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Electrotechnics, quantum modularity and CFT
Werner Nahm

Abstract: Based on older and recent work of Don Zagier and col-
laborators, a relation between algebraic K-theory and modularity
is investigated. It arises from the study of the behaviour of cer-
tain q-hypergeometric functions near the roots of unity. In typical
cases, one finds intricate phenomena described by “quantum mod-
ularity”. Here it is investigated when they reduce to ordinary mod-
ular invariance. For the q-hypergeometric functions under study
(“Nahm sums”) this leads to systems of algebraic equations. I had
conjectured an equivalence between modular invariance of the q-
hypergeometric functions and a K-theoretic torsion property of all
solutions of the algebraic equations. This rough and ready conjec-
ture was not quite correct, though it pointed in a rewarding direc-
tion. In particular, Zagier’s recent work with Calegari and Garou-
falidis proved that modular invariance implies the torsion property
for a special solution of the algebraic system. Here their argument
is generalised. The q-hypergeometric series should be understood
as convolutions of Jacobi forms (as defined and explored by Eichler
and Zagier). The Jacobi forms are vector valued, with components
described by some finite set M. For each element of M one has a
specific system of algebraic equations and for all of them at least
one solution must have a modified K-theoretic torsion property. A
related inversion property conjectured twenty years ago is proven.
At greater depth new structures do appear. There is a relation to
algebraic geometry, namely to vector bundles over tori. Particu-
larly intriguing is a possible relation between CFT (mathematics)
and CFT (physics).
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1. Introduction

In a well-known poem, Schiller attributed an interpretation of the three space
dimensions to Confucius. He concluded by: Nur Beharrung führt zum Ziel,
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Nur die Fülle führt zur Klarheit, Und im Abgrund wohnt die Wahrheit. In
view of our limited time, most mathematicians concentrate on parts one and
three, and only some of the greatest have the leisure to explore the breadth of
the world to gain greater clarity. Don Zagier sometimes regrets that his very
nature leads him to explore such broad and clear vistas instead of opening the
deepest mines, but mathematical nature has a tendency to twist dimensions.
From time to time he enjoys the experience to find himself at an unexpected
depth while following his curiosity in a lateral direction. For me it was a plea-
sure to find half-hidden passages between all those gardens he has brought into
fruit and flower. Unfortunately politics and nature limited our interactions
and we even did not manage to write a paper together. Our contributions
to the meeting “Frontiers in Number Theory, Physics and Geometry” in Les
Houches ([11], [7]) should be read as a dialogue, however. If a reader of the
present article is not yet immersed in modularity and K3, (s)he might better
look at them first. Still, the following two opening sections of the present
article are self-contained. The next two sections provide the connection to
another domain of mathematics and some calculations. The final outlook is
speculative. Unavoidably, an anniversary celebration has a time limit, so that
many paths could not be pursued with sufficient leisure and persistence. I
hope that this can be forgiven by the readers. As far as Don Zagier himself
is concerned, I regard a small aspect of his recent lecture series in Bonn and
Trieste as a continuation of our dialogue and the present article as my first
response.

2. Electrotechnics and the extension of the Rogers
dilogarithm

One focus of my Les Houches contribution was the theory of integrable per-
turbations of conformal quantum field theory. I did not (nor do I now) have
a good mathematical understanding of it and had to speculate a lot. Thus
I was reluctant to bring in even more tenuous links outside mathematics
proper, though they had given me much inspiration. A contribution to Za-
gier’s anniversary may be a legitimate place to correct the omission of such a
reference. At the time it seemed likely that the gap between the Bloch group
and full K3 could be bridged by a proper consideration of the domain of the
Rogers dilogarithm, and indeed Zickert later proved that this is true [12]. One
needs the fully extended Bloch group instead of partial extensions that occur
in other contexts. I had found it in an advertisement, but learned later that
it was known, though with a description that I cannot remember [8]. That
advertisement is the only one in all my life that left a long-lasting positive
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impression. I read it when I came to Bonn to get my PhD and spent much
time browsing Scientific American in the physics library. At the time I found
it too cumbersome to get its source [9].

The first half of the advertisement is worth citing: “Ohm’s Law – 1964. It’s
called van der Pauw’s theorem. And in my opinion, it is a most striking ex-
ample of how a rather sophisticated piece of mathematics led to an extremely
practical result. Why? Because of its underlying elegance and simplicity. Be-
fore van der Pauw came along, the determination of specitic resistivity [later
called ρ, W.N.] – especially in the case of semi-conductors – while not exactly
difficult, was a time-consuming and lengthy procedure. The best procedure
available was to grind cylindrical or prismatic rods and to determine accu-
rately both length and cross section.

Van der Pauw, on the other hand, showed that it is possible to measure
the specific resistivity of a flat sample of constant thickness but otherwise
arbitrary shape merely by placing four small contacts (1,2,3,4) on the cir-
cumference. Then if we define R12 as the ratio of the voltage between 1 and
2, and the current between 3 and 4, and similarly R23, we have:

e−πdR12/ρ + e−πdR23/ρ = 1,

where d is the thickness of the sample.
Let me indicate the proof. First take an infinite half plane. Then all

potentials are logarithmic and the proof is elementary. Next map conformly
to obtain the detailed contour and remember that resistance is a conformal
invariant. That’s all.”

The text was written by Casimir in his role as Director of Philips Research
Laboratories, obviously with an audience of mathematical physicists in mind.
For mathematicians one should add that the shape must be contractible and
that the two-dimensional electric potential is governed by a Green’s function
of ∂∂̄. Thus for the infinite upper half plane, R12 becomes proportional to the
logarithm u of the cross ratio of the four points in given order and similarly
for v and a cyclically permuted order. One obtains

eu + ev = 1,

which is essentially the equation written down by van der Pauw.

Definition 2.1. Let F be a subfield of C. Then P (F ) is the set of pairs
(u, v) in (C ∪ {−∞})2, so that eu and ev lie in F and satisfy van der Pauw’s
equation eu + ev = 1. Here the exponential denotes the standard map from
the semigroup C ∪ {−∞} to C, with e−∞ = 0.
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In the following we will use the notation x = eu (and xi = eui). For
F = C, we have differentials dLi2(x) = −vdu and dL(u, v) = (udv − vdu)/2.
When one cuts the complex x-plane by removing the interval (1,∞) on the
real axis, the dilogarithm Li2(x) is a function taking values in C, defined
by integration of −vdu and Li2(0) = 0. The Rogers dilogarithm is given
by L(u, v) = Li2(x) + uv/2. The inverse image of the cut x-plane under
the map (u, v) �→ eu has components labeled by integers n, with Im(v) ∈
(−π + n, π + n). The component with n = 0 will be called principal. The
points (−∞, 0) and (0,−∞) are assigned to the principal component. By
continuity, L(−∞, 0) = 0 and L(0,−∞) = π2/6. Since vdu = vevdv/(ev − 1),
the residues of dL(u, v) in P (C) are integral multiples of 2πi. Thus L(u, v) is
determined up to integral multiples of (2πi)2, when it is defined by integration
of dL(u, v) along arbitrary paths. Both the multivaluedness and the unique
principal value will be relevant later.

One mainly is interested in the case that F is a field of algebraic numbers.
From our first childhood experiences with integration the amalgam of algebra
and logarithms should not be surprising, and the central role of the logarith-
mic embedding in number theory shows that it goes deep. Thus we will use the
additive group of logarithms of algebraic numbers and the corresponding Z-
linear wedge product, with the elementary notation (u1+u2)∧v = u1∧v+u2∧v
instead of the customary exp(u1) exp(u2) ∧ exp(v) = exp(u1) ∧ exp(v) +
exp(u2)∧ exp(v). There are various versions of the K3-group of F , with defi-
nitions of different depth and accessibility. In this article, depth is not aimed
for. The main disadvantage is that any equivalence with more abstract and
better generalisable definitions of K3 is conjectural. In particular, the work
of Garoufalidis and Zagier [4] uses a deeper definition. Thus their results go
beyond what can be explained in this article. Nevertheless, it seems clear that
there must be easily accessible and easily usable definitions of all relevant K3
groups for number fields. We shall need two versions, here called K3 and Km

3 .

Definition 2.2. The abelian group K3(F ) consists of the finite formal sums∑
i ai[ui, vi] with ai ∈ Z and (ui, vi) ∈ P (F ) for which

∑
i aiui ∧ vi = 0,

modulo sums for which
∑

i aiL(ui, vi) is an integral multiple of (2πi)2.

