∈ {dF�E(P2)(y) + 1,
dF�E(P2)(y) + 3, . . . , dF (y)}. Else if dF�E(P2)(y) − 1 > dF (y), then
dF�E(P ′)(y) ∈ {dF (y), dF (y) + 2, . . . , dF�E(P2)(y) − 1}. In both of cases, we
have dF�E(P ′)(y) ∈ H(y).

By symmetry, it is sufficient for us to consider (ii). If dF�E(P )(y) ≤ dF (y),
then dF�E(P2)(y) < dF (y). Since P2 is an odd changeable trail, dF�E(P ′)(y) ∈
{dF�E(P2) + 1, . . . , dF (y) − 2, dF (y)} ⊆ H(y). So we may assume that
dF�E(P )(y) > dF (y), then dF�E(P ′)(y) ∈ {dF (y), dF (y)+2, . . . , dF�E(P )(y)} ⊆
H(y). This completes the proof.

With similar discussion, we have the following result.

Lemma 3.3. Let P1 be a changeable trail from x to y and let P2 be a change-
able trail from v to u such that dP1(y) = 1, V (P1) ∩ V (P2) = {y} and
y ∈ V (P2) − v. Then P1 ∪ P yeu

2 is a changeable trail if one of the follow-
ing three conditions hold.

(i) Both P1 and P vye

2 are odd (or even) changeable trails.
(ii) P1 is an odd changeable trail, P vye

2 is an even changeable trail and
dF (w) + 2 ∈ H(w).

(iii) P1 is an even changeable trail, P vye

2 is an odd changeable trail and
dF (w) − 2 ∈ H(w).

Next we show that each Dj can only possess a small deficiency.

Lemma 3.4. defH [F ;V (Dj)] ≤ 1 for j = 1, . . . , τ .

Proof. Suppose, to the contrary, that defH [F ;V (Di)] > 1. Let v0 ∈ V (Di)
with defH [F ; v0] ≥ 1. Then v0 ∈ B0 and thus dF (v0) < mH(v0). So v0 is
of type (i) and there exists an odd changeable trail P from a vertex s of B0
to v0. We claim s = v0. Otherwise, defH [F ] > defH [FΔP ], a contradiction
since F is H-optimal. Furthermore, if defH [F ; v0] ≥ 2, then s = v0 and so
defH [F ] > defH [FΔP ], a contradiction again. So we have defH [F ; v0] = 1
and defH [F ;u] ≤ 1 for any u ∈ V (Di) − v0. Moreover, dF (v0) + 1 ∈ H(v0)
and dF (v0) + 2 /∈ H(v0).

We define D1
i to be a vertex set consisting of three types of vertices as

follows:
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(1) {w ∈ V (Di) | ∃ an even changeable trail R1 and an odd changeable
trail R2 from v0 to w such that V (R1) ∪ V (R2) ⊆ V (Di)};

(2) {w ∈ V (Di) | mH(w) < dF (w) ≤ MH(w) and ∃ an even changeable
trail R from v0 to w such that V (R) ⊆ V (Di)};

(3) {w ∈ V (Di) | mH(w) ≤ dF (w) < MH(w) and ∃ an odd changeable
trailR from v0 to w such that V (R) ⊆ V (Di)}.

Let P be a closed odd changeable trail with started vertex v0 and let
S = {v ∈ V (P ) | dP (v) = 2dP−E(F )(v)}. By Observation 2.3, every sub-
trail along P with one end v0 (clockwise or anticlockwise) is a changeable
trail. Hence for v ∈ S, v belongs to type (1). Consider u ∈ V (P ) − S. If
dP (u)/2 < dP−E(F )(u), then dF (u) ≤ dFΔE(P )(u) − 2, dF (u) < MH(u) and
there exists an odd changeable trail from v0 to u. So u is type (3). Else if
dP (u)/2 > dP−E(F )(u), with similar discussion, u is type (2). Hence we have
V (P ) ⊆ D1

i .
One can see that D1

i �= ∅ and D1
i is well-defined.

Claim 1. D1
i = V (Di).

Suppose that the claim does not hold. Since Di is connected, there exists
an edge xy ∈ E(G) such that x ∈ V (Di) −D1

i and y ∈ D1
i .

