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Singular Turán numbers of stars
Gaoxing Sun, Heng Li

∗
, Qinghou Zeng, and Jianfeng Hou

Abstract: Suppose that G is a graph and H is a subgraph of
G. We call H singular if the vertices of H either have the same
degree in G or have pairwise distinct degrees in G. Let TS(n,H)
be the largest number of edges of a graph with n vertices that does
not contain a singular copy of H. The problem of determining
TS(n,H) was studied initially by Caro and Tuza, who obtained an
asymptotic bound for each H. In this paper, we consider the case
that H is a star, and determine the exact values of TS(n,K1,2) for
all n, TS(n,K1,4) and TS(n,K1,2s+1) for sufficiently large n.
Keywords: Singular, Turán number, star, H-free.

1. Introduction

The classical Turán number of a graph H, denoted by ex(n,H), is the maxi-
mum number of edges in an n-vertex graph not containing H as a subgraph.
For H = Kr+1, the only extremal graph is the so-called Turán graph, de-
noted by Tr(n), which is the balanced complete r-partite graph with each
part of size �n/r� or �n/r�. For general graph H with chromatic number
p + 1, Erdős-Stone-Simonovits Theorem [6] shows that

ex(n,H) =
(

1 − 1
p

+ o(1)
)(

n

2

)
.

Turán type problem has been studied widely, see [15, 9, 12, 13, 14, 5], espe-
cially for bipartite graphs [3, 11, 7, 10].

Albertson [1] considered the maximum number of edges in graphs that
have no copy of Kp with all degrees equal, and gave an exact bound. It was
extended by Caro and Tuza [4] who initiated the so-called singular Turán
number. Let G be a graph, and let H be a subgraph of G. We say H is
singular in G if the vertices of H either have the same degree in G, or have
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pairwise distinct degrees in G. If G does not contain a singular H, then G
is singular H-free. The singular Turán number, denoted by TS(n,H), is the
largest number of edges of a singular H-free graph with n vertices. For general
graph H with r + 1 vertices and chromatic number p + 1, Caro and Tuza [4]
obtained an asymptotic bound by proving that

TS(n,H) =
(

1 − 1
pr

+ o(1)
)(

n

2

)
.

Determining the exact value of TS(n,H) seems not easy, even for special
H, and there are few theoretical results. For H = K3, Caro and Tuza showed
that TS(4k + 2, K3) = 6k2 + 6k + 1, and gave lower and upper bounds of
TS(n,K3) for other cases of n. This was further improved by Gerbner, Patkós,
Vizer and Tuza [8], who showed the following theorem.

Theorem 1.1 (Gerbner, Patkós, Vizer and Tuza [8]). Let k be a nonnegative
integer. Then

(1) TS(4, K3) = 5, and TS(4k,K3) = 6k2 − 2 if k ≥ 2,
(2) TS(4k + 1, K3) = 6k2 + 2k, and
(3) 6k2 + 8k + 1 ≤ TS(4k + 3, K3) ≤ 6k2 + 8k + 3.

In this paper, we focus on the case that H is a star. Let tr(n) denote the
number of edges in the Turán graph Tr(n). We first consider TS(n,K1,2s+1)
and establish the following theorem.

Theorem 1.2. For any integer s ≥ 1 and sufficiently large n, there is an
absolute constant C(s) such that

TS(n,K1,2s+1) = t2s+1(n) + sn− C(s).

We also determine the exact value of TS(n,K1,2) for all n, and TS(n,K1,4)
for sufficiently large n as follows.

Theorem 1.3. Let k be any nonnegative integer. Then

(1) TS(4k,K1,2) = 4k2 + k if 0 ≤ k ≤ 3, and TS(4k,K1,2) = 4k2 + 2k− 4 if
k ≥ 4,

(2) TS(4k + 1, K1,2) = 4k2 + 3k,
(3) TS(4k + 2, K1,2) = 4k2 + 6k + 1, and
(4) TS(4k + 3, K1,2) = 4k2 + 6k + 2 if 0 ≤ k ≤ 1, and TS(4k + 3, K1,2) =

4k2 + 7k if k ≥ 2.
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Theorem 1.4. For sufficiently large n ≡ � (mod 8),we have

TS(n,K1,4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t4(n) + 3
2n− 20 if � = 0,

t4(n) + 11
8 n− 123

8 if � = 1,
t4(n) + 3

2n− 17 if � = 2,
t4(n) + 11

8 n− 65
8 if � = 3,

t4(n) + 3
2n− 10 if � = 4,

t4(n) + 11
8 n− 95

8 if � = 5,
t4(n) + 3

2n− 17 if � = 6,
t4(n) + 11

8 n− 141
8 if � = 7.

This paper is organized as follows. In Section 2, we determine the exact
values of the singular Turán number of stars with even number of vertices. In
Sections 3 and 4, we prove Theorems 1.3 and 1.4.

Notation. Let G = (V (G), E(G)) be a graph. For any v ∈ V (G), denote
NG(v) the set of neighbors of v in G and dG(v) the degree of v in G. Denote
by Δ(G) the maximum degree of G. For any S ⊆ V (G), let G[S] denote
the subgraph of G induced by S. Denote by e(G) the number of edges in G.
Usually, we write [k] := {1, . . . , k}.

2. Singular Turán numbers of the star K1,2s+1

In this section, we prove Theorem 1.2. We first present a useful lemma given
by Brouwer [2].