Torsion elements of K3(F ) are those for which
∑

i aiL(ui, vi) is a rational
multiple of (2πi)2. Sorry, I should have said (2πi)2/24 instead of (2πi)2 to stay
close to the usual definition. The devil is in the details, but for the recognition
of torsion elements it makes no difference. The reason for the denominator 24
will become clear in a moment.
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Using logarithms helps to understand the relation to the Bloch-Wigner
(-Lobachevsky) function D(x), which is defined by

D(x) = Im(L(u, v) − ūv/2).

Now Im(ūv/2) is Z-linear and anti-symmetric. Thus it only depends on u∧v,
so that

∑
i ui ∧ vi = 0 implies

∑
i

D(xi) =
∑
i

Im(L(ui, vi)).

Obviously,
∑

i L(ui, vi) contains more information than its imaginary part. On
the other hand, the logarithmic definition yields some redundancy compared
to the purely algebraic formulation, since one has to distinguish between [u, v]
and [u + 2πi, v] or [u, v + 2πi]. Since one has L(u + 2πi, v) − L(u, v) = πiv
and L(u, v + 2πi)− L(u, v) = −πiu this suggests the definition of a modified
group Km

3 . Here P (F ) is replaced by F itself. To have a unified notation we
represent elements x of F by pairs u, v as before, but with u and v considered
as logarithms of algebraic numbers modulo 2πi.

Definition 2.3. The abelian group Km
3 (F ) consists of equivalence classes of

finite formal sums
∑

i ai[ui, vi] as for K3(F ), but with ui and vi defined up to
addition of integral multiples of 2πi. The sums have to satisfy the condition
that

∑
i aiui ∧ vi = 2πi ∧ w, where w is the logarithm of an element of F .

Two such sums are equivalent, iff their difference is the image of a vanishing
sum in K3(F ). Torsion elements of Km

3 in the extended sense are those sums
for which

∑
i aiL(ui, vi) is of the form 2πiw, where w is the logarithm of an

element of F .

By definition, one has an injection of K3(F ) into Km
3 (F ). The definition

of extended torsion expresses the hope that the concept will turn out to be
sufficiently close to torsion in the common sense, but this question will not
be investigated. The fundamental example of a vanishing element in K3(F )
is

∑5
i=1[ui, vi], where ui and vi have period 5 as functions of i and satisfy

the five-term relation ui = vi−1 + vi+1. This yields
∑5

i=1 L(ui, vi) = 4π2/8
and

∑5
i=1 L(vi, ui) = 4π2/12. One may put (u0, v0) = (0,−∞) and (u1, v1) =

(u−1, v−1) = (−∞, 0). This yields (u2, v2) = (v−2, u−2) and L(u, v)+L(v, u) =
4π2/24 for (u, v) ∈ P (F ). In the commonly used algebraic notation this means
that [x]+[1−x] = 0. On the other hand, the translation of the equally common
relation [x] + [1/x] = 0 needs more care. The logarithms of 1/x and 1 − 1/x
yield the pairs (−u, v− u± πi). In K3(F ) one has 2[u, v] + [−u, v− u+ πi] +
[−u, v− u− πi] = 0, but [u, v] + [−u, v− u+ πi] alone is not even an element
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of K3(F ). It is extended torsion in Km
3 , because L(u, v)+L(−u, v−u+πi) =

πiu/2 + π2/3.
When one uses vectors u = (u1, . . . , ur), v = (v1, . . . , vr) in Cr and a

symmetric r × r matrix A with entries Aij in Q, then v ∧ Av = 0. Thus
the equation u = Av yields elements

∑r
i=1[ui, vi] in K3. We also will have

to consider equations u− 2πiB = Av with B ∈ Qr. Solutions yield elements
in Km

3 and one can ask if they are extended torsion. The following conven-
tions concerning matrices and vectors will be used. They are integral, iff all
their entries are integral. The notation of scalar products is suppressed. The
components of xA are

∏
j x

Aij

j . A always will be symmetric, with entries in Q

and rank denoted by r. A is even, iff m = An with m,n both in Zr implies
that mn is even. For integral A this property agrees with the usual definition,
but for invertible A it implies that A and A−1 are both even or both odd.
As an aside, in conformal field theory the odd case implies the presence of
fermions. Fractions are odd, if they can be written as p/q with p, q both odd.
In this case A and pA/q are both even or both odd. When all entries of A
have odd denominators and the diagonal entries have even numerators, then
A is even. Thus there exist integers s+, s− such that 2sA is even for integers
s with s ≥ s+ or s ≤ s−.

It is more common to transform the equation u = Av to the algebraic
system x = (1 − x)A, as it was done by Meinardus in the case r = 1 [6].
All references to Meinardus in the present article refer to that paper, which
contains several important ideas. They are developed for r = 1 only, but
generalisation to arbitrary r is immediate in each case. Meinardus made the
substitution Q = 1 − x (with different letters) and wrote 1 − Q = QA. This
form was used at Les Houches, too, but will be used with some reluctance,
since Q also will denote a quadratic form. When A is not integral, one has
to worry about the choice of roots. Only when x and 1 − x are restricted
to positive real values, rational powers are defined without ambiguity. The
unique solution of x = (1− x)A with this property will be called the positive
solution. The corresponding values of ui, vi are taken to be real, but they
are or course negative. Since these values belong to the principal domain,∑

i L(ui, vi) takes values in C, indeed in R.
In general, the definition of QA needs choices of roots Q1/ai

i , i ∈ {1, . . . , r},
where ai is the lowest common denominator of Aij , j ∈ {1, . . . , r}. A solution
of 1 − Q = QA must include such a choice. The equation u = Av is more
convenient than its exponential form, since it avoids any ambiguity. We shall
say that a solution x of x = (1−x)A is torsion, iff the (rather a) corresponding
sum

∑r
i=1[ui, vi] is a torsion element of K3. Changing the logarithms log xi

and log(1 − xi) by multiples of 2πi yields the equation u − λ = Av, where
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λ ∈ 2πiΛ, Λ = Zr +AZr. Changing the logarithms while maintaining u = Av
changes L(u, v) by multiples of 2π2, but only by irrelevant multiples of 4π2

when A is even. For a given Qi one can choose a unique logarithm vi with
Im(vi) ∈ (−π, π]. For integral A this yields a unique representative (Av, v)
of any solution of 1−Q = QA in the principal domain or on its boundary and
a corresponding value of

∑
i L(ui, vi) in C. There should be a generalisation

of this principal value for non-integral A, but this needs further thought.
A simple example for a 5-torsion element comes from the five-term relation

when all pairs (ui, vi) are equal. This yields u = 2v, thus the logarithm of
the golden ratio. Special solutions of the five-term relation arise, when one
puts (u−i, v−i) = (ui, vi). This yields v1 = u0/2, v2 = u1 − v0, u2 = v1 + v2,
with arbitrarily chosen u0. Then [u0, v0] + 2([u1, v1] + [u2, v2]) = 0 in K3.
In particular, if [u0, v0] is torsion, then [u1, v1] + [u2, v2] is torsion, too. Note
that one has to include the squareroot of x0 in the relevant number field
for this construction to make sense. The argument also applies if one starts
with several values, say u0 and u′0, so that [u0, v0] + [u′0, v′0] can be written
as −2([u1, v1] + [u2, v2] + [u′1, v′1] + [u′2, v′2]). We will refer to this procedure as
the doubling construction (or should it be halving?).

