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Span of restriction of Hilbert theta functions
Gabriele Bogo and Yingkun Li

Abstract: In this paper, we study the diagonal restrictions of
certain Hilbert theta series for a totally real field F , and prove
that they span the corresponding space of elliptic modular forms
when the F is quadratic or cubic. Furthermore, we give evidence
of this phenomenon when F is quartic, quintic and sextic.

1. Introduction

Theta functions are classical examples of holomorphic modular forms. Given
a positive definite, unimodular Z-lattice L of rank 8m with m ∈ N, the
associated theta function

(1) θL(τ) :=
∑
λ∈L

qQ(λ), q := e(τ) := e2πiτ ,

is in M4m, the space of elliptic modular forms of weight 4m on SL2(Z). For
example, the theta functions associated to the E8 lattice and Leech lattice
Λ24 are explicitly given as

(2) θE8(τ) = E4(τ), θΛ24(τ) = E4(τ)3 − 720Δ(τ),

where E2k(τ) is the Eisenstein series of weight 2k and Δ(τ) is the Ramanujan
Δ-function.

For N ∈ N, we denote

(3) M(N)
Q :=

⊕
k∈N

MNk

the finitely generated graded algebra of elliptic modular forms with weights
divisible by N , and would like to consider the subalgebra Mθ

Q ⊂ M(4)
Q gen-

erated by theta functions of unimodular lattices. Using the relation

(4) θL1⊕L2(τ) = θL1(τ)θL2(τ).
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for any two unimodular lattices L1, L2, we see that Mθ
Q is simply the span of

such theta functions. Equation (2) and the fact M(4)
Q = C[E4,Δ] imply that

(5) Mθ
Q = M(4)

Q .

The construction of theta functions also extends to the case of Hilbert
modular forms. Let F be a totally real field of degree d with ring of integers
OF , and denote αj ∈ R the real embeddings of α ∈ F for 1 ≤ j ≤ d. For
N ∈ N, denote M(N)

F the algebra of holomorphic Hilbert modular forms of
parallel weight Nk for k ∈ N. Given a totally positive definite, Z-unimodular
OF -lattice L of rank 8m (see Definition 1), the associated theta function

(6) θL(τ) :=
∑
λ∈L

d∏
j=1

q
Q(λ)j
j , τ = (τ1, . . . , τd) ∈ Hd, qj := e(τj),

is a Hilbert modular form of parallel weight 4m on SL2(OF ). It is well-known
that such lattice exists precisely when

(7) m ∈ 1
d2

N, d2 := gcd(2, d)

(see Prop. 2.1). As a result, the relationship between M(4/d2)
F and the subal-

gebra Mθ
F generated by such θL is not clear.

On the other hand, we have the following diagonal restriction map

M(N)
F → M(Nd)

Q

f �→ fΔ(τ) := f(τΔ),

where τΔ = (τ, . . . , τ) ∈ Hd. In this note, we will investigate the question
about the image of Mθ

F under this map, which is denoted by (Mθ
F )Δ and

contained in M(4d/d2)
Q . The main result is as follows.

Theorem 1.1. For a totally real field F of degree d = 2, 3, we have

(8) (Mθ
F )Δ = M(4d/d2)

Q .

Based on this, it is then natural to make the following conjecture.

Conjecture 1. Equation (8) holds for any totally real field F of degree d.
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To prove Theorem 1.1, we apply an instance of the Siegel-Weil formula to
see that the Hecke Eisenstein series EF,k defined in (13) is contained in Mθ

F

for all k ∈ (4/d2)N. Then we calculate the Petersson inner product between
the diagonal restriction of EF,k and an elliptic cusp form. For d = 2, this
inner product is related to Fourier coefficients of half-integral weight modular
forms by a result of Kohnen-Zagier [7]. For d ≥ 3, we give an expression for
this inner product in terms of a sum over the double coset ΓF,∞\ΓF /ΓQ (see
Prop. 3.1). When d = 3, we related this double coset to orders in a cubic field
F (see Section 4). Using these results, we show that when d = 2, 3, M(4d/d2)

Q

can be generated by EΔ
F,k and θΔ

L for a Z-unimodular OF -lattice L.
The same approach can be used to check conjecture 1 numerically when

d ∈ {4, 5, 6, 8, 10}. We list some results for d = 4, 5, 6 and F has small dis-
criminants in the last section (see Theorem 6.1).

2. Preliminary

Let F be a totally real field of degree d with ring of integers OF and different
dF . Denote Cl(F ) the (wide) class group of F . Let (V,Q) be an F -quadratic
space of dimension n. We say that V is totally positive if V ⊗ι(F ) R is totally
positive for every real embedding ι : F ↪→ R. In that case, SOV (R) is compact
and the double quotient SOV (F )\SOV (F̂ )/K is a finite set for any open
compact subgroup K ⊂ SOV (F̂ ). Here AF and F̂ are the adele and finite
adele of F .

A finitely generated OF -module L ⊂ V is called a (OF -)lattice if L⊗OF

F = V . We denote L̂ := L⊗ Ẑ ⊂ V̂ = V ⊗ Q̂. If Q(L) ⊂ d
−1
F , we say that L

is Z-even integral and call the lattice

(9) L′ := {y ∈ V : (y, L) ⊂ d
−1
F }

its Z-dual. Viewed as a Z-lattice with respect to QQ(x) := trF/QQ(x), such L
is even integral with dual L′.

Definition 1. An OF -lattice L is said to be Z-unimodular if L′ = L.

