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Functional equations of polygonal type for multiple
polylogarithms in weights 5, 6 and 7∗

Steven Charlton, Herbert Gangl, and Danylo Radchenko

Abstract: We present new functional equations of multiple poly-
logarithms in weights 5, 6 and 7 and use them for explicit depth
reduction. These identities generalize the crucial identity Q4 from
the recent work of Goncharov and Rudenko that was used in their
proof of the weight 4 case of Zagier’s Polylogarithm Conjecture.
Keywords: Polylogarithms, functional equations, cluster rela-
tions, Zagier’s Polylogarithm Conjecture.

1. Introduction

In their recent breakthrough paper [5] Goncharov and Rudenko envisaged
a very promising new strategy to prove Zagier’s Polylogarithm Conjecture
(ZPC) by relating it to cluster algebra complexes. A crucial ingredient in their
proof of the case of the conjecture in weight 4 was a new functional equation
relating the multiple polylogarithms I3,1(x, y) and Li4(z), which they denoted
by Q4.

This result prompted our experimental search for higher analogues, and
our computer implementation allowed us to find analogues, with a combi-
natorial structure inspired by and quite reminiscent of their Q4, for higher
weights.

These findings date back to 2018 at the MPI Bonn and were both commu-
nicated to Don Zagier and subsequently presented at a workshop on cluster
algebras and the geometry of scattering amplitudes at the Higgs Centre in
Edinburgh in March 2020. Our more ambitious goal of finding a bootstrap-
ping procedure that would produce analogous results for general weight has
now apparently been superseded by Rudenko’s beautiful new preprint [6] per-
taining to Goncharov’s depth conjecture. As our approach does not seem to
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take the exact same symmetries into account, it has the big disadvantage
of being harder to generalize but on the other hand it may have produced
identities that are of a slightly different nature—both potentially in the use
of symmetries and of the choice of functions—than the ones that we antic-
ipate to appear eventually in his already announced ‘cluster polylogarithm’
preprint (with Matveiakin).

We provide functional equations of type Qn up to weight n = 7. Our
formulas, found with the help of intensive computer calculations, will likely
differ from the ones Rudenko derives in that we use a potentially different
set of functions and impose cyclic symmetry. We anticipate that they could
still be beneficial, in particular in view of the remaining task of ‘conditional’
further depth reduction which may well result from combining suitable spe-
cializations of the functional equations we give.

2. Analogues of the functional equations Qn for n = 5, 6, 7

In [4], having successfully solved the weight 3 case of ZPC, Goncharov reduced
the weight 4 case of his more encompassing Freeness Conjecture to an explicit
calculation which would express I3,1(V (x, y), z), with the five term relation
V (x, y) in one slot, in terms of Li4. This was indeed shown to hold with 122
rather non-obvious terms (concocted as products of up to four cross ratios in
6 variables) in [3].

In [5] Goncharov and Rudenko found an alternative and more conceptual
way, introducing complexes of cluster algebras, to derive an equation that
solves the same question without the need of giving those 122 terms expli-
citly, and which furthermore has the important property of suggesting gener-
alizations to higher weight. The ensuing connection to moduli spaces M0,k (of
genus zero curves with k marked points) suggests considering polyangulations
of convex 2N -gons for suitable integers N , resulting in pictures of the type
given in the figures below.

Further to the notation used in [5] we introduce the following shorthand:
Any subpolygon comes equipped with a partition of its internal angles into
two subsets (these often correspond in [6] to ‘even’ and ‘odd’ polytopes, but
we note that our conventions allow successive even or odd indices for lower
depth terms). We equip the angles of one of the two sets with a slice of pi,
indicating that the associated argument is given as the cyclic ratio (already
used extensively in [5])

[xi1 , . . . , xi2m ] := (−1)m (xi1 − xi2)(xi3 − xi4) . . . (xi2m−1 − xi2m)
(xi2 − xi3)(xi4 − xi5) . . . (xi2m − xi1)

,
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where i1 corresponds to any one of the m labeled angles. Moreover, we indicate
the order in which the arguments are to be taken by indices 1, 2, etc. inside
the given subpolygons. Finally, each picture stands for the sum over all cyclic
permutations of the indices (corresponding to the rotations of the polygon).