Lemma 2.1 (Brouwer [2]). If H is a Kr+1-free graph on n vertices which is
not r-partite, then H has at most tr(n)−�n/r�+1 edges, assuming n ≥ 2r+1.

We also give the following lemma, whose simple proof is left to the reader.

Lemma 2.2. Let G be an r-partite graph with V (G) = V1 ∪ V2 ∪ · · · ∪ Vr(G)
and e(G) = tr(n) − f(G). Then, for each i ∈ [r], there exists some constant
C(r) ≥ 0 such that ∣∣∣∣|Vi| −

n

r

∣∣∣∣ ≤ C(r)
√
f(G).

Gerbner, Patkós, Vizer and Tuza [8] established a general upper bound
of TS(n,H) in concluding remarks. We give a proof here for complement.

Lemma 2.3. Let n be a positive integer, and let H be a graph with r vertices.
Then

TS(n,H) ≤ ex(n,Kr) + ex(n,H).
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Proof. Suppose that G is a singular H-free graph with n vertices. Let G1
be the spanning subgraph induced by the edges that connect vertices of the
same degree, and let G2 = G− E(G1). Since G1 is H-free, we have

(1) e(G1) ≤ ex(n,H).

Note that G2 is Kr-free; otherwise G2 has a copy of H with all degree distinct.
This implies that e(G2) ≤ ex(n,Kr), which together with (1) yields that

e(G) = e(G1) + e(G2) ≤ ex(n,Kr) + ex(n,H),

completing the proof of Lemma 2.3.

Now, we define a kind of regular graph. The kth power of a graph G,
denoted by Gk, has vertex set V (G) in which vertices are adjacent if the
distance between them in G is at most k. Note that Ck

n is a 2k-regular graph
if n ≥ 2k + 1.

Proof of Theorem 1.2. For the lower bound, we construct a graph G as
follows. Let a1 < a2 < · · · < a2s+1 be positive integers such that

∑2s+1
i=1 ai = n

and
∑

1≤i<j≤2s+1 aiaj is maximum. Let Ka1,...,a2s+1 be a complete (2s + 1)-
partite graph with V = V1 ∪ V2 ∪ · · · ∪ V2s+1 and |Vi| = ai for i ∈ [2s + 1].
Then, for each i ∈ [2s + 1], we embed a 2s-regular graph Cs

ai in Vi, which
means that G[Vi] is K1,2s+1-free. Moreover, G has no K1,2s+1 with all degree
distinct as G only has 2s+1 distinct degrees. Thus, G is singular K1,2s+1-free
with

e(G) = t2s+1(n) + sn− C(s),

where C(s) = t2s+1(n) −∑
1≤i<j≤2s+1 aiaj > 0.

We claim that there exists some constant Cs ≥ 0 such that C(s) ≤ Css
3.

Let bi =
⌊

n
2s+1

⌋
− s + i − 1 for i ∈ [2s] and b2s+1 = n − ∑2s

i=1 bi. Then, we
have b1 < b2 < · · · < b2s+1 and

∑2s+1
i=1 bi = n. Recall that

∑
1≤i<j≤2s+1 aiaj is

maximum. Clearly, we have
∑

1≤i<j≤2s+1
aiaj ≥

∑
1≤i<j≤2s+1

bibj =
∑

1≤i<j≤2s
bibj + b2s+1

∑
1≤i≤2s

bi

= t2s+1(n) −O(s3).

Thus, C(s) = t2s+1(n)−∑
1≤i<j≤2s+1 aiaj ≤ t2s+1(n)−

(
t2s+1(n) −O(s3)

)
=

O(s3).
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Now we prove the upper bound. Suppose that n is sufficiently large. Let
G be a singular K1,2s+1-free graph with n vertices. Let G1 be the spanning
subgraph induced by the edges that connect vertices of the same degree, and
let G2 = G− E(G1). Then G1 is K1,2s+1-free, which implies that

(2) e(G1) ≤
2sn
2 = sn.

Clearly, G2 is K2s+2-free. If e(G2) ≤ t2s+1(n) −
⌊

n
2s+1

⌋
+ 1, then

e(G) = e(G1)+ e(G2) ≤ sn+ t2s+1(n)−
⌊

n

2s + 1

⌋
+1 ≤ t2s+1(n)+ sn−C(s),

as desired. Suppose that

(3) e(G2) ≥ t2s+1(n) −
⌊

n

2s + 1

⌋
+ 2.

By Lemma 2.1, G2 is (2s + 1)-partite with V (G2) = A1 ∪ A2 ∪ · · · ∪ A2s+1.
For each i ∈ [2s + 1], it follows from Lemma 2.2 and (3) that

(4) |Ai| ≥
n

2s + 1 −O(
√
n).

Next, we show that all vertices in Ai have the same degree in G.

Claim 2.4. For each i ∈ [2s+1], we have dG(u) = dG(v) for all u, v ∈ Ai.