As a convention, the trivial lattice in the trivial F -vector space is totally
positive and Z-unimodular. Consider the monoid
(10)
U+
F := {(L,Q) : L is an even Z-unimodular OF -lattice and totally positive}

with respect to ⊕, and denote U+,n
F ⊂ U+

F the subset of lattices of rank n. We
first have the following result.
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Proposition 2.1. The set U+,n
F is non-empty precisely when (8/d2) | n.

Proof. Satz 1 in [1] implies that there exists definite, unimodular OF -lattices
in the sense loc. cit. if and only if (8/d2) | n. Furthermore since n is even,
all of the 2d possible definite signatures will appear in the set of definite,
unimodular OF -lattices of rank n. One can then use the fact that the class
dF in the class group is a square to translate this result to the existence
Z-unimodular lattices. (see the proof of Prop. 2.5 in [10] for details).

Remark 2.2. For L ∈ U+,n
F and h ∈ SOV (Q̂) with V = L⊗OF F , the lattice

(11) h · L := (h · L̂) ∩ V ⊂ V

is also in U+,n
F .

For each L ∈ U+,n
F , let θL(τ) be the associated theta function defined

in (6). It is a Hilbert modular form of parallel weight n/2 for SL2(OF ). Now,
the Siegel-Weil formula [14, 17] gives us the following result.

Proposition 2.3. Let F be a totally real field of degree d. Then

(12)
∫

SOV (F )\SOV (AF )/SOV (R)
θh·L(τ)dh = κEF,n/2(τ),

for some positive constant κ, where EF,k is the Hecke Eisenstein series of
parallel weight k defined by

EF,k(τ) := 1 + ζF (k)−1 ∑
A=[a]∈Cl(F )

Nm(a)k
∑

(c,d)∈a2/O×
F , c �=0

d∏
j=1

(cjτj + dj)−k

(13)

In particular, EF,k ∈ Mθ
F for all k ∈ (4/d2)N.

Remark 2.4. The Hecke Eisenstein series have the well-known Fourier expan-
sion (see [15, 19])

(14) EF,k(τ) = 1 + 2d

ζF (1 − k)
∑

t∈d−1
F , t�0

σk−1(tdF )
d∏

j=1
q
tjτj
j

with σr(a) :=
∑

b|a, b⊂OF
Nm(b)r for any integral ideal a and r ∈ N.
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Proof. By the Siegel-Weil formula, the left hand side of (12) equals to the
Eisenstein series

EL(τ) = v−n/4 ∑
γ∈B(F )\SL2(F )

ΦL(γgτ , n/2 − 1),

where B ⊂ SL2 is the standard Borel subgroup, and ΦL is the Siegel-Weil
section associated to the lattice L (see e.g. [8, section I.3]). For t ∈ F×, the
t-th Fourier coefficient of EL is given by∏

p<∞
Wt,p(1, n/2 − 1,ΦL,p)

up to constant independent of t. Here Wt,p(g, s, φ) is the local Whittaker
function (see e.g. [18]). Since L is Z-unimodular, the local lattice L⊗OF,p in
V ⊗Fp is self-dual for every finite place p. Standard calculations (see e.g. [9])
then gives us

Wt,p(1, s,ΦL,p) =
ordp(tdFp )∑

m=0
Nm(p)s

when t ∈ d
−1
Fp

, and zero otherwise. So up to a constant, the Eisenstein series
EL and EF,n/2 have the same non-constant term Fourier coefficients, hence
agree. Now the left hand side of (12) is just a sum of θLj over certain Lj ∈ U+,n

F

by Remark 2.2. Combining this with Prop. 2.1 finishes the proof.

We can rewrite the Hecke-Eisenstein series EF,k as

EF,k(τ) := 1 +
∑

A=[a]∈Cl(F )
(c,d)∈a2/O×

F
c�=0

OF c+OF d=a

(Nm(a)
Nm(c)

)k d∏
j=1

(τj + dj/cj)−k

For any β ∈ F , there is unique A = [a] and (c, d) ∈ a2/O×
F with c �= 0 such

that a = OF c + OFd and β = d/c. Therefore, we denote

(15) Aβ := Nm(c)
Nm(a) ∈ Z− {0}.

It is easy to check this definition does not depend on the choice of the repre-
sentative a, and

(16) Aβ+a,k = Aβ,k
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for all a ∈ Z. Then we have

(17) EF,k(τ) = 1 +
∑
β∈F

A−k
β

d∏
j=1

(τj + βj)−k.

3. Petersson inner product calculations

In this section, let F/Q be totally real with degree d ≥ 3. We will give an
expression for the Petersson inner product between the diagonal restriction
of the Hecke Eisenstein series EF,k and an elliptic cusp form f of weight dk.

For α ∈ Mm,n(F ) and 1 ≤ j ≤ d, we write αj ∈ Mm,n(R) with 1 ≤ j ≤ d
for the real embeddings of α. We identify P1(F ) ∼= B(F )\SL2(F ) via

(18) β �→
{

( ∗ ∗
1 β ) β ∈ F,

( ∗ ∗
0 1 ) β = ∞.

Let S0 ∪ {∞} ⊂ P1(F ) be a set of representatives of the double coset space

B(F )\SL2(F )/SL2(Z) .

