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Concentration inequalities in spaces of random
configurations with positive Ricci curvatures

Linyuan Lu
∗

and Zhiyu Wang

Abstract: In this paper, we prove an Azuma-Hoeffding-type in-
equality in several classical models of random configurations by a
Ricci curvature approach. Adapting Ollivier’s work on the Ricci
curvature of Markov chains on metric spaces, we prove a cleaner
form of the corresponding concentration inequality in graphs.
Namely, we show that for any Lipschitz function f on any graph
(equipped with an ergodic random walk and thus an invariant dis-
tribution ν) with Ricci curvature at least κ > 0, we have

ν (|f −Eνf | ≥ t) ≤ 2 exp
(
− t2κ

7

)
.
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1. Introduction

One of the main tools in probabilistic analysis and random graph theory
are concentration inequalities, which are meant to bound the probability
that a random variable deviates from its expectation. Many of the clas-
sical concentration inequalities (such as those for binomial distributions)
provide best possible deviation results with exponentially small probabilis-
tic bounds. Such concentration inequalities usually require certain indepen-
dence assumptions (e.g., the random variable is a sum of independent random
variables). For concentration inequalities without the independence assump-
tions, one popular approach is the martingale method. A martingale is a
sequence of random variables X0, X1, . . . , Xn with finite means such that
E[Xi+1|Xi, Xi−1, . . . , X0] = Xi for all 0 ≤ i < n. For c = (c1, c2, . . . , cn) with
positive entries, a martingale X is said to be c-Lipschitz if |Xi−Xi−1| ≤ ci for
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i ∈ [n]. A powerful tool for controlling martingales is the Azuma-Hoeffding
inequality [3, 27]: if a martingale is c-Lipschitz, then

Pr (|X − E[X]| ≥ t) ≤ 2 exp
(
− t2

2
∑n

i=1 c
2
i

)
.

For more general versions of martingale inequalities as well as applications of
martingale inequalities, we refer the readers to [2, 12].

A graph G = (V (G), E(G)) consists of a vertex set V (G) and an edge
set E(G) of G where each edge is an unordered pair of two vertices. Given
a vertex v ∈ V (G), we use ΓG(v) to denote the set of open neighbors of v in
G, i.e., ΓG(v) = {u ∈ V (G) : vu ∈ E(G)}. We use dG(v) to denote |ΓG(v)|.
Moreover, let NG(v) = ΓG(v) ∪ {v} be the closed neighbors of v in G. When
G is clear from the context, we may ignore the subscript. For a graph G and
S ⊆ V (G), we use G[S] to denote the subgraph of G induced by S. Given two
vertices x, y ∈ V (G), let d(x, y) be the graph distance between x and y, i.e.,
the length of a shortest path between x and y. The diameter of G, denoted
by diam(G), is the maximum d(x, y) over all pairs of vertices x, y in G. A
graph parameter/function X is called vertex-Lipschitz (or edge-Lipschitz) if
|X(G1) − X(G2)| ≤ 1 whenever G1 and G2 can be made isomorphic by
deleting one vertex (or at most one edge) from each graph. Many graph
parameters are vertex(edge)-Lipschitz, e.g., the independence number α(G),
the chromatic number χ(G), the clique number ω(G), the domination number
γ(G), the matching number β(G), etc.

Concentration inequalities are among the most important tools in the
probabilistic analysis of random graphs. The classical binomial random graph
model, which is now more commonly referred to as the the Erdős-Rényi ran-
dom graph model, denoted by G(n, p), is a random graph model in which a
graph on n vertices is constructed by connecting the vertices randomly such
that each vertex pair appears as an edge with probability p independently
from every other edge. Another Erdős-Rényi random graph model, denoted
by G(n,M), is the model in which a graph is chosen uniformly at random
from the collection of all graphs with n vertices and M edges. A standard
application of the Azuma-Hoeffding inequality gives us that for any vertex-
Lipschitz function X defined on a vertex-exposure martingale (see e.g. [2] for
definition), we have

(1) Pr(|X − E(X)| ≥ t) ≤ 2 exp
(
− t2

2n

)
.
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Similar concentration results can be obtained for edge-exposure martingale
as well.

In this paper, we will take an alternative approach for such an inequality.
The main idea is using Ollivier’s work [38] on the Ricci curvature of Markov
chains on metric spaces. Although the Ricci curvature of graphs has been
introduced since 2009, it has not been widely used by the communities of
combinatorists and graph theorists. In this paper, we prove a clean concen-
tration result (Theorem 1) on graphs with positive Ricci curvature. Then we
show that it can be applied to some classical models of random configura-
tions including the Erdős-Rényi random graph model G(n, p) and G(n,M),
the random d-out(in)-regular directed graphs, and the space of random per-
mutations, through a geometrization process.

Consider a graph (loops allowed) G equipped with a random walk whose
transition probabilities are given by m := {mv : v ∈ V (G)}. Here for each
vertex v, mv : N(v) → [0, 1] is a distribution, i.e.,

∑
x∈N(v) mv(x) = 1. A

random walk is ergodic if starting from any initial distribution, the random
walk converges to some unique invariant distribution ν. In the context of
random walks on graphs, in order for the random walk to be ergodic, it is
sufficient that the underlying graph G is connected and non-bipartite. Note
that ν is a probability measure on V . It turns V into a probability space. A
function f : V → R is called c-Lipschitz on G if

(2) |f(u) − f(v)| ≤ c for any uv ∈ E(G).

We have the following theorem on the concentration result of f . All we need is
that the graph G (equipped with a random walk) has positive Ricci curvature
at least κ > 0. (See the definition of Ricci curvature (in Ollivier’s notion) in
next section.) We remark that Theorem 1 is a graph-theoretical version of
the corresponding inequality in Theorem 33 of [38].

Theorem 1. Suppose that a graph G = (V,E) equipped with an ergodic
random walk m (and invariant distribution ν) has positive Ricci curvature at
least κ > 0. Then for any 1-Lipschitz function f and any t ≥ 1, we have

ν (f − Eν [f ] > t) ≤ exp
(
−t2κ

7

)
,(3)

ν (f − Eν [f ] < −t) ≤ exp
(
−t2κ

7

)
.(4)

Remark 1. The constant 7 can be improved to 5 if κ → 0 as |V (G)| → ∞. It
can be improved to 1+o(1) if we further assume that tκ → 0 as |V (G)| → ∞.
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Remark 2. Ollivier [38] proved a concentration inequality for any random
walk on a metric space with positive Ricci curvature at least κ > 0 and unique
invariant distribution ν. His result is more general but more technical to apply
in the context of graphs. In particular, he defined two quantities related to the
local behavior of the random walk: the diffusion constant σ(x) and the local
dimension nx at vertex x. Moreover, define D2

x = σ(x)2
nxκ

, D2 = Eν [D2
x], tmax =

D2

max(σ∞,2C/3) where C satisfies that the function x → D2
x is C-Lipschitz. He

proved ([38] Theorem 33, on page 834) for any 1-Lipschitz function f and for
any t ≤ tmax, we have

(5) ν (f − Eν [f ] > t) ≤ exp
(
−t2

6D2

)
.

and for t ≥ tmax,

(6) ν (f − Eν [f ] > t) ≤ exp
(
−t2

6D2 − t− tmax

max(3σ∞, 2C)

)
.