We assume xy ∈ E(F ) (resp. xy �∈ E(F )) and show that there exists an
even (resp. odd) changeable trail P1 from v0 to x such that yx ∈ E(P1) and
V (P1) − x ⊆ D1

i . If y is type (1) or (3), then there exists an odd changeable
trail R1 from v0 to y such that V (R1) ⊆ D1

i and R1∪xy is an even changeable
trail from v0 to x. Else, i.e., y is type (2), then there exists an even changeable
trail R2 from v0 to y such that V (R2) ⊆ D1

i and we have mH(y) < dF (y) ≤
MH(y). Since F is H-optimal and H satisfies property (*), so dF (y) − 1 /∈
H(y) and dF (y), dF (y) − 2 ∈ H(y). Hence R2 ∪ xy is the required trail P1.

Since x /∈ D1
i , x can not be of type (ii). So there exists an odd (resp.

even) changeable trail P2 from a vertex t of B0 to x. We claim t = v0.
Otherwise, suppose that t �= v0. If V (P1) ∩ V (P2) = {x}, then defH [F ] >
defH [F � (P1 ∪ P2)], a contradiction since F is H-optimal. Let z be the first
vertex along P1 appearing in P2. Note that V (P v0z

1 )∩V (P tz
2 ) = {z}. If P v0z

1 is
an odd (or even) changeable trail and P tz

2 is an even (odd, resp.) changeable
trail, then P v0z

1 ∪ P tz
2 is an augmenting changeable trail, a contradiction to

that F is H-optimal. So we may assume that both P v0z
1 and P tz

2 are odd (or
even). By Lemma 3.3, P v0z

1 ∪ P zx
2 is an odd changeable trail from v0 to x.

Thus we have t = v0.
Let w ∈ P2 be the last vertex of P2 which belongs to D1

i . Let w′ be the
successor vertex in P2. By symmetry, we may assume that ww′ ∈ E(F ). If
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w ∈ D1
i is of type (1) or (3), by the definition of D1

i , there exists an odd
changeable trail P3 from v0 to w such that V (P3) ⊆ D1

i . One can see that
P3∪Pwx

2 is an odd changeable trail. If w is type (2), then there exists an even
changeable trail P4 from v0 to w such that V (P4) ⊆ D1

i . Moreover, since F
is H-optimal and H satisfies property (*), we have dF (w), dF (w)− 2 ∈ H(w)
and dF (w)− 1 /∈ H(w). Thus one can see that P4 ∪Pwx

2 is an odd changeable
trail. Hence by the definition of D1

i , we have V (Pwx
2 ) ⊆ D1

i , a contradiction.
This completes the proof of Claim.

Let u ∈ V (Di) − v0 and defH [F ;u] = 1. Note that u ∈ B0 and so
dF (u) < mH(u). One can see that u is not type (2). Thus there exists an odd
changeable trail R from v0 to u. Hence we have defH [F ] > defH [F � R], a
contradiction again. So we show that defH [F ;V (Di)] ≤ 1.

Using the above lemma, we have the following result.

Lemma 3.5. For i = 1, . . . , τ , if defH [F ;V (Di)] = 1, then

(a) EG(Di, B) ⊆ E(F );
(b) EG(Di, A) ∩ E(F ) = ∅.

Proof. Let defH [F ;x] = 1, where x ∈ V (Di). Suppose the lemma does not
hold.

To show (a), let uv �∈ E(F ), where u ∈ V (Di) and v ∈ V (B). If u is of
type (i) or type (ii), from the proof of Lemma 3.4, then there exists an even
changeable trail P of Di from x to u. Hence P ∪ uv is an odd changeable
trail from x to v, a contradiction to v ∈ B. Else, u is of type (iii), then there
exists an odd changeable trail P ⊆ Di from x to u. Since F is H-optimal and
H satisfies the property (*), we have dF (u) ∈ H(u), dF (u) + 1 /∈ H(u) and
dF (u) + 2 ∈ H(u). Hence P ∪ uv is an odd changeable trail from x to v, a
contradiction to v ∈ B again.

Next we consider (b). Let uv ∈ F , where u ∈ V (Di) and v ∈ A. If u is
of type (i) or type (iii), from the proof of Lemma 3.4, then there exists an
odd changeable trail P of Di from x to u. Then P ∪uv is an even changeable
trail from x to v, a contradiction to v ∈ A. Else, u is of type (ii), then there
exists an even changeable trail P of Di from x to u. Since F is H-optimal
and H satisfies the property (*), we have dF (u) ∈ H(u), dF (u) − 1 /∈ H(u)
and dF (u)− 2 ∈ H(u). Hence P ∪ uv is an even changeable trail from x to v,
a contradiction to v ∈ A again.

