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On the generalized shuffle-exchange problem∗

Xiaoming Sun, Yuan Sun, Kewen Wu, and Zhiyu Xia

Abstract: We investigate the shuffle-exchange problem in this pa-
per: given a permutation π on [n]×[m] and two permutation groups
G on [n] and H on [m], the goal is to generate π by alternately
using the following two types of operations:

• Select g1, g2, . . . , gm ∈ G and perform each gi on the i-th
column of [n] × [m] in parallel;

• Select h1, h2, . . . , hn ∈ H and perform each hj on the j-th
row of [n] × [m] in parallel.

We discuss the shuffle-exchange, i.e., the composition of these al-
lowable operations, from the perspective of the Cayley graph.

For cases where the base groups G and H are both cyclic groups,
we prove that the diameter of the underlying Cayley graph, i.e.,
the minimum number of steps sufficient to achieve any permuta-
tion, is upper bounded by O (min {n + m,n logm,m logn}), which
is asymptotically optimal when min{n,m} = O(1) or n = Θ(m).
The main idea is to simulate the shuffle-exchange over symmetric
groups with cyclic operations and further accelerate the process
with the low-depth periodic switching network. For the shuffle-
exchange over general groups, we characterize the reachability of
any two given vertices on the Cayley graph, and prove the min-
imum number of steps to achieve a permutation, if possible, is
O(nm). This implies that though a connected component of the
Cayley graph could contain exponential number of vertices, its di-
ameter is only at most a polynomial of n,m.

1. Introduction

Given a group G with its generator set S, Cayley graph [6] Γ(G,S) is defined
as an undirected simple graph Γ(G,S) = (V,A): the vertex set V is G, and the
edge set gathers all S-reachable pair {x, y}, for which there exists g ∈ G such
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that y = g ◦ x. Numerous specific Cayley graphs [6], defined to rigorously
model puzzles and games [10], have been studied from the perspective of
both graph theory [6, 16] and computational group theory [1, 11, 12, 20]. The
research on the Cayley graph usually focuses on the following two problems
[1, 11]:

• Reachability. This asks if there exists a path between a given pair
of vertices.

• Diameter. This asks for the longest distance between two (reachable)
vertices.

One natural example is that of the shuffle-exchange, which finds applica-
tions in switching network theory, parallel processing, sorting networks, etc
[3, 4, 13]. The shuffle-exchange is a composition of permutations selected from
generator sets SESS[n],S[m] . The shuffle-exchange set, i.e., SESS[n],S[m] , gathers
all possible permutations π constructed in one of the following ways:

• Row-permutations. Choose τ1, τ2, . . . , τn ∈ S[m] and construct π =∏n
i=1 τ

row-i
i ;

• Col-permutations. Choose σ1, σ2, . . . , σm ∈ S[n] and construct π =∏m
j=1 σ

col-j
j .

Permutations in SESS[n],S[m] permute elements on each row (or each column)
simultaneously. Putting it differently, we have SESS[n],S[m] = SES{id},S[m] ∪
SESS[n],{id} where SES{id},S[m] and SESS[n],{id} gather the row-permutations and
col-permutations respectively. Note that SES{id},S[m] and SESS[n],{id} are sub-
groups of S[n]×[m]. Thus, without loss of generality, we treat a shuffle-exchange
as a process where row-permutations and col-permutations are performed in
an alternative fashion. We say a shuffle-exchange is of k-norm if it is a com-
position of k permutations selected from the shuffle-exchange set SESS[n],S[m] .
For a given permutation π ∈ S[n]×[m], we say π is of k-norm, denoted by
SENS[n],S[m](π) = k, if no (k − 1)-norm shuffle-exchange can achieve π.

It is known [13] that the whole graph is connected (i.e., 〈SESS[n],S[m]〉 =
S[n]×[m]). Meanwhile, the diameter of the shuffle-exchange Cayley graph is 3
(i.e., maxσ SENS[n],S[m](σ) = 3). Moreover, the shortest path between any two
vertices (i.e., the shuffle-exchange achieving given π) can be computed effi-
ciently. These results are also called 2-dimensional Shuffle Exchange Problem.

Based on this, one expanding direction is to think about high dimension,
which leads to the well-known conjecture Shuffle Exchange Conjecture [4]
with many applications in switching network design. In this paper, we focus
on another expanding version of this problem on dimension 2, which is an
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independent new problem. We investigate a generalized version of the shuffle-
exchange, where the base group S[n],S[m] are replaced with general groups
G,H. One natural example is the cyclic shuffle-exchange that represents the
weakest transitive groups. The cyclic group Cn (resp., Cm) only allows row
(resp., column) shifts. See Figure 1 as an example.

Figure 1: Sort numbers in a matrix via a cyclic shuffle-exchange.

Based on the cyclic shuffle-exchange, the Loopover is a puzzle aiming to
sort a disordered grid (See Figure 1) [17]. In each step, the player can select
one row/column and then shift it. It is not hard to provide an O(n2)-step
solution for an n×n Loopover instance. This is indeed essentially optimal by
a straightforward counting argument. In the following sections, we will give
an O(n)-norm cyclic shuffle-exchange solution, which implies the same upper
bound.

Main Results. For the k-dimension shuffle-exchange over symmetric groups,
we show:

• Diameter. For all positive integers k and n, permutations in S[n]k
can be achieved by a (2k − 1)-norm k-dimension shuffle-exchange over
symmetric groups.

For the shuffle-exchange over cyclic permutations groups, we show:

• Reachability. If either n or m is even, then cyclic shuffle-exchange
can achieve all permutations. Otherwise, a cyclic shuffle-exchange can
and only can achieve all even permutations.

• Diameter. Define d(n,m) = min {n + m,n logm,m log n}. Any even
permutation can be achieved by an O(d(n,m))-norm cyclic shuffle-
exchange. Furthermore, when n or m is even, any odd permutation
can also achieved by an O(d(n,m))-norm cyclic shuffle-exchange.

For the shuffle-exchange over general group G,H, we show:

• Connectivity. Assume integers n,m ≥ 2. 〈SESG,H〉 = S[n]×[m] if and
only if G,H are transitive and G or H includes an odd permutation.
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• Diameter. All achievable permutation can be achieved by an O(nm)-
norm (G,H)-shuffle-exchange.

Related works. The general study of Cayley graph problem has a long
history. Cayley graph was first introduced by Cayley [6], which represents
a group by a directed graph. The motivation is to study the relationship
between a group and its generating sets. See survey [14]. A natural problem
on this topic is that given G and one of its generator sets S, how long the
diameter of the Cayley graph is. This is widely studied in the language of
computational group theory [1, 11].

For special cases of the Cayley graph diameter problem, there are many
intriguing results in puzzles and games [10]. The phrase “God’s number”
represents the diameter of the Cayley graph of the 3-level Rubik’s Cube

Puzzle, which is shown to be 20 [19]. After that, several works focused on
properties of n-level Rubik’s Cube Puzzle [7, 8]. Another interesting puzzle
closely related to Cayley graph is (n2 − 1)-puzzle [18].

Another special case of Cayley graph diameter problem is Shuffle Ex-
change Conjecture [4]. Given a permutation, the aim is to rearrange it by a
switching network with specific ordered layers. [5] gave a proof for this con-
jecture, but later [2] showed the proof is incomplete. Researchers also focus
on permutation rearrangement by switching networks [9, 15].

Organization. In Section 2, we give formal definitions and notations, and in-
troduce the diameter result of the shuffle-exchange over symmetric groups. In
Section 3, we extend it to the k-dimension shuffle-exchange and upper-bound
the diameter, which also leads to a low-depth periodic switching network. In
Section 4, we study a specific case, the cyclic shuffle-exchange. In Section 5, we
investigate the general case, where the shuffle-exchange is based on arbitrary
groups. In Section 6, we summarize this paper and list further directions.