Note in Ollivier’s result for graphs, we have D2 = O(κ−1) and σ∞ ≈ 1. In-
equality (3) has about the same power as Inequalities (5) and (6), but simpler
to apply in the context of graphs. We also give a more graph-theoretical proof
for Theorem 1.

Besides Ollivier’s definition of Ricci curvature, another notion of Ricci cur-
vature on discrete spaces, via geodesic convexity of the entropy (in the spirit
of Sturm [40], Lott and Villani [35]), was proposed in [36] and systematically
studied in [23] and [37]. Similar Gaussian-type concentration inequalities (as
the ones in Theorem 1) in this notion of Ricci curvature are proven in [23].
Erbar, Maas, and Tetali [24] recently calculated the Ricci curvature lower
bound of some classical random walks, e.g., the Bernoulli-Laplace model and
the random transposition model of permutations.

In this paper, we adopt Ollivier’s notion of coarse Ricci curvature as it
does not require the reversibility of the random walk on graphs. The paper
is organized as follows. In Section 2, we will give the history and definitions
of Ricci curvature. The proof of Theorem 1 will be given in Section 3. In the
last section, we will give applications of Theorem 1 in four classical models
of random configurations, including the Erdős-Rényi random graph model
G(n, p) and G(n,M), the random d-out(in)-regular directed graphs, and the
space of random permutations.
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2. Ricci curvatures of graphs

In Riemannian geometry, spaces with positive Ricci curvature enjoy nice
properties, some of them with probabilistic interpretations. Many interest-
ing properties are found on manifolds with non-negative Ricci curvature or
on manifolds with Ricci curvature bounded below. The definition of the Ricci
curvature on metric spaces first came from the Bakry and Emery notation
[4] who defined the “lower Ricci curvature bound” through the heat semi-
group (Pt)t≥0 on a metric measure space. Ollivier [38] defined the coarse
Ricci curvature of metric spaces in terms of how much small balls are closer
(in Wasserstein transportation distance) than their centers are. This notion
of coarse Ricci curvature on discrete spaces was also made explicit in the
Ph.D. thesis of Sammer [39]. Under the assumption of positive curvature in a
metric space, Gaussian-like or Poisson-like concentration inequalities can be
obtained. Such concentration inequalities have been investigated in [31] for
time-continuous Markov jump processes and in [38, 32] in metric spaces.

Graphs and manifolds share some similar properties through Laplace op-
erators, heat kernels and random walks, etc. A series of work in this area were
done by Chung, Yau and their coauthors [9, 13, 14, 15, 16, 10, 17, 8, 18, 11, 19].
The first definition of Ricci curvature on graphs was introduced by Chung and
Yau in [14]. For a more general definition of Ricci curvature, Lin and Yau [34]
gave a generalization of the lower Ricci curvature bound in the framework
of graphs. Lin, Lu, and Yau [33] defined a new kind of Ricci curvature on
graphs, which is based on Ollivier’s work [38].

In this paper, we will use the same notation as in [33]. Given a graph
G = (V,E), a probability distribution (over the vertex set V ) is a mapping m :
V → [0, 1] satisfying

∑
x∈V m(x) = 1. The support of m, denoted by Supp(m),

is defined as the set of vertices x ∈ V (G) such that m(x) > 0. Suppose two
probability distributions m1 and m2 have finite support. A coupling between
m1 and m2 is a mapping A : V × V → [0, 1] with finite support so that

∑
y∈V

A(x, y) = m1(x) and
∑
x∈V

A(x, y) = m2(y).

Recall that d(x, y) is the graph distance between two vertices x and y. The
transportation distance between two probability distributions m1 and m2 is
defined as follows:

W (m1,m2) = inf
A

∑
x,y∈V

A(x, y)d(x, y),
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where the infimum is taken over all couplings A between m1 and m2. By the
duality theorem of a linear optimization problem, the transportation distance
can also be written as follows:

W (m1,m2) = sup
f

∑
x∈V

f(x) (m1(x) −m2(x)) ,

where the supremum is taken over all 1-Lipschitz functions f .
A random walk m on G = (V,E) is defined as a family of probability

measures {mv(·)}v∈V such that mv(u) = 0 for all {v, u} /∈ E. It follows that
mv(u) ≥ 0 for all v, u ∈ V and

∑
u∈N(v) mv(u) = 1. The Ricci curvature κ of

G can then be defined as follows:

Definition 1. Given G = (V,E), a random walk m = {mv(·)}v∈V on G and
two vertices x, y ∈ V ,

κ(x, y) = 1 − W (mx,my)
d(x, y) .

Remark 3. We say a graph G equipped with a random walk m has Ricci
curvature at least κ0 if κ(x, y) ≥ κ0 for all x, y ∈ V .

For 0 ≤ α < 1, the α-lazy random walk mα
x (for any vertex x), is defined

as

mα
x(v) =

⎧⎪⎪⎨
⎪⎪⎩
α if v = x,

(1 − α)/d(x) if v ∈ Γ(x),
0 otherwise.

In [33], Lin, Lu and Yao defined the Ricci curvature of graphs based on the
α-lazy random walk as α goes to 1. More precisely, for any x, y ∈ V , they
defined the α-Ricci-curvature κα(x, y) to be

κα(x, y) = 1 −
W (mα

x ,m
α
y )

d(x, y)

and the Ricci curvature κLLY of G to be

κLLY(x, y) = lim
α→1

κα(x, y)
(1 − α) .

They showed [33] that κα is concave in α ∈ [0, 1] for any two vertices x, y.
Moreover,

κα(x, y) ≤ (1 − α) 2
d(x, y)
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for any α ∈ [0, 1] and any two vertices x and y.
In the context of graphs, the following lemma shows that it is enough to

consider only κ(x, y) for xy ∈ E(G).

Lemma 1. [38, 33] If κ(x, y) ≥ κ0 for any edge xy ∈ E(G), then κ(x, y) ≥ κ0
for any pair of vertices (x, y).

3. Proof of Theorem 1

We first define an averaging operator associated to the random walk.

Definition 2 (Discrete averaging operator). Given a function f : X → R,
let the averaging operator M be defined as

Mf(x) :=
∑
y∈V

f(y) ·mx(y).

The following proposition shows a Lipschitz contraction property in the
metric measure space. We include its proof here for the sake of completeness.

Proposition 1 (Lipschitz contraction). [38, 22] Let (G, d,m) be a random
walk on a simple graph G. Let κ ∈ R. Then the Ricci curvature of G is at
least κ, if and only if, for every k-Lipschitz function f : X → R, the function
Mf is k(1 − κ)-Lipschitz.