From the definition of partition (A,B,C,D), it is not hard to see the next
lemma.

Lemma 3.6. EG(B,C ∪ B) ⊆ E(F ), EG(A,A ∪ C) ∩ E(F ) = ∅ and
EG(D,C) = ∅.
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Lemma 3.7. (a) F misses at most one edge of EG(V (Di), B). Moreover,
if F misses one edge of EG(V (Di), B), then EG(V (Di), A)∩E(F ) = ∅;

(b) F contains at most one edge of EG(V (Di), A). Moreover, if F contains
one edge of EG(V (Di), A), then EG(V (Di), B) ⊆ E(F ).

Proof. By Lemmas 3.4 and 3.5, we may assume defH [F ;V (Di)] = 0. Let
u ∈ V (Di), by the definition of D, there exists a changeable trail P from a
vertex x of B0 to u. Denote the first vertex in P belonging to Di by y, and the
sub-trail of P from x to y by P1. Let y1y ∈ E(P1), where y1 /∈ V (Di). Without
loss of generality, assume that P1 is an odd changeable trail (when P1 is an
even changeable trail, the argument is similar). Then we have y1y /∈ E(F ).
We claim that P1 − y is even changeable trail. Otherwise, by the definition of
changeable trail, we have dF (y1) + 1 /∈ H(y1) and dF (y1) + 2 ∈ H(y1), which
imply that y1 ∈ D, a contradiction. Hence we infer that y1 ∈ B. Because
y ∈ D, y is of type (i) or type (iii).

We define the subset D1
i ⊆ V (Di) which consists of the following vertices:

(1) {w ∈ V (Di) | ∃ an even changeable trail P ′
1 and an odd changeable

trail P ′
2 along P1 from x to w such that V (P ′

1)∪V (P ′
2)− (V (P1)−y) ⊆

D1
i };

(2) {w ∈ V (Di) | mH(w) < dF (w) ≤ MH(w) and ∃ an even changeable
trail P ′

1 along P1from x to w such that V (P ′
1) − (V (P1) − y) ⊆ D1

i };
(3) {w ∈ V (Di) | mH(w) ≤ dF (w) < MH(w) and ∃ an odd changeable

trail P ′
1 along P1from x to w such that V (P ′

1) − (V (P1) − y) ⊆ D1
i }.

Firstly, we show that D1
i �= ∅. If y is type (iii), then y ∈ D1

i . If y is type
(i) or (ii), then there exists an even changeable trail R1 from a vertex w of
B0 to y. We have yy1 ∈ E(R1); otherwise, R1∪yy1 is an odd changeable trail
from w to y1, contradicting to y1 ∈ B. Hence, we may assume w = x and
P1 is a subtrail of R1. Note that R1 − (V (P1) − y) is a closed trail. So by
Observation 2.3, V (R1) − (V (P1) − y) ⊆ D1

i and D1
i �= ∅.

Claim 1. D1
i = V (Di).

Suppose that V (Di) �= D1
i . Since Di is connected, we may choose v1v2 ∈

E(G), such that v1 ∈ D1
i and v2 ∈ V (Di) −D1

i .
We may assume v1v2 ∈ E(F ) since v1v2 /∈ E(F ) can be discussed simi-

larly. By the definition of D1
i , there exists an even changeable trail R2 from x

to v2 such that V (R2)−(V (P1)−y)−v2 ⊆ D1
i and v1v2 ∈ E(R2). If v2 is type

(ii), by the definition of D1
i , then we have v2 ∈ D1

i , a contradiction. So v2 is
type (i) or type (iii). By the definition of D, there exists an odd changeable
trail R3 from a vertex w1 of B0 to v2.
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Next we show that yy1 ∈ R3. Suppose that yy1 /∈ R3. If V (R3)∩D1
i �= ∅,

let z be first vertex of R3 belonging D1
i ; else let z = v2. Without loss of

generality, we suppose that the subtrail R4 from w1 to z along R3 is an odd
changeable trail and z ∈ D1

i . If z ∈ D1
i is type (1) or (2), then there is an even

changeable trail, say R5, from x to z along P1 such that V (R5)−(V (P1)−y) ⊆
D1

i . Let R6 is a subtrail from y1 to z along R5. Then R4 ∪ R6 is an odd
changeable trail from w1 to y1, contradicting to y1 ∈ B. Else if z ∈ D1

i is type
(3), since F is H-optimal and H satisfies property (*), then dF (z) ∈ H(z),
dF (z)+1 /∈ H(z), and dF (z)+2 ∈ H(z). Moreover, there is an odd changeable
trail R7 along P1 from x to z. Let R8 is a subtrail from y1 to z along R7. Then
R4 ∪ R8 is an odd changeable trail from w1 to y1, contradicting to y1 ∈ B
again. So y1y ∈ R3. Hence we may assume that x = w1.