Proof. Without loss of generality, we may assume that there exist x1, x2 ∈ A1
such that dG(x1) = dG(x2). Let Bi = {v ∈ Ai | dG2(v) ≤ n − |Ai| − 1}, then
e(G2) ≤ t2s+1(n) − |Bi| for i ∈ [2s + 1]. If there exists some i such that
|Bi| ≥ |Ai|/2, then this together with (4) implies that

e(G) =e(G1) + e(G2)
≤ sn + t2s+1(n) − |Bi|

≤ sn + t2s+1(n) − n

2(2s + 1) + O(
√
n)

≤ t2s+1(n) + sn− Ω(n),

as desired. Otherwise, |Bi| < |Ai|/2 for each i ∈ [2s + 1]. Then there exists
a vertex y ∈ A2 such that dG2(y) = n − |A2|. Let F be the family of all
(2s + 1)-sets {x1, x2, x3, . . . , x2s+1} with xi ∈ Ai for 3 ≤ i ≤ 2s + 1. Then
|F| =

∏2s+1
k=3 |Ak|. Since dG2(y) = n − |A2| and G has no K1,2s+1 with all
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degree distinct, there exist 1 ≤ i = j ≤ 2s + 1 such that dG(xi) = dG(xj).
This means that the edge xixj /∈ E(G2). Sum over the sets in F gives that
e(G2) has at least

∏2s+1
k=3 |Ak| missing edges in total. For a missing edge xixj ,

if i, j ≥ 3, then xixj is counted at most
∏2s+1

k=3 |Ak|
|Ai||Aj | times. Otherwise, if i ≤ 2

and j ≥ 3, then xixj is counted at most
∏2s+1

k=3 |Ak|
|Aj | times. Thus, the number

of missing edges in G2 is at least min{|Ai| | 3 ≤ i ≤ 2s + 1}. This together
with (4) implies that

e(G2) ≤ t2s+1(n) − n

2s + 1 + O(
√
n),

and then

e(G) = e(G1)+e(G2) ≤ sn+t2s+1(n)− n

2s + 1+O(
√
n) ≤ t2s+1(n)+sn−C(s).

This completes the proof of Claim 2.4.

If there do not exist i, j ∈ [2s + 1] and i = j such that |As| = |At|, then
we have that

e(G) = e(G1) + e(G2) ≤ sn +
∑

1≤i<j≤2s+1
|Ai||Aj | ≤ t2s+1(n) + sn− C(s),

as required. So, without loss of generality, we may suppose that |A1| = |A2|.
Let Di = Ai\Bi for each i ∈ [2]. Recall that |Bi| ≤ |Ai|/2. So, by (4), we have

(5) |Di| ≥ |Ai|/2 ≥ n

4s + 2 −O(
√
n).

Choose x ∈ D1 and y ∈ D2, we obtain that dG2(x) = dG2(y) = n−|A1|. Since
dG(x) = dG(y), we have dG1(x) = dG1(y). It follows from G1 is K1,2s+1-free
that either dG1(x) < 2s or dG1(y) < 2s. If dG1(x) < 2s, then dG1(z) < 2s for
all z ∈ D1 by Claim 2.4. Thus,

(6) e(G1) ≤ sn− |D1|
2 = sn− Ω(n).

Otherwise, dG1(z) < 2s for all z ∈ D2, implying that

(7) e(G1) ≤ sn− |D2|
2 = sn− Ω(n).
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In view of (6) and (7), we have

e(G) = e(G1) + e(G2) ≤ sn− Ω(n) + t2s+1(n) ≤ t2s+1(n) + sn− C(s).

Thus, for any singular K1,2s+1-free graph G with n vertices, e(G) ≤ t2s+1(n)+
sn−C(s) for sufficiently large n. This completes the proof of Theorem 1.2.

3. Singular Turán number of K1,2

In this section, we consider the singular Turán number of K1,2 and give a
proof of Theorem 1.3.

Proof of Theorem 1.3. Let G be a singular K1,2-free graph with n vertices.
Let G1 be the spanning subgraph induced by the edges that connect vertices
of the same degree, and let G2 = G− E(G1). Note that Δ(G1) ≤ 1. So,

(8) e(G1) ≤
⌊
n

2

⌋
.

Note that G has no K1,2 with all degree distinct. This implies that, for each
uv ∈ E(G2), we have dG(x) = dG(v) for x ∈ NG2(u) and dG(y) = dG(u) for
y ∈ NG2(v). It follows that G2[NG2(u) ∪ NG2(v)] is a bipartite graph. In a
similar flavor for other edges, we conclude that G2 is a bipartite graph with
parts A and B.

Suppose that n = 4k + i for 0 ≤ i ≤ 3.
Case 1. i = 0. First, we give the lower bound of TS(4k,K1,2) by showing

the following constructions: if k ≥ 4, then let F be a graph by adding perfect
matchings in both parts of K2k−2,2k+2; if 0 ≤ k ≤ 3, then let F be a graph by
adding a perfect matching in one part of K2k,2k. Then F is singular K1,2-free
with

e(F ) =
{

4k2 + 2k − 4 if k ≥ 4,
4k2 + k if 0 ≤ k ≤ 3.

Thus,

TS(4k,K1,2) ≥
{

4k2 + 2k − 4 if k ≥ 4,
4k2 + k if 0 ≤ k ≤ 3.

Next, we give the upper bound of G. Recall that G2 is a bipartite graph
with V (G2) = A ∪B. If |A| ≤ 2k − 2, then this together with (8) yields that

(9) e(G) = e(G1)+e(G2) ≤
⌊
n

2

⌋
+|A|(n−|A|) ≤ 2k+(4k2−4) = 4k2+2k−4.
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Suppose |A| = 2k−1. If there exist vertices u ∈ A, v ∈ B satisfying dG2(u) =
2k+1 and dG2(v) = 2k−1, then the vertices in A (or B) have the same degree
in G. Since A is odd, dG(x) = 2k + 1 for all x ∈ A. Similarly, dG(y) = 2k− 1
for all y ∈ B. Thus,

(10) e(G) = (2k − 1)(2k + 1) = 4k2 − 1.