Proof. Suppose that the Ricci curvature of G = (V,E) is at least κ. For
x, y ∈ V , let A : V × V → [0, 1] be the optimal coupling measure of mx and
my. Then

Mf(y) −Mf(x) =
∑
u∈V

f(u)my(u) −
∑
u∈V

f(u)mx(u)

=
∑
u∈V

f(u)
∑
v∈V

A(v, u) −
∑
u∈V

f(u)
∑
v∈V

A(u, v)

=
∑
u,v

(f(v) − f(u))A(u, v)

≤ k
∑
u,v

d(u, v)A(u, v)

= kW (mx,my)
= k(1 − κ(x, y))d(x, y).

Conversely, suppose that whenever f is 1-Lipschitz, Mf is (1− κ)-Lipschitz.
Then by the duality theorem for the transportation distance, we have that
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for all x, y ∈ V (G),

W (mx,my) = sup
f 1-Lipschitz

∑
z∈V

f(z) (mx(z) −my(z))

= sup
f 1-Lipschitz

Mf(x) −Mf(y)

≤ (1 − κ)d(x, y).

It follows that

κ(x, y) = 1 − W (mx,my)
d(x, y) ≥ κ.

Remark 4. Note that for any constant c,

(7) Var(f) = E[(f − c)2] − (E[f ] − c)2 .

Thus for any x ∈ V and an α-Lipschitz function f : Supp(mx) → R,

Varmxf ≤ Emx [(f − f(x))2]
≤

∑
y∈Supp(mx)

(f(y) − f(x))2mx(y)

≤ α2.

Lemma 2. [33, 38] Let G be a finite graph with Ricci curvature at least
κ > 0. Then

κ ≤ 2
diam(G) .

Moreover, if mx(x) = α for all x ∈ V (G), then κ ≤ (1 − α) 2
diam(G) .

The following lemma is similar to Lemma 38 in [38].

Lemma 3. Let φ : V (G) → R be an α-Lipschitz function with α ≤ 1. Then
for x ∈ V (G), we have

(
Meλφ

)
(x) ≤ eλMφ(x)+ 1

2λ
2e2λα2

.

Proof. For any smooth function g and any real-valued random variable Y , a
Taylor expansion with Lagrange remainder gives

Eg(Y ) ≤ g(EY ) + 1
2(sup g′′)VarY.
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Applying this with g(Y ) = eλY , we get

(Meλφ)(x) = Emxe
λφ ≤ eλMφ(x) + λ2

2

(
sup

Supp(mx)
eλφ

)
Varmxφ.

Note that diam(G[Supp(mx)]) ≤ 2 and φ is α-Lipschitz, it follows that

sup
Supp(mx)

φ ≤ Emxφ + α · diam(G[Supp(mx)]) ≤ Emxφ + 2α.

Moreover, by Remark 4, Varmxφ ≤ α2. Hence we have that
(
Meλφ

)
(x) ≤ eλMφ(x) + λ2

2 (α2)eλMφ(x)+2λα

≤ eλMφ(x)
(

1 + λ2

2 α2e2λα
)

≤ exp
(
λMφ(x) + 1

2λ
2α2e2λα

)
.

Proof of Theorem 1. In the proof, the probability measure Pr (·) is with re-
spect to a vertex sampling according to the stationary distribution ν.

First, note that since f is 1-Lipschitz, it follows that |f(x) − f(y)| ≤
diam(G) for any x, y ∈ V (G). It follows that for any fixed vertex x,

|f(x) − Eν [f ]| =
∣∣∣∣ ∑
u∈V (G)

ν(u) (f(x) − f(u))
∣∣∣∣ ≤ ∑

u∈V (G)
ν(u)|f(x) − f(u)|

≤ diam(G).

Hence if t > 2
κ , then by Lemma 2,

Pr (|f − Eν [f ]| ≥ t) ≤ Pr
(
|f − Eν [f ]| > 2

κ

)
≤ Pr

(
diam(G) > 2

κ

)
= 0,

in which case we are done. So from now on, assume t ≤ 2/κ.
Apply Lemma 3 iteratively and use Proposition 1, we obtain that for any

i ≥ 1,

M i(eλf ) ≤ eλM
if ·

i−1∏
j=0

exp
(1

2λ
2(1 − κ)2je2λ

)

≤ exp

⎛
⎝λM if + 1

2λ
2e2λ

i−1∑
j=0

(1 − κ)2j
⎞
⎠ .
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Meanwhile, observe that (M ieλf )(x) converges to Eνe
λf as i → ∞. Hence

Eνe
λf ≤ lim

i→∞
exp

⎛
⎝λM if + 1

2λ
2e2λ

i−1∑
j=0

(1 − κ)2j
⎞
⎠

≤ exp
(
λEνf + λ2e2λ

2κ(2 − κ)

)
.

Let λ0 be the root of the equation x · e2x = 2(2 − κ) and set λ = tκλ0
2 .

Note that since t ≤ 2
κ , we have λ ≤ λ0. Now, we have

Pr (f − Eνf ≥ t) ≤ Pr
(
eλf ≥ etλ+λEνf

)
≤ Eνe

λf · e−tλ−λEνf

≤ exp
(
−tλ + λ2e2λ

2κ(2 − κ)

)

≤ exp
(
−tλ + λtλ0e

2λ

4(2 − κ)

)
(8)

≤ exp
(
−tλ + λtλ0e

2λ0

4(2 − κ)

)

= exp
(
−1

2 tλ
)

≤ exp
(
− t2κλ0

4

)
.

If G is the complete graph, then |f − Eν(f)| ≤ 1 holds for all vertices. In-
equality 3 holds. If G is not the complete graph, then we must have κ ≤ 1
(otherwise, contradiction to diam(G) ≤ 2

κ). Thus λ0 ≤ 0.60108..., which is
the root of x · e2x = 2. We have λ0

4 > 1
7 . Hence we obtain that

Pr (f − Eνf ≥ t) ≤ exp
(
− t2κ

7

)
.

If κ → 0 as |V (G)| → ∞ (which is true in all the examples in Section 4), then
we have λ0 → 0.80290... which is the root of x · e2x = 4. We have λ0

4 > 1
5 .

Hence

Pr (f − Eνf ≥ t) ≤ exp
(
− t2κ

5

)
.
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Furthermore, if κ → 0 and tκ → 0 as |V (G)| → ∞, then continuing from
inequality (8), we have that e2λ → 1 and (2 − κ) → 2 (as |V (G)| → ∞). By
setting λ0 = 4, we have

Pr (f − Eνf ≥ t) ≤ exp
(
−tλ + λtλ0e

2λ

4(2 − κ)

)

≤ exp
(
−

(1
2 + o(1)

)
tλ

)

≤ exp
(
−

(1
4 + o(1)

)
t2κλ0

)

≤ exp
(
(1 + o(1))t2κ

)
.

The lower tail can be obtained from the upper tail by changing f to −f since
−f is also 1-Lipschitz.

