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On squares of Hecke eigenforms
Winfried Kohnen

1. Introduction

In a recent paper D. Bao [1] studied certain linear relations between Hecke
eigenforms of weight 2k and squares of Hecke eigenforms of weight k. In
particular, for a positive even integer k let Sk be the space of cusp forms
of weight k for Γ1 := SL2(Z). According to a widely believed conjecture of
Maeda [4] the Hecke algebra over Q of Sk is simple (i.e. is a single number
field) whose Galois closure over Q has Galois group isomorphic to the full
symmetric group in d letters where d = dim Sk. Granting this conjecture
both in weight k and weight 2k it was shown in [1] that the Petersson scalar
products 〈f2, F 〉 are non-zero for all normalized Hecke eigenforms f in Sk

and F in S2k. Note that the numbers

〈F, f2〉
〈F, F 〉

are the coefficients of f2 when written as a linear combination of an orthogonal
basis of Hecke eigenforms F in S2k. The above non-vanishing statement can
be put more neatly in saying that f2 for all f is a generator of S2k viewed as
a module over the Hecke algebra.

The question arises if one can get some simple explicit formulas for the
quantities 〈f2, F 〉. As one naturally would expect such formulas should be
related to modular forms of half-integral weight. Indeed, this is predicted by
the identity

(1) S1(f(4z)θ(z)) = f2(z)

for any normalized Hecke eigenform f in Sk. Here

θ(z) =
∑
n∈Z

qn
2

is the standard theta function of weight 1
2 where as throughout z is in the

complex upper half-plane H and q = e2πiz for z ∈ H. Furthermore S1 is the
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first Shimura lift from the plus space S+
k+1/2 of weight k + 1

2 and level 4 to
S2k (see Sect. 2).

Identity (1) or variants of it follow by explicit calculations from the mul-
tiplicative properties of the Fourier coefficients of f . They seem to have been
discovered first by Selberg and were later re-discovered by several people
including H. Cohen and the author. In particular, with f replaced by the
Eisenstein series

Gk(z) = 1
2ζ(1 − k) +

∑
n≥1

σk−1(n)qn

of weight k for Γ1 and properly added constant term, (1) was used in [7] in
connection with Waldspurger’s theorem on central critical L-values.

In this paper, we in particular will give an explicit identity for 〈f2, F 〉
which involves special values of partial L-functions attached to Hecke eigen-
forms of weight k + 1

2 corresponding to Hecke eigenforms of weight 2k under
the Shimura lift. Indeed, using (1) this will follow from a slightly more general
similar statement in the context of modular forms of half-integral weight. The
proof of the latter uses Rankin’s method as given in [6] (with the Eisenstein
series replaced by a Poincaré series) and the Petersson formulas for Poincaré
series both in the integral and the half-integral weight case.

Note that our results do not depend on any unproved conjectures. More-
over, they seem to imply some curious identities involving Hecke eigenforms.
We shall give two explicit examples, one relating to cubes of Hecke eigenforms
and one other which gives an algebraicity result for a special value of partial
L-functions of a Hecke eigenform of half-integral weight.

A precise formulation of our results and proofs will be given in the next
sections. At the end of the paper, we will discuss some open questions and
speculations.

2. Preliminaries on modular forms

Throughout k denotes a positive even integer. We will suppose that k ≥ 6
since otherwise S2k = {0}.

If f1 and f2 are modular forms of weight k on a congruence subgroup
Γ ⊂ Γ1 one of which is a cusp form we will denote by

〈f1, f2〉 = 1
[Γ1 : Γ]

∫
Γ\H

f1(z)f2(z)ykdμ (z = x + iy, dμ = dxdy

y2 )

their Petersson scalar product.
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If the two forms are of half-integral weight k+ 1
2 on a congruence subgroup

Γ ⊂ Γ0(4) (where Γ0(4) consists of matrices in Γ1 with lower left component
divisible by 4), we define their scalar product in the same way, mutatis mu-
tandis and with the pre-factor 1

[Γ1:Γ] replaced by 1
[Γ0(4):Γ] . The values of the

scalar products then are independent of the choice of Γ and the usual compu-
tation rules are valid. We continue to use the above notation also in the case
of non-holomorphic modular forms provided the integrals are convergent.