Our functions are slight variants of the standard polylogarithm functions,
indicated by an ‘N ’ in the notation, e.g. IN3,1,1 stands for

IN3,1,1(x, y, z) = −Li3,1,1((xyz)−1, z, y)

and more generally

INn1,...,nd
(a1, . . . , ad) = In1,...,nd

(a1, (a2 . . . ad)−1, (a2 . . . ad−1)−1, . . . , a−1
2 )

= (−1)d Lin1,...,nd
((a1 . . . ad)−1, ad, ad−1, . . . , a2)

(1)

(these variants have been chosen as they satisfy simpler coproduct expressions
than the underlying iterated integrals, see e.g. [2, p. 248]).

With the above explanations, we can now give the functional equations
for weights 5, 6 and 7 that should play the role of the crucial equation Q4 in
[5]. The main characterizing feature of these identities (and the reason why we
propose them as generalizations of Q4) is that the arguments of the iterated
integrals are cross-ratios and higher cyclic ratios attached to 2N -gons that
form a complete polyangulation of a subpolygon by even polygons. Moreover,
the highest depth terms in these identities consist of a single depth d term
of the form In−d+1,{1}d−1 , evaluated at all possible full quadrangulations of a
2N -gon, up to cyclic symmetry.

3. Identity in weight 5

Our candidate for the functional equation Q5 is shown in Figure 1. It involves
four different types of iterated integrals: IN3,1,1, IN3,2, IN4,1, and IN5 .

Theorem 1. The weight 5 multiple polylogarithm identity shown in Figure 1
holds modulo products for generic x1, . . . , x8.

As explained in Section 2 each term in this figure stands for cyclically
symmetric sum of eight terms with indices taken modulo 8, e.g. the first
term stands for the following expression (where we employ the shorthand
[r, s, t, u](j) := [xr+j , xs+j , xt+j , xu+j ])

−4
8∑

j=1
IN3,1,1

(
[1, 2, 3, 4](j), [1, 4, 5, 6](j), [1, 6, 7, 8](j)

)
.
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Figure 1: A version of Q5.

By a suitable specialization (or, more precisely, degeneration, since one
needs to take limiting values) of the arguments we obtain an explicit reduction
of a single term I3,1,1(x, y, z) to multiple polylogarithms of depth at most 2.
When speaking of depth reduction we always work modulo products.

Proposition 2. The function I3,1,1(x, y, z) can be written as a linear com-
bination of at most 47 terms, in terms of the functions I3,2, I4,1, and I5
(containing 1, 23 and 23 terms, respectively).

Proof. Specializing the identity of Theorem 1 to x5 = x3 = x1 produces a
combination of one generic IN3,1,1 term and several degenerate ones, up to the
inversion and reversion of IN3,1,1. The generic term can then be isolated by
subtracting the specialization of Theorem 1 to x2 = x1.

Proposition 3. The function I3,2(x, y) can be written as a linear combination
of at most 24 terms, via the functions I4,1 and I5 (containing 12 terms each).

Proof. Specializing the above identity for IN3,1,1 to x7 = x2 reduces the IN3,1,1
term to IN3,2. (The IN3,2 term that occurs in the formula of Proposition 2 goes
away under this degeneration.)
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A different reduction of I3,2 to I4,1 and Li5, involving a lot more compli-
cated Li5 terms, but fewer and simpler I4,1 terms was given in [2].

Corollary 4. Every weight 5 multiple polylogarithm can be expressed in terms
of I4,1 and I5.

Proof. This follows from the two preceding propositions together with an
explicit reduction of any iterated integral in weight 5 to I3,1,1 that was given
in [2].

4. Identities in weight 6

Our candidate for the identity Q6 is given in Figure 2 below. It involves IN4,1,1,
IN4,2, IN5,1, and IN6 .

Theorem 5. The weight 6 multiple polylogarithm identity shown in Figure 2
holds modulo products for generic x1, . . . , x9.

Figure 2: A version of Q6.
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4.1. Reduction from depth 4 to depth 3 and identities of type Qd
n

To perform the depth reduction from 4 to 3 in the weight 6 case, by analogy
to what was done in the previous section, we need a slightly different, ‘off-
diagonal’ identity of type Qn. The ‘diagonal’ identities Q6 and Q5 presented
above, as well as the original identities Q4 and Q3 of Goncharov and Rudenko,
have the property that the highest depth of the iterated integrals that occur
in Qn is �n/2�. The weight 6 identity whose top layer structure is indicated in
Figure 3 below, however, has highest depth 4, and we will call it Q4

6, indicating
the highest depth in the superscript. (In this notation the candidate for Q6
presented above would be called Q3

6.)
The specific identity that we give involves the functions IN3,1,1,1, IN4,1,1, IN3,2,1,

IN5,1, IN4,2, IN3,3, and IN6 . We note that, unlike the identities shown in Figures 1, 2,
and 4 (and breaking the convention that was set up in Section 2), in this
identity each term represents a signed cyclic symmetrization, introducing a
sign (−1)j after cyclically shifting by j steps, i.e. we replace each term by∑10

j=1(−1)jF (x1+j , . . . , x10+j) instead of
∑10

j=1 F (x1+j , . . . , x10+j).