Otherwise, every vertex in A (or B) misses at least one edge to the other part
in G2. This together with (8) yields that

(11) e(G) = e(G1) + e(G2) ≤ 2k + ((2k + 1)(2k − 1) − (2k − 1)) = 4k2 − 1.

Suppose |A| = 2k. Again, if there exist vertices u ∈ A, v ∈ B satisfying
dG2(u) = 2k and dG2(v) = 2k, then dG(x) ≤ 2k + 1 for all x ∈ V (G), and
either dG(x) = 2k for all x ∈ A or dG(y) = 2k for all y ∈ B. Thus,

(12) e(G) = (2k · 2k + 2k(2k + 1))/2 = 4k2 + k.

Otherwise, there are at least 2k edges missing in G2. This together with (8)
yields that

(13) e(G) = e(G1) + e(G2) ≤ 2k + (2k · 2k − 2k) = 4k2.

Combining (9), (10), (11), (12) and (13), we have

TS(4k,K1,2) ≤
{

4k2 + 2k − 4 if k ≥ 4,
4k2 + k if 0 ≤ k ≤ 3.

Case 2. i = 1. First, we give the lower bound of TS(4k + 1, K1,2). Let
F be a graph by adding a perfect matching in the part with 2k vertices of
K2k,2k+1. Thus,

TS(4k + 1, K1,2) ≥ e(F ) = 4k2 + 3k
as F is singular K1,2-free.

Next, we consider the upper bound. Note that exactly one of |A| and
|B| is odd. If there exist vertices u ∈ A, v ∈ B satisfying dG2(u) = |B| and
dG2(v) = |A|, then the vertices in A (or B) have the same degree in G. Then
|B| ≤ dG(x) ≤ |B| + 1 for all x ∈ |A|. Moreover, if dG(x) = |B| + 1, then |A|
is even, and G[B] is empty. The similar statements also hold for the vertices
in |B|. Without loss of generality, we assume that |A| is even. Thus,

(14) e(G) = |A|(n− |A|) + |A|
2 ≤ 4k2 + 3k.



Singular Turán numbers of stars 2607

Otherwise, every vertex in A (or B) misses an edge to the other part in G2.
This together with (8) yields that

(15) e(G) = e(G1) + e(G2) ≤
⌊
n

2

⌋
+ (|A|(n− |A|) − |A|) ≤ 4k2 + 2k.

Thus, by (14) and (15), we have

TS(4k + 1, K1,2) ≤ 4k2 + 3k.

Case 3. i = 2. Again, we give the lower bound of TS(4k+ 2, K1,2) firstly.
Let F be a graph by adding perfect matchings in both parts of K2k,2k+2.
Thus,

TS(4k + 2, K1,2) ≥ e(F ) = 4k2 + 6k + 1

as F is singular K1,2-free.
Next, we consider the upper bound. If |A| ≤ 2k, then by (8),

(16) e(G) = e(G1) + e(G2) ≤
⌊
n

2

⌋
+ |A|(n− |A|) ≤ 4k2 + 6k + 1.

Suppose |A| = 2k + 1. We claim that there do not exist vertices u ∈ A and
v ∈ B satisfying dG2(u) = 2k + 1 and dG2(v) = 2k + 1. Since otherwise
dG(x) = 2k + 1 for all x ∈ V (G) as |A| and |B| are odd. Thus, every vertex
in A (or B) misses at least one edge to the other part in G2. This together
with (8) yields that

(17) e(G) = e(G1)+ e(G2) ≤ 2k+1+ ((2k+ 1)2 − (2k+ 1)) = 4k2 + 4k+ 1.

Combining (16) and (17), we have

TS(4k + 2, K1,2) ≤ 4k2 + 6k + 1.

Case 4. i = 3. First, we give the lower bound of TS(4k + 3, K1,2) by
showing the following constructions: if k ≥ 2, then let F be a graph by adding
a perfect matching in the part with 2k vertices of K2k,2k+3; if 0 ≤ k ≤ 1, then
let F be the graph K2k+1,2k+2. Thus, we have

TS(4k + 3, K1,2) ≥ e(F ) =
{

4k2 + 7k if k ≥ 2,
4k2 + 6k + 2 if 0 ≤ k ≤ 1.

as F is singular K1,2-free.
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Next, we consider the upper bound. By the same argument as in Case 2,
we have either

e(G) = |A|(n− |A|) + |A|
2 ≤ 4k2 + 7k,

or

e(G) = e(G1) + e(G2) ≤
⌊
n

2

⌋
+ (|A|(n− |A|) − |A|) ≤ 4k2 + 6k + 2.

Thus, we have

TS(4k + 3, K1,2) ≤
{

4k2 + 7k if k ≥ 2,
4k2 + 6k + 2 if 0 ≤ k ≤ 1.

This completes the proof of Theorem 1.3.

4. Singular Turán number of K1,4

In this section, we consider the singular Turán number of K1,4 and prove
Theorem 1.4.

Firstly, we give the lower bound by the following construction: Let a1, a2,
a3, a4 be positive integers with

∑4
i=1 ai = n. The choices of ai can be found

in Table 1. Let K∗
a1,a2,a3,a4 be the graph obtained from the complete 4-partite

graph Ka1,a2,a3,a4 by adding a 3-regular graph to the parts with even vertices
and a 2-regular graph to the part with odd vertices. Then K∗

a1,a2,a3,a4 has 4
distinct degrees, which means K∗

a1,a2,a3,a4 has no K1,4 with all degree distinct.
Moreover, G[Vi] is K1,4-free for i ∈ [4]. So, G is singular K1,4-free.