Then S0 ⊂ F − Q and we can use (17) to express the diagonal restriction
of EF,k as

(19) EΔ
F,k(τ) = Edk +

∑
β∈S0

EF,k,β(τ),

where

EF,k,β(τ) :=
∑

γ∈SL2(Z)
A−k

−γ−1·(−βj)

d∏
j=1

(τ − γ−1 · (−βj))−k

with τ ∈ H. Note that Edk is just the elliptic Eisenstein series of weight dk.
Let f(τ) =

∑
n≥1 cnq

n ∈ Sdk be a cusp form. We are interested in esti-
mating its inner product with EΔ

F,k. By the usual unfolding process, we obtain

〈EΔ
F,k, f〉 =

∑
β∈S0

∫
Γ∞\H

E∞
F,k,β(τ)f(τ)vdk dudv

v2

=
∑
β∈S0

∫ ∞

0

∑
n≥1

cnaF,k,β(n, v)e−2πnvvdk−1 dv

v
,
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where Γ∞ := B(Q) ∩ SL2(Z) and

E∞
F,k,β(τ) :=

∑
γ∈Γ∞

A−k
−γ−1·(−β)

d∏
j=1

(τ − γ−1 · (−βj))−k

= 2A−k
β

d∏
j=1

(τ + βj + b)−k =
∑
n∈Z

aF,k,β(n, v)e(nu).
(20)

for β = d/c ∈ S0. Here we have r−γ·(−β) = rβ for all γ ∈ Γ∞ by (16). It is
easy to see that

aF,k,β(n, v) = 2A−k
β

∫
R

d∏
j=1

(u + iv + βj)−ke(−nu)du

= 4πi(−Aβ)−k
∑

z∈Z(β)
Resx=z

⎛
⎝e(nx)

d∏
j=1

(x− (βj + iv))−k

⎞
⎠ ,

(21)

where Z(β) := {βj + iv : 1 ≤ j ≤ d} ⊂ H since

(22)
∑

z∈Z(β)
Resx=z

⎛
⎝e(nx)

d∏
j=1

(x− zj)−k

⎞
⎠ = 1

2πi

∫
R

e(nx)
d∏

j=1
(x− zj)−kdx.

Suppose βj ’s are all distinct. Then

∑
z∈Z(β)

Resx=z

⎛
⎝e(nx)

d∏
j=1

(x− (βj + iv))−k

⎞
⎠

= 1
Γ(k)

d∑
j=1

(
d

dx

)k−1
(

e(nx)∏d
j′=1, j′ �=j(x− (βj′ + iv))k

)
|x=βj′+iv

= e(niv)
Γ(k)

d∑
j=1

k−1∑
	=0

e(nβj)e−2πnv

(2πin)k−1−	

(
k − 1
�

)(
Pd−1,k,	

Qd−1,k+	

)
(βj − β1, . . . , βj − βd),

where Pm,k,	, Qm,r ∈ Q[x1, . . . , xm] are symmetric polynomials of degrees (m−
1)� and mr defined by

Pm,k,	(x1, . . . , xm) := (x1 . . . xm)k+	(∂x1 + · · · + ∂xm)	(x1 . . . xm)−k,

Qm,r(x1, . . . , xm) := (x1 . . . xm)r.
(23)
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Note that

(24) Pm,k,	

Qm,k+	
(x1, . . . , xm) = (−1)	�!

∑
r=(rj)∈Nm,

∑
j
rj=	

((
k

r

))
m∏
j=1

x
−k−rj
j ,

where
((k
r

))
:= k(r1)...k(rm)

r1!...rm! for r = (r1, . . . , rm) ∈ Nm with k(n) := k(k +
1) . . . (k + n − 1). Substituting this into the unfolding gives us the following
result.

Proposition 3.1. Suppose F is a totally real field of degree d ≥ 3 and there
is no intermediate field between F and Q. For any k ∈ 2N and f(τ) =∑

n≥1 c(n)qn ∈ Sdk, we have

〈EΔ
F,k, f〉 = iΓ(dk − 1)

(4π)dk−2Γ(k)

k−1∑
	=0

(2πi)k−1−	
∑
β∈S0

A−k
β

×
d∑

j=1

(
Pd−1,k,	

Qd−1,k+	

)
(βj − β1, . . . , βj − βj−1, βj − βj+1, . . . , βj − βd)

×
∑
n≥1

e(nβj)cn
n(d−1)k+	

,

(25)

where the polynomials Pm,k,	 and Qm,r are defined in (23).

Remark 3.2. The condition that there is no intermediate field between F and
Q implies that βi = βj if and only if i = j for all β ∈ F − Q. A similar but
more complicated formula for the inner product can be derived without this
condition.

Example 3.3. Let d = 3 and k = 2. Then

Pd−1,k,	

Qd−1,k+	
(x, y) =

{
1/(xy)2, � = 0,
−2(x + y)/(xy)3, � = 1.

Set γ1 := β2 − β3, γ2 := β3 − β1, γ3 := β1 − β2, we have

k−1∑
	=0

(2πin)k−1−	
d∑

j=1

Pd−1,k,	

Qd−1,k+	
(βj − β1, . . . , βj − βd)e(nβj)

=
( 2πin

(γ2γ3)2
+ 2(γ3 − γ2)

(γ2γ3)3
)

e(nβ1) +
( 2πin

(γ1γ3)2
+ 2(γ1 − γ3)

(γ1γ3)3
)

e(nβ2)
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+
( 2πin

(γ1γ2)2
+ 2(γ2 − γ1)

(γ1γ2)3
)

e(nβ3).

For d = 3 and k − 1 ≥ � ≥ 0, we can write explicitly

d∑
j=1

Pd−1,k,	

Qd−1,k+	
(βj − β1, . . . , βj − βd)e(nβj)

= P2,k,	

Q2,k+	
(γ3,−γ2)e(nβ1) + P2,k,	

Q2,k+	
(−γ3, γ1)e(nβ2)

+ P2,k,	

Q2,k+	
(−γ2,−γ1)e(nβ3).

