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Span of restriction of Hilbert theta functions

GABRIELE BOGO AND YINGKUN LI

Abstract: In this paper, we study the diagonal restrictions of
certain Hilbert theta series for a totally real field F, and prove
that they span the corresponding space of elliptic modular forms
when the F' is quadratic or cubic. Furthermore, we give evidence
of this phenomenon when F' is quartic, quintic and sextic.

1. Introduction

Theta functions are classical examples of holomorphic modular forms. Given
a positive definite, unimodular Z-lattice L of rank 8m with m € N, the
associated theta function

(1) 0r(7) = Z N, g =e(r) = 7,
AEL

is in My, the space of elliptic modular forms of weight 4m on SLy(Z). For
example, the theta functions associated to the Fjg lattice and Leech lattice
Aoy are explicitly given as

(2) Op.(7) = Es(7), Or,,(7) = Ea(7)° — T20A(7),

where Eoy(7) is the Eisenstein series of weight 2k and A(7) is the Ramanujan
A-function.
For N € N, we denote

(3) MS@N) = @ My

keN

the finitely generated graded algebra of elliptic modular forms with weights

divisible by N, and would like to consider the subalgebra ./\/l(% C MS ) gen-
erated by theta functions of unimodular lattices. Using the relation

(4) Oriwr,(T) = 01, (7)0L, (7).
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for any two unimodular lattices L1, Lo, we see that M% is simply the span of
such theta functions. Equation (2) and the fact Mg ) = C[E4, A] imply that

4
(5) M =M.

The construction of theta functions also extends to the case of Hilbert
modular forms. Let F' be a totally real field of degree d with ring of integers
Or, and denote a; € R the real embeddings of a € F for 1 < j < d. For
N € N, denote M%N) the algebra of holomorphic Hilbert modular forms of
parallel weight Nk for k € N. Given a totally positive definite, Z-unimodular
Op-lattice L of rank 8m (see Definition 1), the associated theta function

d
© o) =3 [T 7= (i) € HY g5 1= e(ry),
AEL j=1

is a Hilbert modular form of parallel weight 4m on SL2(Op). It is well-known
that such lattice exists precisely when

1

(7) m e &

N, dy := ged(2,d)

(see Prop. 2.1). As a result, the relationship between Mﬁé/ %) and the subal-
gebra M. generated by such 6, is not clear.
On the other hand, we have the following diagonal restriction map
N Nd
M — MG
Fo 12() =15,

where 78 = (7,...,7) € H In this note, we will investigate the question

about the image of M% under this map, which is denoted by (M%)? and
contained in M((S 4/42) The main result is as follows.

Theorem 1.1. For a totally real field F of degree d = 2,3, we have
(8) (MF)* = Mg™.

Based on this, it is then natural to make the following conjecture.

Conjecture 1. Equation (8) holds for any totally real field F of degree d.
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To prove Theorem 1.1, we apply an instance of the Siegel-Weil formula to
see that the Hecke Eisenstein series Efj, defined in (13) is contained in M,
for all k& € (4/d2)N. Then we calculate the Petersson inner product between
the diagonal restriction of Erj) and an elliptic cusp form. For d = 2, this
inner product is related to Fourier coefficients of half-integral weight modular
forms by a result of Kohnen-Zagier [7]. For d > 3, we give an expression for
this inner product in terms of a sum over the double coset I'p oo \I'r /T'g (see
Prop. 3.1). When d = 3, we related this double coset to orders in a cubic field
F (see Section 4). Using these results, we show that when d = 2,3, MS 4/d2)
can be generated by F%2 7 and 02 for a Z-unimodular Op-lattice L.

The same approach can be used to check conjecture 1 numerically when
d € {4,5,6,8,10}. We list some results for d = 4,5,6 and F' has small dis-
criminants in the last section (see Theorem 6.1).

2. Preliminary

Let F be a totally real field of degree d with ring of integers O and different
0p. Denote CI(F) the (wide) class group of F. Let (V, Q) be an F-quadratic
space of dimension n. We say that V' is totally positive if V ®,(p) R is totally
positive for every real embedding ¢ : ' — R. In that case, SOy (R) is compact
and the double quotient SOy (£)\SOy (F ") /K is a finite set for any open
compact subgroup K C SOy (F). Here Ap and F are the adele and finite
adele of F.

A finitely generated Op-module L C V' is called a (Op- )lattlce if L ®o,
F=V.Wedenote L =L®ZcV=VeQ IfQL ) C 05!, we say that L
is Z-even integral and call the lattice

(9) L'={yeV:(yL)Cop'}

its Z-dual. Viewed as a Z-lattice with respect to Qq(z) := trp/@Q(z), such L
is even integral with dual L.

Definition 1. An Op-lattice L is said to be Z-unimodular if L' = L

As a convention, the trivial lattice in the trivial F-vector space is totally
positive and Z-unimodular. Consider the monoid
(10)
Ui = {(L,Q) : L is an even Z-unimodular Op-lattice and totally positive}

with respect to &, and denote Ll;f’n C Ut the subset of lattices of rank n. We
first have the following result.
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Proposition 2.1. The set L{;f’" is non-empty precisely when (8/dy) | n.

