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Hilbert reciprocity using K-theory localization
Oliver Braunling

∗

Abstract: Usually the boundary map in K-theory localization
only gives the tame symbol at K2. It sees the tamely ramified part
of the Hilbert symbol, but no wild ramification. Gillet has shown
how to prove Weil reciprocity using such boundary maps. This
implies Hilbert reciprocity for curves over finite fields. However,
phrasing Hilbert reciprocity for number fields in a similar way fails
because it crucially hinges on wild ramification effects. We resolve
this issue, except at p = 2. Our idea is to pinch singularities near
the ramification locus. This fattens up K-theory and makes the
wild symbol visible as a boundary map.
Keywords: Hilbert reciprocity law, Moore sequence, localization
sequence, Hilbert symbol, tame symbol.

1. Introduction

In the discipline of K-theory the term tame symbol is a special name for the
boundary map ∂v : K2(F ) → κ(v)× for a field F with a discrete valuation v
which has residue field κ(v). This map comes from the localization sequence,
but it is also very easy to give an explicit formula:

(1.1) ∂v{f, g} := (−1)v(f)v(g)fv(g)g−v(f) ∈ κ(x)×,

where (−) is the reduction modulo the valuation ideal.
In number theory the meaning of the term tame symbol is more restrictive.

Every finite extension F/Qp with its usual valuation v and residue field κ(v)
is equipped, through a construction coming from local class field theory, with
its Hilbert symbol

hv : K2(F ) −→ μ(F ),
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where μ(F ) is the group of roots of unity. We shall recall its construction
and further background in §2.1. The residue field satisfies κ(v)× ∼= F×

q and
using the Teichmüller lift these roots of unity lift injectively to elements of
μ(F ). The image of this lift agrees precisely with the direct summand of
those roots in μ(F ) of order prime to p. Consider only the output of hv on
this summand,

K2(F ) −→ μ(F )[prime-to-p-part] ∼= κ(v)×.

Then this map agrees up to an isomorphism with the tame symbol. The
complementary p-torsion part μ(F )[p∞] has an interpretation in terms of
wild ramification. Seen from this viewpoint, the tame symbol takes its name
from encoding the tamely ramified information in the Hilbert symbol. Un-
like the tame symbol, the full Hilbert symbol has no simple formula as in
Equation 1.1. Formulas for the p-part of hv are known as explicit reciprocity
laws and this is a whole area of research in itself. Many explicit formu-
las exist, of varying generality, and all of them are very complicated (as a
very incomplete list, we name Artin–Hasse [AH28], Shafarevich [Š50], Wiles
[Wil78], Brückner [Bru79], Vostokov [Vos78], Henniart [Hen81], de Shalit
[dS86], . . . 1).

Taking this into account, it is almost surprising that the localization se-
quence in K-theory, a result which works in broad generality and has nothing
to do with the specifics of number theory, captures a part of the Hilbert
symbol at all.

It has been a long-standing folklore question whether it would also be
possible to express the full Hilbert symbol, including the wild part, as a
boundary map in a localization sequence. We answer this affirmatively in this
paper, except at places over the prime p = 2 and real places. In other words:
We cannot capture 2-torsion phenomena with what we do.

Whenever we work with a number field F , we have the instinct to work
with its ring of integers OF as an integral model. Recall that an order R in
F is any subring R ⊆ F such that Q · R = F and which is finitely generated
as an abelian group. The ring of integers OF agrees with the unique maximal
order in F . This intuition is informed from ring-theoretic properties: The
maximal order is regular, it is our only chance to get a Dedekind domain, to
get unique factorization in prime ideals. However, addressing our problem, it
is best to shrink the order. First, proceed locally.

1There are many more works and I apologize to those I have not explicitly listed.
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Theorem 1.1. For any finite extension F/Qp with p odd, there exists a well-
defined local subring (R, m̃) of the valuation ring such that the localization
sequence for the closed-open complement

SpecR/m̃ ↪→ SpecR ←↩ SpecF

outputs
K2(R) −→ K2(F ) ∂−→ Km̃,1(R) −→ 1

and such that the boundary map is the full Hilbert symbol. In particular,
Km̃,1(R) ∼= μ(F ). If F/Qp is unramified, R is the usual ring of integers.