We let {f1, ..., fd} (resp. {F1, ..., Fe}) be the orthogonal basis of normal-
ized Hecke eigenforms of weight k (resp. weight 2k) for Sk (resp. S2k). Note
that these bases are uniquely determined up to permutation. We shall write
aμ(n) (n ≥ 1) for the n-th Fourier coefficient of fμ. Note that the aμ(n) are
real.

We denote by Sk+1/2 the space of cusp forms of weight k + 1
2 and level

4 and by S+
k+1/2 the subspace of those forms whose n-th Fourier coefficients

vanish until n ≡ 0, 1 (mod 4) [5, 9].
The space S+

k+1/2 is Hecke isomorphic to S2k. We let {g1, ..., ge} be an
orthogonal basis of Hecke eigenforms of S+

k+1/2 with gν corresponding to Fν

for all ν, i.e. gν and Fν have the same Hecke eigenvalues. This basis is uniquely
determined up to permutation and multiplication with non-zero scalars. We
may and will assume that the Fourier coefficients cν(n) (n ≥ 1) of gν are real.

The map S1 defined by

∑
n≥1

c(n)qn �→
∑
n≥1

(∑
d|n

dk−1c(n
2

d2 )
)
qn

maps S+
k+1/2 to S2k and commutes with all Hecke operators (first Shimura

lift). One has

(2) S1(gν) = cν(1)Fν

for all ν [5, 9].

3. Statement of main result

For g =
∑

n≥1 c(n)qn ∈ S+
k+1/2 and n ∈ N we put

(3) �(g, n) :=
∑
r∈Z

c(4n + r2)
(4n + r2)k−1/2 .
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Since c(n) = O(nk/2+1/4) by the usual Hecke bound we see that the series in
(3) is absolutely convergent.

We set

(4) κk := 1 · 3 · 5 · ... · (2k − 3)
2k(k − 2)! .

Note that κk is a rational number.

Theorem. For each n ∈ N one has

(5)
d∑

μ=1

aμ(n)
nk−1〈fμ, fμ〉

fμ(4z)θ(z) = κk

e∑
ν=1

�(gν , n)
〈gν , gν〉

gν(z)

where κk is given by (4).

The proof will be given in Sect. 5. Before we will state and prove some
Corollaries in the next section.

4. Discussion of corollaries

If we apply S1 on both sides of (5) and observe (1) and (2) we obtain

Corollary 1. For each n ∈ N one has

(6)
d∑

μ=1

aμ(n)
nk−1〈fμ, fμ〉

f2
μ(z) = κk

e∑
ν=1

�(gν , n)cν(1)
〈gν , gν〉

Fν(z)

with κk given by (4).

As is well-known the matrix

(aμ(n))1≤n≤d,1≤μ≤d

is invertible. (Indeed, Sk has a basis whose (d, d)-matrix of first Fourier coef-
ficients is the unit matrix.) Therefore

A :=
( aμ(n)
nk−1〈fμ, fμ〉

)
1≤n≤d,1≤μ≤d
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is invertible. We put

B := κk

(�(gν , n)cν(1)
〈gν , gν〉

)
1≤n≤d,1≤ν≤e

.

We then find from (6)

Corollary 2. With the above notation one has⎛
⎜⎜⎜⎜⎜⎝

f2
1
.
.
.
f2
d

⎞
⎟⎟⎟⎟⎟⎠ = A−1B

⎛
⎜⎜⎜⎜⎜⎝

F1
.
.
.
Fe

⎞
⎟⎟⎟⎟⎟⎠ .

Corollary 2 gives an explicit expression for f2
ν (1 ≤ ν ≤ d) in terms of the

Hecke basis {F1, ..., Fe}.

Next, we shall prove

Corollary 3. i) For any g ∈ S+
k+1/2 the function

∑
n≥1

nk−1�(g, n)qn

is in Sk.
ii) One has

d∑
μ=1

fμ(z′)f2
μ(z)

〈fμ, fμ〉
= κk

e∑
ν=1

cν(1)
〈gν , gν〉

(∑
n≥1

nk−1�(gν , n)e2πinz′
)
Fν(z).