Proof. Satz 1 in [1] implies that there exists definite, unimodular Op-lattices
in the sense loc. cit. if and only if (8/dz) | n. Furthermore since n is even,
all of the 27 possible definite signatures will appear in the set of definite,
unimodular Opg-lattices of rank n. One can then use the fact that the class
0r in the class group is a square to translate this result to the existence
Z-unimodular lattices. (see the proof of Prop. 2.5 in [10] for details). O

Remark 2.2. For L € U™ and h € SOy (Q) with V = L ®p,. F, the lattice
(11) h-L:=(h-L)ynVcV

is also in Z/{;:’n.

For each L € U™, let O(7) be the associated theta function defined
in (6). It is a Hilbert modular form of parallel weight n/2 for SL2(Op). Now,
the Siegel-Weil formula [14, 17] gives us the following result.

Proposition 2.3. Let F' be a totally real field of degree d. Then

(12) Hh‘L(T)dh = K;EFJL/Q(T),

/SOV (F)\SOv (Ar)/SOv (R)

for some positive constant k, where Epy is the Hecke Eisenstein series of
parallel weight k defined by

(13)

d
EF,]C<T) =1+ Cp(k)il Z Nm(a)k Z H(CjTj + dj)ik

A=[a]eCI(F) (c;d)€a?/O%, c£07=1

In particular, By € MY% for all k € (4/d2)N.

Remark 2.4. The Hecke Eisenstein series have the well-known Fourier expan-
sion (see [15, 19])

2d d tiT)
(14) EFJg(T) =1+ m Z O'k_l(tap)jl_[lqjj

tev,t, £0

with o,(a) := > gja, pco, Nm(b)" for any integral ideal a and 7 € N.
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Proof. By the Siegel-Weil formula, the left hand side of (12) equals to the
Eisenstein series

Ep(r)= v Z b1 (vgr,n/2 —1),
~EB(F)\SLa(F)

where B C SLs is the standard Borel subgroup, and @, is the Siegel-Weil
section associated to the lattice L (see e.g. [8, section 1.3]). For t € F*, the
t-th Fourier coefficient of Ey, is given by

II Wep(1n/2—1,0L,)

p<oo

up to constant independent of ¢. Here W, ,(g,s,¢) is the local Whittaker
function (see e.g. [18]). Since L is Z-unimodular, the local lattice L ® O, in
V' ® F, is self-dual for every finite place p. Standard calculations (see e.g. [9])
then gives us

ord, (t0F, )

Wt,P(LS?(DL,P) = Z Nm(p)s
m=0

when t € Ol?pl, and zero otherwise. So up to a constant, the Eisenstein series
Ep, and Ef,,/; have the same non-constant term Fourier coefficients, hence

agree. Now the left hand side of (12) is just a sum of f,; over certain L; € uL"
by Remark 2.2. Combining this with Prop. 2.1 finishes the proof. O

We can rewrite the Hecke-Eisenstein series Ky as

Nm(a ke d _
e £ () o earr
A=[a]eCI(F) j=1
(c,d)ea?/OF
c#0
Opc+Opd=a

For any 3 € F, there is unique A = [a] and (c,d) € a?/O} with ¢ # 0 such
that a = Opc + Opd and § = d/c. Therefore, we denote

(15) Ay Nm(c)

= Nm(a) € Z — {0}.

It is easy to check this definition does not depend on the choice of the repre-
sentative a, and

(16) Agtar = Agi
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for all @ € Z. Then we have

(17) Epg(t —1+ZAkHTJ+/8J

BeF

3. Petersson inner product calculations

In this section, let F//Q be totally real with degree d > 3. We will give an
expression for the Petersson inner product between the diagonal restriction
of the Hecke Eisenstein series Erj, and an elliptic cusp form f of weight dk.

For o € My, ,(F) and 1 < j < d, we write aj € My, ,(R) with 1 < j <d
for the real embeddings of a. We identify P'(F) & B(F)\SLy(F) via

(18) 8 {(z
0

Let So U {oo} C PY(F) be a set of representatives of the double coset space

B(F)\SLa(F)/SLs(Z).

Then Sy C F' — Q and we can use (17) to express the diagonal restriction
of £ Fk as

(19) E}%k(T) = FEg + Z EF,k,ﬁ(T),
BESo
where
Epkp(T) = s H T (=B 7"
VESL2(Z)

with 7 € H. Note that Ey is just the elliptic Eisenstein series of weight dk.
Let f(7) = > ,>1¢nq" € Sar be a cusp form. We are interested in esti-
mating its inner product with Eﬁ - By the usual unfolding process, we obtain

dudv
EFk7 Z/ Fkﬁ (T)Udk 02
B€So

_ dv
Z/ chaFkﬁnU omnu, dk—1 4V

BESH n>1
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where ' := B(Q) N SLy(Z) and

d
EFkﬁ Z Ai,y 1.(-8) H /BJ))

Y€l s

d
=2AF [[(r+ B+ )% = appp(n, v)e(nu).
j:

neZ

(20)

for 3 = d/c € Sy. Here we have r_.._g) = rg for all v € I'x by (16). It is
easy to see that