Table 1: The graph K∗
a1,a2,a3,a4

n a1 a2 a3 a4 e(K∗
a1,a2,a3,a4

) C(�)
8k 2k − 4 2k − 2 2k + 2 2k + 4 t4(n) + 3

2n− 20 20
8k + 1 2k − 4 2k 2k + 2 2k + 3 t4(n) + 11

8 n− 123
8

123
8

8k + 2 2k − 4 2k 2k + 2 2k + 4 t4(n) + 3
2n− 17 17

8k + 3 2k − 2 2k 2k + 2 2k + 3 t4(n) + 11
8 n− 65

8
65
8

8k + 4 2k − 2 2k 2k + 2 2k + 4 t4(n) + 3
2n− 10 10

8k + 5 2k − 2 2k 2k + 2 2k + 5 t4(n) + 11
8 n− 95

8
95
8

8k + 6 2k − 2 2k 2k + 2 2k + 6 t4(n) + 3
2n− 17 17

8k + 7 2k − 2 2k 2k + 4 2k + 5 t4(n) + 11
8 n− 141

8
141
8

Thus, for n = 8k + � with 0 ≤ � ≤ 7,

TS(n,K1,4) ≥
{
t4(n) + 11

8 n− C(�) n is odd
t4(n) + 3

2n− C(�) n is even
,
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where C(�) is the constant given in Table 1.
We prove the upper bound of Ts(n,K1,4). Suppose that n is sufficiently

large. Let G∗ be a singular K1,4-free graph with

(18) e(G∗) = Ts(n,K1,4) ≥
{
t4(n) + 11

8 n− C(�) n is odd
t4(n) + 3

2n− C(�) n is even
,

where C(�) is the constant given in Table 1.
Let G∗

1 be the spanning subgraph induced by the edges that connect
vertices of the same degree, and let G∗

2 = G∗ − E(G∗
1). Since G∗

1 is K1,4-free,
we have dG∗

1
(v) ≤ 3 for v ∈ V (G∗). Thus,

(19) e(G∗
1) ≤

3n
2 .

By a similar argument as that in the proof of Theorem 1.2, we have the
following properties of G∗

2, whose proof details are omitted.

Lemma 4.1. G∗
2 is 4-partite, and the vertices in each part have the same

degree in G∗.

By Lemma 4.1, let G∗
2 be a 4-partite graph with V (G∗

2) = V1∪V2∪V3∪V4.
For i ∈ [4], it follows from e(G∗

2) ≥ e(G∗)− 3
2n ≥ t4(n)−Ω(n) and Lemma 2.2

that

(20) |Vi| ≥ n/4 −O(
√
n).

Choose vi ∈ Vi such that dG∗
1
(vi) = min{dG∗

1
(v) | v ∈ Vi}. Then we have the

follow property.

Lemma 4.2. For each i ∈ [4], we have dG∗
2
(vi) = n− |Vi|.

Proof. By contradiction, we may assume that dG∗
2
(v1) ≤ n − |V1| − 1. For

i ∈ [4] and v ∈ Vi, we have dG∗(v) = dG∗(vi) by Lemma 4.1, which implies
that dG∗

2
(v) ≤ dG∗

2
(vi). This together with (19) and (20) yields that

e(G∗) = e(G∗
1) + e(G∗

2) ≤
3
2n + 1

2

4∑
i=1

∑
v∈Vi

dG∗
2(v)

≤ 3
2n + 1

2

4∑
i=1

|Vi|(n− |Vi|) −
1
2 |V1|

≤ t4(n) + 11
8 n + O(

√
n),
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a contradiction to (18) when n is even.
Suppose that |Vj | is odd for some j ∈ [4]. Since dG∗

1
(vj) ≤ dG∗

1
(v) ≤ 3 for

v ∈ Vj , we have dG∗
1
(vj) ≤ 2. If j = 1, we have dG∗(v1) = dG∗

1
(v1)+ dG∗

2
(v1) ≤

n− |V1| + 1. Thus,

e(G∗) = 1
2

∑
v∈V (G∗)

dG∗(v)

≤ 1
2

(
|V1|(n− |V1| + 1) +

4∑
i=2

|Vi|(n− |Vi| + 3)
)

≤ t4(n) + 1
2 (|V1| + 3(n− |V1|))

≤ t4(n) + 10
8 n + O(

√
n),

a contradiction to (18). If j = 1, we have dG∗(v1) ≤ n−|V1|+2 and dG∗(vj) ≤
n− |Vj | + 2. Thus,

e(G∗) = 1
2

∑
v∈V (G∗)

dG∗(v)

≤ 1
2

⎛
⎝ ∑

i∈{1,j}
|Vi|(n− |Vi| + 2) +

∑
i∈[4]\{1,j}

|Vi|(n− |Vi| + 3)

⎞
⎠

≤ t4(n) + 1
2 (2(|V1| + |Vj |) + 3(n− |V1| − |Vj |))

≤ t4(n) + 10
8 n + O(

√
n),

a contradiction to (18).

Next, we consider the structure of G∗
1 as follows.

Lemma 4.3. For i ∈ [4], if n is even, then all G∗
1[Vi] are 3-regular; otherwise,

all G∗
1[Vi] are 3-regular, expect one of G∗

1[Vi] is 2-regular.