We write R3 = xx1 · · · y1u0u1 · · · ur, where y = u0 and v2 = ur. Since
R3 is a trail, some vertices may appear in the sequence more than once. We
may choose maximum i such that ui ∈ D1

i and us /∈ D1
i for i + 1 ≤ s ≤ r.

Since u0 = y ∈ D1
i and v2 /∈ D1

i , ui is well-defined. Denote the sub-trail of R3
from ui to v2 by R9. Consider uiui+1 ∈ E(F ) (or uiui+1 /∈ E(F ), resp.). We
claim that there exists an changeable trail R′ from x to ui along P1 such that
V (R′) − (V (P1) − y) ⊆ D1

i and R′ ∪ R9 be a changeable trail. If ui is type
(1) or (3) ((1) or (2), resp.), then there exists an odd (even, resp.) changeable
trail R′′ such that V (R′′) ⊆ D1

i ∪ V (P1), which is a desired trail R′. Thus
we may assume that ui is type (2) ((3), resp.). There exists an even (odd,
resp.) changeable trail R′′′ from x to ui such that V (R′′′) ⊆ D1

i ∪ V (P1) and
mH(ui) < dF (ui) ≤ MH(ui) (mH(ui) ≤ dF (ui) < MH(ui), resp.). Since F
is H-optimal, we have dF (ui), dF (ui) − 2 ∈ H(ui) and dF (ui) − 1 /∈ H(ui)
(dF (ui) + 2 ∈ H(ui) and dF (ui) + 1 /∈ H(ui), resp.). It follows that R′′ ∪ R9
is an odd changeable trail. By observing changeable trails R′′ ∪ R9 and R2,
one can see that V (R9) ⊆ D1

i by the definition of D1
i , a contradiction.

Claim 2. Let uv be an edge distinct from yy1, where u ∈ V (Di) and
v ∈ B. Then uv ∈ E(F ).

Otherwise, suppose that uv /∈ E(F ). If u is of type (1) or (2), by Claim 1,
then there exists an even changeable trail R10 from x to u such that V (R10)−
(V (P1) − y) ⊆ V (Di). Then R10 ∪ uv is an odd changeable trail from x
to v, contradicting to v ∈ B. If u is of type (3), then there exists an odd
changeable trail R11 from x to u such that V (R11) − (V (P1) − y) ⊆ V (Di).
Note that dF (u) ∈ H(u). Since F is H-optimal, then dF (u) + 1 /∈ H(u) and
dF (u) + 2 ∈ H(u). Hence R11 ∪ uv is an odd changeable trail from x to v,
contradicting to v ∈ B. So we prove Claim 2.

Claim 3. Let uv be an edge distinct from yy1, where u ∈ V (Di) and v ∈ A.
Then uv /∈ E(F ).
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Otherwise, suppose that uv ∈ E(F ). If u is of type (1) or (3), then
there exists an odd changeable trail R12 from x to u such that V (R12) −
(V (P1)− y) ⊆ V (Di). Then R12 ∪ uv is an even changeable trail from x to v,
contradicting to v ∈ A. If u is of type (2), then there exists an even changeable
trail R13 from x to u such that V (R13) − (V (P1) − y) ⊆ V (Di). Since F is
H-optimal and H satisfies property (*), then dF (u) ∈ H(u), dF (u)−1 /∈ H(u)
and dF (u) − 2 ∈ H(u). So R13 ∪ uv is an even changeable trail from x to v,
contradicting to v ∈ A again.

By Claim 2, F misses at most one edge of EG(V (Di), B). By Claim 3, if
y1y ∈ EG(V (Di), B)−E(F ), then we have EG(V (Di), A)∩E(F ) = ∅. Hence
(a) holds. With similar discussion, one can see that (b) holds. This completes
the proof.