See Theorem 4.17. The ring R, which we shall call the optimal order, will
usually be singular. We explain its construction later in the paper. Recall
that Km,1(OF ) gives only the prime-to-p order roots of unity when using
the valuation ring OF instead of R. The localization sequence in K-theory
is compatible under switching from working locally to globally. Running the
same idea globally, one gets the full Hilbert reciprocity law − except that
since the above only works for odd p, we must invert 2. This also washes
away the contribution from all real places.

Theorem 1.2. Suppose F is any number field. Then we construct a well-
defined order R ⊆ OF such that we get a commutative diagram with exact
rows

K2(R) K2(F ) ∂ ⊕
v finite Km̃,1(Rv)

⊕vφ

SK1(R) 0

K2(F )
hv

⊕
v noncomplex μ(Fv) ·mv

m

μ(F ) 0

in the category of abelian groups up to 2-primary torsion. The top row is the
localization sequence with respect to the maximal ideals of R. The bottom row
is the Moore sequence (a way to phrase Hilbert reciprocity). The downward
arrows are isomorphisms (up to 2-primary torsion).

See Theorem 5.8, where we also elaborate on the formulation “up to 2-
primary torsion”. One can deduce statements from this with a more classical
flavour.

Corollary. Let F be a number field with
√
−1 /∈ F . Then the statement of

Hilbert reciprocity up to sign, i.e.∏
v noncomplex

hv(α, β)
mv
m = ±1 for all α, β ∈ F×,
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can be phrased as the property of being a complex (d2 = 0) for a localization
sequence in K-theory.

As we will explain in §3, Gillet proved Hilbert reciprocity for function
fields over finite fields using K-theory localization by proving the more general
Weil reciprocity theorem over all base fields. Under the number field/function
field dictionary one would hope that this proof generalizes to give Hilbert
reciprocity for number fields. This fails for various reasons, one being that
one needs the full Hilbert symbol and not just the tame symbol. Our method
solves this. However, the version of Hilbert reciprocity it proves − if we only
use K-theory localization and nothing else − then takes values in the group
SK1 of the global (singular) order we refer to in Theorem 1.2.

It seems difficult to compute this group without using tools which would
also go into conventional proofs of Hilbert reciprocity.

It is a common phenomenon in Algebraic K-theory that adding nil-
thickenings or singularities makes K-groups more complicated. For example,
the Contou-Carrère symbol is a fattening up of the tame symbol for nil-
thickenings and in its tangent functor one can find the residue symbol for
log differential forms. The residue symbol only becomes visible thanks to nil-
thickenings. The Contou-Carrère symbol is a different kind of generalization
of the tame symbol than the Hilbert symbol. Nonetheless, our main idea is
similar. If we think in terms of the function field analogy, the orders R corre-
spond to (affine models of) singular algebraic curves and SpecOF → SpecR
is the normalization, the resolution of singularities. Using this analogy, work-
ing with R is like pinching additional singularities at the branching locus of
F over Q. This then has the effect to fatten up the K-theory with support
at these singularities. As it turns out, this additional complexity is precisely
the wild part of the Hilbert symbol. Under the normalization, going to OF ,
K-theory loses the wild data and keeps only the tame symbol in the boundary
map.

Digging a littler deeper, there is a hierarchy of rings Ri between the
optimal and the maximal order,

R ⊆ Ri ⊆ OF

which “can see”, as i increases, less and less of the wild part of the Hilbert
symbol. We shall study these in more detail in a future text.

Considering local metaplectic extensions, Toshiaki Suzuki has worked
with rings similar to what we do in §4 with the purpose to formulate modified
Gauss sums [Suz02, Suz06, Suz12]. He does not use K-theory, but probably
our local optimal order agrees with his subrings from [Suz02].
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Let me note that the recent papers [AB19, BHv21] also produce, without
relying on global class field theory, a sequence

K2(F ) ∂−→
⊕
v

μ(Fv) −→ K2(LCAF )/div −→ 0,

which is then shown to be equivalent to Moore’s sequence. The methods in
these papers are completely different from what we do in this paper.