In particular

d∑
μ=1

f3
μ(z)

〈fμ, fμ〉
= κk

e∑
ν=1

cν(1)
〈gν , gν〉

(∑
n≥1

nk−1�(gν , n)qn
)
Fν(z).

Indeed, if we multiply both sides of (5) with nk−1e2πinz′ (z′ ∈ H) and then
sum up over n we obtain

(7)
d∑

μ=1

fμ(z′)fμ(4z)θ(z)
〈fμ, fμ〉

= κk

e∑
ν=1

(∑
n≥1

nk−1�(gν , n)e2πinz′
) gν(z)
〈gν , gν〉

.
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Taking the scalar product with a fixed gρ(z) (ρ = 1, ..., e) reveals that
∑
n≥1

nk−1�(gρ, n)e2πinz′

is in Sk. This proves i).
To prove ii) we apply S1 on both sides of (7) and then use (1) and (2).

Remark. Using the calculations in the next section and an obvious slight
modification of the arguments given in [6], one sees that the linear map given
in i) above is the adjoint map of Sk → S+

k+1/2, f(z) �→ f(4z)θ(z), up to some
non-zero constant.

We now turn to special values. Writing Aν(n) (n ≥ 1) for the n-th Fourier
coefficient of Fν (1 ≤ ν ≤ e) the matrix

(Aν(n))1≤n≤e,1≤ν≤e

is invertible as already stated above. We therefore obtain from (6) by equating
first Fourier coefficients an identity

Cp = r,

where p is a d-column, r is an e-column with

pμ = aμ(n)
nk−1〈fμ, fμ〉

(μ = 1, ..., d),

rν = κk
�(gν , n)cν(1)

〈gν , gν〉
(ν = 1, ..., e)

and where C is an (e, d)-matrix with entries in the field of algebraic numbers
Q. In particular, we obtain

Corollary 4. Let ν ∈ {1, ..., e}. Then for all n ∈ N the numbers

�(gν , n)cν(1)
〈gν , gν〉

lie in the finite-dimensional Q- vector space

Q 1
〈f1, f1〉

+ ... + Q 1
〈fd, fd〉

.
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5. Proof of main result

We shall now give the proof of the Theorem stated in Sect. 3.
For each n ∈ N we let Pk,n ∈ Sk be the n-th Poincaré series characterized

by the condition

(8) 〈f, Pk,n〉 = (k − 2)!
(4πn)k−1af (n)

for all f ∈ Sk, where af (n) denotes the n-th Fourier coefficient of f . Explicitly,
one has

(9) Pk,n(z) = 1
2

∑
γ∈Γ1,∞\Γ1

e2πinz|kγ,

where Γ1,∞ = {
(

1 m
0 1

)
|m ∈ Z} and as usual for any function h : H → C and

for any γ =
(

a b
c d

)
∈ GL+

2 (R) we put

(10) (h|kγ)(z) := (ad− bc)k/2(cz + d)−kh(az + b

cz + d
).

From (8) using the Petersson formula and multiplying with θ we find that

(11) Pk,n(4z)θ(z) = (k − 2)!
(4π)k−1

d∑
μ=1

aμ(n)
nk−1〈fμ, fμ〉

fμ(4z)θ(z).

On the other hand, we note that Pk,n(4z)θ(z) ∈ S+
k+1/2. Hence by Peters-

son’s formula again we have

(12) Pk,n(4z)θ(z) =
e∑

ν=1

〈gν(z), Pk,n(4z)θ(z)〉
〈gν , gν〉

gν(z).

We shall prove

Proposition. For any g ∈ S+
k+1/2 one has

(13) 〈g(z), Pk,n(4z)θ(z)〉 = 2−2k+1 Γ(k − 1/2)
πk−1/2 �(g, n).

The assertion of the Theorem immediately follows from the Proposition
and by comparing (11) and (12). We also observe our assumption that cν(n)
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is real and the identity

Γ(k − 1/2) = 1 · 3 · 5 · · · · · (2k − 3)
2k−1

√
π.

We will now give the proof of the Proposition which technically is some-
what involved. For the reader’s convenience we shall be rather detailed.

We shall start with some definitions.
We let

W4 :=
(

0 −1
4 0

)
.