(21)
d
apkp(n,v) = 2A§k /R H(u + v+ ﬁj)fke(—nu)du
j=1
d
= 4i(— Z Resmz( Hﬂc— (B +iv)) k),
z€Z(B) j=1

where Z(f) := {; +iv:1 < j <d} C H since

d d
1
(22) Z Resz—, (e(nz) U(:L‘ - zj)_k) =5 ) e(nx) I:I(x — ;) *da.
2€Z(B) Jj=1 Jj=1
Suppose 3;’s are all distinct. Then
d
Z Resy—. H xr — (B +iv)) —k
z€Z(B) J=1
1 zd:<d)k—1< e(nz) ) |
PN K z=B +iv
F(k j=1 fL' H;‘ilzl ]/;ﬁ](l' — (ﬁ]’ + Z'U))k
d k-1 —27nw
e(nw e(nps k—1 Pi_1 e
I'(k) ]_M_ZO (27”” )it < 4 > <Qd—l,k+f) (8 =B By = Ba)
where Py, k¢, Qmr € Qlz1,. .., 2] are symmetric polynomials of degrees (m—
1)¢ and mr defined by
Pogo(xr, .o Tm) = (1. .. x7n)k“"'“£(8m71 4+ &Em)e(xl ),

(23) Qmr(T1, . T) = (T1 ... x)"
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Note that

(24) meﬂ(xl, ) = (_1)%! Z <<];;>> m xj_k;—'f'j,

mok+t r=(r;)eN™, Zj r;=~

where ((f)) = % for r = (r1,...,rm) € N™ with k™ = k(k +

1)...(k+n—1). Substituting this into the unfolding gives us the following
result.

Proposition 3.1. Suppose F' is a totally real field of degree d > 3 and there
is no intermediate field between F and Q. For any k € 2N and f(1) =
Zn21 C(n)q" S Sdk, we have

A _ Tk —1) & k-1t K

<EF,kaf> - ( dk: QF Z 27” Z A
éZO BeSo
d
P
(25)  x ) (ﬁ) (B = By B5 = Bi—1, 85 — B, -+, B5 — Ba)
=1 \ a1,
e(nf;)en

X ; A=)kt

where the polynomials Py, ¢ and Qp,, are defined in (23).

Remark 3.2. The condition that there is no intermediate field between F' and
Q implies that 3; = B; if and only if i = j for all 8 € F' — Q. A similar but
more complicated formula for the inner product can be derived without this
condition.

Example 3.3. Let d = 3 and k£ = 2. Then

Py 1ke (2,y) = 1/(zy)?, =0,
Qa-1kve =2z +y)/(zy)?, (=1

Set 11 1= B2 — 3,72 := B3 — B1,73 := B1 — P2, we have

k—
Z (2min)t1- fz DAkt (5 g8~ Ba)e(ns))

* Qa1 k+e

_( 2min 2(73 — Y2) o(n 2min 2(y1 —3) ofln
- ((7273)2 BRNCIE ) (nfh) + ((7173)2 BRNCIEE ) (nf2)




Span of restriction of Hilbert theta functions

2min 2(y2 —m)
i <<m>2 (172)°

) e(nfs).

Ford=3and £k —1 > ¢ > 0, we can write explicitly

4 Pyt
ST SR (85— Bry. ., By — Ba)e(nB)

T Qa-1kte

P P

= sz:e (’)’3, ) (nﬁl) Q;:j@( 73,’71)9(%32)
Pore
Q2,k+ (772, =—m)e(nfy).

Using the inequalities k(@E®) < kO+0) (2} 4+ 29 + 23)2 < 3(2F + 23 + 22),

alble!

byt m) T aabe>0

(26) > a8 Tho)The <

o€ES3

and Equation (24), we obtain the bound

4 Pk
ST SRR (B = By, .., By — Ba)e(nB))

j=1 Qd—l,k-Ff

Py
< (73, —72)| +
Q2. k+e

Lokt ()
Q2,140 7
JACIAW)

Z i (881 R85 + s ™)

2.k,
Q s ( Y3, 71)| +

/)
|’Y172’Y3!’“H
(Il + 1l + Ivsl)’“” (k40! 41
B 717273 (k+20)! 2
'3k/2+£ (V2 + 2 412 )k/2+£

2 172737

4. Double coset and binary cubic forms

69

When d = 3, we can identify the double coset B(F')\SL2(F)/SLa(Z) — {oo}

with orders in O in the following way. Let f(X,Y) = AX® + BX?%Y
CXY?+ DY? and

Qr ={f(X,Y) e Z[X,Y]: f(B,1) =0 for some 5 € F\Q}

+



70 Gabriele Bogo and Yingkun Li

be the set of integral binary cubic forms with a root in F — Q. A form is
primitive if its coefficients have no common factor. There is a natural action
of SLy(Z) on QF that preserves the discriminant

A(f) = AG((ﬁl — 32)(B1 — B3) (B2 — 53))2

27
(27) = 18ABCD + B2C? — 4AC® — 4B3D — 27A%D?,

and the subset of primitive forms. The quantity

(28) P(f) := B*-3AC >0

is the leading coefficient of the Hessian of f, which is a positive definite
quadratic form and a coinvariant of f. For every f € Qp, Prop. 2 in [4] gives

us f' ~gr,z) f satisfying

(29) P(f') < \JA(f) = /).

Given f € F' — Q, we can associate to it a primitive element fz € Qp
defined by
(30)

[o(X,Y) = Ay [[(X = B;Y) = AsX® + BsX?Y + CsXY? + DgY? € Qp.

[y B

J

Note that fz(/5,1) = 0 and the right action of SLy(Z) on B(F)\SL2(F') cor-
responds to its natural action on Qp.