Proof. According to the parity of n, we divide our proof into the following
two cases.

Case 1. n is even. For i ∈ [4], it suffices to prove that dG∗
1
(vi) ≥ 3. Indeed,

we have dG∗
1
(v) = 3 for v ∈ V (G∗) by the definition of vi and Δ(G∗

1) ≤ 3,
which implies that all G∗

1[Vi] are 3-regular.
By contradiction, we may assume that dG∗

1
(v1) ≤ 2. Then dG∗(v1) ≤

n− |V1| + 2 by Lemma 4.2. Recall that dG∗(v) = dG∗(vi) for each v ∈ Vi and
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each i ∈ [4] by Lemma 4.1. We have dG∗(v) ≤ n − |V1| + 2 for each v ∈ V1.
For 2 ≤ i ≤ 4, dG∗(v) ≤ n− |Vi| + 3 for each v ∈ Vi. Thus,

e(G∗) = 1
2

∑
v∈V (G∗)

dG∗(v)

≤ 1
2

(
|V1|(n− |V1| + 2) +

4∑
i=2

|Vi|(n− |Vi| + 3)
)

≤ t4(n) + 1
2 (2|V1| + 3(n− |V1|))

≤ t4(n) + 11
8 n + O(

√
n),

where the last inequality follows from (20), a contradiction to (18).
Case 2. n is odd. Again, without loss of generality, we aim to prove that

(i) |V1| is odd and dG∗
1
(v1) = 2;

(ii) |Vi| is even and dG∗
1
(vi) = 3 for 2 ≤ i ≤ 4.

Indeed, as in the proof of Case 1, if dG∗
1
(vi) = 3, then G∗

1(Vi) is 3-regular and
dG∗

2
(v) = n − |Vi| for all v ∈ Vi. If all but one of G∗

1[Vi] are 3-regular, then
G∗

2 is a complete 4-partite graph. Consider the part V1 with dG∗
1
(v1) ≤ 2. All

the vertices in V1 have the same degree both in G∗ and in G∗
2, so do in G∗

1.
Thus, G∗

1[V1] is regular. Since |V1| is odd, G∗
1[V1] is not 3-regular. To maximum

e(G∗), G∗
1[V1] should be 2-regular.

If there exists k ∈ [4] such that dG∗
1
(vk) ≤ 1, then dG∗(v) ≤ n − |Vi| + 1

for each v ∈ Vk. For i ∈ [4] \ {k}, dG∗(v) ≤ n− |Vi|+ 3 for each v ∈ Vi. Thus,

e(G∗) = 1
2

∑
v∈V (G∗)

dG∗(v)

≤ 1
2

⎛
⎝|Vk|(n− |Vk| + 1) +

∑
i∈[4], i�=k

|Vi|(n− |Vi| + 3)

⎞
⎠

≤ t4(n) + 10
8 n + O(

√
n),

a contradiction to (18).
Thus, we have dG∗

1
(vi) ≥ 2 for i ∈ [4]. Suppose that there exist s and

t with 1 ≤ s < t ≤ 4 such that dG∗
1
(vs) = dG∗

1
(vt) = 2. Then dG∗(v) ≤

n − |Vi| + 2 for each v ∈ Vi and every i ∈ {s, t}. Moreover, if i ∈ [4] \ {s, t},
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then dG∗(v) ≤ n− |Vi| + 3 for v ∈ Vi. Again,

e(G∗) = 1
2

∑
v∈V (G∗)

dG∗(v)

≤ 1
2

⎛
⎝ ∑

i∈{s,t}
|Vi|(n− |Vi| + 2) +

∑
i∈[4]\{s,t}

|Vi|(n− |Vi| + 3)

⎞
⎠

≤ t4(n) + 10
8 n + O(

√
n),

a contradiction to (18).

Next, we may assume that |Vi| < |Vi+1| for i ∈ [3]. If n is even, then each
|Vi| is even and every G∗

1[Vi] is 3-regular by Lemma 4.3. Thus,

(21) e(G∗
1) = 3

2n.

Note that |Vi+1| ≥ |Vi| + 2 for i ∈ [3]. Thus,

(22) |V1| ≤ n/4 − 3.

For the case n = 8k, we have |V1| ≤ 2k − 3 by (22), and then |V1| ≤ 2k − 4
as |V1| is even. We claim that |V1| = 2k− 4. Since otherwise, |V1| ≤ 2k− 6 as
|V1| is even. It follows from (21) that

e(G∗) = e(G∗
1) + e(G∗

2) = 3
2n +

∑
1≤i<j≤4

|Vi||Vj |

≤ 3
2n + |V1|(n− |V1|) + t3(n− |V1|)

≤ 3
2n + |V1|(n− |V1|) + (n− |V1|)2

3
≤ 3

2n + t4(n) − 24,

a contradiction to (18). Thus, |V2| + |V3| + |V4| = 6k + 4. It follows from
|Vi+1| ≥ |Vi| + 2 that |V2| = 2k − 2. Note that

e(G∗
2) =

∑
1≤i<j≤4

|Vi||Vj | = 20k2 − 12k − 28 + |V3|(4k + 6 − |V3|).
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To maximum e(G∗
2), we have |V3| = 2k+2 and |V4| = 2k+4 as |V3| and |V4| are

even. Thus, G∗ is exactly the graph K∗
2k−4,2k−2,2k+2,2k+4 given in Table 1. For

the remaining cases of even n, analogous arguments are given in Appendix.
If n is odd, then exactly one part Vt has odd vertices for some t ∈ [4] by

Lemma 4.3. Thus,

(23) e(G∗
1) = 2|Vt|

2 + 3(n− |Vt|)
2 = 3n− |Vt|

2 .