4. Applications to random models of configurations

In order to apply Theorem 1 to a finite probability space (Ω, μ), we will con-
struct a graph H with the vertex set Ω such that μ is the invariant distribution
over some random walk m on H. We call the pair (H,m) a geometrization of
(Ω, μ). For example, consider the classical Erdős-Rényi random graph model
G(n, p). In this model, Ω is the space of all labelled graphs on n vertices, and
for any fixed graph G ∈ Ω, μ(G) = pe(G)(1−p)(

n
2)−e(G). To geometrize (Ω, μ),

we construct an auxiliary graph H such that V (H) is the set of all labeled
graphs on n vertices, and two graphs G1, G2 ∈ V (H) are adjacent in H if and
only if there exists some v ∈ V (G1)(= V (G2)) such that G1 − v = G2 − v.
Given H, we can then define a random walk m = {mG : G ∈ V (H)} on H,
where for each fixed G, mG depends on p and G (see the definition of mG in
Section 4.1) below. It is then not hard to verify that μ, which is the distri-
bution of Ω in the G(n, p) model, is the invariant distribution of the random
walk m on H. Given such geometrization (H,m), we can then construct a
coupling to compute a lower bound on the graph curvature of (H,m), which
then enables us to apply Theorem 1 to obtain a concentration inequality on
vertex/edge-Lipschitz functions in the G(n, p) model.

In this section, we will present geometrizations and concentration inequal-
ities in four popular random models of configurations.

4.1. Vertex-Lipschitz functions on G(n, p)

Let H be the graph such that V (H) is the set of all labeled graphs with n
vertices. Moreover, two graphs G1, G2 ∈ V (H) are adjacent in H if and only
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if there exists some v such that G1 − v = G2 − v, i.e., G2 can be obtained
from G1 by ‘re-connecting’ the edges incident to a single vertex. Now define
a random walk m on H as follows: Let G ∈ V (H). Define

mG(G′) =

⎧⎪⎪⎨
⎪⎪⎩

1
n

∑
v∈V (G)

G−v=G′−v

pdG′ (v)(1 − p)n−1−dG′ (v) if G′ ∈ NH(G),

0 otherwise.

For a fixed G ∈ V (H), the random walk mG can be thought of as follows: first
pick a vertex v uniformly at random among all vertices of G, then re-connect
v with the rest of the vertices such that each vertex pair {v, u} appears with
probability p (for each vertex u 
= v).

Observe that

∑
G′∈V (H)

mG(G′) = 1
n

∑
v∈V (G)

n−1∑
k=0

(
n− 1
k

)
pk(1 − p)n−1−k = 1.

Proposition 2. Let ν be the unique invariant distribution of the random
walk defined above. A random graph G picked according to ν, satisfies that
ν(G) = pe(G)(1 − p)(

n
2)−e(G).

Proof. Observe that H is not bipartite thus the random walk is ergodic. It
suffices to show that the distribution ν ′(G) = pe(G)(1 − p)(

n
2)−e(G) for every

G is an invariant distribution for the random walk. Indeed, for every fixed
G ∈ V (H),∑

G′∈V (H)
ν ′(G′)mG′(G)

=
∑

v∈V (G)

∑
G′−v=G−v

ν ′(G′) 1
n
pdG(v)(1 − p)n−1−dG(v)

=
∑

v∈V (G)

1
n
pdG(v)(1 − p)n−1−dG(v) ∑

G′−v=G−v

ν ′(G′)

=
∑

v∈V (G)

1
n
pdG(v)(1 − p)n−1−dG(v)·

(
pe(G)−dG(v)(1 − p)(

n−1
2 )−(e(G)−dG(v))

n−1∑
i=0

(
n− 1
i

)
pi(1 − p)n−1−i

)

=1
n
pe(G)(1 − p)(

n
2)−e(G) ∑

v∈V (G)

n−1∑
i=0

(
n− 1
i

)
pi(1 − p)n−1−i
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=pe(G)(1 − p)(
n
2)−e(G)

=ν ′(G).

Therefore, ν ′ is equal to ν, the unique invariant distribution for the random
walk.

Lemma 4. Let H and the random walk m be defined as above. Then

κ(G1, G2) ≥
1
n

for all G1, G2 ∈ V (H).

Proof. Again, by Lemma 1, we can assume that G1, G2 are neighbors in H.
It then follows from definition that

κ(G1, G2) = 1 −W (mG1 ,mG2).

Assume that v is the unique vertex such that G1 − v = G2 − v. When
G1 and G2 differ by an edge, it is possible that there are two vertices v
satisfying G1 − v = G2 − v. We remark that the analysis is similar. Consider
the support of mG1 . For each G′

1 ∈ Γ(G1)\{G2}, we will match G′
1 with a

distinct graph φ(G′
1) ∈ N(G2). There are two possible types of neighbors

G′
1 ∈ Γ(G1)\{G2}:

Type I: G′
1 ∈ Γ(G1) ∩ Γ(G2), i.e., G1 − v = G′

1 − v. Then it follows that
G′

1 − v = G2 − v and we let φ(G′
1) = G′

1.
Type II: G′

1 ∈ Γ(G1)\(Γ(G2) ∪ {G2}), which implies that G1 − u = G′
1 − u

for some u 
= v. In this case, we claim that for each G′
1 of Type II,

there exists a unique G′
2 = φ(G′

1) ∈ Γ(G2)\{Γ(G1) ∪ {G1}} such that
G′

2 −u = G2 −u and G′
1 − v = G′

2 − v. Indeed, let G′
2 be obtained from

G2 by replacing the neighbors of u in G2 by the neighbors of u in G′
1.

It’s not hard to see that G′
2 − u = G2 − u and G′

1 − v = G′
2 − v.

It is not hard to see that φ is a bijection between Γ(G1)\{G2} andΓ(G2)\{G1}.
Moreover, for every G′

1 of Type II, we have that mG1(G′
1) = mG2(φ(G′

1))
since dG′

1
(u) = dφ(G′

1)(u). Note that for G′
1 of type I (in which case G′

1 =
φ(G′

1)), it is not necessarily true that mG1(G′
1) = mG2(G′

1). This happens
when G′

1 differs by an edge vu from G1 or G2 for some u 
= v; hence if
G′

1 = G1 ± vu, then mG1(G′
1) ≥ mG2(G′

1) and if G′
1 = G2 ± vu, then

mG1(G′
1) ≤ mG2(G′

1). Let us call a Type I graph G′
1 with mG1(G′

1) > mG2(G′
1)

a Type I-A graph, and call a type I graph G′
1 with mG1(G′

1) < mG2(G′
1) a

Type I-B graph.
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Let us now define a coupling A (not necessarily optimal) between mG1

and mG2 . Define first A : V (H) × V (H) → R for the following pairs of
G′

1, G
′
2.

(9)

A(G′
1, G

′
2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mG2(G1) if G′
1 = G′

2 = G1,

mG1(G2) if G′
1 = G′

2 = G2,

min(mG1(G′
1),mG2(G′

2)) if G′
1 ∈ Γ(G1)\{G2}

and G′
2 = φ(G′

1),
mG1(G′

1) −mG2(G′
1) if G′

1 is Type I-A and G′
2 = G2,

mG2(G′
2) −mG1(G′

2) if G′
2 is Type I-B and G′

1 = G1,

0 otherwise if (G′
1, G

′
2) 
= (G1, G2).

The only pair (G′
1, G

′
2) for which A(G′

1, G
′
2) is undefined is when (G′

1, G
′
2) =

(G1, G2). In this case, define

A(G1, G2) = mG1(G1) −mG2(G1) −
∑

G′
1 is type I-B

(mG2(G′
1) −mG1(G′

1)) .