2. Preliminaries

For integers n and m, [n] denotes {1, 2, . . . , n} and [n,m] denotes {n, n +
1, . . . ,m}. Notation +n is defined as a looping operator where a +n b equals
to the unique integer in [n] equivalent to a + b modulo n, and −n is defined
similarly.

Permutation groups. In this paper, ST denotes the symmetric group over
set T and AT denotes the alternating group over T . In the following content,
we use expression

∏� to compose several pair-wise commutative permuta-
tions. The commutativity may be sometimes not noted, when it is obvious in
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context. For non-commutative permutations, we use expression �◦�◦ · · · ◦�
instead. For a subset S ⊆ ST , 〈S〉 ≤ ST denotes the group generated by the
elements in S.

Define idT as the identity in ST . Define ( t−→)n ∈ S[n] as the t-spanning shift
over [n] s.t. ( t−→)n(x) = x+nt for all x ∈ [n]. Cn denotes the cyclic permutation
group, which gathers all ( t−→)n for t ∈ [0, n − 1]. Note that Cn ≤ A[n] for
all odd n. Define (x ↔ y)T ∈ ST as the swap of x, y in T . For notations
idT , ( t−→)n, (x ↔ y)T , the subscripts n, T may be omitted when they are clear
in context. Given a partition P of a set T , i.e. a set of pair-wise disjoint
subset from T whose union equals to T , define P-invariant permutation group
SPT ≤ ST as SPT := {σ ∈ ST | σ(P ) = P for all P ∈ P}. Furthermore, for
permutation σ ∈ SPT and subset P ∈ P, define σP ∈ SP as σP (p) = σ(p) for
all p ∈ P , when the universal set T and the partition P are fixed in context.
Given group G ≤ ST , define the orbit of x ∈ T over G as {g(x) | g ∈ G}.
Define an equivalence relation ∼ where for x, y ∈ T , x ∼ y if and only if their
orbits are the same one. The relation partitions T into several subsets, called
a family of orbits for G or the orbits of G, denoted as T/G. Note that for
group G with orbits P, G ≤ SPT holds.

Given i ∈ [n] and σ ∈ S[m], define σrow-i ∈ S[n]×[m] as σrow-i(x, y) =
(x, σ(y)) if x = i, and σrow-i(x, y) = (x, y) otherwise. Similarly, define πcol-j ∈
S[n]×[m] for j ∈ [m] and π ∈ S[n]. Formally, σrow-i and πcol-i equal to id{i} ⊗ σ
and π ⊗ id{j} respectively.

Shuffle-exchange. Given G ≤ S[n], H ≤ S[m], define the (G,H)-shuffle-
exchange permutation set SESG,H ⊂ S[n]×[m] over G,H as

SESG,H :=
{∏

i∈[n] σ
row-i
i | σ1, . . . , σn ∈ H

}
∪
{∏

j∈[m] π
col-j
j | π1, . . . , πm ∈ G

}
.

Note that in the most case, SESG,H is not a subgroup, but a subset of S[n]×[m]
since it may not be close for composing. Actually, SESG,H can be treated as an
union of 2 subgroups SES{id},H , SESG,{id}. For integer k and π1, π2, . . . , πk ∈
SESG,H , we say πk ◦ . . . ◦ π2 ◦ π1 is a k-norm (G,H)-shuffle-exchange. For
π ∈ 〈SESG,H〉, define the (G,H)-shuffle-exchange norm SENG,H(π) as the
minimum integer k satisfying there exists a k-norm (G,H)-shuffle-exchange
achieving π. Besides, for S ⊆ 〈SESG,H〉, define

SENG,H(S) := max
π∈S

SENG,H(π).

In group theory, SENG,H(·) is also called word norm with respect to SESG,H ,
with the following properties:
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• identity of indiscernibles: SENG,H(σ) = 0 if and only if σ = id;
• symmetry: for all σ, SENG,H(σ) = SENG,H(σ−1);
• triangle inequality: for all σ, π, SENG,H(π◦σ) ≤ SENG,H(σ)+SENG,H(π).

Furthermore, we list some other properties of SENG,H(·):
• partial order : if G′ ≤ G and H ′ ≤ H, SENG,H(σ) ≤ SENG′,H′(σ);
• transitivity: for all permutation σ and group G,G′, H,H ′,

SENG,H(σ) ≤ SENG′,H′(σ) · SENG,H(SESG′,H′).

Shuffle-exchange over symmetric groups. In order to make the pa-
per self-contained, we first show how to achieve an arbitrary permutation
in S[n]×[m] with a 3-norm (S[n],S[m])-shuffle-exchange, which is given by [13].

Theorem 1. SENS[n],S[m]

(
S[n]×[m]

)
≤ 3.

Proof. Let σ ∈ S[n]×[m]. Assume σ(i, j) = (i′, j′) for all (i, j) ∈ [n] × [m].
Construct a bipartite multigraph G = (U ∪ V,E, r) first, with the vertex sets
U = {u1, u2, ..., un}, V = {v1, v2, ..., vn}, the edge set E = [n] × [m] and the
edge identifier r : E → U×V defined as for (i, j) ∈ [n]×[m], r(i, j) = (ui, vi′).

For all ui ∈ U , degG(ui) equals to m, the number of elements in [n]× [m]
permuted to row i by σ. Besides, for all vi ∈ V , degG(vi) also equals to
m, the number of elements in a row. So, G is a regular bipartite graph and
Hall’s theorem says there exists a family of perfect matchings M, a partition
M1 �M2 � · · · �Mm = E such that for all subset Mi, every distinct e1, e2 in
Mi do not share endpoints, i.e. both the first and the second components of
r(e1) and r(e2) are different respectively.

Figure 2: An example of σ ∈ S[n]×[m], and its corresponding bipartite multi-
graph. Notice that there exists a multiple edge from u1 to v2.

Next we give the achieving shuffle-exchange π3 ◦ π2 ◦ π1, where π1 =∏n
i=1 π

row-i
1,i , π2 =

∏m
i=1 π

col-i
2,i and π3 =

∏n
i=1 π

row-i
3,i . For all (i, j) ∈ [n] × [m]
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with (i, j) contained in Mt, let

π1,i(j) = t π2,t(i) = i′, and π3,i′(t) = j′.

First, we will show they are well-defined permutations in S[n] and S[m].

• Note that the definition says all π1,i for i ∈ [n] is defined and the
preimage set of these π1,i is [m]. Besides, different j1, j2 must be mapped
to different images by all π1,i, otherwise (i, j1), (i, j2) would be contained
in the same Mt with a shared endpoint ui, which conflicts with that Mt

is a matching. So, π1,1, π1,2, . . . , π1,n are well-defined permutations in
S[m].

• For all t ∈ [m], since a pair with some i as the first component ap-
pears in Mt for exactly one time, π2,t is defined with the preimage
set of [n]. The fact that Mt is a matching, i.e. different vertices in U
is linked with different vertices in V , ensures π2,t is also an injection.
Thus, π2,1, π2,2, . . . , π2,m are well-defined permutations in S[n].

• For all t ∈ [m], pair p with the second component of r(p) for some
i′ appears in Mt for exactly one time, which implies that all π3,i′ for
i′ ∈ [n] is defined, with the preimage set of [m]. For some fixed i′ and
distinct t1, t2, let p1 ∈ Mt1 , p2 ∈ Mt2 satisfying the second components
of r(p1), r(p2) are i′. Note such p1, p2 are unique. Since p1 �= p2 are
permuted to the same row by σ, they must be permuted to different
columns, which implies π3,i′ is an injection. So, π3,1, π3,2, . . . , π3,n are
well-defined permutations in S[m].