Using the inequalities k(a)k(b) ≤ k(a+b), (x1 + x2 + x3)2 ≤ 3(x2
1 + x2

2 + x2
3),

(26)
∑
σ∈S3

xaσ(1)x
b
σ(2)x

c
σ(3) ≤

a!b!c!
(a + b + c)! (x1 + x2 + x3)a+b+c, xi, a, b, c ≥ 0

and Equation (24), we obtain the bound
∣∣∣∣∣∣

d∑
j=1

Pd−1,k,	

Qd−1,k+	
(βj − β1, . . . , βj − βd)e(nβj)

∣∣∣∣∣∣
≤

∣∣∣∣∣ P2,k,	

Q2,k+	
(γ3,−γ2)

∣∣∣∣∣ +
∣∣∣∣∣ P2,k,	

Q2,k+	
(−γ3, γ1)

∣∣∣∣∣ +
∣∣∣∣∣ P2,k,	

Q2,k+	
(−γ2,−γ1)

∣∣∣∣∣
≤ �!

|γ1γ2γ3|k+	

∑
a+b=	

k(a)k(b)

a!b!
(
|γb1γa2γk+	

3 | + |γb2γa3γk+	
1 | + |γb3γa1γk+	

2 |
)

≤ �! (|γ1| + |γ2| + |γ3|)k+2	

|γ1γ2γ3|k+	

(k + �)!
(k + 2�)!

� + 1
2 k(	)

≤
(k−1+	

	

)
(k+2	

	

) (� + 1)!3
k/2+	

2
(γ2

1 + γ2
2 + γ2

3)k/2+	

|γ1γ2γ3|k+	
.

4. Double coset and binary cubic forms

When d = 3, we can identify the double coset B(F )\SL2(F )/SL2(Z) − {∞}
with orders in OF in the following way. Let f(X, Y ) = AX3 + BX2Y +
CXY 2 + DY 3 and

QF := {f(X, Y ) ∈ Z[X, Y ] : f(β, 1) = 0 for some β ∈ F\Q}
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be the set of integral binary cubic forms with a root in F − Q. A form is
primitive if its coefficients have no common factor. There is a natural action
of SL2(Z) on QF that preserves the discriminant

Δ(f) := A6((β1 − β2)(β1 − β3)(β2 − β3))2

= 18ABCD + B2C2 − 4AC3 − 4B3D − 27A2D2,
(27)

and the subset of primitive forms. The quantity

(28) P (f) := B2 − 3AC > 0

is the leading coefficient of the Hessian of f , which is a positive definite
quadratic form and a coinvariant of f . For every f ∈ QF , Prop. 2 in [4] gives
us f ′ ∼SL2(Z) f satisfying

(29) P (f ′) ≤
√

Δ(f ′) =
√

Δ(f).

Given β ∈ F − Q, we can associate to it a primitive element fβ ∈ QF

defined by
(30)

fβ(X, Y ) := Aβ

3∏
j=1

(X − βjY ) = AβX
3 + BβX

2Y + CβXY 2 + DβY
3 ∈ QF .

Note that fβ(β, 1) = 0 and the right action of SL2(Z) on B(F )\SL2(F ) cor-
responds to its natural action on QF .

To any binary cubic form f with non-zero discriminant and f(β, 1) = 0
we can associate the free Z-module of rank 3

(31) Of := Z + ZAβ + Z(Aβ2 + Bβ + C) ⊂ Q(β),

which is also a commutative ring. A classical result of Delone and Faddeev
tells us that this gives a bijection between GL2(Z)-classes of binary cubic
forms with non-zero discriminants and isomorphism classes of commutative
rings that are free Z-modules of rank 3 [6]. If we restrict β to be in a fixed field
F , then Of is an order in OF , and Of1 ,Of2 ⊂ OF are the same if and only if
f1, f2 ∈ QF are GL2(Z)-equivalent (see e.g. [12, Lemma 3.1]). Furthermore,
we have

(32) Δ(f) = Δ(Of ) = DF [OF : Of ]2
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with Δ(·) the discriminant. For s = [β] ∈ P1(F )/SL2(Z) − {∞}, we then
denote

(33) Os := Ofβ ,Δ(s) := Δ(Os).

The discussions above lead to the following result.

Proposition 4.1. The map

P1(F )/SL2(Z) − {∞} → {O : O ⊂ OF is an order}/ ∼=
s �→ Os

is well-defined and (2|Aut(OF )|)-to-1.

Remark 4.2. The quantity |Aut(OF )| is either 3 or 1 depending on F/Q is
Galois or not.

Finally, the following Dirichlet series

ηF (s) :=
∑

O⊂OF order
[OF : O]−s =

∑
O⊂OF order

D
s/2
F

Δ(O)s/2
.(34)

can be factorized in the following way by a result of Datskovsky and Wright
[5] (see [12, Lemma 3.2])

(35) ηF (s) = ζF (s)
ζF (2s)ζ(2s)ζ(3s− 1).

5. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. The cases of d = 2, 3 are proved
separately.