Moreover, since
∑

G′ mG1(G′) =
∑

G′ mG2(G′) = 1, we have that

A(G1, G2) = mG2(G2) −mG1(G2) +
∑

G′
1 is type I-A

(mG1(G′
1) −mG2(G′

1)) .

We claim that A is a coupling between mG1 and mG2 . We verify that
for each G ∈ NH(G1),

∑
G′∈V (H) A(G,G′) = mG1(G) and remark that the

other side is similar. First,
∑

G′∈V (H) A(G1, G
′) = A(G1, G1) + A(G1, G2) +∑

G′
1 is type I-B (mG2(G′

1) −mG1(G′
1)) = mG1(G1). For each G of Type II,∑

G′∈V (H) A(G,G′) = A(G, φ(G)) = mG1(G). For each G of Type I-A, we
have

∑
G′∈V (H) A(G,G′) = A(G, φ(G)) + mG1(G) −mG2(G) = mG1(G). For

each G not of Type I-A,
∑

G′∈V (H) A(G,G′) = A(G, φ(G)) = mG1(G). Finally,∑
G′∈V (H) A(G2, G

′) = A(G2, G2) = mG1(G2).
Recall that W (mG1 ,mG2) ≤ ∑

G′
1,G

′
2
A(G′

1, G
′
2)d(G′

1, G
′
2). Observe that

in our coupling defined above, for every G′
1, G2 such that A(G′

1, G2) 
= 0,
d(G′

1, G
′
2) ≤ 1. Moreover,

∑
G′

1,G
′
2
A(G′

1, G
′
2) = 1. It follows that

κ(G1, G2) ≥ 1 −W (mG1 ,mG2)
≥

∑
G′

1∈NH(G1),G′
2∈NH(G2)

d(G′
1,G

′
2)=0

A(G′
1, G

′
2).
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Now observe that the (G′
1, G

′
2) pairs for which d(G′

1, G
′
2) = 0 are precisely

the pairs (G′
1, G

′
2) such that G′

1 = G′
2 and G′

1 − v = G1 − v = G2 − v. Hence
we have that

κ(G1, G2) ≥
∑

G′
1∈NH(G1),G′

2∈NH(G2)
d(G′

1,G
′
2)=0

A(G′
1, G

′
2)

≥ 1
n

n−1∑
i=0

(
n− 1
i

)
pi(1 − p)n−1−i

≥ 1
n
.

We remark that the lower bound 1
n in Lemma 4 is tight up to a constant

factor of 2. Observe that diam(H) = n − 1 since the distance between the
empty graph and the complete graph is n−1 in H. By Lemma 2, the curvature
κ of (H,m) is at most 2

n−1 .
Note that any 1-Lipschitz function f on (H,m) is vertex Lipschitz. Hence,

it follows by Theorem 1 that for any vertex-Lipschitz function f on graphs,
if we sample an n-vertex graph according to the G(n, p) model, then

Pr (|f − E[f ]| ≥ t) ≤ 2 exp
(
− t2

5n

)
,

which in this context has the same strength as the Azuma-Hoeffding inequal-
ity on vertex-exposure martingale.

4.2. Edge-Lipschitz functions on G(n,M)

Let G ∼ G(n,M) be a random graph with n vertices and M edges. Let H be
the graph such that V (H) is the set of all labeled graphs with n vertices and
M edges. Moreover, two graphs G1, G2 ∈ V (H) are adjacent in H if and only
if there exist two distinct vertex pairs e1, e2 such that e1 ∈ E(G1)\E(G2),
e2 ∈ E(G2)\E(G1) and G1−e1 = G2−e2. In other words, G1, G2 are adjacent
in H if one can be obtained from the other by swapping an edge with a non-
edge. It is easy to see that H is a connected regular graph. Moreover, for
every G ∈ V (H), dH(G) = M

((n
2
)
−M

)
.

The following proposition is clear from the definition of H.

Proposition 3. If G1, G2 are adjacent in H, then there exists a unique pair of
distinct vertex pairs e1, e2 such that e1 ∈ E(G1)\E(G2), e2 ∈ E(G2)\E(G1)
and G1 − e1 = G2 − e2.
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Now define a random walk m on H as follows: Let G ∈ V (H). Define

mG(G′) =

⎧⎨
⎩

1
M((n2)−M)+1 if G′ ∈ NH(G),

0 otherwise.

It’s easy to see that for any fixed G,
∑

G′ mG(G′) = 1. Moreover, m is simply
a random walk such that the transition probability from a graph G to each
graph in NH(G) is equal.

Proposition 4. Let ν be the unique invariant distribution of the random walk
defined above. A random graph G picked according to ν, is equally likely to be
one of the

((n2)
M

)
graphs that have M edges.

Proof. Observe that H is not bipartite thus the random walk is ergodic. It
suffices to show that ν ′(G) =

((n2)
M

)−1
for every G is an invariant distribution

for the random walk. Indeed, for every fixed G ∈ V (H),

∑
G′∈V (H)

ν ′(G′)mG′(G) =
((n

2
)

M

)−1 ∑
G′∈N(G)

mG′(G)

=
((n

2
)

M

)−1 ∑
G′∈N(G)

mG(G′)

=
((n

2
)

M

)−1

= ν ′(G).

Since ν is the unique invariant distribution, it follows then that ν = ν ′.

Lemma 5. Let H and the random walk m be defined as above. Then

κ(G1, G2) ≥
(n
2
)

M
((n

2
)
−M

)
+ 1

for all G1, G2 ∈ H.

Proof. By Lemma 1, we can assume that G1, G2 are neighbors in H. It then
follows from definition that

κ(G1, G2) = 1 −W (mG1 ,mG2).
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Suppose e1, e2 are the unique vertex pairs with e1 ∈ E(G1), e2 /∈ E(G1)
such that G2 = G1 − e1 + e2. Consider the support of mG1 , i.e., N(G1). For
each G′

1 ∈ N(G1), we will match G′
1 with a distinct graph φ(G′

1) ∈ N(G2).
First, let φ(G1) = G1 and φ(G2) = G2. For other neighbors G′

1 ∈ N(G1),
there are three types:

Type 1: G1 − e1 = G′
1 − e3 for some e3 
= e2. Then it follows that G′

1 − e3 =
G2 − e2 and we let φ(G′

1) = G′
1.

Type 2: G1 − e3 = G′
1 − e2 for some e3 
= e1. Then it follows that G′

1 − e1 =
G2 − e3 and we let φ(G′

1) = G′
1.

Type 3: G1−e3 = G′
1−e4 for some e3, e4 /∈ {e1, e2}. In this case, we claim that

there exists a unique G′
2 = φ(G′

1) ∈ N(G2) such that G′
1−e1 = G′

2−e2.
Indeed, G′

2 = G2 − e3 + e4 will satisfy the aforementioned property.

Let us now define a coupling A (not necessarily optimal) between mG1

and mG2 . Define A : V (H) × V (H) → R as follows:

(10) A(G′
1, G

′
2) =

⎧⎨
⎩

1
M((n2)−M)+1 if G′

1 ∈ N(G1) and G′
2 = φ(G′

1),

0 otherwise.