Second, it is easy to show σ = π3 ◦ π2 ◦ π1 via tracing all elements in
[n] × [m], for example (i, j) with t, (i′, j′) defined as above:

(i, j) π1−→ (i, t) π2−→ (i′, t) π3−→ (i′, j′) = σ(i, j)

3. k-dimension shuffle-exchange over symmetric groups

We can extend shuffle-exchanges to a k-dimension version, (Gdim-k)-shuffle-
exchanges, with the base set SESk-dim

S[n]
⊆ S[n]k defined as follows. See Figure 3

from examples.

SESk-dim
S[n]

=
k⋃

i=1
S
{{j1}×···×{ji−1}×[n]×{ji+1}×···×{jk}|j1,...,ji−1,ji+1,...,jk∈[n]}
[n]k
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Figure 3: 3 types of permutations in SES3-dim
S[4]

.

Besides, define the (Gdim-k)-shuffle-exchange norm SENk-dim
S[n]

for permutations
and sets similarly as that in above text. Note that Theorem 1 can be natu-
rally generalized to that SENSS ,ST (SS×T ) ≤ 3, which directly upper-bounds
SENk-dim

S[n]
(S[n]k).

Theorem 2. SENk-dim
S[n]

(S[n]k) ≤ 2k − 1.

Proof. By induction, assume SENk-dim
S[n]

(S[n]k) ≤ 2k−1 for some k ≥ 2. For the
case on k + 1, given π ∈ S[n]k , construct π′ ∈ S[n]×[nk] via arbitrary bijection
η between [n]k and [nk] as

π′(i, j) := (π(i, η(j))1, η−1(π(i, η(j))2, π(i, η(j))3, . . . , π(i, η(j))k+1))

for all (i, j) ∈ [n] × [nk]. Theorem 1 says there exist π′
1, π

′
3 ∈ SESS[n],{id} and

π′
2 ∈ SES{id},S[nk ]

such that π′ = π′
3 ◦ π′

2 ◦ π′
1. Back to S[n]k and construct

π1, π2, π3 ∈ S[n]k where for all i ∈ [n], j ∈ [n]k,

π�(i, j) = (π′
�(i, η−1(j))1, η(π′

�(i, η−1(j)))).

It is easy to verify that π = π3 ◦π2 ◦π1. Furthermore, π′
1, π

′
3 ∈ SESS[n],{id} and

π′
2 ∈ SES{id},S[nk ]

imply that π1, π3 ∈ SESS[n],{id[n]k} and π2 ∈ SES{id[n]},S[n]k
.

So, we have

SEN(k+1)-dim
S[n]

(S[n]k+1) ≤ 2 · SEN(k+1)-dim
S[n]

(SESS[n],{id[n]k}) + SEN(k+1)-dim
S[n]

(SES{id[n]},S[n]k
).

Note that SESS[n],{id[n]k} ⊆ SES(k+1)-dim
S[n]

. Thus SEN(k+1)-dim
S[n]

(SESS[n],{id[n]k}) =
1. Besides, we will prove that SEN(k+1)-dim

S[n]
(SES{id[n]},S[n]k

) ≤ SENk-dim
S[n]

(S[n]k)
holds. Let t = SENk-dim

S[n]
(S[n]k). For π ∈ SES{id[n]},S[n]k

with π =
⊕n

i=1 id{i}⊗πi

where π1, π2, . . . , πn ∈ S[n]k , there exists πi,1, πi,2, . . . , πi,t ∈ SESk-dim
S[n] such
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that πi = πi,t ◦ . . . ◦ πi,2 ◦ πi,1 for all i ∈ [n]. Thus, we have

π =
n⊕

i=1
id{i} ⊗ πi,t ◦ · · · ◦ πi,2 ◦ πi,1

=
(

n⊕
i=1

id{i} ⊗ πi,t

)
◦ · · · ◦

(
n⊕

i=1
id{i} ⊗ πi,2

)
◦
(

n⊕
i=1

id{i} ⊗ πi,t

)
.

Since
⊕n

i=1 id{i} ⊗ πi,j ∈ SES(k+1)-dim
S[n]

for all j ∈ [k],

SEN(k+1)-dim
S[n]

(SES{id[n]},S[n]k
) ≤ t.

Combining the induction assumption, we prove SEN(k+1)-dim
S[n]

(S[n]k+1) ≤
2k + 1, which closes the induction and finishes the proof.

Theorem 2 further implies an interesting result, which is equivalent to a
low-depth periodic switching network investigated in [4]. It is also a key tool
to prove some other results in this paper.

Lemma 1. Given an integer n, let N = 2n. For all σ ∈ S[N ], there exist
integers s1, s2, . . . , s2n−1 and sets T1, T2, . . . , T2n−1 ⊆ [N ] satisfying

• t1, t2, t1 + si, t2 + si are distinct for all distinct t1, t2 ∈ Tj;
• and σ =

∏2n−1
i=1

(∏
t∈Ti

(t ↔ (t + si))
)
.

Proof. First, we build a mapping η : [2]n → [N ] such that η(x) =
∑n

i=1(xi −
1)2i−1 + 1. It is trivial to verify that η is a bijection. (η−1(·) could be treated
as somehow a binary representation of integers. To keep the consistency of
notations, we assume it is between [2]n and [N ], although it may be more
standard to define it between [0, N−1] and {0, 1}n.) Let π be the permutation
in S[2]n obtained by σ with η conjugated, i.e. π = η−1 ◦ σ ◦ η. Note that
Theorem 2 says SESn-dim

S[2]
(π) ≤ 2n− 1 by a shuffle-exchange π = π2n−1 ◦ · · · ◦

π2 ◦ π1. Thus, σ can decomposed as

σ = η ◦ π ◦ η−1

= η ◦ π2n−1 ◦ · · · ◦ π2 ◦ π1 ◦ η−1

= (η ◦ π2n−1 ◦ η−1) ◦ · · · ◦ (η ◦ π2 ◦ η−1) ◦ (η ◦ π1 ◦ η−1)

Consider some term (η ◦ πi ◦ η−1), denoted as σi, for example. Assume πi ∈
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S
{{j}−ki

×[2]|j−ki
∈[2]}

[2]n holds1 for all i ∈ [2n − 1] since πi ∈ SESn-dim
S[2]

. Thus, σi
can be decomposed as

σi =
∏

j−ki
∈[2]

η ◦
(
(πi){j−ki

}×[2] ⊕ id{j−ki
}×[2]

)
◦ η−1.

Note that for all j−ki ∈ [2], η◦
(
(πi){j}−ki

×[2] ⊕ id{j}−ki
×[2]

)
◦η−1 is either id or

(η(j−ki , 1) ↔ η(j−ki , 2)) since |{j}−ki × [2]| = 2. Furthermore, the definition
of η says that η(j−ki , 2) − η(j−ki , 1) = 2ki−1 always holds. To summarize,
for all i ∈ [2n − 1], let si = 2ki−1 and Ti ⊆ [N ] gather all η(j−ki , 1) for all
j−ki ∈ [2] satisfying (πi){j−ki

×[2]} �= id. (si, Ti)i∈[2n−1] satisfies the conditions
and finishes the proof.

Lemma 1 constructs a “(2 log2(N) − 1)-depth” swap decomposition of
π ∈ S[N ] when N is a power of 2. Actually, it can be extended to a construction
for general N , with loss of a constant fact on the depth. Note that on any
continuous range from [N ] with the length of a power of 2, Lemma 1 ensures
that any permutations can be achieved with the depth of O(log(N)). It is
easy to see that constant number of appropriate “sub-permutations” achieve
arbitrary σ ∈ S[N ], which leads to the following corollary.

Corollary 1. Given an integer n, for all π ∈ S[n], there exist � = O(log n),
s1, s2, . . . , s� and sets T1, T2, . . . , T� ⊆ [n] satisfying

• t1, t2, t1 + si, t2 + si are distinct for all distinct t1, t2 ∈ Ti for i ∈ [�],
• and π =

∏�
i=1

(∏
t∈Ti

(t ↔ (t + si))
)
.