Theorem 6. There exists a cyclically symmetric multiple polylogarithm iden-
tity in weight 6, depth 4 with 168 cyclic orbits of terms whose top layer struc-
ture is shown in Figure 3 that holds modulo products for generic x1, . . . , x10.

(We have also found a similar identity Q3
3 in weight 3 involving depth 3

functions and Q4
4 in weight 4 involving depth 4 functions and also analogous

identities Q3
5 and Q4

5 in weight 5.)

Figure 3: Top layer of a weight 6 depth 4 identity.
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Using the identity Q4
6, similarly to the case of weight 5 outlined in the

previous section, one can obtain depth reduction of certain iterated integrals.

Proposition 7. The function I3,1,1,1(w, x, y, z) can be written as a linear
combination of the functions I3,2,1, I4,1,1, I4,2, I5,1, and I6.

Proof. Specializing to x7 = x5 = x3 = x1 produces a combination consisting
of one generic IN3,1,1,1 term and several degenerate ones, up to the inversion
and reversion relations for IN3,1,1,1. The generic term can then again be isolated
by subtracting the specialization to x4 = x1.

Proposition 8. The function I3,2,1(x, y, z) can be expressed as a linear com-
bination of I4,1,1, I4,2, I5,1 and I6.

Proof. The proof goes along the same lines as the proof of Proposition 3
Specializing the above reduction for IN3,1,1,1 to x7 = x2 reduces the IN3,1,1,1
term to IN3,2,1. (The original IN3,2,1 term goes away.)

In general, using the dihedral symmetries of In1,n2,...,nk
allows one to ex-

press any iterated integral in terms I3,{1}a or I2,{1}b,2,{1}c . By considering the
stuffle product of Li2,2,{1}b and Li{1}c one can express I2,{1}b,2,{1}c in terms
of I2,{1}<b,2,{1}c′ and lower depth. Iteratively, this shows I2,2,{1}a−1 suffices
amongst integrals with indices involving only 1’s apart from two 2’s. Finally
the shuffle product of I3,{1}a and I1 expresses I2,2,{1}a−1 in terms of integrals
with indices involving only 1’s apart from a single 3, meaning I3,{1}a alone is
sufficient. Combining this with Proposition 8 gives us the following.

Corollary 9. Every weight 6 multiple polylogarithm can be expressed in terms
of I4,1,1, I4,2, I5,1 and I6.

5. Identity in weight 7

Finally, we indicate the top level structure of our candidate for Q7 in Figure 4.
It involves the iterated integrals IN4,1,1,1, IN5,1,1, IN4,2,1, IN6,1, IN5,2, IN4,3, and IN7 .

Theorem 10. There exists a cyclically symmetric multiple polylogarithm
identity in weight 7 and depth 4 with 121 cyclic orbits of terms whose top
layer structure is shown in Figure 4 that holds modulo products for generic
x1, . . . , x10.

Similarly to the proof of Proposition 2 we get the following.

Proposition 11. The function I4,1,1,1(w, x, y, z) can be written as a linear
combination of lower depth functions.
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Figure 4: Top layer of a version of Q7.

Proof. The same specialization to x7 = x5 = x3 = x1 produces a combination
of one generic IN4,1,1,1 term and several degenerate ones, up to the inversion
and reversion relations for IN4,1,1,1. The generic term is isolated by subtracting
the specialization to x4 = x1.

Remark 12. It was checked with extensive symbolic calculations that I5,1,1
functions of the type appearing in Q7, along with similar functions of lower
depth, were sufficient to span the space of weight 7 iterated integrals. More
precisely, we were able to confirm that the dimension of the space of such
functions agrees with the dimension computed by Brown in [1] for weight
k = 7 iterated integrals in n = 8 projective variables (the dimension being
1
k

∑
d|k μ(kd )

∑n−2
i=2 id = 53 820). By the known reduction of weight 7 integrals

to depth 5 (hence involving 5 + 3 = 8 projective variables), this implies that
every weight 7 integral can be expressed in terms of I5,1,1, I5,2, I6,1 and I7.
Given this large dimension, we were unable to extract explicit formulas for
this reduction.
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