Then according to (10), W4 acts on functions h : H → C in weight k by

h(z) �→ (h|kW4)(z) = (2z)−kh(− 1
4z ).

We also define an operation of W4 on functions h as above in weight k+ 1
2 by

h(z) �→ (h|k+ 1
2
W4)(z) := (−2iz)−k−1/2h(− 1

4z ).

We also set
(h|V4)(z) := h(4z).

Furthermore, if

H(z) =
∑
m∈Z

a(m, y)e2πimx (z = x + iy ∈ H)

is a convergent Fourier series we define

(H|U4)(z) :=
∑
m∈Z

a(4m,
y

4)e2πimx.

If a(m, y) = a(m)e−2πmy with a(m) ∈ C and so H is a holomorphic Fourier
series, then U4 restricts to the usual Hecke operator of degree 4 sending mod-
ular forms to modular forms.

We recall that the subspace S+
k+1/2 ⊂ Sk+1/2 can be characterized as the

subspace of functions g which satisfy

(14) g|U4 = (−1)k/22k(g|k+1/2W4)

[3].
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We will now start to evaluate the scalar product on the left of (13) which
in the following will be abbreviated as I.

Since
(Pk,n|kW4)(z) = 2kPk,n(4z)

and
(θ|1/2W4)(z) = θ(z)

we see that

(−1)k/22−kI = (−1)k/2〈g, (Pk,n|kW4)θ〉
= 〈g, (Pk,nθ)|k+1/2W4〉
= 〈g|k+1/2W4, Pk,nθ〉

where in the last line we have used that W4 in weight k + 1
2 is an hermitian

involution.
Let us put

G(z) := (g|k+1/2W4)(z) · θ(z) ·
√
y.

Then G transforms like a modular form of weight k on Γ0(4) and

(−1)k/22−kI = 〈G,Pk,n〉.

Let

(15) Pk,n,4(z) = 1
2

∑
γ∈Γ0(4)∞\Γ0(4)

e2πinz|kγ

be the n-th Poincaré series of weight k on Γ0(4). It follows from the definitions
(9) and (15) that

Pk,n = Pk,n,4|tr

where
Pk,n,4|tr :=

∑
γ∈Γ0(4)\Γ1

Pk,n,4|kγ

(“trace map”). Hence by elementary properties of the scalar product

(−1)k/22−kI = 〈G,Pk,n,4|tr〉
=

∑
γ∈Γ0(4)\Γ1

〈G,Pk,n,4|kγ〉
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=
∑

γ∈Γ0(4)\Γ1

〈G|kγ−1, Pk,n,4〉.

The group Γ0(4) has index 6 in Γ1 and we take as a set of representatives
for Γ0(4)\Γ1 the matrices

(
1 0
4 1

)
,

(
1 0
2 1

)
,

(
1 0
1 1

)(
1 μ
0 1

)
(μ (mod 4)).

Since G is invariant in weight k under Γ0(4) we thus conclude that
(16)

(−1)k/22−kI = 〈G,Pk,n,4〉+〈G|k
(

1 0
−2 1

)
, Pk,n,4〉+4·〈G|k

(
1 0
−1 1

)
G,Pk,n,4〉.

Recall that Γ0(4) has three inequivalent cusps (usually represented by
i∞, 0 and 1

2) and that the functions

G,G|k
(

1 0
−2 1

)
, G|k

(
1 0
−1 1

)
,

respectively are “the” expansions of G at i∞,−1
2 (equivalent to 1

2) and −1
(equivalent to 0), respectively.

We will now compute these expansions and then the expressions on the
right of (16).

We denote by b(m) (m ≥ 1) the Fourier coefficients of g|k+1/2W4. Then
we find from the definitions that

G(z) = √
y

∑
m≥1,r∈Z

b(m)e−2π(m+r2)ye2πi(m−r2)x

and hence the n-th Fourier coefficient of G equals

a(G;n, y) := √
y
∑
r∈Z

b(n + r2)e−2π(n+2r2)y.