For the case n = 8k + 1, we consider t = 1 firstly. Then

(24) |V2| − |V1| ≥ 3

by Lemmas 4.2 and 4.3. Note that |Vi+1| ≥ |Vi|+ 2 for i = 2, 3. This together
with (24) implies |V1| ≤ 2k− 5. We claim that |V1| = 2k− 5. Since otherwise,
|V1| ≤ 2k − 7 as |V1| is odd. It follows from (23) that

e(G∗) = e(G∗
1) + e(G∗

2)

= 3n− |V1|
2 +

∑
1≤i<j≤4

|Vi||Vj |

≤ 3n− |V1|
2 + |V1|(n− |V1|) + t3(n− |V1|)

≤ 11
8 n + t4(n) − 251

8 ,

a contradiction to (18). Thus, |V2| + |V3| + |V4| = 6k + 6. It follows from
|Vi+1| ≥ |Vi|+2 for i = 2, 3 and (24) that 2k−1 ≤ |V2| ≤ 2k. If |V2| = 2k−2,
then

e(G∗
2) =

∑
1≤i<j≤4

|Vi||Vj | = 20k2 − 10k + 10 + |V3|(4k + 8 − |V3|).

To maximum e(G∗
2), we have |V3| = 2k + 2 and |V4| = 2k + 6. Thus, e(G∗

2) =
t4(n) − 34. This together with (23) implies that

e(G∗) = e(G∗
1) + e(G∗

2)

= 3n− |V1|
2 + t4(n) − 34

= 11
8 n + t4(n) − 251

8 ,
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a contradiction to (18). If |V2| = 2k, then

e(G∗
2) =

∑
1≤i<j≤4

|Vi||Vj | = 20k2 − 6k − 30 + |V3|(4k + 6 − |V3|).

To maximum e(G∗
2), we have |V3| = 2k + 2 and |V4| = 2k + 4. Thus, e(G∗

2) =
t4(n) − 30. This together with (23) implies that

e(G∗) = e(G∗
1) + e(G∗

2)

= 3n− |V1|
2 + t4(n) − 30

= 11
8 n + t4(n) − 155

8 ,

a contradiction to (18). By similar arguments given in Appendix, we have

e(G∗) =

⎧⎪⎪⎨
⎪⎪⎩
t4(n) + 11

8 n− 139
8 if t = 2,

t4(n) + 11
8 n− 131

8 if t = 3,
t4(n) + 11

8 n− 123
8 if t = 4.

If t = 2, 3, this leads to a contradiction to (18); if t = 4, G∗ is exactly the
graph K∗

2k−4,2k,2k+2,2k+3 given in Table 1. The remainder cases of Theorem 1.4
are analogous and we prove them in Appendix.

Appendix

In this section, we give the details of other cases of Theorem 1.4.
Case 1. n is even. It suffices to give upper bound of e(G∗

2) as e(G∗
1) =

3n/2. Note that |Vi+1| ≥ |Vi| + 2 for i ∈ [3]. Thus, we have |V1| ≤ n/4 − 3.
Subcase 1.1. n = 8k + 2. In this case, we have |V1| ≤ 2k − 4. If |V1| ≤

2k − 6, then

e(G∗
2) =

∑
1≤i<j≤4

|Vi||Vj | ≤ |V1|(n− |V1|) + (n− |V1|)2
3 ≤ t4(n) − 28.

Suppose |V1| = 2k − 4. It follows from |Vi+1| ≥ |Vi| + 2 that |V2| ≤ 2k. If
|V2| = 2k− 2, then e(G∗

2) = e(K2k−4,2k−2,2k+4,2k+4) = t4(n)− 25. If |V2| = 2k,
then e(G∗

2) = e(K2k−4,2k,2k+2,2k+4) = t4(n) − 17.
Subcase 1.2. n = 8k + 4. In this case, we have |V1| ≤ 2k − 2. If |V1| ≤

2k − 4, then

e(G∗
2) ≤ |V1|(n− |V1|) + (n− |V1|)2

3 ≤ t4(n) − 18.



Singular Turán numbers of stars 2615

Suppose |V1| = 2k − 2. It follows from |Vi+1| ≥ |Vi| + 2 that |V2| = 2k. Thus,
e(G∗

2) = e(K2k−2,2k,2k+2,2k+4) = t4(n) − 10.
Subcase 1.3. n = 8k + 6. In this case, we have |V1| ≤ 2k − 2. If |V1| ≤

2k − 4, then

e(G∗
2) ≤ |V1|(n− |V1|) + (n− |V1|)2

3 ≤ t4(n) − 20.

Suppose |V1| = 2k − 2. It follows from |Vi+1| ≥ |Vi| + 2 that |V2| = 2k. Thus,
e(G∗

2) = e(K2k−2,2k,2k+2,2k+6) = t4(n) − 17.
Case 2. n is odd. Since there is exactly one part Vt with odd number of

vertices for some t ∈ [4], we have

e(G∗
1) = 2|Vt|

2 + 3(n− |Vt|)
2 = 3n− |Vt|

2 .