3. Examples and counterexamples for a conjecture

Consider an affine quadratic form Q(n) = nAn/2 + Bn + C, n ∈ Cr, A a
positive definite symmetric r × r matrix with entries in Q, B ∈ Cr, C ∈ C.
The notation of scalar products in terms like nAn and Bn will be suppressed.
Though for r = 1 they have a long history, q-hypergeometric series

FQ =
∑
n∈Nr

qQ(n)/(q)n

have been called Nahm sums. Here (q)n =
∏r

i=1(q)ni , with Pochhammer’s
notation. FQ will be understood as a function defined on the upper complex
half-plane with coordinate τ , using q = exp(2πiτ) and qa = exp(2πiaτ).
Sometimes we will write FA,B,C instead of FQ. When FQ is modular, the
triple (A,B,C) also is called modular. I had conjectured that this happens for
suitable B and C, iff all solutions of u = Av yield torsion elements

∑
i[ui, vi] in

K3. Indeed the latter condition appears to be sufficient. Moreover, Calegari,
Garoufalidis and Zagier now have proven that the positive solution indeed
must be torsion, in a deeper sense than what will be explained here [2].
A straightforward example has been given above, namely r = 1, A = (2),
where the positive solution of x = (1 − x)2 is the golden ratio, which is 5-
torsion. The only other solution of this equation is the Galois conjugate of
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the golden ratio, which of course is 5-torsion, too. The corresponding modular
Nahm sums are the two Rogers-Ramanujan functions, for B = 0 and B = 1
respectively. For r = 1 Zagier proved that there are exactly seven modular
Nahm sums, for which A must take one of the values 1, 2 or 1/2 ([11], p.
56). This agrees with the list of torsion elements satifsying u = Av. Thus for
r = 1 the original rough conjecture is true. The invariance of the list under
the inversion A �→ A−1 is natural, since it just exchanges u and v, which
yields an involution in the set of torsion elements. For r = 2, a search for
candidate matrices A yielded three series and 22 individual cases, consisting
of 11 inversion pairs. Among the latter. there are four pairs where all solutions
of u = Av are torsion, and these are exactly those for which modular FQ

exist. Two of the pairs come from the doubling construction described above.
Let 1 − Q = QA with A of rank r. Doubling yields X2 = Q and the system
1−X = X2AX ′, 1−X ′ = XX ′. Thus one finds a new matrix D(A) =

(2A I
I I

)
of rank 2r, with completely analogous behaviour concerning torsion in K3.
Modular Nahm sums for A yield modular Nahm sums for D(A), by rescaling
of τ . The most remarkable of the seven remaining pairs has A =

(8 5
5 4

)
and

was worked out in some detail by Zagier. The equation 1 − Q = QA yields
unit algebraic integers Q1, Q2 that are rational functions of each other and
separately satisfy equations of order 8. For Q1 the corresponding polynomial
factorises as

(Q4
1 + Q3

1 + 3Q2
1 − 3Q1 − 1)(Q4

1 −Q3
1 + 3Q2

1 − 3Q1 + 1).

The first factor yields the positive solution and factors into quadratic poly-
nomials, when Q is extended by the golden ratio. Thus it has abelian Galois
group Z4 and a numerical check shows that the corresponding pair Q1, Q2
is torsion. The discriminant of the first factor is −54 · 19, which yields class
number 1. The Galois group of the second factor is generic, so one hardly
expects that the roots yield torsion elements [Q1] + [Q2]. Indeed it is easy to
check that the imaginary part of L(u1, v1) + L(u2, v2) does not vanish. Nev-
ertheless this second factor also has its peculiar properties. Its discriminant
is 229 and Q(

√
229) is the first example for primes with p = 1 modulo 4

for which the class number is different from 1, namely 3. Some connection
between the factors seems to come from 229 = 12 · 19 + 1. More than for
any other major branch of mathematics, learning number theory feels like
the exploration of physical nature. Any botanist would be happy to discover
an intricate little flower like Zagier’s example. Perhaps it corresponds to a
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nice hyperbolic knot. The example shows that not only the behaviour of the
positive solution is relevant.

So far the rough conjecture looked good, but even for r = 2 one still
has to study the three candidate series. They are based on the three r = 1
cases A = 1 or 2 or 1/2 by a copycat construction. Let u′, v′ be any solution of
u = Av for the rank 1 matrix (A). One wants to have a rank 2 matrix C(A), so
that (u′, u′), (v′, v′) is a solution of u = C(A)v. In particular, this implies that
the positive solution for C(A) arises by copying the positive solution for A and
inherits its torsion property. The obvious choice is C(A,α) =

(
A− α α
α A− α

)
,

with α < A/2 in order to have a positive definite C(A,α). Indeed, Vlasenko
and Zwegers showed that for suitable α the modular invariant Nahm sums
for A lift to modular invariant sums for C(A,α) [10]. In general, the equation
u = C(A,α)v will have accessory solutions that do not come from u = Av
by copying, and there is no particular reason why they should yield torsion
elements. In detail, the picture has some complications, because the series
have individual features. Still, those for A = 2 and A = 1/2 are related by
inversion and behave analogously. Only one of them will be discussed.

For C(1, α), the rough conjecture turned out to be true again. Indeed,
adding the two components in u = C(1, α)v yields u1 + u2 = v1 + v2, thus
(u1, v1) = (v2, u2), up to a multiple of 2πi. The formal sum [v2, u2] + [u2, v2]
always is torsion, since L(u2, v2) + L(v2, u2) = π2/6. The case C(2, α) is
more interesting. The only case where all solutions of u = C(2, α)v are tor-
sion is α = 2/3, and indeed one finds corresponding modular functions FQ.
But Vlasenko and Zwegers observed that for α = 1/2 and suitable B,C
the corresponding FQ are modular, too, namely the Rogers-Ramanujan func-
tions with τ rescaled by 2. The positive solution is torsion, but the equation
u = C(2, 1/2)v has accessory solutions (given by sixth roots of unity) that
do not yield torsion elements. For higher r Vlasenko and Zwegers found even
more cases where FQ is modular but some solutions of u = Av are not tor-
sion. They also used the doubling construction described above. In particular,
A = D(C(2, 1/2)) is an integral r = 4 matrix for which the rough conjecture
does not hold. All counterexamples to my original conjecture found by these
authors come from copycat constructions. The basic solution agrees with the
rough conjecture and provides the modular functions, but the construction
introduces accessory solutions without the torsion property. In that sense the
extended A may be called reducible. No counterexample with irreducible A
appears to have turned up anywhere. It might be worthwhile to pursue this
line of reasoning.

An interesting feature of the doubling construction is the fact that the
doubling of an invertable matrix A sometimes yields a non-invertable one. In
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particular D((1/2)) =
(1 1
1 1

)
. The equation u = Av continues to make good

sense, indeed the new system is essentially equivalent to the one given by
C(2, 0). The case of non-invertable A has been treated by Garoufalidis and
Zagier in the context of knot theory ([5], p. 48). One can generalise u = Av to
Bu+Av = 0, iff there are r×r matrices C,D so that

(
A B
C D

)
is a symplectic

matrix. For B = −I and invertible A one can take (C,D) = (0, A−1), for
B = −I and A = D((1/2)) one choice is (C,D) = (I, 0). This possibility is
important, but will not be considered further. In the following, A−1 will be
used without comment.

Altogether examples and counterexamples show that my rough conjecture
was somewhat superficial. To dig deeper one needs a more refined study of
FQ. One natural path is the study of FQ when τ approaches 0. This is the
one Zagier and my group followed about twenty years ago, but he already
contemplated a study of FQ close to other cusps. Recently, he and his col-
laborators studied an infinite number of points of Q simultaneously. Here we
will calculate the behaviour of FQ at all cusps.

4. Recursion formulas and vector bundles

In his Les Houches contribution, Zagier presented three ways to study FQ

close to τ = 0. This paper will follow his example, but generalised to arbitrary
τ ∈ Q. We want to find the modular triples A,B,C. The dependence of FQ

on C is just given by a global factor qC . When A,B are given, there is at
most one value of C for which FA,B,C can be modular. This is the value
of a certain quadratic polynomial in B, with coefficients that are rational
functions of A and x, x being the positive solution of x = (1 − x)A ([11],
p. 50). The dependence on B is rather subtle. For a given A there often
are only a few isolated values of B that yield modular triples A,B,C, but
sometimes there are families given by an affine linear function on Q. The
isolated values all appear to lie in Λ/2, where Λ = Zr +AZr. The appearance
of Λ is not surprising, because the translations of Q(n) by integral shifts of n
are equivalent to translations of B by elements of AZr. This suggests that B
should first be studied modulo shifts by vectors in Λ.

There is a corresponding functional equation used by Meinardus and by
Zagier as his first approach to the calculation of FQ. Here it will be interpreted
first as a recursion formula and then as the definition of a vector bundle (up
to unique isomorphism). For the recursion, both A and τ are fixed and one
considers a system of equations

(1) FA(B) − FA(B + ei) = qAii/2+BiFA(B + Aei)
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with i = 1, . . . , r and e1 = (1, 0, 0, . . .), etc. For an individual i, we will refer to
(1) as the i-th recursion formula. It is easy to check that the recursion formulas
are satisfied by FA,B,C , but in the following the system will be investigated
all by itself. In parentheses, note that the semi-symplectic matrix pair (A, I)
appears again, because one can write FA(B) = qAii/2+BiFA(B+Aei)+FA(B+
Iei). Here the obvious generalisation will not be investigated.