4. Shuffle-exchange over cyclic permutation groups

In this section, we focus on the shuffle-exchanges over cyclic permutation
groups. A straightforward parity analysis says an odd permutation in S[n]×[m]
cannot be achieved by a (Cn,Cm)-shuffle-exchange with odd n,m.

Fact 1. If n and m are odd, σ �∈ 〈SESCn,Cm〉 for all σ ∈ S[n]×[m] \ A[n]×[m].

In the other cases, we can upper-bound the shuffle-exchange norm as the
following theorems say.

1We simplify expressions [a1, . . . , ai−1, ai+1, . . . , a�], [a1, . . . , ai−1, t, ai+1, . . . , a�]
and [{a1}×· · ·×{ai−1}×T ×{ai+1}×· · ·×{a�}] with [a−i], [a−i, t] and [{a}−i×T ]
respectively, when the number � is clear in context. Here, symbols a, i, t, T can be
arbitrary.
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Theorem 3. If n or m is even,

SENCn,Cm

(
S[n]×[m]

)
= O(min(n + m,n logm,m log n)).

Theorem 4. SENCn,Cm

(
A[n]×[m]

)
= O(min(n + m,n logm,m log n)).

The main idea to decompose a given permutation σ is to decompose it first
into a (S[n], S[m])-shuffle-exchange, which allows rows or columns permuted
arbitrarily instead of cyclically. Theorem 1 shows that to achieve an arbitrary
permutation, a 3-norm shuffle-exchange is sufficient (no matter the parity of
n,m or the target permutation). Thus, our task is converted to design cyclic
shuffle-exchanges achieving permutations in SESS[n],S[m] . For the case where
n or m is even first, the methods to achieve SES{id},S[m] are summarized as
follows:

m is even O(m)-norm by Corollary 2
O(n logm)-norm by Corollary 3

n is even O(m + logn)-norm by Corollary 4
O(n logm)-norm by Corollary 5

Note that SESS[n],{id} can be achieved in the same way. Thus, there are 3
ways to achieve a constant S[n] × S[m] shuffle-exchange, which leads to Theo-
rem 3:

• O(m)-norm for SES{id},S[m] , O(n + logm)-norm for SESS[n],{id}
⇒ O(n + m)-norm;

• O(n logm)-norm for SES{id},S[m] , O(n + logm)-norm for SESS[n],{id}
⇒ O(n logm)-norm;

• O(m)-norm for SES{id},S[m] , O(m log n)-norm for SESS[n],{id}
⇒ O(m log n)-norm.

The basic idea to handle the cases with odd n,m is similar, which is
described in Subsection 4.3.

4.1. Cases with even m

Our methods are based on the following observation. As that shown in Fig-
ure 4, a cyclic shuffle-exchange “ 1 2 1 2 1 ” achieves an swap between K

and R.
The strategy in Figure 4, called the basic strategy in the following text, is

a starting point of our shuffle-exchange design. Obverse that:
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Figure 4: Swap K and R via a cyclic shuffle-exchange.

• Via a similar shuffle-exchange, any swap in row-1 can be achieved ac-
tually, with a pair of conjugate shifts to move the target piece to the
column-1 first and “undo” the shift in the end, if necessary. For example,
“ 1 1 1 1 1 1 1 ” swaps K and R.

• Besides achieving a swap in row-1, the shuffle-exchange also rotates
column-1 (excluding the first position) from 123 to 231.

• “ 1 2 1 2 1 ” actually does the same thing in row-1, while rotates
123 reversely to 231.

To achieve a permutation on a single row, for example row-1, we decompose it
O(m) swaps. The key idea is that a pair of swaps can be achieved via the basic
strategy, with opposite direction to rotate column-1, which cancels the change
on column-1. This observation directly implies SES{id},A[m] can be achieved by
a cyclic shuffle-exchange, i.e., SES{id},A[m] ≤ 〈SENCn,Cm〉. However, a trivial
method requires to achieve the n permutations row by row, and achieve at
most m pairs of swaps for each one of them, which leads to a O(nm)-norm
cyclic shuffle-exchange.

We will introduce two different parallelizing tricks to reduce the norm
down to O(n + m) and O(n logm) respectively. The first way is to achieve
permutations on non-adjacent rows in parallel. The trick is that τ1, τ2, . . . , τk
can be achieved in parallel by a 5-norm cyclic shuffle-exchange, where each
permutation swaps 2 positions in the same row and the rows for them are
distinct and pair-wise non-adjacent. In fact, it is just a simple variant of the
basic strategy, with the only difference that all target rows is shifted while
just row-1 shifted originally at step 2 and step 4.

Lemma 2. SENCn,Cm

(
SES{id},A[m]

)
= O(m).

Proof. Divide [n] into [n] = U�V �W such that i and i+n1 are not contained
in the same subset for all i ∈ [n]. Decompose σ into σ = σU ◦ σV ◦ σW where
σU :=

∏
i∈U (σi)row-i, and σV , σW are defined in the same way. Consider σU

as an example. Note that every permutation in A[m] can be decomposed into
2m swaps. Assume σi = (ji,2m ↔ ki,2m) ◦ · · · ◦ (ji,1 ↔ ki,1) for all i ∈ [n].
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Then, we claim σU = τ2m ◦ τ2m−1 ◦ · · · ◦ τ1 where for all t ∈ [2m], τt ∈ S[n]×[m],
satisfying SENCn,Cm(τt) = O(1), is defined as

τt :=
∏
i∈U

(
ji,t − 1
−−−−→

)row-i
◦
(
(−1)t
−−−→

)col-1
◦
∏
i∈U

(
ki,t − ji,t−−−−−−→

)row-i
◦
(
(−1)t+1

−−−−−→

)col-1
◦

∏
i∈U

(
ji,t − ki,t−−−−−−→

)row-i
◦
(
(−1)t
−−−→

)col-1
◦
∏
i∈U

(
1 − ji,t−−−−→

)row-i
.

First, τ2m ◦· · ·◦τ1 achieves (σi)row-i for all i ∈ U , i.e., σU (p) = τ2m ◦· · ·◦τ1(p)
for any position p on some row-i where i ∈ U . It can be proved by showing
τt achieves (ji,t ↔ ki,t)row-i for all i ∈ U .

• Let p = (i, j) be a position on row-i which is not (i, ji,t) or (i, ki,t). Note
that (i, j +m 1 −m ji,t) and (i, j +m 1 −m ki,t) are not on col-1. Thus,

τt(p) =
∏
i∈U

(
ji,t − 1
−−−−→

)row-i
◦
∏
i∈U

(
ki,t − ji,t−−−−−→

)row-i
◦

∏
i∈U

(
ji,t − ki,t−−−−−→

)row-i
◦
∏
i∈U

(
1 − ji,t−−−−→

)row-i
(p) = p.

• Without loss of generality, assume t is even. Note that i+n 1 and i−n 1
are not in U . Trace (i, ji,t) and (i, ki,t) during τt:

(i, ji,t) → (i, 1) → (i +n 1, 1) → (i +n 1, 1) → (i, 1) → (i, 1 +m ki,t −m ji,t)
→ (i, 1 +m ki,t −m ji,t) → (i, ki,t)

(i, ki,t) → (i, ki,t +m 1 −m ji,t) → (i, ki,t +m 1 −m ji,t) → (i, 1) → (i−n 1, 1)
→ (i−n 1, 1) → (i, 1) → (i, ji,t)

Second, if p is not on any row-i where i ∈ U , τ2m ◦ · · · ◦ τ1 keeps p invariant.
Specifically, if p is not on col-1, it keeps invariant obviously. Besides, it is easy
to check the following fact for all i ∈ [n] \ U :

τt(i, 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i +n 1, 1) if t is odd and i +n 1 �∈ U ,
(i−n 1, 1) if t is even and i−n 1 �∈ U ,
(i +n 2, 1) if t is odd and i +n 1 ∈ U ,
(i−n 2, 1) if t is even and i−n 1 ∈ U .