Proof of Theorem 1.1 for d = 2. For k = 2, 4, the space M2k is 1-dimensional
and spanned by the Eisenstein series E2k. Since θΔ

L is non-trivial for any
L ∈ U+

F , the claim follows in these two base cases as M θ
F,k is non-trivial

by Prop. 2.1 (see also [13] for an explicit construction). More generally, we
know that M(4)

Q = Q[E4,Δ]. Therefore, it suffices to show that Δ ∈ S12 is in
(M θ

F,6)Δ. As M12 is 2-dimensional and

(36) E3
4 = E12 + 432000

691 Δ ∈ (M θ
F,6)Δ,
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we just need to produce a form f ∈ (M θ
F,6)Δ linearly independent from E3

4 .
For this purpose, we apply Prop. 2.3 with k = 6 to get

f(τ) := (EΔ
F,6)(τ) = 1 + 4

ζF (−5)
∑
m≥1

qm
∑

ν∈d−1
F , ν�0, tr(ν)=m

σ5((ν)dF ).

By Theorem 6 in [7], we know that

(37) f = E12 −
12
691

c(D)
ζF (−5)Δ,

where c(D) is the D-th Fourier coefficient of the half-integral weight form

g(τ) =
∑
D∈N

c(D)qD := 1
8πi(2E4(4τ)θ′(τ) − E′

4(4τ)θ(τ))

spanning the Kohnen plus space S+
13/2. Now using the estimate L(k, χD) >

2 − ζ(k) for k ≥ 2 (see e.g. Equation (3) in [2]) we know that ζF (1 − k) =
Dk−1/2 4Γ(k)2

(−4π)k ζF (k) satisfies

|ζF (−5)| > 0.01 ·D11/2.

On the other hand, the Hecke bound for c(D) yields

|c(D)| ≤ c ·D13/4, c := e2π max
τ∈H

|g(τ)|v13/4 < 10

Comparing with (36), it is clear that f and E3
4 are linearly independent for

all fundamental discriminant D > 0. This finishes the proof of Theorem 1.1
for d = 2.

Using the calculation in Section 3 and the correspondence in Section 4,
we can prove the following lemma.

Lemma 5.1. For d = 3, k ≥ 3 and f(τ) =
∑

n≥1 cf (n)qn ∈ S3k, let cf > 0
be a constant such that

|cf (n)| ≤ cf · n3k/2

for all n ≥ 1. Then we have the bound

(38) |〈EΔ
F,k, f〉| ≤ CkcfD

−k/4
F

for all cubic field F , with Ck := 6ck ζ(k/2)3
ζ(k)2 ζ(3k/2 − 1) and the constant ck

given in (39).
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Proof. Let ak := Γ(3k−1)
Γ(k) (4π)2−3k. For β ∈ S0 ⊂ F , recall that fβ is the binary

cubic form associated to it in (30), which has coefficients Aβ, Bβ , Cβ, Dβ .
Using (25), the estimate in Example 3.3 and (29), we obtain the bound

|〈EΔ
F,k, f〉| ≤ ak

k−1∑
	=0

(2π)k−1−	
∑
n≥1

|cf (n)|
n2k+	

×
∑
β∈S0

A−k
β

∣∣∣∣∣∣
d∑

j′=1

Pd−1,k,	

Qd−1,k+	
(βj′ − β1, . . . , βj′ − βd)e(nβj′)

∣∣∣∣∣∣
≤ cf · ak

k−1∑
	=0

(2π)k−1−	ζ(k/2 + �)
(k−1+	

	

)
(k+2	

	

) (� + 1)!3
k/2+	

2

×
∑
β∈S0

A−k
β

((β1 − β2)2 + (β2 − β3)2 + (β3 − β1)2)k/2+	

((β1 − β2)2(β2 − β3)2(β3 − β1)2)(k+	)/2

≤ 2−1cf · ak
k−1∑
	=0

(2π)k−1−	ζ(k/2 + �)
(k−1+	

	

)
(k+2	

	

) (� + 1)!6k/2+	

×
∑
β∈S0

P (fβ)k/2+	

Δ(fβ)(k+	)/2

≤ cf · ck
∑
β∈S0

Δ(fβ)−k/4 ≤ cf · ck · 2|Aut(OF )| ·D−k/4
F ηF

(
k
2

)
.

Here the constant ck is defined by

(39) ck := Γ(3k − 1)
2Γ(k) (4π)2−3k

k−1∑
	=0

(2π)k−1−	ζ(k/2 + �)
(k−1+	

	

)
(k+2	

	

) (� + 1)!6k/2+	.

For the last steps, we used Prop. 4.1. Combining this with (35) and applying
ζF (s) ≤ ζ(s)3 for s > 1, we have

|〈EΔ
F,k, f〉| ≤ cfck2|Aut(OF )|ζF

(
k
2
)

ζF (k) ζ(k)ζ
(3k

2 − 1
)
D

−k/4
F

≤ 6cfck
ζ
(
k
2
)3

ζ(k)2 ζ
(3k

2 − 1
)
D

−k/4
F

for k ≥ 3. This finishes the proof.

Remark 5.2. For k = 4, the bound above gives C4 < 5.79. We can obtain a
better bound by estimating the second to the last line in Example 3.3 case
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by case for each � = 0, 1, 2, 3, instead of using (26). The improved bound is

|〈EΔ
F,4, f〉| ≤ 0.067cfD−1

F

for all totally real cubic field F .
Now we are ready to prove Theorem 1.1 in the cubic case.