For a few choices of A, the recursion has been well studied, in particular
solutions with FA(+∞) = 1. For A = 0 and A = 1 the equation yields product
formulas for FA(B) found already by Euler. For A = 0,

∑
n∈N

xn/(q)n = (x; q)−1
∞ ,

a formula that calculates the Fourier transform of 1/(q)n and will be crucial
in the next section. For A = 2 the recursion implies

F2(B)/F2(B + 1) = 1 + qB+1F2(B + 2)/F2(B + 1),

which for B = 0 yields the continued fraction expansion of the ratio of the two
Rogers-Ramanujan functions. At the start of his Les Houches article, Zagier
refers to it as “surely among the most beautiful formulas in mathematics”.

For A = 1 the recursion yields Euler’s formula

F1(B, τ) =
∏
n∈N

(
1 + qB+n+1/2

)
.

The Jacobi triple product allows to check which values of B yield modular
functions F1,B,C . Jacobi’s formula implies that F1(B)F1(−B) is modular up
to a factor qC . For (F1,B,C)2 to be modular, one needs F1(B) and F1(−B) that
are equal up to a multiplicative constant. This is true, iff B ∈ {0, 1/2,−1/2}.
Indeed, F1(1/2) and F1(−1/2) differ just by a factor 1 + q0 equal to 2. In
detail, the Jacobi triple product yields the modular triples (1, 0,−1/48) and
(1,±1/2, 1/24). The sign change from B to −B can be understood as yielding
the simplest Coxeter group, namely the Weyl group of SU(2). There are ana-
logues for Lie groups of higher rank, with applications in conformal quantum
field theory [7]. For general A much more needs to be done, we only can make
a start.

Proposition 4.1. Let A be a rational and symmetric (not necessarily positive
definite) r × r matrix and Λ = Zr + AZr. Then there exists a finite set of
vectors Vk in Λ, k ∈ {1, . . . , ρ(A)}, so that for generic B, linear combinations
of the recursion formulas (1) allow to calculate FA(B + V ) for any V ∈ Λ in
terms of FA(B + Vk), k ∈ {1, . . . , ρ(A)}.
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Proof: We show that for sufficiently large R the set of vectors in Λ of
length less that R is sufficient. It will suffice to find a positive number d, so
that if B0 lies on the boundary of a ball of radius R + d the value of FA(B0)
can be calculated as a linear combination of values FA(Bm) with Bm in the
concentric ball of radius R. Let P be the tangent plane through B0, oriented
so that the ball lies to the left. In the i-th recursion formula one can substitute
B = B0 or B = B0 − ei or B = B0 − Aei, so that one of the three points
B,B + ei, B +Aei is equal to B0 and none lies to the right of P . If for some i
among these three points only B0 lies on P , then the i-th recursion formula
allows to calculate FA(B0) in terms of the remaining two values among FA(B),
FA(B + ei), FA(B + Aei), for which the argument of FA lies to the left of
P . Planes P for which such an i does not exist will be called special. The
recursion is translationally invariant, so we can assume that B0 = 0. Then P
can be identified with a hyperplane in Rr. For special hyperplanes P the set
{1, . . . , r} can be written as the disjoint union of two sets E(P ), S(P ), and
S(P ) can be written as the disjoint union of three sets Sa(P ), Sb(P ), Sc(P )
as follows. We use angular brackets for the span of vectors. We put i ∈ E(P ),
iff 〈ei, Aei〉 ⊆ P and neither Aei = 0 nor Aei = ei. For i ∈ S(P ) we put
i ∈ Sa(P ), iff 〈ei, Aei〉 ∩ P = 〈Aei〉, i ∈ Sb(P ), iff 〈ei, Aei〉 ∩ P = 〈Aei − ei〉
and i ∈ Sc(P ), iff neither of these two statements is true. Note that i ∈ Sc(P )
implies 〈ei, Aei〉 ∩ P = 〈ei〉. Let

Ã(P ) = A−
∑

i∈Sb(P )
eie

T
i .

For i ∈ S(P ) we use the notations βi = Ãei for i ∈ Sa(P )∪Sb(P ) and βi = ei
for i ∈ Sc(P ). Let n(P ) be the normal of P . We have n(P )Ã(P )ei = 0 for
i ∈ E(P ) ∪ Sa(P ) ∪ Sb(P ). Because A is symmetric this implies Ãn(P ) ∈
〈ei | i ∈ Sc(P )〉. Since n(P ) ∈ 〈ei | i ∈ Sa(P ) ∪ Sb(P )〉, this inclusion can be
written in the form ∑

i∈S(P )
aiβi = 0.

The βi are points of the lattice Λ, so that the coefficients ai can be taken to be
integral. Using a linear combination of

∑
i∈S(P ) |ai| recursion formulas, the i-

th one taken |ai| times with suitably shifted B, one obtains a multiple of FA(0)
as a linear combination of FA(Bm), m = 1, . . . ,M , where M =

∑
i∈S(P ) |ai|

and all Bm are Z-linear combinations of the βi and lie to the left of P . As an
example, let a1 = 2, a2 = 1. Then on starts with FA(0) and FA(β1), adds a
linear combination of FA(β1) and FA(2β1) given by the first recursion formula
to eliminate FA(β1), then continues with FA(2β1), FA(2β1+β2) and the second
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recursion formula, then with FA(2β1 + β2) and some FA(2β1 + β2 + βi) and
so on. Shifting all points by B, one obtains a formula expressing a multiple
of FA(B) as a linear combination of FA(B + Bm), m = 1, . . . ,M . If Ãei �= 0
for all i the coefficient of FA(B) has the form 1 − (−)NbqWÃW/2+BW , where
Nb =

∑
i∈Sb(P ) ai and

W =
∑

i∈Sa(P )∪Sb(P )
aiei.

Generically, that coefficient is invertible.
Let B(P ) = {Bm | m = 1, . . . ,M}. Let U(B(P )) be the open set of hy-

perplanes P ′ so that all points in B(P ) lie to the left of P ′. A finite number of
those sets, say U(B(Pk)), k ∈ K, covers the compact space of all hyperplanes.
Let

δ(P ) = maxk∈K min{d(B,Pk) | B ∈ B(Pk)},

where d(B,P ) is the distance of B from P when B lies to the left of P and 0
otherwise. This defines a continuous positive function on the same compact
space, with a positive minimum δ0. For any d with d < δ0 and sufficiently
large R the local difference between the surface of a ball of radius R through
0 and its tangent plane at 0 is small. Thus d(B,Pk) ≥ δ0 with B ∈ B(Pk)
implies that B lies in the interior of the ball.

By induction on the distance from the origin it follows that the set of
all vectors Vk ∈ Λ contained in a ball of radius R + d around 0 satisfies the
statement of the theorem. Indeed, for any V with |V | > R + d consider the
sphere of radius |V | and the ball of radius R + d on the inside of this sphere
that has the same tangent plane at V . Then FA(V ) can be calculated in terms
of FA(V ′) with |V ′| < |V | − d. By translational invariance of the recursion
equation, the result remains true for B + V,B + Vk. �

When one replaces B by AB in the recursion formula for A one obtains an
equivalent formula for A−1. This inversion duality has already been discussed
extensively in the Les Houches lectures ([11]. p. 52; ([7], p. 114). For the
appropriate value of C mentioned above it reads

(A,B,C) �→
(
A−1, A−1B,

r

24 + 1
2BA−1B − C

)
.

In particular, it yields

Lemma 4.2.
ρ(A−1) = ρ(A).
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Conjecturally, if one triple A,B,C is modular, the dual triple is modular,
too. One aspect of this duality will be proved in the next section.

A lower bound for ρ(A) can be established by finding a sufficiently large
vector space of functions on Λ that satisfy the recursion for q = 1. An upper
bound can be established as follows. Let λi, i = 1, . . . , r be a basis of Λ. If one
can guess convenient vectors Vk, k = 1, . . . , ρ′(A) and show that the values
of FA(B + Vk ± λi) can all be calculated from those of FA(B + Vk) by the
recursion, then it is obvious that ρ′(A) ≥ ρ(A). When A is simple enough,
one can determine ρ(A) by getting coinciding lower and upper bounds. But
already for Zagier’s example A =

(8 5
5 4

)
such a proof might better be left to

AI.
The following theorem is essentially a corollary to Proposition 4.1.

Theorem 4.3. Let ΛC = (2πi/τ)Z)r⊕Λ. A vector bundle E(A) of rank ρ(A)
over the torus Cr/ΛC can be defined as follows. Let Vk with k ∈ {1, . . . , ρ(A)}
satisfy the statement in Proposition 4.1. For B in a fundamental domain DA

of Cr/ΛC let the fibre of E(A) over B be the direct sum of the fibres over B+Vk

of the trivial complex line bundle over Cr. At the boundary of DA let the tran-
sition functions for shifts by 2πiei/τ be given by the unit of GL(ρ(A),C) and
those for shifts by vectors V in Λ by the linear transformation that expresses
FA(B + Vk + V ) in terms of FA(B + Vl), k, l in {1, . . . , ρ(A)}. The vector
bundle E(A) is defined up to unique isomorphisms.