Combining the property of U , that j ∈ U implies j +n 1, j −n 1 �∈ U , we
have that τt+1 ◦ τt(i, 1) = (i, 1) for all even t and i ∈ [n] \ U , and that τ2m ◦
· · · ◦ τ1 also keeps such (i, 1) invariant. Thus, SENCn,Cm(σU ), SENCn,Cm(σV ),
SENCn,Cm(σW ) are O(m), which implies SENCn,Cm(σ) = O(m) as the result.
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Corollary 2. If m is even, SENCn,Cm

(
SES{id},S[m]

)
= O(m).

Proof. Let σ be an arbitrary permutation in SES{id},S[m] which can be repre-
sented as a composition of permutations on each row, i.e., σ =

∏
i∈[n] σ

row-i
i

where σi ∈ S[m] for all i ∈ [n]. Construct π =
∏

i∈[n] π
row-i
i ∈ SES{id},Cm

satisfying πi := ( 1−→) if σi is odd, and πi = id otherwise. Since m is even
and ( 1−→) is an odd permutation, σ′ := π ◦ σ is in SES{id},A[m] . Lemma 2 says
SENCn,Cm(σ′) = O(m). Note that σ = π−1 ◦ σ′ where π−1 is in SESCn,Cm .
Thus, SENCn,Cm(σ) = O(m).

The second way is to achieve swaps on the same row in parallel. Now, we
focus on a single even permutation on, for example, row-1. The trick is that
swaps with the same spanning, i.e. (i1 ↔ i1 +m �), (i2 ↔ i2 +m �), . . . , (ik ↔
ik+m �), can be achieved in parallel using another variant of the base strategy
with also norm of 5, as that shown in the following figure.

Figure 5: Achieve 3 swaps in parallel.

Previous works show a special swap decomposition that an arbitrary per-
mutation can be decomposed into a few “good” components, of which each
one is a composition of several swaps with the same spanning, as Corollary 1
says. Thus, an O(logm)-norm cyclic shuffle-exchange is sufficient to achieve
σ in row-1. Note that this shuffle-exchange may change the other rows. Recall
the strategy in Figure 5. The direction of row shifts is arbitrary, which means
if even number of swaps are on col-i, the change on col-i can be recovered by
alternating shift direction selection. So, we design a “plus version” decompo-
sition in Lemma 3 for even permutations, in which there are even number of
swaps on each column.

Lemma 3. For all π ∈ A[n], there exist � = O(log n), sj ∈ [n] and sets
Tj ⊆ [n] for j ∈ [�] satisfying
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• i1, i2, i1 + sj , i2 + sj are distinct for all distinct i1, i2 ∈ Tj;
• π =

∏
i∈T�

(i ↔ (i +n s�)) ◦ · · · ◦
∏

i∈T1(i ↔ (i +n s1));
• and each i ∈ [n] is contained in even sets among T1, T2, . . . , T�.

Proof. Corollary 1 says there exist �′, (sj)j∈[�′], (Tj)j∈[�′] satisfying the first 2
constraints. Our aim is to append s�′+1, s�′+2, . . . , s� and T�′+1, T�′+2, . . . , T�

to satisfy the third constraint. We say i ∈ [n] contained by an odd number of
sets among T1, T2, ...., Tj is an odd position up to j, gathered by a set denoted
as Sj . For positive integer k let rk = max S�′+2k−2. Define

• s�′+2k−1 = −�rk/2�, s�′+2k = �rk/2�;
• T�′+2k−1 = S�′+2k−2 ∩ [rk − �rk/2� + 1, rk], T�′+2k = T�′+2k−1 − �rk/2�.

Note that the odd positions up to �′ + 2k − 2 in [rk − �rk/2� + 1, rk] are
contained in T�′+2k−1 and not in T�′+2k, which implies they are not in S�′+2k
and rk+1 ≤ �rk/2�. So, there exists k = O(log n) such that rk ≤ 1, due to
the initial case r1 ≤ n. Let � = �′ + 2k − 1 where � = O(log n). We claim
�, (sj)j∈[�], (Tj)j∈[�] satisfy all the 3 constraints.

Recalling these definitions, the first constraint is met obviously. For pairs
(s�′+2k−1, T�′+2k−1) and (s�′+2k, T�′+2k), note that (i ↔ i +n s�′+2k−1) = (i −
�rk/2� ↔ i − �rk/2� +n s�′+2k) holds, and the swaps in some groups, i.e.
(i ↔ i + sj) for i ∈ Tj , are pair-wise commutative since the first constraint
satisfied. So, we have

∏
i∈T�′+2k

(i ↔ (i +n s�′+2k)) ◦
∏

i∈T�′+2k−1

(i ↔ (i +n s�′+2k−1)) = id,

i.e. the appended swaps actually do nothing except changing the parity of
the “hitting number”, which means the first constraint is satisfied. Since π
is even, the total number of swaps is also even, which implies the number of
odd positions up to � is even. Then max S� = rk ≤ 1 means max S� = 0, i.e.
there is no odd position finally, which satisfies the third constraint.

Lemma 4. For all π ∈ A[m] and r ∈ [n], SENCn,Cm (πrow-r) = O(logm).

Proof. Let π be an arbitrary permutation in A[m]. Decompose π in the way of
Lemma 3 and get �, (sj)j∈[�] and (Tj)j∈[�]. Define a1,i, a2,i, . . . , a�,i for i ∈ [m]
as a list with alternating ±1 on the position j where i ∈ Tj , and 0 on the
others, or formally,

aj,i =

⎧⎪⎨
⎪⎩

1 if j = 1 and i ∈ T1,
(−1)a1,i+a2,i+···+aj−1,i if j > 1 and i ∈ Tj ,

0 if i �∈ Tj .
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We claim πrow-r = τ� ◦ · · · ◦ τ2 ◦ τ1 where τj for all j ∈ [�], with the norm of
O(1), is defined as

τj =
∏
i∈Tj

(
aj,i−→

)col-i
◦
(
sj−→

)row-r
◦
∏
i∈Tj

(
−aj,i−−−→

)col-i
◦
(
−sj−−→

)row-r
◦
∏
i∈Tj

(
aj,i−→

)col-i
.

First, τj achieves
∏

i∈Tj
(i ↔ i + sj) on row-r, i.e., for all positions p on

row-r, τj(p) =
∏

i∈Tj
(i ↔ i+sj)row-r(p). Trace all positions p = (r, i) on row-r

during τj as follows.

(r, i) →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(r +n aj,i, i) → (r +n aj,i, i) → if i ∈ Tj ,(r, i) → (r, i +m sj) → (r, i +m sj)

(r, i) → (r, i−m sj) → (r −n aj,i, i−m sj) → if i−m sj ∈ Tj ,(r −n aj,i, i−m sj) → (r, i−m sj)

(r, i) → (r, i−m sj) → (r, i−m sj) → (r, i) → (r, i) otherwise.

Note that i ∈ Tj and i −n sj ∈ Tj cannot be satisfied at the same time due
to the definition of Tj .