2. What is the Hilbert symbol?

2.1. Local theory

In this section, we shall recall the definition and purpose of the Hilbert symbol
and the statement of the Hilbert reciprocity law. Readers familiar with these
concepts are invited to skip ahead.

Suppose F is a local field of characteristic zero, i.e. a finite extension of Qp

or R. In this section, let us exclude the case F = C. Write m := #μ(F ) < ∞
for the number of roots of unity in F .2 Then the local reciprocity map (also
known as local Artin map) is a group homomorphism

ArtF : F× −→ Gal(F ab/F ),

where F ab/F is the maximal abelian extension. It is easy to describe for
F = Qp or R, but for a general local field setting up ArtF is too complicated
than we would wish to recall here. The Artin map becomes an isomorphism
after profinite completion3, so it gives tight control over the abelian field
extensions of F . The Hilbert symbol is the map

h : F× × F× −→ μ(F )

(x, y) 	−→ ArtF (x) m
√
y

m
√
y

.(2.1)

We need to explain this: Since F contains a primitive m-th root of unity, the
extension F ( m

√
y)/F is Kummer, and in particular an abelian extension. Only

2We have excluded C because it is the only local field with infinitely many roots
of unity. However, it also has trivial Hilbert symbol, so we do not miss out on
anything by skipping this case.

3The Galois group is of course already profinite. However, the left side changes.
For p-adic fields the completion injects into a strictly bigger group, while for the
reals the completion map is surjective. The kernel is the subgroup of positive reals.
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because of this, ArtF (x) acts on it. All Galois conjugates of m
√
y differ by a

root of unity, so the map takes values in μ(F ). It is well-defined because if
we pick a different root for m

√
y, then (as long as we use the same one in the

numerator and denominator of Equation 2.1) they both differ by the same
root of unity from our previous choices, which then cancels out in the fraction.

One checks that h is bilinear and respects the Steinberg relation, so we
obtain a factorization

h : K2(F ) −→ μ(F ).

In a nutshell, one could say that h sets up a link between the local reciprocity
map and Kummer theory. Suppose F is a finite extension of Qp. As μ(F ) is
a torsion group, it splits canonically into its p-primary part and a prime-to-p
part,

μ(F ) ∼= μ(F )[p∞] ⊕ ⊕
� �=pμ(F )[�∞].

We have no use for further distinguishing the primes in the prime-to-p sum-
mand, we just write μ(F )[prime-to-p] for it all.

Explicit formulas for the p-part of the Hilbert symbol, i.e. its values in
the summand μ(F )[p∞], are very complicated. If we write m = pkm0 with
(p,m0) = 1, then F ( m

√
ypk) = F ( m0

√
y) is at worst tamely ramified over F ,

and in this case the value of the Hilbert symbol (x, ypk) in the summand
μ(F )[p∞] is trivial. Hence, such a case corresponds to (at worst) tame ramifi-
cation. In this situation, the Hilbert symbol agrees wth the tame symbol, see
Lemma 4.11 below. The values in the complementary summand μ(F )[p∞] are
therefore also sometimes called the wild part of the Hilbert symbol, or even
a wild symbol formula.

2.2. Global theory

Suppose F is a number field. For any noncomplex place write Fv for its
completion at v. Define m := #μ(F ) < ∞ and mv := #μ(Fv) < ∞.

Theorem 2.1 (Moore sequence). Let F be a number field. Then the sequence

(2.2) K2(F ) −→
⊕

v noncomplex
μ(Fv)

·mv
m−→ μ(F ) −→ 0

is exact, where the first arrow is the Hilbert symbol, and the second is taking
the mv

m -th power.
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The statement that this is a complex (d2 = 0) amounts to the classical
Hilbert reciprocity law. Moore provided the slight strengthening that the
sequence is exact. We refer to [CW72] for a nice proof.
Example 2.2. For F = Q we have μ(F ) := {±1}. The finite places are just
the ordinary prime numbers. If p is odd, mp

m = p−1
2 is half the order of F×

p and
coprime to p, so the Hilbert symbol is just the tame symbol, but effectively
only contributes values in F×

p /F
×2
p

∼= {±1} thanks to taking the mp

m -th power.
One finds that this composition K2(F ) → {±1} is given in terms of the
Legendre symbol for all odd p. Only for p = 2,∞ the Hilbert symbol differs
from the tame symbol. The fact that d2 = 0 in Equation 2.2 then becomes
the Gauss quadratic reciprocity law.