Proof of Theorem 1.1 for d = 3. Since M(12)
Q = C[E12,Δ], we only have to

check that (Mθ
F )Δ ∩M(12)

Q is 2 dimensional. For any L ∈ U+
F , the diagonal

restriction θΔ
L is the theta function for a unimodular lattice P over Z. So we

know that θP ∈ (Mθ
F )Δ for some Niemeier lattice P . To see that it is linearly

independent from EΔ
F,4 = 1+ c(1)q+O(q2), it suffices to show that c(1) is not

integral. We have checked this numerically for any cubic F with DF < 70000.
More generally, we have

θP = E12 + (N2(P ) − 65520/691)Δ,

with N2(P ) is the number of norm 2 vectors in P . From Table V in [3], we
obtain a list of N2(P ) and

|〈θP ,Δ〉| = |N2(P ) − 65520/691|〈Δ,Δ〉 > 1.22 × 10−6

for any Niemeier lattice P . On the other hand by taking cΔ = 1, the upper
bound found in Lemma 5.1 and improved in Remark 5.2 gives us

|〈EΔ
F,4,Δ〉| <

0.067
DF

.

So EΔ
F,4 and θP are linearly independent for DF ≥ 60000. This finishes the

proof.

6. Numerical evidence for Conjecture 1

In this section, we approach numerically Conjecture 1 in the case F is a totally
real field of degree d ∈ {4, 5, 6}. For these choices of d the space M(4d/d2)

Q can
be in principle generated by the restriction of Eisenstein series and of (at
most) one theta function θL of rank 8/d2. Conjecture 1 reduces then to the
verification of the linear independence of θΔ

L and EΔ
F,4/d2

for d = 5, 6, and
of monomials in θΔ

L , E
Δ
F,4d/d2

and EΔ
F,k in general for suitable weights k. This

approach gives data supporting Conjecture 1 in the case d = 4, 5, and in the
case d = 6 except for two fields F . Our result, for which evidence is given in
this final section, is the following.
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Theorem 6.1. Conjecture 1 holds for

1. d = 4 and DF ≤ 105;
2. d = 5 and DF ≤ 2 × 106;
3. d = 6 and DF ≤ 5 × 106 except for the fields of discriminant 453789

and 1397493.

6.1. A note on the computations

For l, k ∈ Z≥0, let σk−1 be as in Remark 2.4 and define

sFl (k) :=
∑

ν∈d−1
F

ν�0
tr(ν)=l

σk−1
(
(ν)dF

)
.

Then the diagonal restriction of EF,k has the following q-expansion at ∞
by (14)

(40) EΔ
F,k(τ) = 1 + 2d

ζK(1 − k)

∞∑
l=0

sFl (k) .

We computed the first few coefficients of the above expansion with PARI/GP
[16]. As (40) shows, this reduces to the determination of the functions sFl (k)
for small values of l (up to l = 5 in the case d = 5) and different val-
ues of k. The main difficulty is to find the totally positive ν ∈ d

−1
F of

fixed trace l. Let (ν1, . . . , νd) be an integral basis for d
−1
F . Then any ν ∈

d
−1
F is of the form ν = v1ν1 + · · · + vdνd for (v1, . . . , vd) ∈ Zd and con-

versely every vector in Zd gives an element ν ∈ d
−1
F . If Q(x1, . . . , xd) de-

notes the quadratic form x2
1 + . . . x2

d, we have, for a totally positive ν ∈ d
−1
F ,

that Q(σ1(ν), . . . , σd(ν)) < tr(ν)2. This implies that if A = (σi(νj))i,j denotes
the matrix of the real embeddings of the basis of d−1

F , we can search the to-
tally positive ν ∈ d

−1
F of fixed trace l among of vectors v = (v1, . . . , vd) ∈ Zd

satisfying
vT (ATA)v = Q(ν) < l2 .

This gives a finite (but large as l and DF grow) set of vectors on which we can
perform the final search. Once the suitable ν ∈ d

−1
F have been determined,

it is straightforward to compute σk
(
(ν)dF

)
for every value of k by using the

basic PARI functions.
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Remark 6.2. It is possible to investigate also the cases d = 8, 10 with the
method outlined at the beginning of this section. For the case d = 8 we need
to compute five coefficients of the q-expansion (40), while for d = 10 we need
to compute six coefficients. This, together with the size of the discriminants of
these fields (DF ≥ 282300416 for d = 8 and DF ≥ 443952558373 for d = 10),
makes it hard to collect significant data in these cases.

6.2. Tables

d=4 Let F be a totally real field with [F : Q] = 4. In this case, the proof of
Conjecture 1 reduces to the statement that M(8)

Q is spanned by restrictions
of Hilbert Eisenstein series on ΓF . It is easy to see that {E2

4 ,ΔE4,Δ2} is
a generating set for M(8)

Q . By a dimension argument, EΔ
F,2 = E2

4 . It follows
that ΔE4 and Δ2 can be obtained by restriction of Eisenstein series on ΓF

respectively if the sets {EΔ
F,4, (EΔ

F,2)2}, and {(EΔ
F,2)3, EΔ

F,2E
Δ
F,4, E

Δ
F,6} are both

linearly independent.
In order to study this problem, we compute the restriction of EF,k for k =

4, 6. As bases for M16 and M24, we choose {E4
4 , E4Δ} and {E6

4 , E
3
4Δ,Δ2}

respectively. We have

(41) EΔ
F,4 = E4

4 + bE4Δ , EΔ
F,6 = E6

4 − c1E
3
4Δ + c2Δ2 ,

for some coefficients b, c1, c2 ∈ Q that depend on F . To prove Conjecture 1,
it suffices to check that b and c2 are both non-zero. We computed the coef-
ficients b, c1, c2 for the first 30 totally real quartic fields F . The results are
reported in Table 1. For these fields it is enough to specify the discriminant DF

to uniquely identify the field F (check the number field database [11]). This
remark applies also for the fields we consider in the cases d = 5, 6.