Proof: Shifts of B by multiples of 2πi/τ leave qBei invariant for all i. Thus
unit transition matrices for these shifts are compatible with those describing
shifts by vectors V in Λ. The latter are compatible with each other, since for
positive definite A they are simultaneously satisfied by FA,B,0. The transition
functions are rational functions of qB, with coefficients in Z[q1+D], D a com-
mon denominator of the matrix elements of A/2. Thus for a generic choice
of DA they are regular in a neighbourhood of the boundary of DA. They are
invertible since by analytic continuation one obtains the values of FA(B+Vk)
for all k in terms of FA(B + Vk − V ). The choice of a generic DA can be
avoided by using limits in the space of bundles over a torus. This space is a
smooth orbifold [1], so one can take limits and transfer result from generic to
arbitrary q with |q| < 1. Different choices of the Vk yield isomorphic bundles,
with isomorphisms again given by the recursion relations. �

As an example we first treat the case r = 1, A > 0. A fundamental
domain of the recursion over R is the interval from 0 to A. For A = m/n
with gcd(m,n) = 1 one finds ρ(A) = max{m,n}. The transition matrix for
A = 1 is already given by the recursion equation itself. For A = m/n one can
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take Vk = k/n with k = 1, . . . ,m for m > n and k = 1, . . . , n for m < n. For
integral A with A > 1 the corresponding transition matrix for a shift by 1 is

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 . . .
0 0 1 0 . . .
. . . . . . . . . . . . . . .
0 . . . . . . 0 1

q−A/2−B −q−A/2−B 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ .

For A = 2 one has ρ(A) = 2. The pair F2,B,0, F2,B+1,0 yields a trivial
subbundle of E(A). The quotient bundle is isomorphic to the determinant
bundle and has Chern number -1. Thus there are no further global sections. In
general, the dimension of the space of sections is finite, as for all holomorphic
vector bundles on compact manifolds. Thus it certainly will be possible to
rephrase the study of Nahm sums in the language of algebraic geometry and
to use its powerful machinery. In particular, FA,B,0 can be characterised as
the global section all components of which approach 1 at infinity.

In the span of FA,B,C with A fixed, B in a fixed equivalence class modulo
Λ, C arbitrary, the dimension of the subspace of modular functions is bounded
by ρ(A), since linear combinations with nontrivial powers of q as coefficients
destroy modularity. The same modular function up to a multiplicative con-
stant may appear for several values of B, however. For r = 1 we have seen
one example, namely F1,−1/2,1/24 = 2F1,1/2,1/24. The case A = D((1)) appears
to inherit its special behaviour from (1), since FA,(−1,1/2),0 = 2FA,(1,1/2),0.
These equations are easily derived from the recursion system. The fact that
FA,(0,1/2),0 also can be made modular by multiplication with some qC shows
that ρ(D((1))) ≥ 2 without further work. For A = D((1))−1 inversion duality
yields FA,(−3/2,2),1 = 2FA,(1/2,0),0. Note the factor of q. The case A = 2 is of
a different type. Here again ρ(A) = 2 and there are two modular functions
for the equivalence class of (0, 0). On the other hand, F2,−1,0 = F2,1,0 +F2.0.0.
Both summands on the right hand side become modular for a suitable choice
of C. The two values differ, however, so that F2,−1,0 cannot be made modular
by multiplication with any qC . The same argument applies to any other B in
Λ different from 0,1.

Whenever ρ(A) = 2, projectivisation of the vector bundle transforms the
recursion to an expansion by continued fraction, as for the ratio of the Rogers-
Ramanujan functions considered above. For A = D((1)),

FA(b, b) =
(
1 + qb+1/2

)
FA(b + 1, b + 1) + qb+1FA(b + 2, b + 2),
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with the corresponding continued fraction expansion of FA(1, 1)/FA(0, 0). For
suitable values of C both A, (1, 1) and A, (0, 0) yields modular triples. From
the point of view of physics, the Rogers-Ramanujan functions yield partition
functions of the (2,5)-minimal model, whereas A, (1, 1) and A, (0, 0) for A =
D((1)) yield partition functions of the (3,8)-minimal model. What happens
for the (5,13)-minimal model is anyone’s guess.

The vector bundle changes smoothly for τ in the upper or in the lower
half plane. Over τ ∈ Q it degenerates to a vector bundle over Rr/Λ, with fibre
C(τ)ρ(A). The work of Garoufalidis, Zagier and Scholze discussed in Zagier’s
recent Bonn/Trieste lectures certainly means that a better description should
use the Habiro ring. Most of the content of these lectures is now available in
print [5], but I have not fully understood it yet. Inversion duality implies that
the bundle for A, q is isomorphic to the one for A−1, q−1. Thus one can glue
the bundle space for A over the upper half plane to the complex conjugate of
the one for A−1 over the lower half plane, very much in the spirit of “quantum
modularity” [5].

For τ = 0 the transition matrices for shifts by ei do not depend on B.
Their simultaneous diagonalization yields a split of E(A) into line bundles.
Those can be trivialised by sections that transform linearly under shifts of
B, in other words, by exponential functions of B. Insertion of FA,B = QB in
the recursion relation yields the familiar algebraic equations 1 − Q = QA. I
expect that the following statements will be easy to prove for mathematicians
with the necessary background.

Conjecture 4.4. ρ(A) is the degree of the system 1 − Q = QA of algebraic
equations.

Conjecture 4.5. When q is a primitive c-th root of unity, the recursion
system (1) has a solution basis of the form fA,B = φ(B)QB/c. Here φ is a
periodic function with period lattice cΛ that takes values in a number field
that is a solvable extension of the field of solutions of 1 −Q = QA.

Indeed, a formula for φ will be derived in the next section from the limiting
behaviour of FA,B close to the cusps.

5. Inversion and the neighbourhood of cusps

By construction, q-hypergeometric series have a simple behaviour near the
cusp at infinity. The intricate behaviour at other cusps, when q approaches a
root of unity is studied in the context of quantum modularity. One possible
perspective on modular Nahm sums is the question how ordinary modular
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behaviour arises out of the more general one for special values of the param-
eters. For this purpose one has to study the sums close to arbitrary cusps
in Q. For their evaluation one can use Poisson summation in two different,
and it turns out dual ways. The direct approach was developed by Zagier and
used to calculate the behaviour close to τ = 0. In recent work with Garoufa-
lidis it was extended to other cusps. This extension yielded a firm connection
between modularity and K3.

To apply Poisson summation directly to qQ(n)/(q)n one needs a smooth
interpolation for the denominator, including an extension to negative real
values of n. Pochhammer’s (q)n is a q-deformed factorial, defined by (q)0 = 1
and (q)n = (1 − qn)(q)n−1 for n ∈ N. The ordinary factorial n! arises for q
close to 1. An easy interpolation for |q| < 1 follows Gauss’ definition of the
Gamma function. On first defines (x; q)0 = 1, (x; q)n+1 = (1 − xqn)(x; q)n
for n ∈ N. In the limit n → ∞ this yields (x; q)∞ for arbitrary x. Then
1/(q)n = (qn+1; q)∞/(q)∞ is the wanted interpolation. Since the first aim of
Garoufalidis and Zagier was the calculation of FQ up to arbitrary polyno-
mially suppressed corrections, only an integral over a neighbourhood of the
maximum of qQ(n)/(q)n had to be evaluated. Negative n was irrelevant at
this stage, but might be important. When one continues 1/(q)n to negative
integers n, one finds 0, since the factor (1 − qn+1) vanishes for n = −1. The
derivative with respect to n looks interesting, however. Up to a simple factor
one finds

∑
qQ(−n)(q−1)n−1. This sum belongs to the Habiro ring and might

be called the Habiro shadow of the Nahm sum.
When one uses the modularity of q1/24(q)∞ and the standard notation

q̃ = exp(−2πi/τ), Zagier’s approach yields

(2) FQ(τ) = qr/24q̃−r/24(−iτ)r/2
∫

qQ(n)(qnq; q)∞dn(1 + O(|τ |N )).

for any N ∈ N. Zagier then showed that for τ close to 0 one can use the Euler-
Maclaurin formula for log(x; q)∞. The leading term is Li2(x)/log q. Thus the
maximum of qQ(n)(qnq; q)∞ is given by the equation 1−Q = QA for Q = qn.
Integrating around the maximun yields an asymptotic expansion

(3) logFQ(τ) = L(u, v)/(−2πiτ) + B logQ− 1
2 log(Q + A(1 −Q))

+
∑N−1

k=1 ck(A,B,Q)τk + O(|τ |N ).