To any binary cubic form f with non-zero discriminant and f(3,1) =0
we can associate the free Z-module of rank 3

(31) Op =7+ ZAB+Z(AB* + BB+ C) C Q(B),

which is also a commutative ring. A classical result of Delone and Faddeev
tells us that this gives a bijection between GLo(Z)-classes of binary cubic
forms with non-zero discriminants and isomorphism classes of commutative
rings that are free Z-modules of rank 3 [6]. If we restrict § to be in a fixed field
F, then Oy is an order in Op, and Oy,, Op, C OF are the same if and only if
f1, f2 € Qp are GLa(Z)-equivalent (see e.g. [12, Lemma 3.1]). Furthermore,
we have

(32) A(f) = A(Oy) = Dr[OF : Of]
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with A(+) the discriminant. For s = [3] € P}(F)/SLa(Z) — {o0}, we then
denote

(33) Oy := Oy, A(s) :== A(O).

The discussions above lead to the following result.
Proposition 4.1. The map
PY(F)/SLy(Z) — {0} — {O : O C OF is an order}] =
s Oy
is well-defined and (2|Aut(OF)|)-to-1.

Remark 4.2. The quantity [Aut(Op)| is either 3 or 1 depending on F/Q is
Galois or not.

Finally, the following Dirichlet series

Di?

(34) ne(s):= Y [Op:0]°= % A0y

OCOp order OCOp order

can be factorized in the following way by a result of Datskovsky and Wright
[5] (see [12, Lemma 3.2])

= Cr(s) S S —
(35) mr(s) = 2290 (3s — 1)

5. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. The cases of d = 2,3 are proved
separately.

Proof of Theorem 1.1 for d = 2. For k = 2,4, the space My, is 1-dimensional
and spanned by the Eisenstein series Eaj. Since 62 is non-trivial for any
L € Uj, the claim follows in these two base cases as Mgk is non-trivial
by Prop. 2.1 (see also [13] for an explicit construction). More generally, we
know that MY = Q[E4, A]. Therefore, it suffices to show that A € Sy3 is in
(M%G)A. As M is 2-dimensional and

432000
691

(36) E} = FEp» + Ae (Mg“,G)Av
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we just need to produce a form f € (lelﬁ)A linearly independent from E7.
For this purpose, we apply Prop. 2.3 with k = 6 to get

f(1) = (ERg)(r) =1 My Z q" > a5((V)or).
m>1 VED ;1, >0, tr(v)=m
By Theorem 6 in [7], we know that

12 ¢(D)
691 Cr(=5)""

where ¢(D) is the D-th Fourier coefficient of the half-integral weight form

(37) f=En—

= - REn)0(7) - B (n)(r))
DeN

spanning the Kohnen plus space 513/2 Now using the estimate L(k, xp) >

2 — ((k) for k > 2 (see e.g. Equation (3) in [2]) we know that (p(1 — k) =
Dkfl/Q%Cp(k’) satisfies

ICp(=5)| > 0.01 - D'Y/2,
On the other hand, the Hecke bound for ¢(D) yields

[e(D)] < ¢- DY/, ci= & max |g(r)|o"¥* < 10
TE
Comparing with (36), it is clear that f and Ej are linearly independent for

all fundamental discriminant D > 0. This finishes the proof of Theorem 1.1
for d = 2. O

Using the calculation in Section 3 and the correspondence in Section 4,
we can prove the following lemma.

Lemma 5.1. Ford =3,k > 3 and f(7) = >, cp(n)q" € Sz, let ¢y > 0
be a constant such that

les(n)] < ¢f -0/
for alln > 1. Then we have the bound
—k
(38) (ERi £)] < Cres D"

for all cubic field F, with C) := 6¢p
given in (39).

41214)22) C(3k/2 — 1) and the constant cy
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Proof. Let ay, := F(glsk)l) (47)%73k For B € Sy C F, recall that fz is the binary

cubic form associated to it in (30), which has coefficients Ag, Bg, C, Dg.
Using (25), the estimate in Example 3.3 and (29), we obtain the bound

K—1
lcg(n
[(Epy. )] Sak%@ Y nj;k+£

n>1

d
x 3 A ZM(@,_51,...,@/—5,1)9(”5]")

BESy j'=1 Qd—l,k—i—Z
k—1 (kflM) 3k/2+
<cs-a Z(Qw)k_l_ZC(k/Q +7) T ¢+ 1)
= %) 2
- 52) + (B2 = B3)> + (B3 — Br)*)M>+
A
- ﬂéo — B2)2(Ba — B3)?(B3 — 1))k +0/2
k—1 (k—1+£)
<27'cpoary (2m) (k24 0) & (€ + 1)16/2+
=0 ¢
fﬁ)k/2+l
X 5; Afs) (k+€)/2
Sorea YD AU < ep - on - 2Aut(Op)] - DR (£)
B€So
Here the constant ¢ is defined by
k—1 k—1+¢
(39) cx = F(;{(;)l)(zlw)?—?’k > o@n) (k2 + 0) ((kf%)) (0 + 1)16R/2+¢,
=0 ¢

For the last steps, we used Prop. 4.1. Combining this with (35) and applying
Cr(s) < ((s)3 for s > 1, we have

¢r(5)
Cr(k)

k 3
S -y

for k > 3. This finishes the proof. O

Remark 5.2. For k = 4, the bound above gives C4 < 5.79. We can obtain a
better bound by estimating the second to the last line in Example 3.3 case

(B2 P < cren2|Aut(OF) 2222 ¢ (k)¢ (2 — 1) DM

S 6Cfck
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by case for each ¢ = 0,1, 2,3, instead of using (26). The improved bound is
[(ER4, )] < 0.067¢; D!

for all totally real cubic field F.