3. Gillet’s proof of Weil reciprocity

To motivate this paper, we must recall Gillet’s very elegant proof of Hilbert
reciprocity for curves over finite fields. This is the counterpart, under the
number field/function field dictionary, of the Hilbert reciprocity law which
we discuss in the present article. Gillet first proves something more general.

Theorem 3.1 (Weil reciprocity). Let k be a field. Let X/k be an integral
smooth4 proper curve with function field F := k(X). Then the composition

Kn(F ) ∂−→
⊕
v

Kn−1(κ(v))
Nκ(v)/k−→ Kn−1(k)

is zero, where ∂ denotes the boundary map of the Algebraic K-theory local-
ization sequence with respect to zero-dimensional support, v runs through the
places of X which are trivial over k, and Nκ(v)/k is the norm map.

The set of places v can be identified with the set of codimension one
irreducible closed subschemes, and equivalently with the set of closed points
of X. The local rings (OX,P ,mP ) are DVRs and the resulting valuation defines
a place v on the function field, and conversely these valuations pin down a
local ring and therefore a closed point.

Proof (Gillet). We shall freely use results from Algebraic K-theory. The reader
will find in Appendix §A a summary, in blackbox format, of what we need.

4Gillet’s proof actually does not require smoothness if one works with G-theory
localization rather than K-theory. But discussing this detour would distract us too
much from our main story. We favour K-theory for good reasons over G-theory in
this paper.
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Following Gillet, we use the localization sequence of Algebraic K-theory ap-
plied to X and Z being any zero-dimensional integral closed subscheme. We
get the fiber sequence

(3.1) KZ(X) −→ K(X) −→ K(X − Z).

Note that we may split Z into its disjoint connected components and get
KZ(X) =

⊕
P KP (X), where P runs through the finitely many points of Z.

Finally, since X is smooth, it is regular, and by devissage we obtain KP (X) ∼=
K(P ) (i.e. regard P as a zero-dimensional closed subscheme). Note that this
means that K(P ) = K(κ(v)), where κ(v) = OX,P /mP is the residue field
of the DVR belonging to the valuation v. Next, we arrange this in a direct
system running over Z ⊆ Z ′, partially ordered under containment. As K-
theory commutes with filtering colimits, we obtain the top row in

(3.2) · · · Kn(F ) ∂ ⊕
v Kn−1(κ(v))

Nκ(v)/k

Kn−1(X)

Rπ∗

· · ·

Kn−1(k)

Since the structure map π : X → k is proper, the derived pushforward Rπ∗
induces a map K(X) → K(k). Since the closed embeddings iP : P ↪→ X are
also proper, π ◦ iP induces maps K(P ) → K(k). Since the composition of
two consecutive arrows in a complex is zero (d2 = 0), the existence of the
right diagonal arrow implies that

∑
P π∗iP∗ = 0. Upon unravelling this, the

π ◦ iP correspond to the pushforward along the finite morphisms Specκ(v) →
Spec k, which is nothing but the norm map on K-theory.

The above proof, which uses only fairly general tools from K-theory and
the existence of Rπ∗ now gives a complete proof of Hilbert reciprocity for
curves over finite fields.

Theorem 3.2 (Hilbert reciprocity for function fields). Suppose X/Fq is a
geometrically integral smooth proper curve with function field F := Fq(X).
Then Hilbert reciprocity holds: The composition of

(3.3) K2(F ) hv−→
⊕
v

μ(Fv)
·mv

m−→ μ(F )

is zero, where mv := #μ(Fv) and m := μ(F ).
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We have only discussed the Hilbert symbol in characteristic zero in §2.1,
but the same definitions go through in general. We will not work in positive
characteristic anywhere else in this paper.

Proof. Write k := Fq for the base field. We use Weil reciprocity for n = 2 and
obtain

(3.4) K2(F ) ∂−→
⊕
v

K1(κ(v))
Nκ(v)/k−→ K1(k).