Here (u, v) is the positive solution of u = Av, Q = ev and the ck are fairly
complicated rational functions. For neighbourhoods of other rational values of
τ this approach was developed in [4]. An asymptotic expansion is an element
of C(τ). Substitution of τ by −τ yields another element of C(τ), though FQ(τ)
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is not defined for values of τ in the lower complex half-plane. This fact will
be used below.

The dual use of Poisson summation goes back to Meinardus and had been
used by my group. The approach may be motivated by the well-known fact
that the Fourier transform of a product is the convolution of the Fourier
transform of the factors. Moreover, we have seen that the Fourier transform
of 1/(q)n is (x; q)−1

∞ . For r = 1 this yields Meinardus’ formula

(4) FQ(τ) =
∮

ΘQ(τ, z)(x; q)−1
∞ dx/2πix,

where we put x = exp(2πiz),

ΘQ(τ, z) =
∑
n∈Z

qQ(n)x−n,

and where the integral is taken along a small circle around 0. As usual, esti-
mation of FQ can be done by expanding the integration circle to let it pass
through a point where the integrand is stationary.

Now one can evaluate ΘQ(τ, z) by Poisson summation. The resulting sum
can be understood as yielding an integral over the universal cover of the orig-
inal integration circle. These two steps taken by Meinardus can be replaced
by direct application of

(5)
∑
n∈N

fngn =
∫

f̃(−z)g(z)dz.

Here g(z) =
∑

n gn exp(2πinz) and f̃ denotes the Fourier transform, f̃(z) =∫
f(n) exp(2πinz)dn, where f(n) is a smooth interpolation of fn. In our case,

f(n) = qQ(n), gn = 1/(q)n. We first consider the case Q(n) = nAn/2. This
yields

(6) FQ(τ) = (−iτ)−r/2det(A)−1/2
∫

exp
(
−πizA−1z/τ

)
(x; q)−1

∞ dz,

where the integral is taken along some parallel to the real z-plane. When one
makes the substitution x = qn, one sees that the latter formula is close to (2),
but with A replaced by A−1 and n substituted by n/τ and a corresponding
integration over an imaginary plane. This yields the following theorem.

Theorem 5.1. As asymptotic expansions around τ = 0,

(logFA−1,0,0)(τ) = log
(
det(A)1/2qr/24q̃−r/24

)
+ (logFA.0.0)(−τ).
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Proof: This follows from three simple facts. First, the Poisson and dual
Poisson evaluations of FQ must coincide. Second, let f(x) be a real ana-
lytic function with maximum at 0. Then for t positive and close to 0 the
expansions for

∫
exp(−f(x)/t)dx, with an integral along the real axis and∫

exp(f(x)/t)dx, with an integral along the imaginary axis, transform into
each other by a sign change of t. Third, denote by EM(f, τ) the boundary
sum in the Euler-Maclaurin expansion for

∑
n∈N f(n, τ). Then

EM(log(xq; q)∞, τ) + EM(log(x; q))∞,−τ) = 0.

This follows most easily from (xq; q)n(x; q−1)m = (xqn; q−1)m+n. �
An inversion property of this kind was conjectured by Zagier ([11], p. 52).

It is just what one expects when FA,0,0 and FA−1,0,0 both can be made modu-
lar by multiplication with some qC , since then ck(A, 0, ev) and ck(A−1, 0, eu)
must both vanish for k > 1. Note, however, that the result cannot be gener-
alised to the case when B and its dual A−1B are different from zero. since
qnA

−1n/2+BA−1n cannot be related to qnAn/2+Bn by a Fourier transformation.
Instead, one obtains qnAn/2 multiplied by a character exp(2πiBn). Obviously,
Nahm sums should be generalised to include such characters. More precisely,
ΘQ(τ, z) should be treated as one component of a vector valued Jacobi form in
the sense of Eichler and Zagier [3]. The fact that z takes values in Cr instead
of C does not make much of a difference. The weight of ΘQ is r/2, the index
A−1/2. It is natural to extend my conjecture to convolutions of other Jacobi
forms with analogues of (x; q)−1

∞ . Indeed, some analogues of the latter function
have appeared in knot theory, but no systematic investigation has been done
yet. The vector space spanned by the components of Θ will be called Jacobi
space. For A = 2 it is spanned by

∑
qn

2
xn and

∑
q(n+1/2)2xn+1/2. No charac-

ter needs to be considered. For A = 1 the Jacobi space is spanned by the three
basic odd theta series introduced by Jacobi himself. One of them includes a
character (−)n. One way to treat Nahm sums with characters arises from a
remark concerning the perturbation series (3) in ([11], p. 51). Formally, one
gets exp(2πiBn) from qBn when one replaces Bτ by B. This replacement can
be done in (3), because the expansion in terms of B, τ,Q can be rearranged
to yield an asymptotic expansion in terms of Bτ, τ and a modified Q. For
the latter, Zagier obtained the x-deformed equation 1 − Q = exQA, where
ex = qB. This topic needs a separate investigation, but is mentioned here,
because just such a modification of 1 −Q = QA will come up soon.

Procedures analogous to the direct and inversion dual Poisson summa-
tions also can be used to evaluate the behaviour of FQ close to other cusps
a/c in Q. For the direct approach, see [4]. Here the dual one will be pre-
sented. The most straightforward procedure would be to perform modular
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transformations τ �→ (aτ + b)/(cτ + d) for f̃ and g in eq. (5) and to evaluate
the result close to τ = i∞. For f̃ this yields a sum over the components of
the Jacobi space. To facilitate comparison with [4] this will be done some-
what implicitly, by direct evaluation of FQ close to a/c. We use the notation
exp(2πi(a/c + τ)) = ζq, where ζ = exp(2πia/c) is a root of unity. Now ζQ(n)

is periodic, so that we have to consider sums
∑

pnfngn with periodic p. Let
M be the sublattice of Zr consisting of the elements m satisfying pm+n = pn
for m ∈ M , and Mv its dual. In analogy to (5) one obtains

(7)
∑
n∈Zr

pnfngn = |Z/M |−1 ∑
ν∈Mv/Zr

P (ν)
∫

f̃(ν − z)g(z)dz,

where P (v) =
∑

n∈Zr/M pn exp(−2πinν). We need pn = ζQ(n). The sublattice
of Zr given by ζQ(n+m) = ζQ(n) will be called M ζ

Q, or just M , when Q and
ζ are obvious from the context. With x = exp(2πiz) and f(n) = qQ(n) as
before,

FQ

(
a

c
+ τ

)
= |Z/M |−1 ∑

ν∈Mv/Zr

G(Q, ζ, ν)
∫

f̃(ν − z)(x; ζq)−1
∞ dz,

where G is a Gauss sum

G(Q, ζ, ν) =
∑

n∈Zr/M

ζQ(n) exp(−2πinν).

The Fourier transform of f is standard. It remains to evaluate (x; ζq)−1
∞ for

small τ . A result in terms of an asymptotic series was given in [2], but we need
an integral representation with manageable kernel. For this purpose Jacobi’s
triple product identity can be written in the form

q1/12(x; q)∞(x−1q; q)∞ = (−x)1/2θ1(τ, z)/η(τ).

Since the right hand side has simple Jacobi transformations, it is easy to
evaluate close to any cusp. The factorisation on the left hand side can be
characterised by the fact that (x; q)∞ is holomorphic, non-vanishing for |x| <
1 and equal to 1 for x = 0, whereas (x−1q; q)∞ is holomorphic and non-
vanishing for |x| > |q|. In the range (|q|, 1) neither (x; q)∞ nor (x; q)∞ has
winding, so that the logarithm of x1/2θ1(τ, z) is defined. As in the construction
of the Laurent expansion, this logarithm can be split by an application of
Cauchy’s theorem into one part that extends to x = 0 and another one that
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extends to x−1 = 0. Thus for |x| < r, r ∈ (|q|, 1) the logarithm of (x; q)∞ can
be calculated by a Cauchy integral over a circle with radius r. We shall do it
in the limit r → 1. Thus

log ((x; q)∞)) =
∮

log
(
eπiwθ1(τ, w)

)
ω,

where

ω = dw

exp(2πi(w − z)) − 1 .