Now we are ready to prove Theorem 1.1 in the cubic case.

Proof of Theorem 1.1 for d = 3. Since M(SQ) = C[Eh2,A], we only have to

check that (M%)2 N M(S?) is 2 dimensional. For any L € Uy, the diagonal

restriction 0% is the theta function for a unimodular lattice P over Z. So we

know that 0p € (M%)? for some Niemeier lattice P. To see that it is linearly

independent from Eﬁél = 1+c¢(1)g+O(g?), it suffices to show that ¢(1) is not

integral. We have checked this numerically for any cubic F' with Dg < 70000.
More generally, we have

Op = E1s + (No(P) — 65520/691)A,

with Na(P) is the number of norm 2 vectors in P. From Table V in [3], we
obtain a list of No(P) and

[(0p, A)| = |No(P) — 65520/691[(A, A) > 1.22 x 1075

for any Niemeier lattice P. On the other hand by taking ca = 1, the upper
bound found in Lemma 5.1 and improved in Remark 5.2 gives us

0.067
Dp -

[(ERsA)| <

So EPQA and Op are linearly independent for Dr > 60000. This finishes the
proof. O

6. Numerical evidence for Conjecture 1

In this section, we approach numerically Conjecture 1 in the case F is a totally
real field of degree d € {4,5,6}. For these choices of d the space MS 4/d2) can
be in principle generated by the restriction of Eisenstein series and of (at
most) one theta function 6, of rank 8/ds. Conjecture 1 reduces then to the
verification of the linear independence of #& and EI%A Jds for d = 5,6, and

of monomials in 65, EFA’ ad/d, and Eﬁk in general for suitable weights k. This
approach gives data supporting Conjecture 1 in the case d = 4,5, and in the
case d = 6 except for two fields F. Our result, for which evidence is given in
this final section, is the following.
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Theorem 6.1. Conjecture 1 holds for

1. d=4 and Dp < 10%;

2. d=5 and Dp <2 x 105;

3. d =6 and Dp < 5 x 105 except for the fields of discriminant 453789
and 1397493.

6.1. A note on the computations

For I,k € Z>¢, let 0,1 be as in Remark 2.4 and define

SlF(k) = Z_ Uk_l((l/)OF).

>0
tr(v)=l

Then the diagonal restriction of Erj has the following g-expansion at oo
by (14)

A _ 2¢ — oF
(40) Epp(t) = 1 + (=) ; 1 (k).

We computed the first few coefficients of the above expansion with PARI/GP
[16]. As (40) shows, this reduces to the determination of the functions sf"(k)
for small values of [ (up to I = 5 in the case d = 5) and different val-
ues of k. The main difficulty is to find the totally positive v € 0;1 of
fixed trace I. Let (v1,...,v4) be an integral basis for 95", Then any v €
0}1 is of the form v = vy + -+ + vaug for (vi,...,vq) € 7% and con-
versely every vector in Z¢ gives an element v € ;' If Q(21,...,z4) de-
notes the quadratic form 23 + ... 22, we have, for a totally positive v € 0;1,
that Q(o1(v), . ..,04(v)) < tr(v)?. This implies that if A = (0;(v;));; denotes
the matrix of the real embeddings of the basis of 0;1, we can search the to-
tally positive v € 0}1 of fixed trace [ among of vectors v = (vy,...,vq) € Z%
satisfying

v (AT A = Q(v) < I2.

This gives a finite (but large as [ and Dy grow) set of vectors on which we can
perform the final search. Once the suitable v € D}l have been determined,
it is straightforward to compute o ((¥)oF) for every value of k by using the
basic PARI functions.
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Remark 6.2. Tt is possible to investigate also the cases d = 8,10 with the
method outlined at the beginning of this section. For the case d = 8 we need
to compute five coefficients of the g-expansion (40), while for d = 10 we need
to compute six coeflicients. This, together with the size of the discriminants of
these fields (Dp > 282300416 for d = 8 and Dp > 443952558373 for d = 10),
makes it hard to collect significant data in these cases.

6.2. Tables

d=4 Let F be a totally real field with [F' : Q] = 4. In this case, the proof of

Conjecture 1 reduces to the statement that MS) is spanned by restrictions
of Hilbert Eisenstein series on 'p. It is easy to see that {E?, AEy, A%} is

a generating set for Mg). By a dimension argument, E}%Q = E2. Tt follows
that AE; and A? can be obtained by restriction of Eisenstein series on I'p
respectively if the sets {EIQA, (EﬁQ)Q}, and {(Eﬁ2)3, EﬁQEI%A, EﬁG} are both
linearly independent.

In order to study this problem, we compute the restriction of Ery, for k =
4,6. As bases for Myg and My, we choose {E}, E4A} and {ES, E3A, A?}
respectively. We have

(41) Epy=FEj + bEJA, Epg=E] — alEjA + A%,

for some coefficients b, c¢1, co € Q that depend on F'. To prove Conjecture 1,
it suffices to check that b and ¢y are both non-zero. We computed the coef-
ficients b, ¢1, ¢ for the first 30 totally real quartic fields F'. The results are
reported in Table 1. For these fields it is enough to specify the discriminant Dg
to uniquely identify the field F' (check the number field database [11]). This
remark applies also for the fields we consider in the cases d = 5, 6.