Then, define permutation σ ∈ S[n] as

σ(i) =

⎧⎪⎨
⎪⎩

i if i = r,
i +n 2 if i = r −n 1 and
i +n 1 otherwise,

i.e., σ shifts the elements in [n] except r. With this notation, we have τj
achieves

∏
i∈[m] (σaj,i)col-i on the other rows except row-r, since τj moves (k, i)

for some i ∈ Tj and k �= r as follows:

(k, i) →

⎧⎪⎪⎨
⎪⎪⎩

(k +n aj,i, i) → (k +n aj,i, i−n sj) → if k +n aj,i = r,(k +n aj,i, i−n sj) → (k +n aj,i, i) → (k +n 2aj,i, i)

(k +n aj,i, i) → (k +n aj,i, i) → if k +n aj,i �= r.(k, i) → (k, i) → (k +n aj,i, i)

Decompose τj into the action on row-r and that on the others as τj =∏
i∈Tj

(σaj,i)col-i ◦ ∏
i∈Tj

(i ↔ i + sj). It is obvious that for any j1, j2 ∈ [�],∏
i∈Tj1

(σaj1,i)col-i and
∏

i∈Tj2
(i ↔ i + sj2) are commutative. So, we have τ� ◦

· · · ◦ τ2 ◦ τ1 equals to∏
i∈T�

(σa�,i)col-i ◦
∏
i∈T�

(i ↔ i + s�) ◦ · · · ◦
∏
i∈T1

(σa1,i)col-i ◦
∏
i∈T1

(i ↔ i + s1)

=

(∏
i∈T�

(σa�,i)col-i ◦ · · · ◦
∏
i∈T1

(σa1,i)col-i
)

◦

(∏
i∈T�

(i ↔ i + s�) ◦ · · · ◦
∏
i∈T1

(i ↔ i + s1)

)

=
∏
i∈[m]

(
σ

∑
j∈[�]

aj,i

)col-i

◦ πrow-r.



On the generalized shuffle-exchange problem 2635

Recall the second constraint in Lemma 3 says each i ∈ [m] is contained in
even number of sets among T1, T2, . . . , T�. So,

∑
j∈[�] aj,i = 0 according to the

definition, and τ� ◦ · · · ◦ τ2 ◦ τ1 = πrow-r as the result.

Corollary 3. If m is even, for all π ∈ S[m] and r ∈ [n], SENCn,Cm (πrow-r) =
O(logm).
Proof. If π is even, Lemma 4 says SENCn,Cm(πrow-r) = O(logm). Otherwise,
we have
SENCn,Cm (πrow-r) ≤ SENCn,Cm

(
(π ◦ ( 1−→)m)row-r

)
+ SENCn,Cm

(
(−1−→)row-r

m

)
= O(logm)

since π ◦ ( 1−→)m is odd and (−1−→)row-r
m is in SESCn,Cm .

4.2. Cases with even n

Our solution to the cases with even n is to pre-process the given π. In detail,
we append an extra swap (1 ↔ 2) on each odd row-i, where πi is odd, to
obtain π′ ∈ SES{id},A[m] . Lemma 5 shows how these swaps on different rows
be achieved in parallel using the first kind of parallelization in Subsection 4.1.
Recalling that in the proof for Lemma 2, the parity of permutations ensures
col-1 recovered, which is not satisfied now. Here, we utilize Corollary 3, which
shows the existence of a O(log n)-norm cyclic shuffle-exchange achieving a
permutation on a single row, to recover col-1.

Lemma 5. If n is even, for all π ∈ SES{id},S[m] , there exists τ ∈ S[n]×[m] with
SENCn,Cm(τ) = O(log n) such that π ◦ τ ∈ SES{id},A[m] .

Proof. Define τ :=
∏

i∈[n]:πi �∈A[m]
(1 ↔ 2)row-i which satisfies π◦τ ∈ SES{id},A[m]

obviously. Partition [n] into [n] = U � V � W and define τU , τV and τW as
Lemma 2. We claim SENCn,Cm(τU ) = O(log n) as well as τV and τW . Consider
the following 5-norm cyclic shuffle-exchange

τ ′
U :=

(
1−→
)col-1

◦
∏

i∈U :πi is odd

(
1−→
)row-i

◦
(
−1−→

)col-1
◦

∏
i∈U :πi is odd

(
−1−→

)row-i
◦
(

1−→
)col-1

.

τ ′U ◦ τU will not move anyone out of col-1 eventually, which is shown by
tracing (i, j) ∈ [n] × [2,m]:

(i, j) →

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i, j − 1) → (i +n 1, j − 1) → if i ∈ U , πi is odd and j = 2,(i +n 1, j − 1) → (i, j − 1) → (i, j) → (i, j)
(i, j) → (i, j) → (i, j −m 1) → if i ∈ U , πi is odd and j > 2,(i, j −m 1) → (i, j) → (i, j)

invariant → (i, j) otherwise.
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Then, Corollary 3 says SENCn,Cm(τ ′U ◦ τU ) = log(n), which also implies that
SENCn,Cm(τU ) = log(n). Similarly, τV , τW can also be achieved by O(log n)-
norm shuffle-exchanges, and SENCn,Cm(τ) = log(n) as the result.

Combined with Corollary 2 and Corollary 3, Lemma 5 leads to the fol-
lowing corollaries.

Corollary 4. If n is even, SENCn,Cm

(
SES{id},S[m]

)
= O(m + log n).

Corollary 5. If n is even, SENCn,Cm

(
SES{id},S[m]

)
= O(n logm).

4.3. Cases with odd n,m

Theorem 1 says π equals to a composition of π1, π2, π3 ∈ SENS[n],S[m] . However,
although assuming π is even, someone among π1, π2, π3 could still be odd,
which can not be achieved by a cyclic shuffle-exchange with odd n,m. Our
solution is to switch the parity, utilizing the following simple equalities

(1 ↔ 2)row-1 ◦ ((1 ↔ 2)row-1 ◦ (1 ↔ 2)col-1) ◦ (1 ↔ 2)col-1 = id
(1 ↔ 2)col-1 ◦ ((1 ↔ 2)col-1 ◦ (1 ↔ 2)row-1) ◦ (1 ↔ 2)row-1 = id

with a negligible cost due to the following fact.

Fact 2. (1 ↔ 2)row-1 ◦ (1 ↔ 2)col-1 and (1 ↔ 2)col-1 ◦ (1 ↔ 2)row-1 can be
achieved by 4-norm cyclic shuffle-exchanges.

Proof. It can be verified that

(1 ↔ 2)row-1 ◦ (1 ↔ 2)col-1 =
(

1−→
)col-1

◦
(

1−→
)row-1

◦
(
−1−→

)col-1
◦
(
−1−→

)row-1
.

Note that (1 ↔ 2)col-1 ◦ (1 ↔ 2)row-1 = ((1 ↔ 2)row-1 ◦ (1 ↔ 2)col-1)−1. So,
SENCn,Cm((1 ↔ 2)col-1 ◦ (1 ↔ 2)row-1) ≤ 4 also holds.

Using a similar method as that for Lemma 5, an even permutation in
SES{id},S[m] is switched into a permutation in SES{id},A[m] with O(log n) cost.
Then, Lemma 2 and Lemma 4 help us deal with the rest of the process.

Lemma 6. For odd n,m and π ∈ SES{id},S[m] ∩ A[n]×[m], there exists τ ∈
S[n]×[m] with SENCn,Cm(τ) = O(log n) such that π ◦ τ ∈ SES{id},A[m].

Proof. Assume π =
∏

i∈[n] σ
row-i
i where σ1, σ2, . . . , σn ∈ S[m]. Let S ⊆ [n]

gather all i ∈ [n] with σi odd. Define τ =
∏

i∈S(1 ↔ 2)row-i then π ◦ τ ∈
SES{id},A[m] obviously. Note that |S| is even since π is even. Thus, there is a
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partition [n] = U � V � W satisfying U, V,W are non-adjacent sets and all
|U ∩ S|, |V ∩ S|, |W ∩ S| are even. We claim τU =

∏
i∈U∩S(1 ↔ 2)row-i can be

achieve by a O(log n)-norm cyclic shuffle-exchange. Note the argument can
also be applied to τV and τW .