Since F is a function field of a geometrically integral curve, we have the se-
quence k× ↪→ F× v→ ⊕

Z sending a function to its Weil divisor, and since Z
has no non-trivial torsion, it follows that all roots of unity must come from
k×, but since k = Fq, all its non-zero elements are roots of unity. Hence,
K1(k) = μ(F ). Similarly, each κ(v)/Fq is a finite field extension, and thus
κ(v) is itself a finite field and therefore K1(κ(v)) = μ(Fv). Note that since
k has characteristic p > 0 and we have μ(Fv) = κ(v)× ⊕ μ(Fv)[p∞] by the
Teichmüller lift, we must have μ(Fv)[p∞] = 1 as there cannot be non-trivial
p-power roots of unity in a char p > 0 field. This also implies that the Hilbert
symbol agrees with the tame symbol. By now, Equation 3.4 has almost com-
pletely transformed into Equation 3.3. It remains to show that Nκ(v)/k agrees
with multiplication by mv

m , but

mv

m
= q[κ(v):k] − 1

q − 1 = 1 + q + q2 + · · · + q[κ(v):k]−1,

and the extension κ(v)/k is Galois and its Galois group generated by the
Frobenius x 	→ xq. Thus, taking the mv

m -th power does the same as taking the
norm.

Inspired by this beautifully short proof, people have been wondering about
the possibility to prove Hilbert reciprocity for number fields using the same
idea.

For the sake of completeness, let us quickly go through the same steps in
the number field setting and see how and why they fail.

Let F be a number field and take X := SpecOF , where OF denotes
the ring of integers. The localization sequence of Equation 3.1 works fine,
where again Z is running through the direct system of zero-dimensional closed
subschemes partially ordered by inclusion. We obtain the exact sequence

· · · −→ Kn(F ) ∂−→
⊕
v

Kn−1(κ(v)) βn−→ Kn−1(OF ) −→ · · · ,
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where v runs through the finite places. What should the replacement for π in
Diagram 3.2 be? We might speculate about π : SpecOF → SpecZ or about
some map to a conjectural F1, but there is a problem we cannot avoid: Soulé
has proven that for all even n ≥ 2 the maps βn are zero [Wei13, Chapter V,
Theorem 6.8]. So even if we can set up some magical diagram (with n ≥ 2
even)

· · · Kn(F ) ∂ ⊕
v Kn−1(κ(v)) 0

Kn−1(OF ) · · ·

Kn−1(?)

for some carefully chosen “?”, we see that for n = 2 the statement of our
theorem is void because already the individual maps π∗ ◦ iP∗ are necessarily
zero. So clearly their sum is zero. We learn nothing new.

Is this because we have no infinite places here and some Arakelov theory
would solve the problem? At first, one could say yes. The cited result of Soulé
also tells us that for affine curves over finite fields, e.g. SpecOX(X − pt), the
same vanishing holds. But we could take a number field without real places.
Since Hilbert reciprocity among the infinite places only sees the real ones,
this leads us to situations where Hilbert reciprocity is exclusively a statement
about a cancellation of values at finite places, but we still have the same issue.
So this is not the core of the problem.

More crucially, we only see the tame symbol here. Consider for example
the extensions Qp(ζpm)/Qp. These are totally ramified. As m → +∞, the
group μ(Qp(ζpm)) = 〈ζpm〉 × F×

q grows arbitrarily large, yet the receptacle of
the tame symbol

K2(Qp(ζpm)) ∂−→ K1(Fp) = F×
p

remains unchanged. This shows how the discrepancy between the Hilbert
symbol and the tame symbol can grow arbitrarily large.
Example 3.3 (continues Example 2.2). Another good example is the quadratic
reciprocity law at p = 2. The tame symbol here is a map K2(Q2) → F×

2 = {1},
and contains no information. The Hilbert symbol of Q2 however is non-trivial.

Even once we know that the Hilbert reciprocity law holds, it does not
really imply anything about a reciprocity law for tame symbols, so it is not
too shocking that Soulé’s result reveals that considering the tame symbol
yields no interesting invariant whatsoever.
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4. Local theory

Let F/Qp be a finite extension. We write F0/Qp for its maximal unramified
subextension. Denote by (OF ,m) the local ring which is the ring of integers
of F . Analogously, write (O0, p) for the ring of integers of F0.