Let us verify that A is a coupling of mG1 and mG2 . Indeed, for each fixed
G′

1, if G′
1 = G1, then

∑
G′

2
A(G′

1, G
′
2) = A(G1, G1) = mG1(G1); if G′

1 
= G1,
then

∑
G′

2
A(G′

1, G
′
2) =A(G′

1, φ(G′
1)) = mG1(G′

1). Similarly,
∑

G′
1
A(G′

1, G
′
2) =

mG2(G′
2). Now by definition,

W (mG1 ,mG2) ≤
∑

G′
1,G

′
2

A(G′
1, G

′
2)d(G′

1, G
′
2)

≤
∑

G′
1∈N(G1)

A(G′
1, φ(G′

1))d(G′
1, φ(G′

1))

=
∑

G′
1∈N(G1)

G′
1 is Type 3

A(G′
1, φ(G′

1))

≤
(

(M − 1)
((

n

2

)
−M − 1

))
· 1
M

((n
2
)
−M

)
+ 1 .

It follows that

κ(G1, G2) = 1 −W (mG1 ,mG2)

≥
(n
2
)

M
((n

2
)
−M

)
+ 1 .
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We remark that the lower bound in Lemma 5 is asymptotically tight.
Observe that diam(H) = min{M,

(n
2
)
−M}. By Lemma 2, the curvature κ of

(H,m) is at most 2
min{M,(n2)−M} .

Let G(n,M) be an Erdős-Rényi random graph with M edges. Let F be
a fixed graph and XF be the number of copies of F in the random graph
G(n,M). Denote the number of vertices and edges of F by v(F ) and e(F )
respectively. Let p = M/

(n
2
)

and Aut(F ) denote the set of automorphisms of
F . Then

E[XF ] = (1 + o(1)) v(F )!
|Aut(F )|

(
n

v(F )

)
pe(F ) = Θ

(
nv(F )pe(F )

)
.

For a series of results on the upper tail of XF using different techniques, see,
for example, the survey [30] and the papers [1, 7, 20, 21, 26, 29]. For G(n,M)
in particular, Janson, Oleszkiewicz, Ruciński [29] showed the following theo-
rem:

Theorem 2. [29] For every graph F and for every t > 1, there exist constants
c(t, F ) > 0 such that for all n ≥ v(F ) and e(F ) ≤ M ≤

(n
2
)
, with p := M/

(n
2
)
,

Pr (XF ≥ tE[XF ]) ≤ exp (−c(t, F )M∗
F (n, p)),

where M∗
F (n, p) ≤ n2p = O(M),M∗

Ck
(n, p) = Θ(n2p2) and M∗

Kk
(n, p) =

Θ(n2pk−1).

Let us now apply Theorem 1 to obtain the concentration results from the
perspective of the Ricci curvature. Recall that H is defined as the graph
such that V (H) is the set of all labeled graphs with n vertices and M
edges. Moreover, two graphs G1, G2 ∈ V (H) are adjacent in H if and only
if there exist two distinct vertex pairs e1, e2 such that e1 ∈ E(G1)\E(G2),
e2 ∈ E(G2)\E(G1) such that G1 − e1 = G2 − e2.

Again let XF be the random variable denoting the number of copies of
F in G(n,M). For ease of reference, let k = v(F ). Observe that XF is

( n
k−2

)
-

Lipschitz on H, i.e., if G1, G2 are adjacent in H, then |XF (G1)−XF (G2)| ≤( n
k−2

)
. Thus by Theorem 1,

Pr
(

XF( n
k−2

) >
E[XF ]( n

k−2
) + t( n

k−2
)
)
≤ exp

⎛
⎝− t2κ

5
( n
k−2

)2
⎞
⎠.

It follows that
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Pr (XF > E[XF ] + t) ≤ exp

⎛
⎝− t2κ

5
( n
k−2

)2
⎞
⎠.

Let p = M/
(n
2
)
. We then obtain that

Pr (XF ≥ tE[XF ]) ≤ exp

⎛
⎝−((t− 1)E[XF ])2 κ

5
( n
k−2

)2
⎞
⎠(11)

≤ exp
(
−Ck(t− 1)2n2p2e(F )−1

)
.(12)

Note that when p = Θ(1), i.e., M = Θ
((n

2
))

, the concentration inequalities
obtained from Theorem 1 has the same asymptotic exponent as Theorem 2.
For other ranges of p with n2p → ∞, the asymptotic exponent in (12) is
worse than the bound in Theorem 2. Nonetheless, let us compare the bounds
obtained from the Ricci curvature method with those obtained from other
concentration inequalities. Janson and Ruciński [30] surveyed the existing
techniques on estimating the exponents for upper tails in the small subgraphs
problem in G(n, p) (ignoring logarithmic factors). Please see Table 2 of [30]
for a detailed summary and exposition.

Although we are mainly dealing with G(n,M) in this section, it is well
known that G(n,M) and G(n, p) with p = M/

(n
2
)

behaves similarly when
n2p → ∞. Applying the inequalities in (12) to K3, K4, C4 respectively, we
have that the exponents (ignoring constant) obtained from the Ricci curva-
ture method are n2p5, n2p11 and n2p7 respectively. In this context, the con-
centration we obtained from Theorem 1 has the same strength as Talagrand
inequality [41] and slightly stronger than Azuma’s inequality (see Table 1).

Table 1: Comparison between (12), Azuma’s and Talagrand’s Inequality
Exponents for Upper Tails in the Small Subgraphs Problem

Inequalities K3 K4 C4
Azuma [3, 27] n2p6 n2p12 n2p8

Talagrand [41] n2p5 n2p11 n2p7

Ricci curvature n2p5 n2p11 n2p7

4.3. Edge-Lipschitz functions on random hypergraphs

Let H ∼ Hk(n,M) be a random k-uniform hypergraph with n vertices and
M edges. Let H be a graph such that V (H) is the set of all labeled k-
uniform hypergraphs with n vertices and M edges. Moreover, two hypergraphs
H1,H2 ∈ V (H) are adjacent in H if and only if there exist two distinct k-sets
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h1, h2 such that h1 ∈ E(H1)\E(H2), h2 ∈ E(H2)\E(H1) and H1 − h1 =
H2 − h2. In other words, H1,H2 are adjacent in H if one can be obtained
from the other by swapping a hyperedge with a non-hyperedge. It is easy
to see that H is a connected regular graph. Moreover, for every H ∈ V (H),
dH(H) = M

((n
k

)
−M

)
. Now define a random walk m on H as follows: Let

H ∈ V (H). Define

mH(H′) =

⎧⎨
⎩

1
M((nk)−M)+1 if H′ ∈ Γ(H),

0 otherwise.

As before, for any fixed H,
∑

H′ mH(H′) = 1. Moreover, m is simply a
random walk such that the transition probability from a hypergraph H to
each hypergraph in NH(H) is equal.