For t ∈ [3], we have |Vt+1| − |Vt| ≥ 3, and then

|V4| ≥ |V3| + 2 ≥ |V2| + 4 ≥ |V1| + 7, for t = 1;(25)
|V4| ≥ |V3| + 2 ≥ |V2| + 5 ≥ |V1| + 6, for t = 2;(26)
|V4| ≥ |V3| + 3 ≥ |V2| + 4 ≥ |V1| + 6, for t = 3;(27)
|V4| ≥ |V3| + 1 ≥ |V2| + 3 ≥ |V1| + 5, for t = 4.(28)

Subcase 2.1. n = 8k + 1 and t ∈ {2, 3, 4}. In this case, we have |V1| ≤
2k − 4 by (26), (27) and (28). If |V1| ≤ 2k − 6, then

e(G∗) ≤ 3n− |Vt|
2 + |V1|(n− |V1|) + t3(n− |V1|) ≤

11
8 n + t4(n) − 187

8 ,

where the last inequality follows from |Vt| > |V1|. Thus, |V1| = 2k − 4.
For t = 2, it follows from (26) that |V2| ≤ 2k − 1. Then

e(G∗) ≤
{3n−|V2|

2 + e(K2k−4,2k−3,2k+2,2k+6) = 11
8 n + t4(n) − 243

8 ,
3n−|V2|

2 + e(K2k−4,2k−1,2k+2,2k+4) = 11
8 n + t4(n) − 139

8 .

For t = 3, it follows from (27) that |V2| ≤ 2k. Then

e(G∗) ≤
{3n−|V3|

2 + e(K2k−4,2k−2,2k+1,2k+6) = 11
8 n + t4(n) − 227

8 ,
3n−|V3|

2 + e(K2k−4,2k,2k+1,2k+4) = 11
8 n + t4(n) − 131

8 .
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For t = 4, it follows from (28) that |V2| ≤ 2k. Then

e(G∗) ≤
{3n−|V4|

2 + e(K2k−4,2k−2,2k+2,2k+5) = 11
8 n + t4(n) − 211

8 ,
3n−|V4|

2 + e(K2k−4,2k,2k+2,2k+3) = 11
8 n + t4(n) − 123

8 .

Subcase 2.2. n = 8k + 1 and t = 1. In this case, we have |V1| ≤ 2k − 3
by (25). If |V1| ≤ 2k − 5, then

e(G∗) ≤ 3n− |V1|
2 + |V1|(n− |V1|) + (n− |V1|)2

3 ≤ 11
8 n + t4(n) − 153

8 .

Thus, |V1| = 2k − 3. It follows from (25) that |V2| = 2k. Thus,

e(G∗) ≤

⎧⎪⎪⎨
⎪⎪⎩

3n−|V1|
2 + e(K2k−3,2k,2k+2,2k+4) = 11

8 n + t4(n) − 89
8 , n = 8k + 3,

3n−|V1|
2 + e(K2k−3,2k,2k+2,2k+6) = 11

8 n + t4(n) − 151
8 , n = 8k + 5,

3n−|V1|
2 + e(K2k−3,2k,2k+4,2k+6) = 11

8 n + t4(n) − 165
8 , n = 8k + 7.

Subcase 2.3. n = 8k + 1 and t ∈ {2, 3, 4}. In this case, we have |V1| ≤
2k − 2 by (26), (27) and (28). If |V1| ≤ 2k − 4, then

e(G∗) ≤ 3n− |Vt|
2 + |V1|(n− |V1|) + (n− |V1|)2

3 ≤ 11
8 n + t4(n) − 105

8 .

where the last inequality follows from |Vt| > |V1|. Thus, |V1| = 2k − 2.
For t = 2, it follows from (26) that |V2| = 2k − 1. Thus,

e(G∗) ≤

⎧⎪⎪⎨
⎪⎪⎩

3n−|V2|
2 + e(K2k−2,2k−1,2k+2,2k+4) = 11

8 n + t4(n) − 81
8 , n = 8k + 3,

3n−|V2|
2 + e(K2k−2,2k−1,2k+2,2k+6) = 11

8 n + t4(n) − 143
8 , n = 8k + 5,

3n−|V2|
2 + e(K2k−2,2k−1,2k+4,2k+6) = 11

8 n + t4(n) − 165
8 , n = 8k + 7.

For t = 3, it follows from (27) that |V2| = 2k. Thus,

e(G∗) ≤

⎧⎪⎪⎨
⎪⎪⎩

3n−|V3|
2 + e(K2k−2,2k,2k+1,2k+4) = 11

8 n + t4(n) − 73
8 , n = 8k + 3,

3n−|V3|
2 + e(K2k−2,2k,2k+1,2k+6) = 11

8 n + t4(n) − 135
8 , n = 8k + 5,

3n−|V3|
2 + e(K2k−2,2k,2k+3,2k+6) = 11

8 n + t4(n) − 149
8 , n = 8k + 7.

For t = 4, it follows from (28) that |V2| = 2k. Thus,

e(G∗) ≤

⎧⎪⎪⎨
⎪⎪⎩

3n−|V4|
2 + e(K2k−2,2k,2k+2,2k+3) = 11

8 n + t4(n) − 65
8 , n = 8k + 3,

3n−|V4|
2 + e(K2k−2,2k,2k+2,2k+5) = 11

8 n + t4(n) − 119
8 , n = 8k + 5,

3n−|V4|
2 + e(K2k−2,2k,2k+4,2k+5) = 11

8 n + t4(n) − 141
8 , n = 8k + 7.
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It is easy to check that the maximum value of e(G∗) is achieved when
t = 4.
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