Via a similar analysis as that in the proof of Lemma 5, there exists τ ′U
with norm of 5 such that τ ′U ◦τU will not move anyone out of col-1 eventually.
Recall that |U ∩ S| is even, which implies τU is even. Besides, n,m are odd
implies τ ′U ∈ 〈SESCn,Cm〉 ≤ A[n]×[m] is even, which is followed by that τ ′U ◦τU is
even. Thus, Lemma 4 says SENCn,Cm(τ ′U ◦τU ) = O(log n). So, SENCn,Cm(τU ) =
O(log n), as well as τV , τW and τ .

Proof of Theorem 4. If n or m is even, Theorem 3 can be directly applied.
So, we assume n,m are odd in the proof.

Let π be an arbitrary even permutation in A[n]×[m]. Theorem 1 says there
exist π1, π3 ∈ SES{id},S[m] and π2 ∈ SESS[n],{id} such that π = π3 ◦ π2 ◦ π1.
Consider the parity of π1, π2 and π3.

• If π1 and π2 are odd, define π′
1 = (1 ↔ 2)row-1 ◦ π1, τ1 = (1 ↔ 2)col-1 ◦

(1 ↔ 2)row-1, π′
2 = π2 ◦ (1 ↔ 2)col-1, τ2 = id and π′

3 = π3;
• If π2 and π3 are odd, define π′

1 = π1, τ1 = id, π′
2 = (1 ↔ 2)col-1 ◦π2, τ2 =

(1 ↔ 2)row-1 ◦ (1 ↔ 2)col-1 and π′
3 = π3 ◦ (1 ↔ 2)row-1;

• If π1 and π3 are odd, define π′
1 = (1 ↔ 2)row-1 ◦ π1, τ1 = (1 ↔ 2)col-1 ◦

(1 ↔ 2)row-1, π′
2 = (1 ↔ 2)col-1◦π2◦(1 ↔ 2)col-1, τ2 = (1 ↔ 2)row-1◦(1 ↔

2)col-1 and π′
3 = π3 ◦ (1 ↔ 2)row-1;

• If all π1, π2 and π3 are even, define π′
1 = π1, τ1 = id, π′

2 = π2, τ2 = id
and π′

3 = π3.

Note that in all these cases, π = π′
3 ◦ τ2 ◦ π′

2 ◦ τ1 ◦ π′
1 where π′

1, π
′
2, π

′
3 are

even and τ1, τ2 are of constant-norm. Since n,m are odd, Lemma 6 says
there exist σ1, σ2, σ3 with O(log n+ logm)-norm, satisfying π′

1 ◦ σ1, π
′
3 ◦ σ3 ∈

SES{id},A[m] and π′
2 ◦ σ2 ∈ SESA[n],{id}. Using Lemma 2 and Lemma 4, the

analysis for Theorem 3 also leads to SENCn,Cm(SESA[n],A[m]) = O(min(n +
m,n logm,m log n)). Thus, we have

SENCn,Cm(π) =SENCn,Cm(π′
3 ◦ τ2 ◦ π′

2 ◦ τ1 ◦ π′
1)

=SENCn,Cm((π′
3 ◦ σ3) ◦ σ−1

3 ◦ τ2 ◦ (π′
2 ◦ σ2) ◦ σ−1

2 ◦ τ1 ◦ (π′
1 ◦ σ1) ◦ σ−1

1 )
≤3SENCn,Cm(SESA[n],A[m]) + O(logn + logm)

≤O(min(n + m,n logm,m logn)).
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5. Shuffle-exchange over general groups

In this section, we discuss a generalized version, the shuffle-exchange over
arbitrary given groups G ≤ S[n], H ≤ S[m]. Note that SESG,H may not
achieve all permutations in S[n]×[m]. We have given an example in Section
3: 〈SESCn,Cm〉 = A[n]×[m] � S[n]×[m] when n,m are odd. Another example is
that 〈SESG,H〉 cannot be transitive when G or H is not transitive, and ex-
tremely, 〈SES{id},{id}〉 = {id}. Our main result on the shuffle-exchange over
general groups is a characterization of 〈SESG,H〉. We further show that once
π is achievable, π can be achieved by an O(nm)-norm shuffle-exchange.

For σ in some permutation group G, our characterization cares about the
parity of σ on the orbits of G. We introduce a linear space to describe such
local parity as follows. Given a partition P of a set T , define the orbit-wise
parity ζP : SPT → FP

2 as (ζP(σ))P = 1 if and only if σP is odd for all P ∈ P.2
Given subspace U ≤ FS

2 ,V ≤ FT
2 , define the row-column spanning space

MU ,V := span
(
U ⊗ FT

2 + FS
2 ⊗ V

)
≤ FS×T

2 ,

i.e. MU ,V is spanned by all M = u⊗x+y⊗v for u ∈ U , v ∈ V, x ∈ FT
2 , y ∈ FS

2 .

Theorem 5. Given G ≤ S[n], H ≤ S[m] and π ∈ S[n]×[m], SENG,H(π) =
O(nm) if the following conditions are met. Otherwise, π �∈ 〈SESG,H〉.

1. π is in S([n]/G)×([m]/H);
2. πU×[m] is in {idU} ⊗H for all fix-points U ∈ [n]/G;
3. π[n]×V is in G⊗ {idV } for all fix-points V ∈ [m]/H;
4. ζ([n]/G)×([m]/H)(π) is in Mζ[n]/G(G),ζ[m]/H(H).

We first focus on a single orbit U × V of 〈SESG,H〉 where U ∈ [n]/G, V ∈
[m]/H. Lemma 7 provide a useful gadget, which achieves 3-switching in U×V
with 4-norm. Note that an even permutation can be decomposition into 3-
cycles. Thus, with Lemma 7, a (G,H)-shuffle-exchange can achieve any even
permutation on U × V and keep the other part fixed, as Corollary 6 says.

Lemma 7. Let G ≤ S[n], H ≤ S[m] and U ∈ [n]/G, V ∈ [m]/H with
|U |, |V | ≥ 2. For all distinct p1, p2, p3 ∈ U × V , SENG,H((p1 p2 p3)) = O(1).

Proof. Assume p1 = (y1, x1), p2 = (y2, x2) and p3 = (y3, x3). Define σ as
follows.

• If y1 = y2 and x1 = x3, let σ = id.
2Given a set S (or an object, like a partition for example, which could be treated

as a set), the notation FS
2 here stands for a space gathering all |S|-dimension F2

vector, in which components are labeled by elements in S.
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• If y1 = y2 = y3, select σ1 ∈ G s.t. σ1(y3) �= y3 which exists since |U | ≥ 2.
Furthermore, select σ2 ∈ H s.t. σ2(x3) = x1, where such σ2 exists since
V is an orbit on H. Define σ = σ

row-σ1(y3)
2 ◦ σcol-x3

1 .
• If y1 = y2 �= y3, select σ1 ∈ H satisfying σ1(x3) = x1. Define σ = σrow-y3

1 .
• If y1, y2, y3 are distinct and x1, x2, x3 are distinct, select σ1 ∈ G, σ2 ∈ H

s.t. σ1(x2) = x1 and σ2(y3) = y1. Define σ = σrow-y3
2 ◦ σcol-x2

1 .

The detail shuffle-exchange design depends on the relative position of the 3
positions. We do not list all cases since the others can be reduced to the listed
ones directly.

Note that σ(p1), σ(p2) are on the same row, and σ(p1), σ(p3) are on the
same column. Select τ1 ∈ G, τ2 ∈ H such that τ row-y1

1 (σ(p2)) = σ(p1) and
τ col-x1
2 (σ(p3)) = σ(p1). It can be verified that

(τ col-x1
2 )−1 ◦ (τ row-y1

1 )−1 ◦ τ col-x1
2 ◦ τ row-y1

1 = (σ(p1) σ(p3) σ(p2)).

Conjugating by σ, we have

σ−1 ◦ (τ col-x1
2 )−1 ◦ (τ row-y1

1 )−1 ◦ τ col-x1
2 ◦ τ row-y1

1 ◦ σ = (p1 p3 p2) = (p1 p2 p3)−1,

which finishes the proof.