By the same logic in Section 4.2, we can obtain a lower bound for the
Ricci curvature of H, i.e., for all H1,H2 ∈ V (H),

κ(H1,H2) ≥
(n
k

)
M

((n
k

)
−M

)
+ 1 .

Similar to before, we can also apply Theorem 1 to obtain concentration
results for the number of copies of fixed sub-hypergraphs in a uniformly ran-
dom hypergraph on n vertices and M edges. The idea is similar to Section 4.2
and we leave the details to the readers.

4.4. Vertex-Lipschitz functions on random d-out(in)-regular
graphs

Given a directed graph G and a vertex v, we use δ+(v) and δ−(v) to denote
the outdegree and indegree, respectively, of a vertex v. A d-out-regular graph
G is a directed graph in which δ+(v) = d for every v ∈ V (G). Similarly, a d-
in-regular graph G is a directed graph in which δ−(v) = d for every v ∈ V (G).
Moreover, let Γ+(v) = {u ∈ V (G) : vu ∈ E(G)}, Γ−(v) = {u ∈ V (G) : uv ∈
E(G)}, N+(v) = Γ+(v) ∪ {v} and N−(v) = Γ−(v) ∪ {v}.

Let H be a graph such that V (H) is the set of all labeled d-out-regular
graphs on n vertices. Two graphs G1, G2 ∈ V (H) are adjacent in H if and
only if there exists some vertex v ∈ V (G1) = V (G2) such that one can be
obtained from the other by changing Γ+(v). It is not hard to see that H is a
connected graph with diam(H) ≤ n. Moreover, it is also clear that if G1, G2
are adjacent in H, there is a unique vertex v such that one can be obtained
from the other by changing Γ+(v).
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Now define a random walk m on H as follows: let G ∈ V (H) and define

mG(G′) =

⎧⎨
⎩

1
n((n−1

d )−1)+1 if G′ ∈ N+(G),

0 otherwise.

It’s easy to see that for a fixed G,
∑

G′ mG(G′) = 1. Moreover, m is simply
a random walk such that the transition probability from a graph G to each
graph in NH(G) is equal.

Proposition 5. Let ν be the unique invariant distribution of the random walk
defined above. A random graph G picked according to ν, is equally likely to be
one of the d-out-regular graphs on n vertices.

Proof. Observe that H is not bipartite thus the random walk is ergodic. There
are

(n−1
d

)n many d-out-regular graphs in total. Hence, it suffices to show that
ν ′(G) =

(n−1
d

)−n for every G is an invariant distribution for the random walk.
Indeed, for every fixed G ∈ V (H),

∑
G′∈H

ν ′(G′)mG′(G) =
(
n− 1
d

)−n ∑
G′∈H

mG′(G)

=
(
n− 1
d

)−n ∑
G′∈H

mG(G′)

=
(
n− 1
d

)−n

= ν ′(G).

Since ν is the unique invariant distribution, it follows then that ν = ν ′.

Lemma 6. Let H and the random walk m be defined as above. Then

κ(G1, G2) ≥
1
n

for all G1, G2 ∈ V (H).

Proof. Again, by Lemma 1, we can assume that G1, G2 are neighbors in H.
It then follows from definition that

κ(G1, G2) = 1 −W (mG1 ,mG2).

Suppose v is the unique vertex such that G2 can be obtained from G1 by
changing Γ+(v). Consider the support of mG1 . For each G′

1 ∈ N(G1), we will
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match G′
1 with a distinct graph φ(G′

1) ∈ N(G2). Again, let φ(G1) = G1 and
φ(G2) = G2. For other neighbors G′

1 of G1, there are two possible cases:

Case 1: G1 − v = G′
1 − v. Then it follows that G′

1 − v = G2 − v and we let
φ(G′

1) = G′
1.

Case 2: G1 −u = G′
1 −u for some u 
= v. In this case, we claim that for each

G′
1 such that G1 − u = G′

1 − u, there exists a unique G′
2 = φ(G′

1) such
that G′

2 − u = G2 − u and G′
1 − v = G′

2 − v. Indeed, let G′
2 be obtained

from G2 by replacing the out-neighbors of u in G2 by the out-neighbors
of u in G′

1. It’s not hard to see that G′
2−u = G2−u and G′

1−v = G′
2−v.

Let us now define a coupling A (not necessarily optimal) between mG1

and mG2 . Define A : V (H) × V (H) → R as follows:

(13) A(G′
1, G

′
2) =

⎧⎨
⎩

1
n((n−1

d )−1)+1 if G′
1 ∈ N(G1) and G′

2 = φ(G′
1),

0 otherwise.

It is not hard to verify that A is a coupling of mG1 and mG2 . Now by
definition,

W (mG1 ,mG2) ≤
∑

G′
1,G

′
2

A(G′
1, G

′
2)d(G′

1, G
′
2)

≤
∑
u�=v

∑
G′

1∈N(G1)
G′

1−u=G1−u

A(G′
1, φ(G′

1))d(G′
1, φ(G′

1))

≤ (n− 1)
((

n− 1
d

)
− 1

)
1

n
((n−1

d

)
− 1

)
+ 1

.

It follows that

κ(G1, G2) = 1 −W (mG1 ,mG2) ≥
(n−1

d

)
n
((n−1

d

)
− 1

)
+ 1

≥ 1
n
.

This completes the proof of the lemma.

We remark that the lower bound in Lemma 6 is tight up to a constant of
2. Observe that diam(H) = n. By Lemma 2, the curvature κ of (H,m) is at
most 2

n .
Let G be a uniformly random d-out-regular graph. A directed triangle is a

cycle of length 3 with vertices u, v, w such that uv, vw and wu are all directed
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edges. Let Xn,d := X(G) be the random variable denoting the number of
directed triangle in G. It is not hard to see that

E[Xn,d] = (2 + o(1))
(
n

3

)(
d

n− 1

)3
,

since there are
(n
3
)

vertex triples, and the probability that a fixed vertex triple
forms a directed triangle is (2 + o(1))

(
d

n−1

)3
. We will now use Theorem 1 to

derive the concentration behavior of Xn,d. Note that Xn,d is (d2)-Lipschitz.
Hence by Theorem 1, we have that

Pr
(∣∣∣∣Xn,d

d2 − E[Xn,d]
d2

∣∣∣∣ > t

d2

)
≤ 2 exp

(
− t2κ

5d4

)
.

It follows that

Pr (|Xn,d − E[Xn,d]| > t) ≤ 2 exp
(
− t2κ

5d4

)
≤ 2 exp

(
− t2

5nd4

)
.

This concentration result is useful when d = Ω(
√
n).

4.5. Lipschitz functions on random linear permutations

We will denote a linear permutation σ by σ = [a1a2 . . . an] such that ai ∈ [n]
for all i and σ(i) = ai. A linear permutation on [n] can be viewed as a
sequence of n distinct numbers from [n]. Thus, without loss of generality
suppose {a1, a2, . . . , an} = [n]. Given two permutations σ1, σ2 where σ1 =
[a1a2 . . . an], we say σ1 is (i, j)-alike to σ2 if σ2 can be obtained from σ1 by
moving the number i to the position after the number j in σ1; moreover, σ1 is
(i, 0)-alike to σ2 if σ2 can be obtained from σ1 by moving the number i to the
first position of σ1. For example, σ1 = [12345] is (2, 4)-alike to σ2 = [13425]
and is (4, 0)-alike to σ3 = [41235]. Two distinct linear permutations σ1, σ2
are insertion-alike if one is (i, j)-alike to the other for some i 
= j. Such
insertion operations are related to sorting algorithms, e.g., insertion/shell
sortings.