Therefore, by the standard unfolding argument and the usual integral repre-
sentation of the Γ-function, we infer that

〈G,Pk,n,4〉 =
∫ ∞

0
a(G;n, y)e−2πnyyk−2dy

=
∑
r∈Z

b(n + r2)
∫ ∞

0
e−4π(n+r2)yyk−3/2dy
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= Γ(k − 1/2)
(4π)k−1/2

∑
r∈Z

b(n + r2)
(n + r2)k−1/2 .

By (14), one has
b(n) = (−1)k/22−kc(4n)

and hence we find that

(17) 〈G,Pk,n,4〉 = (−1)k/22−3k+1 Γ(k − 1/2)
πk−1/2

∑
r∈Z,r even

c(4n + r2)
(4n + r2)k−1/2 .

Next, we turn to

G1 := G|k
(

1 0
−2 1

)
.

Note that (
1 0
−2 1

)−1

Γ0(4)
(

1 0
−2 1

)
= Γ0(4)

and hence G1 is modular on Γ0(4).
Since θ|1/2W4 = θ and

(18) Im(− 1
4z )1/2 =

√
y

2|z|

we can write
G = (−1)k/2

(
gθ · Im1/2

)
|kW4.

Therefore, as (
1 0
−2 1

)
= W−1

4

(
1 1/2
0 1

)
W4

we find that

(19) G1 = (−1)k/2
(
gθ · Im1/2

)
|k
(

1 1/2
0 1

)
|kW4.

Let us compute the action of
(

1 1/2
0 1

)
in weight k in (19). We have

g(z + 1
2) =

∑
m≥1

(−1)mc(m)qm
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= 2 ·
∑

m≥1,m even

c(m)qm − g(z).

Since g is in the plus space, we infer that
∑

m≥1,m even

c(m)qm =
∑

m≥1,m≡0 (mod 4)
c(m)qm

= (g|U4V4)(z)
= (−1)k/22k(g|k+1/2W4)|V4

(use (14)).
Thus

(20) g(z + 1
2) = (−1)k/22k+1(g|k+1/2W4)(4z) − g(z).

In particular, (with g = θ) we see that

(21) θ(z + 1
2) = 2θ(4z) − θ(z).

Inserting (20) and (21) into (19) we conclude that

G1 = (−1)k/2
(
[(−1)k/22k+1(g|k+1/2W4)(4z)−g(z)]·[2θ(4z) − θ(z)]·√y

)
|kW4.

A simple calculation now shows that the first factor in square brackets acted
on by W4 in weight k equals

2−k+1/2(−iz)1/2
(
g(z4) − (g|U4)(z)

)
(we have used (14) again for the second term of the sum).

Therefore, using (18) we finally obtain

(22) G1 = (−1)k/22−k[g(z4) − (g|U4)(z)] · [θ(
z

4) − θ(z)] · √y.

We now insert the Fourier expansions into (22). We have

g(z4) − (g|U4)(z) =
∑

m≥1,m≡0,1 (mod 4)
c(m)qm/4 − (g|U4)(z)

=
∑

m≥1,m≡1 (mod 4)
c(m)qm/4.
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In particular, with g = θ we have

θ(z4) − θ(z) = θ(z4) − (θ|U4)(z)

=
∑

r∈Z,r odd

qr
2/4.

Hence, we find

G1 = (−1)k/22−k · √y · (
∑

m≥1,m≡1 (mod 4)
c(m)q

m
4 )(

∑
r∈Z,r odd

qr2/4).

Multiplying out we get

G1 = (−1)k/22−k · √y ·
∑

m≥1,m≡1 (mod 4), r∈Z, r odd

c(m)e−2πm+r2
4 y · e−2πim−r2

4 x.

Note that under the given conditions m−r2

4 is an integer. Hence, we see that
the n-th Fourier coefficient of G1 equals

(−1)k/22−k · √y ·
∑

m≥1,m≡1 (mod 4), r∈Z, r odd

c(4n + r2)e−2π(n+ r2
2 )y,

and in a similar way as before we obtain

(23) 〈G1, Pk,n,4〉 = (−1)k/22−3k+1 Γ(k − 1/2)
πk−1/2

∑
r∈Z,r odd

c(4n + r2)
(4n + r2)k−1/2 .

We will finally treat

G2 := G|k
(

1 0
−1 1

)
.