We recall that we may realize OF = O0[T ]/(f), where f is an Eisenstein
polynomial for the prime p, [Rei03, (5.6)]. The image of the variable, π := T ,
is a uniformizer of F , so that m = (π)OF . Conversely, the minimal polynomial
of any uniformizer of F over O0 will be a possible choice for the Eisenstein
polynomial f , [Rei03, (5.12)].

As a result of this presentation, OF is a finitely generated free O0-module,
and we may take

(4.1) OF = O0
〈
1, π, . . . , πe−1

〉
as a basis, where e := deg f is the ramification index of F/Qp. Moreover,
recall that there is a non-canonical decomposition

(4.2) F× ∼=
〈
πZ

〉
× 〈ζq−1〉 × U1

F ,

where ζq−1 is a primitive (q − 1)-st root of unity, and

U r
F := 1 + mrOF (for r ≥ 1)

denotes the r-th higher unit group.
Let us consider the subrings5

(4.3) Rm := O0 + mmOF (for m ≥ 0)

inside OF .

Lemma 4.1. The ring Rm is a Noetherian local domain with field of fractions
F . Its maximal ideal is

(4.4) m̃m =
{

pO0 + mmOF for m ≥ 1
mOF for m = 0.

The ring Rm is a module-finite O0-algebra of finite index [OF : Rm] < ∞.
Moreover, Rm is a compact subring of OF (in the valuation topology). The

5This is a special case of a general observation: If R ⊆ S is a subring of any ring
S, and I any ideal of S, then R + I is a ring.
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unit group is non-canonically isomorphic to

(4.5) R×
m
∼= 〈ζq−1〉 × (1 + m̃m).

If 1 ≤ m ≤ e (with e := eF/Qp
the absolute ramification index), m̃m = mmOF .

Proof. Since R0 = OF , the case m = 0 is clear. From now on assume m ≥ 1.
It is clear that the Rm = O0 + mmOF are subrings of OF . It follows that
Rm is a domain. Next, it is immediate to check that m̃m ⊆ Rm is an ideal.
Since m̃m ⊆ m, it does not contain 1, so it is a proper ideal in Rm. If we
can show that all elements in Rm \ m̃m are units, it will follow that m̃m is
the unique maximal ideal. Before we do this, note that the decomposition
of Equation 4.2 applied to F0 shows that ζq−1 ∈ O0 (since both F and F0
have the same residue field; alternatively retrieve ζq−1 as the Teichmüller lift
of a primitive (q − 1)-st root of unity of the finite residue field). Suppose
x ∈ Rm \ m̃m. Using Equation 4.2 for F we write it as

(4.6) x = πn · ζiq−1 · u with u ∈ U1
F .

Since x ∈ OF , we have n ≥ 0. Assume n ≥ 1. Then

x ∈ Rm ∩mOF = (O0 + mmOF ) ∩mOF = (O0 ∩mOF ) + mmOF = m̃m

since m ≥ 1 and O0 ∩ mOF = pO0. Contradiction. Hence, we must have
n = 0. As ζq−1 ∈ O0, we deduce

(4.7) xζ−i
q−1 − 1 ∈ mOF ∩Rm

(it lies in mOF by Equation 4.6, and in Rm since x and ζ−1
q−1 lie in Rm and

Rm is closed under ring operations). Then the geometric series

(4.8) 1
xζ−i

q−1
= 1

1 −
(
1 − xζ−i

q−1

) = 1 +
∑
l≥1

(
1 − xζ−i

q−1

)l
:= ũ

is convergent in OF . As the residue field of OF is finite, OF is compact in
the valuation topology. Same for O0. As Rm is the image of the compact
space O0 × OF under an obvious map, Rm is compact. In particular, Rm is
necessarily complete as a metric space. As all partial sums in Equation 4.8
lie in Rm, we deduce that the limit ũ must also lie in Rm. Returning to
our original thread of thoughts, Equation 4.8 shows that x−1 = ζ−i

q−1ũ with
ũ ∈ Rm. This completes the proof that m̃m is the unique maximal ideal. We