Lemma 3.8. If defH [F, V (Di)] = 0, then either F misses an edge of
EG(V (Di), B) or contains an edge of EG(V (Di), A).

Proof. Suppose that defH [F, V (Di)] = 0. Let x ∈ V (Di), we have x ∈ D.
Then there exists a changeable trail P from a vertex v0 of B0. Clearly, v0 /∈
V (Di). Let yy′ be the first edge of P such that {y, y′} ∩ V (Di) �= ∅, where
y ∈ V (Di) and y′ /∈ V (Di). By the definitions of A and B, we have y′ ∈ A∪B.
If y′ ∈ A (or y′ ∈ B), then the subtrail P1 of P from v0 to y′ is an odd
(resp. even) changeable trail. Since P1 ∪ yy′ is also changeable trail, then
yy′ ∈ E(F ) (resp. yy′ /∈ E(F )). Otherwise, we have dF (y′) + 1 /∈ H(y′) and
dF (y′) + 2 ∈ H(y′), which implies y′ ∈ D, a contradiction. By Lemma 3.7, F
contains (resp. misses) exactly an edge of EG(A, V (Di)) (resp. EG(B, V (Di))).
This completes the proof.

With the above lemmas, we have a better picture of the structures of
graphs in partition (A,B,C,D) and are ready to prove deficiency formula for
H-optimal subgraphs. Recall that τ is the number of components in G[D].

Theorem 3.9. defH(G) = τ +
∑

v∈B(mH(v) − dG−A(v)) −∑
v∈A MH(v).

Proof. Let τ1 denote the number of components Di of G[D] with
defH [F ;V (Di)] = 1. Let τB (or τA) be the number of components T of G[D]
such that F misses (or contains) one edge from T to B (or A). By Lem-
mas 3.5, 3.7 and 3.8, we have τ = τ1 + τA + τB. Note that dF (v) ≤ mH(v)
for all v ∈ B and dF (v) = MH(v) for all v ∈ A. So

defH(G) = τ1 + mH(B) −
∑

v∈B
dF (v)

= τ1 + mH(B) − (
∑

v∈B
dG−A(v) − τB) − (MH(A) − τA)
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= τ + mH(B) −
∑

v∈B
dG−A(v) −MH(A).

Let X, Y be two disjoint subsets of V (G). Define the modified prescription
of H to be

HY (u) = H(u) − |EG(u, Y )| for u ∈ V (G) −X − Y.

Let K be a component of G−X − Y . We defined HY |K as follows:

HY |K(u) = HY (u) for u ∈ V (K).

Theorem 3.10. Let Fi = F [V (Di)] for i = 1, . . . , τ . Then defHB|Di
(Fi) = 1

and Fi is HB|Di
-optimal for i = 1, . . . , τ .

Proof. By Lemma 3.4, we have defH [F, V (Di)] ≤ 1. If defH [F, V (Di)] = 1, by
Lemma 3.5, we have defHB|Di

(Fi) = 1. If defH [F, V (Di)] = 0, by Lemma 3.8,
then defHB|Di

(Fi) ≤ 1 holds. Hence we can assume that defHB|Di
(Fi) ≤ 1.

Suppose that the theorem doesn’t hold. Let F ∗
i be HB|Di

-optimal. Then
we have defHB|Di

[F ∗
i ] = 0. We consider two cases.

Case 1. defH [F ;V (Di)] = 1.

Then we have defH((F −E(Fi))∪E(F ∗
i )) = defH(F )−1, a contradiction

since F is H-optimal.

Case 2. defH [F ;V (Di)] = 0.

By Lemma 3.8, then F contains (or misses) an edge of E(V (Di), A) (resp.
E(V (Di), B)). Let yy1 ∈ E(V (Di), A) ∩ E(F ), where y ∈ V (Di) and y1 ∈ A
(resp. yy1 ∈ E(V (Di), B) and yy1 /∈ E(F ), where y ∈ V (Di) and y1 ∈ B).
Since y ∈ V (Di), there is an odd (or even) changeable trail P from a vertex
x of B0 to y (dF (y), dF (y) − 2 ∈ H(y) and dF (y) − 1 /∈ H(y), resp.). We
claim yy1 ∈ E(P ), otherwise, P ∪ yy1 be an even changeable trail from x
to y1, a contradiction since y1 ∈ A. Let P1 be a subtrail of P such that
V (P1) ∩ V (Di) = {y}. Then we have defH [((F − E(Fi))�P1) ∪ E(F ∗

i )] =
defH(F ) − 1, a contradiction again.