We denote by Γ0(4) the subgroup of matrices in Γ1 with upper right entry
divisible by 4 and put

Γ0
0(4) := Γ0(4) ∩ Γ0(4).

Then (
1 0
−1 1

)−1

Γ0
0(4)

(
1 0
−1 1

)
= Γ0

0(4)
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and G2 is modular on Γ0
0(4). The group Γ0

0(4) has index 4 in Γ0(4) and a set
of representatives for Γ0

0(4)\Γ0(4) is given by the matrices
(

1 μ
0 1

)
(μ (mod 4)).

In particular, it follows that the trace of G2 from Γ0
0(4) to Γ0(4) given by

tr G2 =
∑

μ (mod 4)
G2|k

(
1 μ
0 1

)
(μ (mod 4))

is modular on Γ0(4). Since Pk,n,4 is invariant under translations we therefore
find that

4 · 〈G2, Pk,n,4〉 =
∑

μ (mod 4)
〈G2, Pk,n,4|k

(
1 −μ
0 1

)
〉

=
∑

μ (mod 4)
〈G2|k

(
1 μ
0 1

)
, Pk,n,4〉

= 〈tr G2, Pk,n,4〉.

So, we have to compute the Fourier expansion of tr G2. Since
(

1 0
−1 1

)
=

(
1 −1
0 1

)(
0 1
−1 0

)(
1 −1
0 1

)

and G is invariant under translations we see that

tr G2 =
∑

μ (mod 4)
G|k

(
1 −1
0 1

)(
0 1
−1 0

)(
1 −1
0 1

)(
1 μ
0 1

)

=
∑

μ (mod 4)
G|k

(
0 1
−1 0

)(
1 μ
0 1

)
.

Now a straightforward calculation similar as above shows that

(G|k
(

0 1
−1 0

)
)(z) = (−1)k/22−k−1g(z4)θ(z4) · √y,
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hence

tr G2 = (−1)k/22−k−1
( ∑
μ (mod 4)

g(z + μ

4 )θ(z + μ

4 · Im(z + μ

4 )1/2
)

= (−1)k/22−k−1
(
gθ · √y

)
|U4.

We have

gθ · √y = √
y

∑
m≥1, r∈Z

c(m)e−2π(m+r2)ye2πi(m−r2)x

and the n-th Fourier coefficient of (gθ ·√y)|U4 is the 4n-th Fourier coefficient
of gθ · √y, with y replaced by y

4 . Thus the n-th Fourier coefficient of tr G2 is

(−1)k/22−k+1 ·
√

y

4 ·
∑
r∈Z

c(4n + r2)e−4π(4n+2r2)y/4.

Hence, as before

〈tr G2, Pk,n,4〉 = (−1)k/22−k+1 ∑
r∈Z

c(4n + r2)
∫ ∞

0
e−2π(4n+2r2)yyk−3/2dy

= (−1)k/22−3k+1 Γ(k − 1/2)
πk−1/2

∑
r∈Z

c(4n + r2)
(4n + r2)k−1/2 .(24)

Altogether, we find from (16), (17), (23) and (24) that

I = 2−2k+1 Γ(k − 1/2)
πk−1/2 �(g, n)

as claimed. This proves the Proposition.

6. Some open questions and speculations

Let us briefly discuss some open problems connected with the main result of
the paper.

i) It seems possible to generalize the Theorem to arbitrary level and char-
acter (not necessarily restricted to the context of the plus space), using gen-
eralizations of Selberg’s identity (1) due to B. Cipra [2] and D. Hansen and
Y. Naqvi [3].
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ii) A more difficult question is if one can prove analogous results when S1
is replaced by the D-th Shimura lift where D > 0 is a fundamental discrim-
inant [5]. Note that in [7], p. 185 for level 1 two functions GD and FD built
out of Eisenstein series were introduced and it was proved in Propos. 3 that
FD is the image of GD under the D-th Shimura lift. The latter can be viewed
as a generalization of formula (1). In the above situation, can one replace the
Eisenstein series by any normalized cuspidal Hecke eigenform?

We finally remark that M.K. Pandey and B. Ramakrishnan in [8] give
certain generalizations of (1) to the case of the t-th Shimura lift, where t is a
squarefree number and the authors do not restrict to the plus space.
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