It turns out that the numerical values of b, c1, and c2 are very close
to 955, 1439, and −129930 respectively. These numbers are related to the
Eisenstein series of weight 16 and 24 since

E16 = E4
4 + b(E16)E4Δ , E24 = E5

4 + c1(E24)E2
4Δ + c2(E24)Δ2,

with

b(E16) = −3456000
3617 ∼ 955 , c1(E24) = 340364160000

236364091 ∼ 1439 ,
c2(E24) = −30710845440000

236364091 ∼ 129930 .

In other words, it seems that the diagonal restriction of EF,4 and EF,6 are close
to E16 and E24 respectively. In analogy with the proof of Theorem 1.1 in the
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Table 1: d = 4
DF EΔ

F,4 EΔ
F,6

−b |b− b(E16)| |c1 − c1(E24)| |c2 − c2(E24)|
725 518400

541 2.7375349 0.00050313732 25.886498
1125 1209600

1261 3.7507260 0.00054525118 81.739221
1600 16588800

17347 0.80418080 0.00021600333 72.207992
1957 3379968

3541 0.96439255 0.00038594892 17.453573
2000 3628800

3793 1.2217550 0.00025214822 55.822134
2048 83358720

87439 2.1522766 0.00086000436 17.157301
2225 4406400

4601 2.2168733 0.00044417599 65.944997
2304 6996480

7337 1.8993132 0.00078107824 34.635539
2525 40953600

42787 1.6625629 0.00038679430 60.388956
2624 31242240

32681 0.48766988 0.00016760431 11.280096
2777 30326400

31739 0.0052682944 2.49791 × 10−5 3.1916173
3600 3940800

4117 1.7138725 0.00032163274 63.391164
3981 22598400

23651 0.0065088042 1.13683 × 10−5 16.924484
4205 81112320

84937 0.51758364 7.99169 × 10−5 20.235531
4225 31168800

32567 1.5789962 0.00036468807 64.303710
4352 14613696

15301 0.40686765 0.00042977636 2.3880196
4400 287193600

300017 1.7697819 0.00034047188 63.576584
4525 315705600

329717 2.0167958 0.00041971303 62.764065
4752 94772160

99107 0.77303737 0.00019694052 7.4011277
4913 358572096

375437 0.40870317 4.15983 × 10−5 2.8025931
5125 24364800

25453 1.7587165 0.000037508012 63.196773
5225 262310400

273971 1.9505876 0.00039428701 63.490510
5725 716947200

748883 1.8674479 0.00042362838 63.447454
5744 727626240

761737 0.26820601 7.42018 × 10−5 5.6160966
6125 454636800

474913 1.8174699 0.00042240976 63.162128
6224 204809472

214357 0.028287048 2.32205 × 10−5 5.7256495
6809 87570720

91723 0.75775312 0.00019944285 7.0978686
7053 1504154880

1573751 0.28894424 0.00013645348 2.0848135
7056 191034720

200123 0.90144417 0.00037862134 11.709300
7168 670104576

701855 0.72584168 0.00033000104 3.6107465
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case d = 3, Conjecture 1 holds for DF � 0 if the Petersson products of EΔ
F,4

and EΔ
F,6 with all cusp forms of weight 16 and 24 respectively can be bounded

by small quantities as DF → ∞. If F ranges over the totally real quartic fields
with no non-trivial subfields, the decay of the Petersson products as DF → ∞
can be observed from the data. We expect similar strategy for the proof of
Theorem 1.1 when d = 3 to work in this case. When F ranges instead over
extensions of the form Q ⊂ K ⊂ F , where K is a fixed real quadratic field,
the data suggest that

〈EΔ
F,k, f〉 → 〈EΔ

K,2k, f〉 as disc(F ) → ∞ .

The proof of Conjecture 1 may be obtained then in two steps: first proving
that EF,k restrict to the Hilbert Eisenstein series EK,2k on ΓK as F → ∞,
and then using Theorem 1.1 for the real quadratic field K.

d=5 Let F be a totally real field of degree 5. The space M(20)
Q is generated

by the set {E20, E8Δ, E4Δ3,Δ5}. In order to get this space by restriction of
Hilbert theta series (Conjecture 1), we only need to consider a Hilbert theta
function θL for L ∈ U+,8

F and the Eisenstein series EF,4, EF,8, and EF,12.
Fixing basis for M20,M40, and M60, we find the expressions
(42)

EΔ
F,4 = E5

4 + bE2
4Δ ,

EΔ
F,8 = E10

4 + c1E
7
4Δ + c2E

4
4Δ2 + c3E4Δ3 ,

EΔ
F,12 = E15

4 + d1E
12
4 Δ + d2E

9
4Δ2 + d3E

6
4Δ3 + d4E

3
4Δ4 + d5Δ5 ,

for b, ci, di ∈ Q that depends on F . Since θΔ
L = 1 +

∑
n≥1 anq

n with an ∈ Z,
in order to prove linear independence of θΔ

L and EΔ
F,4, it suffices to show

that b �∈ Z. If this holds true, we only need that c3 �= 0 and d5 �= 0 to
prove Conjecture 1. The results of the computation of b, c3, and d5, for the
first 30 totally real quintic fields F (ordered by discriminant) can be found in
Table (2). Similarly to the case d = 4, the numerical values of b, ci, di are close
to the coefficients appearing in the expression of the Eisenstein series E20, E40,
and E60 with respect to the bases specified above:

E20 = E5
4 + b(E20)E2

4Δ , E40 = E10
4 +

3∑
i=1

ci(E40)E10−3i
4 Δi ,

E60 = E15
4 +

5∑
i=1

di(E60)E15−3i
4 Δi ,
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Table 2: d = 5
DF EΔ