Now we prove Lovász’s classic deficiency formula.

Theorem 3.11 (Lovász [3]). The total deficiency of G is

defH(G) = max
S,T

S∩T=∅

τH(S, T ) −
∑

x∈T
dG−S(x) −MH(S) + mH(T ),
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where τH(S, T ) denotes the number of components K of G− S − T such that
K contains no HT |K-factors. Moreover, a graph G has an H-factor if and
only if for any pair of disjoint sets S, T ⊆ V (G),

τH(S, T ) −
∑

x∈T
dG−S(x) −MH(S) + mH(T ) ≤ 0.

Proof. Let F be an arbitrary H-optimal graph of G. Firstly, we show that

defH(G) ≥ max
S,T

S∩T=∅

τH(S, T ) −
∑

x∈T
dG−S(x) −MH(S) + mH(T ).

Let S and T be two disjoint subsets of V (G), which reach the maximum
of the right-hand side. Let τH(S, T ) be defined as in the theorem. For i =
1, , . . . , τH(S, T ), let Ci denote the component of G − S − T containing no
HT |Ci

-factors. We write W = C1 ∪ · · · ∪ CτH(S,T ). If defH [F, V (Ci)] = 0,
since Ci contains no HT |Ci

-factors, then F either misses at least an edge of
EG(V (Ci), T ) or contains at least an edges of EG(V (Ci), S). Let τ1 denote
the number of components of W such that F misses at least an edge of
EG(V (Ci), T ) and τ2 denote the number of the components of W such that
F contains at least an edge of EG(V (Ci), S). Then we have

defH(G) = defH [F ]≥ τH(S, T )− τ1 − τ2 +
∑

x∈S∪T
min{|r− dF (x)| | r∈H(x)}

(2)

≥ τH(S, T )− τ1 − τ2 +
∑

x∈S
(dF (x)−MH(x)) +

∑

x∈T
(mH(x)− dF (x))(3)

≥ τH(S, T ) − τ1 − τ2 + (eF (S, T ) + τ2 −MH(S))(4)
+

∑

x∈T
(mH(x) − dF (x))

= τH(S, T ) − τ1 + (eF (S, T ) −MH(S)) +
∑

x∈T
(mH(x) − dF (x))

≥ τH(S, T ) − τ1 + (eF (S, T ) −MH(S))
+ (mH(T ) − (eF (S, T ) +

∑

x∈T
dG−S(x) − τ1))

= τH(S, T ) + mH(T ) −MH(S) −
∑

x∈T
dG−S(x).

By Theorem 3.9, we have

defH(G) = τ +
∑

v∈B
(mH(v) − dG−A(v)) −

∑

v∈A
MH(v).
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By Theorem 3.10, Di contains no HB|Di
-factors for i = 1, · · · , τ . So we have

defH(G) = τH(A,B) +
∑

v∈B
(mH(v) − dG−A(v)) −

∑

v∈A
MH(v)

= max
S,T

S∩T=∅

τH(S, T ) −
∑

x∈T
dG−S(x) −MH(S) + mH(T ).

This completes the proof.

The proof of Theorem 3.11 also imply the following result.

Theorem 3.12. Let F be an arbitrary H-optimal subgraph of G. Then

(i) dF (v) ∈ H(v) for all v ∈ C;
(ii) dF (v) ≥ MH(v) for all v ∈ A;

(iii) dF (v) ≤ mH(v) for all v ∈ B.

Proof. In the proof of Theorem 3.11, since the equality between (2) and (3)
holds, one can see that dF (x) ≥ MH(x) for all x ∈ S and dF (y) ≤ mH(y)
for all y ∈ T . Note that A and B is a special case of S and T . So we have
dF (x) ≥ MH(x) for all x ∈ A and dF (y) ≤ mH(y) for all y ∈ B.

Theorem 3.12 implies that the partition (A,B,C,D) defined in this paper
is equivalent to the original partition (AH , BH , CH , DH) introduced by Lovász
in [3].

Theorem 3.13. CH = C, AH = A, BH = B and DH = D.

Proof. By Theorem 3.12, we have C ⊆ CH , A ⊆ AH , B ⊆ BH . However,
the definition of D implies v /∈ CH ∪ AH ∪ BH for any v ∈ D. So we have
D ⊆ DH . This completes the proof.
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