Note all π ∈ AT can be decomposed as a composition of O(|T |) 3-
cycles. Lemma 7 says a 3-cycle can be achieved with a constant-norm shuffle-
exchange, which directly leads to the following corollary.

Corollary 6. Given G ≤ S[n], H ≤ S[m] and U ∈ [n]/G, V ∈ [m]/H with
|U |, |V | ≥ 2, SENG,H(π ⊕ idU×V ) = O(|U | · |V |) for all π ∈ AU×V .

Obviously, 〈SESG,H〉 is a subgroup of S([n]/G)×([m]/H). Assume G,H are
fix-point-free. Corollary 6 also shows that orbit-wise even π can be archived
via performing algorithms used in Corollary 6 on each orbit. Next, we de-
scribe orbit-wise parity of a permutation in S([n]/G)×([m]/H) as a vector from
F

([n]/G)×([m]/H)
2 , and define a linear space Mζ(G),ζ(H), which is spanned by

orbit-wise parity vectors of all permutations in SESG,H . The definition of
Mζ(G),ζ(H) leads to the following conclusion: π can be cancel to a permutation
even on all orbits, with a (G,H)-shuffle-exchange, if and only if the orbit-wise
parity vector ζ(π) is in Mζ(G),ζ(H). Thus, for some π with ζ(π) ∈ Mζ(G),ζ(H),
use such (G,H)-shuffle-exchange to transform it into an orbit-wise even per-
mutation, which can be archived orbit-by-orbit by Corollary 6. For some π
with ζ(π) �∈ Mζ(G),ζ(H), no such (G,H)-shuffle-exchange works to transform
π into an orbit-wise even one, which also says π �∈ SESG,H since id is orbit-
wise even! We believe the insight about parity fundamentally illusions the
construction of 〈SESG,H〉 and also leads to the characterization in Theorem 5.
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Proof of Theorem 5. In the first step, we assume for π, these conditions are
met. We construct a O(nm)-norm (G,H)-shuffle-exchange achieving π. At
beginning, recall that condition 1 says π ∈ S([n]/G)×([m]/H) and condition 4
says ζ([n]/G)×([m]/H)(π) is in Mζ[n]/G(G),ζ[m]/H(H). Thus, there exist (vσ)σ∈G and
(wτ )τ∈H such that

ζ(π) =
∑
σ∈G

ζ(σ) ⊗ vσ +
∑
τ∈H

wτ ⊗ ζ(τ).

Note that it can be simplified since that G,H are groups and ζ is a linear
mapping. That is, there exists σ(V ) ∈ G for all V ∈ [m]/H and (τ (U) ∈
H)U∈[n]/G such that

(1) ζ(π) =
∑

V ∈[m]/H
ζ(σ(V )) ⊗ eV +

∑
U∈[n]/G

eU ⊗ ζ(τ (U))

where eU , eV are indicators (with dimension notation omitted for convenience)
s.t. (eU )S = 1 if and only if U = S. Let

π′ =
∏

U∈[n]/G
(τ (U))row-U1 ◦

∏
V ∈[m]/H

(σ(V ))col-V1 ◦ π

where U1, V1 means arbitrary elements in U, V . Decompose π and obtain

π′ =
∏

U∈[n]/G
(τ (U))row-U1 ◦

∏
V ∈[m]/H

(σ(V ))col-V1 ◦
∏

U∈[n]/G
V ∈[m]/H

πU×V ⊕ idU×V

=
∏

U∈[n]/G
V ∈[m]/H

(
(τ (U)

V )row-U1 ◦ (σ(V )
U )col-V1 ◦ πU×V

)
⊕ idU×V .

Recall that (1) implies

ζ(π)U,V = ζ(τ (U)
V ) + ζ(σ(V )

U ).

Meanwhile,

ζ
(
(τ (U)

V )row-U1 ◦ (σ(V )
U )col-V1

)
U,V

= ζ
(
(τ (U)

V )row-U1
)
U,V

+ ζ
(
(σ(V )

U )col-V1
)
U,V

= ζ(τ (U)
V ) + ζ(σ(V )

U ).

Thus, π′
U×V is always even, and it suffices to show SENG,H(π′) = O(nm).
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Note that π′ ∈ S([n]/G)×([m]/H). For any fix-point U ∈ [n]/G, V ∈ [m]/H
with |U |, |V | = 1, π′

[n]×V and π′
U×[m] are commutative because U × V is a

fix-point of S([n]/G)×([m]/H). Thus, we have

π′ =
∏

U∈[n]/G,V ∈[m]/H
|U |,|V |≥2

π′
U×V ◦

∏
V ∈[m]/H
|V |=1

π′
[n]×V ◦

∏
U∈[n]/G
|U |=1

π′
U×[m].

Conditions 2 and 3 ensure that the second and the third term can be achieved
within 1-norm, and Corollary 6 says the first term on each orbit can be
achieved within O(|U | · |V |)-norm. Totally, a O(nm)-norm (G,H)-shuffle-
exchange achieves π as desired.

In the second step, we show a permutation cannot be achieved if someone
among these conditions is not met. When condition 1 not met, there exists
(y, x) ∈ [n] × [m] mapped to (z, w) such that either y, z are not in the same
orbit from [n]/G, or x,w are not in the same orbit from [m]/H. In this
first case for example, SES{id},H does not change the first coordinate while
SESG,{id} cannot move y out of y-orbit. When condition 2 (which is well-
defined when condition 1 met) not met, π[n]×V �∈ G ⊗ {idV } for some fix-
point V ∈ [m]/H. Since V is a fix-point, σ[n]×V = id for all σ ∈ SES{id},H ,
which implies 〈SESG,H〉[n]×V = G⊗ {idV }. Thus, π[n]×V �∈ G⊗ {idV } implies
π �∈ 〈SESG,H〉. For the same reason, π �∈ 〈SESG,H〉 when condition 3 not met.
Note that

ζ(SESG,H) = ζ(SESG,{id}) + ζ(SES{id},H) = ζ(G) ⊗ F
[m]/H
2 + F

[n]/G
2 ⊗ ζ(H).

Thus, ζ(〈SESG,H〉) = span(ζ(SESG,H)) = Mζ(G),ζ(H) and ζ(π) ∈ Mζ(G),ζ(H)
is a necessary condition of π ∈ 〈SESG,H〉, as condition 4 says.

6. Conclusion

Throughout this paper, we discuss the problem of achieving a permutation
via a low-norm shuffle-exchange from the perspective of the Cayley graph.
We give a clean and computationally efficient characterization for connectiv-
ity and reachability, as well as a polynomial upper bound for diameter for
the shuffle-exchange over general groups. We also focus that on the cyclic
group base, and provide a nearly optimal low-norm shuffle-exchange. The
work somehow gives a general framework to research the construction of gen-
erated groups over 2-dimension set, and explore the properties the Cayley
graph in a new direction.
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We recognize that our work is only the beginning of the research about the
shuffle-exchange. The problems listed as follows could be further directions
on this topic.

• For the cyclic group case, there still exists a gap between our upper
bound and the counting lower bound. We conjecture our construction
may be optimal and the lower bound can be improved by a more careful
analysis.

• We believe the cyclic group is the weakest one with respect to the
shuffle-exchange. So, we conjecture

SENG,H(〈SESG,H〉) = O(SENCn,Cm(〈SESCn,Cm〉))

for all G ≤ S[n] and H ≤ S[m]. For the general case, we only provide an
upper bound of O(nm), which is so far from optimal in our opinion.

• Furthermore, we wonder whether our model can be realized in reality to
accelerate algorithms for permutation rearrangement. In parallel com-
puting, for example, under the memristor model one can perform the
same permutation on each row (or column) of a matrix [21]. Currently,
there is technique barrier on implementing different permutations on
each row (or column) in parallel.
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