F,4 EΔ
F,8 EΔ

F,12
−b |b− b(E20)| |c3 − c3(E40)| |d5 − d5(E60)|

14641 1017360000
847811 0.060027104 20.049846 602.44929

24217 539084160
449263 0.0056153314 3.0959986 626.69793

36497 228998016
190847 0.020731861 3.7691249 625.79357

38569 1372671360
1144027 0.065169297 7.1399961 53.593811

65657 17909631360
14926259 0.050318395 1.4956754 21.447253

70601 22786945920
18989939 0.023943997 6.3509437 57.580627

81509 1255163040
1046047 0.013653680 0.14871660 33.681371

81589 157427145
131198 0.0040921029 3.7633773 5.5844793

89417 3299933520
2750093 0.010842438 0.88686411 7.1415794

101833 27422375040
22853437 0.00095029875 2.8922290 147.56474

106069 8416776960
7014301 0.020817098 1.2397693 6.2320866

117688 72647616960
60544963 0.029096490 0.024328539 11.486101

122821 2646596160
2205599 0.019992669 3.3965204 46.863235

124817 169474446720
141236923 0.0057786083 1.2672930 6.7827247

126032 186909793920
155769041 0.0082151643 0.36230593 11.688370

135076 39368816640
32809823 0.014954319 0.35027520 21.034030

138136 42439256640
35368523 0.0084035031 0.15151378 21.202474

138917 30923687520
25771127 0.010994082 3.3294478 176.27092

144209 35105335200
29256611 0.013203831 1.2246131 5.0019384

147109 79422612480
66189911 0.0041847312 1.4237043 8.3262747

149169 316249522560
263551583 0.028634117 1.8194260 15.033097

153424 24509153664
20425187 0.023174277 3.4016473 25.402792

157457 76544072064
63790577 0.0031668548 1.0412335 7.2747406

160801 411236196480
342716341 0.0072814568 0.29819082 10.519558

161121 6653973120
5545309 0.0038819428 0.12885785 18.108623

170701 125695281600
104754347 0.019242412 2.2046583 104.80927

173513 530059904640
441734773 0.026193754 0.10356861 42.247614

176281 187387136640
156166489 0.0054077065 1.9881737 26.798380

176684 60248727936
50210921 0.011580917 1.0387400 12.861239

179024 638510843520
532132229 0.014289468 0.34114599 1.2188617
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the relevant values being

b(E20) = 209520000
174611 ∼ 1199 ,

c3(E40) = 27014542428753690624000000000
261082718496449122051 ∼ 103471200

d5(E60) = 1423152253904739393602157818174020937318400000000000000
1215233140483755572040304994079820246041491 ∼1171094011917.

In Table 2 we do not write the numerical values of c3, d5, but of their difference
with the coefficients c3(E40) and d5(E60) respectively. Analogously to the
case d = 4, it seems that the diagonal restriction of EF,4, EF,8, and EF,12
are close to the Eisenstein series E20, E40, and E60 respectively. In particular,
since 〈E20, E

2
4Δ〉 = 0, this implies that the Petersson product

〈EΔ
F,4, E

2
4Δ〉 =

∣∣b− b(E20)
∣∣〈E4Δ2, E2

4Δ〉

is small for any field F and may decay as DF → ∞. Similar considerations
apply to the cases EΔ

F,8 and EΔ
F,12.

d=6 We have that M12
Q = C[E3

4 ,Δ]. We have only to check that

EΔ
F,2 = E3

4 + b · Δ

is not the restriction of a Hilbert theta function θL. We know this is the case
if b is not an integer, as explained in the proof of Theorem 1.1 in the case d = 3.
However, looking at the values of b computed for the first 30 totally real sextic
fields F in Table (3), this is not always the case. Since θΔ

L = 1+N2(L)q+ · · · ,
we have to compare, for integral values of b, the number 720 + b with the
possible values of N2(L) listed in table V of [3] to check whether they differ
or not. This happens in all cases but two: the field of discriminant 453789
has 720 + b = 0 = N2(Λ24), the field of discriminant 1397493 has 720 + b =
72 = N2(A12

2 ). For these fields our argument can not confirm the validity of
Conjecture 1. We checked fields up to DF = 5 × 106 (144 fields) and found
no other such instances.

As in the cases d = 4, 5, in table (3) we also compare the value of b
with b(E12) = −432000

691 (see (36)).
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Table 3: d = 6

DF EΔ
F,2

−b |b− b(E12)|
300125 21600

37 41.397113
371293 11808

19 3.7072130
434581 8352

13 17.280641
453789 720 94.819103
485125 7200

11 29.364557
592661 672 46.819103
703493 2048

3 57.485769
722000 4800

7 60.533388
810448 3456

5 66.019103
820125 43200

73 33.400075
905177 3348

5 44.419103
966125 675 49.819103
980125 675 49.819103
1075648 8352

13 17.280641
1081856 3072

5 10.780897

DF EΔ
F,2

−b |b− b(E12)|
1134389 684 58.819103
1202933 608 17.180897
1229312 27264

43 8.8656144
1241125 28800

47 12.414940
1259712 17280

31 67.761542
1279733 11736

17 65.172044
1292517 16416

29 59.111932
1312625 9000

13 67.126795
1387029 696 70.819103
1397493 648 22.819103
1416125 12000

19 6.3980501
1528713 12096

19 11.450682
1541581 8352

13 17.280641
1683101 65088

103 6.7414328
1767625 25200

41 10.546751
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