With a slight abuse of notation, we regard the circle integral as a w-integral
over R/Z, for definiteness over (0, 1). To avoid an overabundance of 2πi in
the following calculations, we use Zagier’s notation e(z) = e2πiz. When we
evaluate log θ1(τ, w), additive constants can be neglected, since

∮
ω = 0. Let(a b

c d

)
∈ SL(2,Z). The modular transformation τ ′ �→ (aτ ′ + b)/(cτ ′ + d)

maps −1/(c2τ) − d/c to a/c + τ . Thus up to a multiplicative constant

θ1

(
τ + a

c
, w

)
∼ e

(
−w2

2τ

)
θ1

(
− 1
c2τ

− d

c
,− w

cτ

)
.

Moreover

θ1

(
− 1
c2τ

− d

c
,− w

cτ

)
= e

(
w

2cτ

)
Ψ+(w)Ψ−(w),

with

Ψ+(w) =
∞∏
n=0

(
1 − e

(
− w

cτ
− dn

c

)
q̃n/c

2
)

and

Ψ−(w) =
c−1∏

n=−∞

(
1 − e

(
w − 1
cτ

+ dn

c

)
q̃−n/c2

)
.

For τ close to 0 in the upper half-plane and w ∈ (0, 1) all factors of Ψ+ and
almost all factors of Ψ− are close to 1. The exceptional factors of Ψ− are
those for which c− n < cw. With n′ = c− n we have in this case

log
(
1 − e

(
w−1
cτ + dn

c

)
q̃−n/c2

)
= 2πiw−n′/c

cτ

+2πi
(

1
2 − dn′

c +
[
dn′

c

])
+ log

(
1 − e

(
−w−1

cτ − dn
c

)
q̃n/c

2
)
.

The integral part [dn′/c] occurs, because the phase of θ1 can only change in
the range (−π, π), when w moves past a pole. Summing up these contributions
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yields up to an additive constant

1
2πi log θ1

(
τ, w + a

c

)
= −

(
cw − [cw] − 1

2
)2

2c2τ + D(w) + 1
2πi log Ψ(w),

where

D(w) =
[cw]∑
n=1

(1
2 − dn

c
+

[
dn

c

])
,

Ψ(w) = Π̂+(w)Π̂−(w),

Π̂+(w) =
∞∏

n=−[cw]

(
1 − e

(
− w

cτ
− dn

c

)
q̃n/c

2
)

and

Π̂−(w) =
c−[cw]−1∏
n=−∞

(
1 − e

(
w − 1
cτ

+ dn

c

)
q̃−n/c2

)
.

We want to evaluate (x; ζq)∞ with ζ = e(a/c), using

log(x; ζq)∞ =
∮

log
(
e
(
w

2

)
θ1

(
τ, w + a

c

))
ω.

When a summand in the integrand has an explicit splitting into functions of
x and x−1 that are holomorphic within their unit circles, its integral is given
by Cauchy’s theorem. First, x1/2 =

√
1 − x

√
x−1 − 1. Second,

2π2
(
cz − [cz] − 1

2c

)2
= Li2(xc) + Li2(x−c) + π2

6 .

Third, D(w) is a piecewise constant function. When w moves past ka/c,
k ∈ {1, . . . , c−1}, it increases by 1/2−k/c. Thus, up to an irrelevant additive
constant,

2πiD(z) = − log
(√

1 − xc√
1 − x

Dζ̄(x)−1/c
)

+ log
(√

1 − x−c

√
1 − x−1

Dζ(x−1)−1/c
)
.

Here Dζ is the cyclic quantum dilogarithm

Dζ(x) =
c−1∏
k=1

(1 − ζkx)k,
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which provides a crucial link to algebraic K-theory, as pointed out in [4]. Note
that Dζ(x)1/cDζ̄(x)1/c = (1 − xc)/(1 − x). Finally, we have

log Π̂+(w) =
c−1∑
n=0

∫ ∞

−n/c
log

(
1 − e

(
−w + n/c

cτ
− dn

c

))
ω,

log Π̂−(w) =
c−1∑
n=0

∫ n/c

∞
log

(
1 − e

(
w − n/c

cτ
− dn

c

))
ω,

Altogether one finds

(x; ζq)∞ =
√

1 − xcDζ(x)−1/c exp
(
Li2(xc)
2πic2τ

)
Ψ(x),

where

log Ψ(x) =∑c−1
n=0

∫∞
0 log

(
1 − e−2πi(nd

c
+ w

cτ
)
) (

dw
e2πi(w−z−n/c)−1 + dw

e−2πi(w+z−n/c)−1

)
.

For c = 1 the result simplifies, since Dζ(x) = 1 and the sum is restricted to
n = 0.

We now have

FQ

(
a

c
+ τ

)
= |Z/M |−1 ∑

ν∈Mv/Zr

G(Q, ζ, ν)F ζ
Q(ν, τ),

where

F ζ
Q(ν, τ) =

∫
f̃(ν − z)exp

(
−Li2(xc)

2πic2τ

)
(1 − xc)−1/2Dζ(x)1/cΨ(x)−1dz.

We consider Nahm sums with trivial character, but other elements of the
Jacobi space can be treated in the same way. For Q(n) = nAn/2 + Bn,

f̃(z) = (−iτ)−r/2det(A)−1/2e
(
−zA−1z

2τ −BA−1z − BA−1Bτ

2

)
.

When FQ is modular, then for small τ the functions FQ(a/c + τ) will
all be proportional to q̃h with some rational h. Here h can be calculated by
deforming the integration domain, following Meinardus’ example of r = 1
and ζ = 1. For ζ = 1 one has Mv = Zr, so that one only has to consider
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the value ν = 0. The leading term of FQ comes from a stationary point
of 1

2uA
−1u + Li2(eu), where u = 2πicz. The value of this function at the

stationary point must be a rational multiple of (2πi)2, otherwise FQ cannot
be modular. Because d(1

2uA
−1u+Li2(eu)) = 0 yields u = Av, this value is just

L(u, v). That was the motivation for my conjecture concerning the relation
between modularity and torsion in K3. At general ζ, we have represented FQ

as a linear combination of certain functions F ζ
Q(ν), ν ∈ Mv, namely those for

which the Gauss sum G(Q, ζ, ν) does not vanish. Natural basis elements of the
Jacobi space correspond to linear combinations of subsets of these functions
that have the same behaviour for small τ .

The leading contribution to logF ζ
Q(ν, τ) should come from some station-

ary point of 1
2(u − 2πicν)A−1(u − 2πicν) + Li2(eu), where u = 2πicz. This

yields u− 2πicν = Av or

1 −Q = e(cν)QA.

At the stationary point we have

1
2(u− 2πicν)A−1(u− 2πicν) + Li2(eu) = L(u, v) − πicνv.

Let u, v be the stationary point that yields the dominant contribution. Then
the integral over z yields

F ζ
Q(ν, τ) = exp

(−2πi
c2τ

h

)
Φ(ν, τ)

with

h = L(u, v) − πicνv

(2πi)2

and

Φ(ν, τ) = QB/c

det(A + Q− AQ)1/2
Dζ

(
e(ν)QA/c

)1/c
(1 + O(|τ |).

For modular FQ, h must be rational, so that the dominant solution of 1−Q =
e(cν)QA should be extended torsion. For ν = 0 one recovers the torsion
property of the positive solution and its corresponding value of h. When
cν ∈ Λ one obtains the same value, since the equation 1 − Q = e(cν)QA

differs from 1 − Q = QA at most by a different choice of roots for non-
integral A. In general, ν and ν ′ yield the same h, when cν − cν ′ ∈ Λ. Let
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M(B) = cMv/(cMv ∩Λ). The value of h corresponding to a class β in M(B)
will be called h(β). Let N(β) be the inverse image of the map Mv/Zr → M(B)
given by ν �→ cν and

Fζ
Q(β, τ) = |Z/M |−1 ∑

ν∈N(β)
G(Q, ζ, ν)F ζ

Q(ν, τ),

so that
FQ

(
a

c
+ τ

)
=

∑
β∈M(B)

Fζ
Q(β, τ).

We have

Fζ
Q(β, τ) = exp

(
− L̂(β)

2πic2τ

)
Φ(β)(1 + O(|τ |),

where

Φ(β) = |Z/M |−1 QB/c

det(A + Q− AQ)1/2
∑

ν∈N(β)
G(Q, ζ, ν)Dζ

(
e(ν)QA/c

)1/c
.

The splitting of FQ into a sum over terms with varying dominant exponents
corresponds to the splitting of E(A) into line bundles at ζ. The solutions of
the recursion equations at ζ should be given by

φ(B) =
∑

ν∈N(β)
G(Q, ζ, ν)Dζ

(
e(ν)QA/c

)1/c
.