It turns out that the numerical values of b,cy, and ¢y are very close
to 955,1439, and —129930 respectively. These numbers are related to the
Eisenstein series of weight 16 and 24 since

EIG = Efll + b(ElG)E4A 5 E24 = Ei’ + C1 (EQ4)E§A + CQ(E24)A2,

with
b(ElG) - _ 34356610700 ~ 955 , 1 (E24) _ 342033663461460090100 ~ 1439 7
C2(E24) — 30721306834654461901000 ~ 129930 .

In other words, it seems that the diagonal restriction of Er4 and EFrg are close
to Fhg and Fay respectively. In analogy with the proof of Theorem 1.1 in the
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Table 1: d =4
Dp Eg, Efg
—b [b—b(Ew)|  |er — ci(Faa)|  [ca = ca(Fhad)|

725 ~ BI8I00 27375349 0.00050313732  25.886498
1125 1209600 3.7507260  0.00054525118  81.739221
1600 16388300 (0.80418080  0.00021600333  72.207992
1957 380968 0.96439255  0.00038594892  17.453573
2000 3628800 12217550  0.00025214822  55.822134
2048 83358T20 21522766  0.00086000436  17.157301
2225 4406100 2.2168733  0.00044417599  65.944997
2304 9995580 1.8993132  0.00078107824  34.635539
2525 40993600 16625629  0.00038679430  60.388956
2624 2232210 (48766988  0.00016760431  11.280096
2777 30326400 (0052682944 2.49791 x 107°  3.1916173
3600 3910800 1.7138725  0.00032163274  63.391164
3981 22598400 (0065088042 1.13683 x 107°  16.924484
4205 8220 051758364 7.99169 x 107°  20.235531
4225  3LTSSO0 15789962  0.00036468807  64.303710
4352  MO3696 (40686765  0.00042977636  2.3880196
4400 287193600 17697819  0.00034047188  63.576584
4525 35705600 0167958  0.00041971303  62.764065
4752 NI 077303737 0.00019694052  7.4011277
4913 358572096 (40870317  4.15983 x 107 2.8025931
5125 24361800 17587165  0.000037508012  63.196773
5225 262310400 1.9505876  0.00039428701  63.490510
5725 TSAT200  1.8674479  0.00042362838  63.447454
5744 127626240 (26820601  7.42018 x 107°  5.6160966
6125 421636800 18174699  0.00042240976  63.162128
6224 20180972 (028287048  2.32205 x 107°  5.7256495
6809 8DTOT20 075775312  0.00019944285  7.0978686
7053 150454880 (28894424  0.00013645348  2.0848135
7056 15084720 (90144417  0.00037862134  11.709300
7168 STOIOAST6 (72584168  0.00033000104  3.6107465

701855

7
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case d = 3, Conjecture 1 holds for Dr > 0 if the Petersson products of Eﬁ 4
and Eﬁﬁ with all cusp forms of weight 16 and 24 respectively can be bounded
by small quantities as Drp — oo. If I’ ranges over the totally real quartic fields
with no non-trivial subfields, the decay of the Petersson products as Dp — oo
can be observed from the data. We expect similar strategy for the proof of
Theorem 1.1 when d = 3 to work in this case. When F' ranges instead over
extensions of the form Q C K C F, where K is a fixed real quadratic field,
the data suggest that

<Eﬁk,f> — <EIA<72k,f> as disc(F) — oo.

The proof of Conjecture 1 may be obtained then in two steps: first proving
that Ery restrict to the Hilbert Eisenstein series Ex o, on I'x as F' — oo,
and then using Theorem 1.1 for the real quadratic field K.

d=5 Let F be a totally real field of degree 5. The space Mg 0 i generated
by the set {Ea, FsA, E4A%, A%}, In order to get this space by restriction of
Hilbert theta series (Conjecture 1), we only need to consider a Hilbert theta
function 6y, for L € Ll;f’g and the Eisenstein series Er4, Erg, and Epa.
Fixing basis for Mag, Myg, and Mgg, we find the expressions
(42)

Eg, = E; + bEIA,

Eps = E" + aEJA + EjA* + 3B A°,

Epyy = B + dEPA + GEIAN + d3ESAY + dyEIA" + dsA°

for b, c;,d; € Q that depends on F. Since 02 =1+, 5, a,q¢" with a, € Z,
in order to prove linear independence of #& and El%A’ it suffices to show
that b ¢ Z. If this holds true, we only need that c3 # 0 and ds # 0 to
prove Conjecture 1. The results of the computation of b, c3, and ds, for the
first 30 totally real quintic fields F' (ordered by discriminant) can be found in
Table (2). Similarly to the case d = 4, the numerical values of b, ¢;, d; are close
to the coefficients appearing in the expression of the Eisenstein series Foq, E4,
and FEgy with respect to the bases specified above:

3
E20 = EZ + b(Ego)EZA s E40 — Eio + Z Ci(E4O)EiO_3lAl 7
i=1

5
Eeo = Ei° + ) di(Ego) By A,
i=1
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Table 2: d =5
Dr EPA‘A E?,s EﬁA‘,lz
—b b —b(E20)| ez — cs(Eao)| |ds — ds(Eeo)|
14641 IGO0 0.060027104  20.049846 602.44929
24217 B8US0 0.0056153314  3.0959986 626.69793
36497 2HEN0 0.020731861  3.7691249 625.79357
38569  LSEPES00 0.065169297  7.1399961 53.593811
65657 IS0 0.050318395  1.4956754 21.447253
70601 ZTEOR0 0.023943997  6.3509437 57.580627
81509  ELEC 0.013653680  0.14871660  33.681371
81589  I5TIZLUS - 0.0040921029  3.7633773 5.5844793
89417 23808520 (.010842438  0.88686411 7.1415794
7422375041
101833 2200 0.00095029875  2.8922290 147.56474
106069 ~ SLSTIOSE0  0.020817098  1.2397693 6.2320866
72647616960
117688  2OTEO050 0.029096490  0.024328539  11.486101
122821 2G009050 0.019992669  3.3965204 46.863235
124817 IGRTEEIE0 0.0057786083  1.2672930 6.7827247
186909793920
126032 1EERRTER20 0.0082151643  0.36230593  11.688370
135076 392008000 0.014954319  0.35027520  21.034030
138136 422925000 (.0084035031  0.15151378 21.202474
7
138917 392368020 (.010994082  3.3294478 176.27092
144209 3508835200 ().013203831 1.2246131 5.0019384
147109 142202180 (.0041847312  1.4237043 8.3262747
316249522560
149169 HJ20532560  (.028634117  1.8194260 15.033097
153424 2309088004 0,023174277  3.4016473 25.402792
157457  TO3L0E2004 - 0,0031668548  1.0412335 7.2747406
160801 4LZ6L9180 (. 0072814568  0.29819082 10.519558
161121 SG5397820 0.0038819428  0.12885785  18.108623
170701 123695281600 (019242412  2.2046583 104.80927
4
173513 23009902000 0.026193754  0.10356861 42.247614
7387 4
176281 18ESEIR0I0 - 0.0054077065  1.9881737 26.798380
176684 SBT3S0 0.011580917  1.0387400 12.861239
179024 SBSO0S20  0.014289468  0.34114599  1.2188617

532132229
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the relevant values being

b(EQ()) — 201975426010100 ~ 1199’

__ 27014542428753690624000000000

C3(E40) - 261082718496449122051 ~ 103471200
_ 1423152253904739393602157818174020937318400000000000000

d5(Eeo) = 1215233140483755572040304994079820246041491 ~1171094011917.

In Table 2 we do not write the numerical values of c3, ds5, but of their difference
with the coefficients c3(Ey) and ds(Egp) respectively. Analogously to the
case d = 4, it seems that the diagonal restriction of Er4, Erg, and Epi2
are close to the Eisenstein series Faq, Fy9, and Fgo respectively. In particular,
since (B, E2A) = 0, this implies that the Petersson product

(B2, EIN) = |b— b(Ey)|[(EsA® EiA)

is small for any field F' and may decay as Dp — oo. Similar considerations
apply to the cases Eﬁg and Eﬁu.

d=6 We have that M = C[E}, A]. We have only to check that
Egy = Ej +b-A

is not the restriction of a Hilbert theta function 67. We know this is the case
if b is not an integer, as explained in the proof of Theorem 1.1 in the case d = 3.
However, looking at the values of b computed for the first 30 totally real sextic
fields F in Table (3), this is not always the case. Since & = 14 Ny(L)g+ - -,
we have to compare, for integral values of b, the number 720 + b with the
possible values of Na(L) listed in table V of [3] to check whether they differ
or not. This happens in all cases but two: the field of discriminant 453789
has 720 + b = 0 = N3(Aa4), the field of discriminant 1397493 has 720 + b =
72 = No(AL?). For these fields our argument can not confirm the validity of
Conjecture 1. We checked fields up to Dp = 5 x 10° (144 fields) and found
no other such instances.

As in the cases d = 4,5, in table (3) we also compare the value of b
with b(E1p) = — 232000 (see (36)).
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Table 3: d =6

Dp Eﬁz Dp El%ﬂ
=b b= 0b(E1)| b |b—b(FE1)

300125 280 41397113 1134389 684  58.819103

371293 MR8 37072130 1202933 608 17.180897

434581 8322 17.280641 1229312 2264 8.8656144

453789 720  94.819103 1241125 25300 12.414940

485125 1290 29.364557 1259712 12280 67.761542

592661 672 46.819103 1279733 X0 65.172044

703493 2018 57.485769 1292517 16U6 59111932

722000 489 60.533388 1312625 2999 67.126795

810448  23%  66.019103 1387029 696  70.819103

820125 43200 33.400075 1397493 648  22.819103

905177 3348 44419103 1416125 12909 6.3980501

966125 675  49.819103 1528713 120 11.450682

980125 675  49.819103 1541581 % 17.280641

1075648 8332 17.280641 1683101 9088 6.7414328

1081856 2072 10.780897 1767625 25220 10.546751

References

KWwONG-SHIN CHANG. Diskriminanten und Signaturen gerader
quadratischer Formen. Arch. Math. (Basel), 21:59-65, 1970. MR0268122