Let H be the graph such that V (H) is the set of all linear permutations
of [n] and two linear permutation σ1, σ2 are adjacent in H if and only if they
are insertion-alike. Clearly H is a connected graph with diameter at most
n. Moreover, every vertex (which is a linear permutation) in H has (n− 1)2
neighbors in H.



2592 Linyuan Lu and Zhiyu Wang

Now define a random walk mα on H as follows: let σ ∈ V (H) and define

mσ(σ′) =
{ 1

(n−1)2+1 if σ = σ′ or σ is insertion-alike to σ′,

0 otherwise.

It’s not hard to see that for a fixed σ,
∑

σ′ mσ(σ′) = 1. Moreover, mσ(σ′) =
mσ′(σ) for every pair of σ, σ′. Observe that m is simply a random walk such
that the transition probability from a permutation σ to each permutation in
NH(σ) is equal.

Proposition 6. Let ν be the unique invariant distribution of the random walk
defined above. A random permutations σ picked according to ν, is equally likely
to be one of the n! permutations.

Proof. Observe that H is not bipartite thus the random walk is ergodic. There
are n! permutations in total. Hence, it suffices to show that ν ′(σ) = (n!)−1

for every σ is an invariant distribution for the random walk.

∑
σ′∈H

ν ′(σ′)mσ′(σ) = 1
n!

∑
σ′∈V (H)

mσ′(σ)

= 1
n!

∑
σ′∈V (H)

mσ(σ′)

= 1
n!

= ν ′(σ).

Since ν is the unique invariant distribution, it follows then that ν = ν ′.

Lemma 7. Let H and the random walk m be defined as above. If σ1, σ2 ∈
V (H) are neighbors in H, then κ(σ1, σ2) ≥ 1

n .

Proof. Suppose that σ1 is (i, j)-alike to σ2 (with σ2 
= σ1). Consider the
support of mσ1 . For each σ′

1 ∈ N(σ1), we will match σ′
1 with a distinct

permutation φ(σ′
1) ∈ N(σ2). First let φ(σ1) = σ1 and φ(σ2) = σ2. For other

neighbors σ′
1 of σ1, there are two cases:

Case 1: σ1 is (i, k)-alike to σ′
1 where k 
= j. Then it follows that σ′

1 is also
(i, j)-alike to σ2 and we let φ(σ′

1) = σ′
1.

Case 2: σ1 is (i′, j′)-alike to σ′
1 where i′ 
= i and σ1 is not (i, k)-alike to σ′

1 for
any k. In this case, let σ′

2 be the permutation such that σ2 is (i′, j′)-alike
to σ′

2. It follows easily that σ′
1 is also (i, j)-alike to σ′

2. We then define
φ(σ′

1) = σ′
2.
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Let us now define a coupling A (not necessarily optimal) between mσ1 and
mσ2 . Define A : V (H) × V (H) → R as follows:

(14) A(σ′
1, σ

′
2) =

{ 1
(n−1)2+1 if σ′

1 ∈ N(σ1) and σ′
2 = φ(σ′

1),
0 otherwise.

It is not hard to verify that A is a coupling of mσ1 and mσ2 . Now by definition,

W (mσ1 ,mσ2) ≤
∑
σ′

1,σ
′
2

A(σ′
1, σ

′
2)d(σ′

1, σ
′
2)

≤
∑

σ′∈N(σ1)
A(σ′

1, φ(σ′
1))d(σ′

1, φ(σ′
1))

≤ 1 − n

(n− 1)2 + 1 .

It follows that

κ(σ1, σ2) = 1 −W (mσ1 ,mσ2) ≥
n

(n− 1)2 + 1 ≥ 1
n
.

This completes the proof of the lemma.

We remark that the lower bound in Lemma 7 is tight up to a constant of
2. Observe that diam(H) = n − 1. By Lemma 2, The curvature κ of (H,m)
is at most 2

n .
Now we give an example of concentration results on the space of random

linear permutations. In particular, we discuss the number of occurrences of
certain patterns in random permutations. Denote the set of length n linear
permutations by Sn. Given a permutation pattern τ ∈ Sk, we say that a
permutation π = [π1 . . . πn] ∈ Sn contains the pattern τ if there exists 1 ≤
i1 < i2 < . . . < ik ≤ n such that the πis < πit if and only if τs < τt for
every pair s, t. Each such subsequence in π is called an occurrence of the
pattern τ . Let τ be a random permutation in Sn and let the random variable
Xτ,n := Xτ (π) be the number of copies of τ in π. We consider asymptotics as
n → ∞ for (one or several) fixed τ .

The (joint) distribution of the Xτ,n has been investigated in a series of
paper [5, 6, 28]. In particular, Bona [5] showed that for every τ ∈ Sk, as
n → ∞,

(15) Xτ,n − E[Xτ,n]
nk− 1

2

d−→ N(0, Zτ )
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for some Zτ > 0. Janson, Nakamura and Zeilberger [28] showed that the
above holds jointly for any finite family of patterns τ .

Note that as a consequence of the convergence (in distribution) in (15),
we obtain the following concentration inequality:

(16) Pr (|Xτ,n − E[Xτ,n]| > t) ≤ 2 exp
(
− t2

2n2k−1Zτ

)

which is sharp up to a polynomial factor.
On the other hand, consider the graph H defined at the beginning of this

subsection, where V (H) is the set of all linear permutations of [n]. It is not
hard to see that the function Xτ,n : V (H) → Z is

(n−1
k−1

)
-Lipschitz. It follows

by Theorem 1 that

Pr
(∣∣∣∣∣ Xτ,n(n−1

k−1
) − E[Xτ,n](n−1

k−1
)

∣∣∣∣∣ > t(n−1
k−1

)
)
≤ 2 exp

⎛
⎝− t2κ

5
(n−1
k−1

)2
⎞
⎠

≤ 2 exp
(
− t2

Ckn2k−1

)

for some Ck > 0. Hence the concentration result in Theorem 1 is in fact
asymptotically optimal in the case of counting occurrences of patterns in
random permutations.

Remark 5. Similar Ricci curvature and concentration results can be obtained
for the space of cyclic permutations as well.

Remark 6. Another possible way to geometrize the space of linear permu-
tations is the random transposition model (see, e.g., [24]) as follows: let
V (H) = Sn and two permutations σ1, σ2 ∈ V (H) are adjacent in H if
σ2 = τ ◦ σ1 for some transposition τ . Define a random walk m on H by

mσ(σ′) =
{ 2

n(n−1) if σ and σ′ are adjacent in H,

0 otherwise.

The invariant distribution is the uniform measure on Sn. The Ricci cur-
vature of this graph is Θ(n−2), as observed by Gozlan et al. [25].
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