This is the function alluded to in Conjecture 4.5.
The calculation of M(B, a/c) is standard. The lattice Mv can be read off

from the defining property ζQ(n+m) = ζQ(n) for m ∈ M , valid for m,n ∈ Zr.
This yields the two conditions

a

c
Am ∈ Z,

a

c

(
Bm + 1

2mAm

)
∈ Z.

When a
cA is even, this yields M(B) = 〈B〉. In any case the map

(
Zr ∩ c

aA
−1Z

)
/

2
(
Zr ∩ c

aA
−1Z

)
→ Z/2Z given by m �→ a

cmAm is linear and can be repre-
sented by m �→ mμ(a/c) with μ(a/c) ∈ Zr + a

cAZ
r. Thus

cMv(a/c) = cZr + aAZ +
〈
aB + 1

2cμ
〉
.
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When a
cA is even, we can take μ(a/c) = 0. Let 2sA be even for s ≥ s+ or

s ≤ s−. When p, q are odd, then qμ(2sp/q) = μ(2s) modulo 2Zr + 2s+1 p
qAZ

r.
Thus

⋃
a/c∈Q cMv(ac ) = M(B),

M(B) =
⋃

s∈[s−,0]
〈B + 2−s−1μ(2s)〉 ∪

⋃
s∈[0,s+]

〈2sB + μ(2s)/2〉

modulo Λ. For any rational B this is a finite set, which means that only a
finite set of equations 1−Q = e(B̂)QA, B̂ ∈ M(B) has to be investigated. For
isolated values of B all known examples have B ∈ Λ/2, so that 2M(B) = 0.

When one investigates a given vector valued Jacobi form, the relevant
values of B are known and one can put M =

⋃
B M(B). The values h(β)

with β ∈ M can be identified with the constants C in the modular triples
(A,B,C) coming from the space. The simplest example appears already at
r = 1, but it is somewhat degenerate. For A = 1 the set M has two elements,
represented by B = 0 and B = 1/2. For B = 0 stationarity means u = v.
This yields Q = 1/2 and L(u, v)/(2πi)2 = −1/48, thus the modular function
F1,0,−1/48 considered above. For B = 1/2 one has u − πi = v. This yields
1 − Q = −Q, thus a stationary point at the boundary of the van der Pauw
domain, with v = +∞. Since (u− πi)2/2 + Li2(eu) = −Li2(e−u) − π2/6 and
Li2(0) = 0, the corresponding value of (2πi)2h(β) is −π2/6. It corresponds
to the modular function F1,1/2,1/24, also considered above.

Starting from the list of modular triples with r = 2 given in [11], it is
easy to work out further examples. In particular, it has been mentioned that
there are cases where A admits an infinity of modular triples (A,B,C). These
cases also fit in. The basic example is A = D(1, α). Here the elements of M
have the form (b,−b). Thus one has to consider the system

1 −Q1 = e(b)Q1−α
1 Qα

2 ,
1 −Q2 = e(−b)Qα

1Q
1−α
2 .

Multiplication immediately yields Q1 +Q2 = 1, so that the solution is torsion
for all b.

6. Outlook

The present status can be summarised as follows. The set of matrices A ad-
mitting modular triples (A,B,C) is somewhat better understood than twenty
years ago. At that time some of the numbers C were understood in terms of
the Rogers dilogarithm, namely as values of L(u, v)/(2πi)2 with u = Av. Now
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all of these numbers can be interpreted as values of (L(u, v) − πiB̂v)/(2πi)2,
where u − 2πiB̂ = Av. This means that one has to consider more general
values of u, v than the torsion elements considered at the time. The concept
of extended torsion was introduced to cover this situation. Examples indicate
that one still remains within the conventional realm of torsion in K3, but this
needs further study.

Apparently, not all solutions of u − 2πiB̂ = Av contribute to FA,B,C .
The relevant solutions should be those that are picked up by the deformation
of the integration domain in some integral representation of this function.
The result of the deformation should be a representation of FQ as an inverse
Laplace transform, say

FQ(τ) = (−iτ)−r/2 ∑
β∈M

∑
n∈N

∫ ∞

h(β)
dsfγ+n

Q (s) exp(−2πi(s + n)/τ),

with holomorphic functions fγ+n
Q , modulo details. The integral representa-

tions for FQ derived above involve integrals over functions of the form
exp(−ik(z)/τ . This is close to an inverse Laplace transform, but in general
k(z) is complex. The integration domain should be deformed in such a way
that k(z) becomes real. At least for r = 1 this can be done, though the de-
formed integration path has singularities. In particular, one finds different
branches of the integration path that intersect at points with v = −∞. In
the van der Pauw domain this looks like the upper half of the letter X. The
apparent singularity can be removed when the path is written as the sum
of the two crossing branches of the full X, minus its lower half. The path
corresponding to this lower half can be pushed down to a lower smooth path
and so on. The procedure will yields stationary points away from the princi-
pal part of the van der Pauw domain. As has been explained above, this will
yield stationary values of L(u, v)/(2πi)2 that differ by integers or half-integers
from the principal one. Their constributions should explain the sum over N

in the inverse Laplace transform and eventually the coefficients in FQ.
This approach may be unnecessarily difficult, however. Study of the vector

bundles on the Jacobi torus might yield the result that any FQ that looks
modular at the cusps is indeed modular. Equivalently, any linear combination
of Nahm sums that vanishes at all cusps must be zero. Already now, the study
of the behaviour of modular FQ at the cusps yields astonishing results. Due
to modularity, their behaviour is simple and periodic. On the other hand, the
explicit calculations presented above yield Φ, a linear combinations of roots
of cyclic quantum dilogarithms with Gauss sums as coefficients. The simple
values of Φ for modular FQ look rather mysterious. Already for r = 1, A = 1
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and ζ = e(2/3) one finds a surprising, though easily checkable result. One
finds

(8) 1 + 2ω
3 Dζ(x)1/3 + 1 − ω

3
(
Dζ(ωx)1/3 + Dζ(ω2x)1/3

)
= e2πi/9,

where ω = e2πi/3, ζ = ω2 and x = (1/2)1/3.
As explained in [7], the physical context of Nahm sums is conformal quan-

tum field theory (CFT). For readers that only need a first impression, it is
sufficient to recall the importance of the Jacobi triple product in what has
been said above. For physicists, Jacobi’s identity follows from the fact that the
quantum field theory of a free complex fermion in two spacetime dimensions
is isomorphic to the one of a free boson with values on a circle. Specifically,
it states the equality of the partition function at genus one. Unsurprisingly,
a free complex fermion can be described in terms of two free real fermions.
Real fermions are described by the minimal (3,4) CFT and their partition
function is given by FQ with A = 1.

Recently, Zagier gave lectures on CFT (physics!) and asked about any
relation with class field theory. Now questions about words relate to poetry,
not mathematics, but they should not be taken too lightly. Poetry works
with accidental relations of words in a particular language. Not all of them
are particularly inspiring. At best, the homophony of ‘field’ in physics and
mathematics can illustrate the rift between the two fields of knowledge caused
by quantum field theory. Still, some relations are not understood as arbitrary
by native speakers. They have come to reflect aspects of the national charac-
ter, like καλoς κ′αγαθoς in Greek, the two meanings of ‘true’ in English, the
relation of green growth and beauty in old German (grôni enti skôni), or the
relation of ‘klar’ and ‘wahr’ mentioned in the introduction. For the language
of mathematics, Zagier has long been stimulated by the three meanings of q.
In this article q-hypergeometric series and the q of modularity have appeared
in close linkage. Third, q-deformation comes from quantum mechanics. In-
deed, the q-deformed torus embodies Heisenberg’s commutator of position
and momentum, though it must be complemented by Schrödinger’s cat to
make real (rather complex) sense.

It seems quite possible that CFT will join this famous company, when
the rift between mathematics and physics will be healed. Look again at eq.
(8). The extension of Q(ω) by 21/3 is due to Gauss, who observed that p =
x2 +27y2 is equivalent to p ≡ 1 mod 3 plus m3 ≡ 2 mod p for some integer m.
This was the first glimpse of true class field theory. More vaguely, the hidden
periodicity of FQ at cusps, like 2/(2m+1) in the example at hand, may recall
that the periodicity of Gauss sums prepared for the hidden periodicities in
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class field theory. Finally, the fact that the number fields occuring in conformal
field theory come from abelian extensions has deep roots. It has been seen by
all mathematiciens who looked at the Verlinde equations. The devil may not
only be in details but also in sounds, but one does not have to be an ancient
Greek to be curious about sirenes.
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