YouNG Ju CHOIE and WINFRIED KOHNEN. On the Fourier coefli-

cients of modular forms of half-integral weight. Int. J. Number Theory,
9(8):1879-1883, 2013. MR3145150

J. H. ConwAYy and N. J. A. SLOANE. On the enumeration of lattices
of determinant one. J. Number Theory, 15(1):83-94, 1982. MR0666350

J. E. CREMONA. Reduction of binary cubic and quartic forms. LMS J.
Comput. Math., 2:64-94, 1999. MR1693411

Boris DATSKOVSKY and DAVID J. WRIGHT. The adelic zeta function
associated to the space of binary cubic forms. II. Local theory. J. Reine


https://mathscinet.ams.org/mathscinet-getitem?mr=0268122
https://mathscinet.ams.org/mathscinet-getitem?mr=3145150
https://mathscinet.ams.org/mathscinet-getitem?mr=0666350
https://mathscinet.ams.org/mathscinet-getitem?mr=1693411

82

Gabriele Bogo and Yingkun Li

Angew. Math., 367:27-75, 1986. MR0839123

B. N. DELONE and D. K. FADDEEV. The theory of irrationalities of the
third degree. Translations of Mathematical Monographs, Vol. 10. Ameri-
can Mathematical Society, Providence, R.I., 1964. MR0160744

W. KOHNEN and D. ZAGIER. Modular forms with rational periods. In
Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist.
Oper. Res., pages 197-249. Horwood, Chichester, 1984. MR0803368

STEPHEN S. KUDLA. Some extensions of the Siegel-Weil formula. In

FEisenstein series and applications, volume 258 of Progr. Math., pages
205-237. Birkhauser Boston, Boston, MA, 2008. MR2402685

STEPHEN S. KuDLA and TONGHAI YANG. Eisenstein series for SL(2).
Sci. China Math., 53(9):2275-2316, 2010. MR2718827

YINGKUN Li1. Algebraicity of higher Green functions at a CM point.
arXiv:2106.13653, submitted, 2021.

The LMFDB Collaboration. The L-functions and modular forms
database. http://www.Imfdb.org, 2022.

JIN NAKAGAWA. On the relations among the class numbers of binary
cubic forms. Invent. Math., 134(1):101-138, 1998. MR1646578

RUDOLF SCHARLAU. Unimodular lattices over real quadratic fields.
Math. Z., 216(3):437-452, 1994. MR 1283081

CARL LUDWIG SIEGEL. Gesammelte Abhandlungen. Bdnde I, II, I
Springer-Verlag, Berlin-New York, 1966. Herausgegeben von K. Chan-
drasekharan und H. Maass. MR0197270

CARL LUDWIG SIEGEL. Berechnung von Zetafunktionen an ganzzahli-
gen Stellen. Nachr. Akad. Wiss. Géttingen Math.-Phys. KI. 11, 1969:87—
102, 1969. MR0252349

The PARI Group, Univ. Bordeaux. PARI/GP version 2.13.1, 2021. avail-
able from http://pari.math.u-bordeaux.fr/.

ANDRE WEIL. Sur la formule de Siegel dans la théorie des groupes clas-
siques. Acta Math., 113:1-87, 1965. MR0223373

ToNGHAI YANG. CM number fields and modular forms. Pure Appl.
Math. @Q., 1(2, Special Issue: In memory of Armand Borel. Part 1):305-
340, 2005. MR2194727

DoON ZAGIER. On the values at negative integers of the zeta-function of a
real quadratic field. Enseign. Math. (2), 22(1-2):55-95, 1976. MR0406957


https://mathscinet.ams.org/mathscinet-getitem?mr=0839123
https://mathscinet.ams.org/mathscinet-getitem?mr=0160744
https://mathscinet.ams.org/mathscinet-getitem?mr=0803368
https://mathscinet.ams.org/mathscinet-getitem?mr=2402685
https://mathscinet.ams.org/mathscinet-getitem?mr=2718827
http://www.lmfdb.org
https://mathscinet.ams.org/mathscinet-getitem?mr=1646578
https://mathscinet.ams.org/mathscinet-getitem?mr=1283081
https://mathscinet.ams.org/mathscinet-getitem?mr=0197270
https://mathscinet.ams.org/mathscinet-getitem?mr=0252349
http://pari.math.u-bordeaux.fr/
https://mathscinet.ams.org/mathscinet-getitem?mr=0223373
https://mathscinet.ams.org/mathscinet-getitem?mr=2194727
https://mathscinet.ams.org/mathscinet-getitem?mr=0406957

Span of restriction of Hilbert theta functions

Gabriele Bogo

Fachbereich Mathematik

Technische Universitdt Darmstadt
Schlossgartenstrasse 7, D-64289
Darmstadt

Germany

E-mail: bogo@mathematik.tu-darmstadt.de

Yingkun Li

Fachbereich Mathematik

Technische Universitat Darmstadt
Schlossgartenstrasse 7, D-64289
Darmstadt

Germany

E-mail: li@mathematik.tu-darmstadt.de

83


mailto:bogo@mathematik.tu-darmstadt.de
mailto:li@mathematik.tu-darmstadt.de

	Introduction
	Preliminary
	Petersson inner product calculations
	Double coset and binary cubic forms
	Proof of Theorem 1.1
	Numerical evidence for Conjecture 1
	A note on the computations
	Tables

	Acknowledgements
	References