Hilbert reciprocity using K-theory localization 421

conclude that Rm is a local ring. As this also implies that R×
m = Rm \m̃m, the

computation starting from x ∈ Rm \ m̃m and leading to Equation 4.7 proves
the inclusion R×

m ⊆ 〈ζq−1〉 × (1 + m̃m) of Equation 4.5; and Equation 4.8 had
already shown the reverse inclusion. Next, let us show that FracRm = F .
This is easy: Since F = FracOF is a discrete valuation field, for any x ∈ F
we have πlx ∈ OF for l ≥ 0 sufficiently big. In particular, πl+mx ∈ Rm and
πl+m ∈ Rm, so x = πl+mx

πl+m ∈ FracRm. Finally, by Equation 4.1 we obtain

Rm = O0 + πmO0
〈
1, π, . . . , πe−1

〉
,

so Rm is finitely generated as an O0-module. As O0 is a discrete valuation
ring, the structure theorem for finitely generated modules over a principal
ideal domain shows that Rm is a finite free O0-module. There cannot be any
torsion since it is a submodule of F , hence p-torsionfree. This also implies
that Rm is Noetherian (which could also be shown in many other ways).
If 1 ≤ m ≤ e, then p ∈ πeO×

F ⊆ πmOF , so m̃m = mmOF . As Rm can
be sandwiched as mmOF ⊆ Rm ⊆ OF but the outer two terms have finite
index in one another, we also must have [OF : Rm] < ∞. This also proves
FracRm = F a second time.

Lemma 4.2. The residue field of Rm is the same as of OF , i.e. OF /m. For
m ≥ 1 we have Rm = O0 + m̃m.

Proof. Suppose m ≥ 1. Then Rm = O0 + m̃m by Equation 4.4. For subgroups
A,B contained in some abelian group one generally has

A + B

B
∼= A

A ∩B
.

Hence, for A := O0 and B := m̃m, both lying inside OF , we find

Rm

m̃m
= O0 + m̃m

m̃m

∼= O0

O0 ∩ m̃m
= O0

(O0 ∩ pO0) + (O0 ∩ πmOF ) .

Since πOF ∩ O0 = pO0, we have O0 ∩ πmOF = pmOF , so

= O0

pO0 + pmO0
= O0

pO0
,

which is the residue field of O0, but since F/F0 is totally ramified, this is the
same residue field as of F . Finally, for m = 0 the first claim is clearly also
true.
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Lemma 4.3. The group 1+ m̃m ⊆ R×
m is a Zp-module under exponentiation.

Concretely, one may define

(1 + x)α :=
∑
l≥0

(
α

l

)
xl

for all α ∈ Zp, where
(
α

l

)
= α(α−1)···(α−l+1)

1·2···l .

Proof. This result is well-known for U1
F , so it is clear that the series converges

to an element in U1
F . As soon as we show that the limit lies in 1 + m̃m, it

is then clear that this pairing Zp × (1 + m̃m) → U1
F restricts to a module

structure on 1 + m̃m. To see this, first note that
(
α

l

)
∈ Zp (because for all

α ∈ Z the value lies in Z, so by continuity for α ∈ Zp the values must lie
in the closure Z = Zp with respect to the p-adic topology), so once l ≥ 1,

we have
(
α

l

)
xl ∈ m̃m since x ∈ m̃m. As m̃m is a closed subspace of Rm, we

deduce that the limit lies in 1+ m̃m. This concludes the proof. An alternative
approach could be modelled on [FV02, Chapter I, (6.1)].

Lemma 4.4. Rm is clopen in F and the quotient group F/Rm is discrete.

Clear.

Lemma 4.5. The ring OF is the integral closure of Rm in F .

Proof. We use that OF is the integral closure of O0 in F by [Rei03, (5.6), (i)].
By the transitivity of integral closures, it follows that the intermediate ring
O0 ⊆ Rm ⊆ OF must have the same integral closure.

Having shown that Rm is a local ring, we may now apply the following
general result.

Proposition 4.6 (Dennis–Stein). Suppose R is a local ring.

1. Then K1(R) ∼= R× (via the determinant) and the product map of K-
theory,

R× ⊗R× −→ K2(R)

is surjective, i.e. every element in K2 comes from symbols.
2. (Steinberg relation) If x, y ∈ R× such that x + y = 1, then {x, y} = 0.
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Proof. Since R is a local ring (Lemma 4.1), R× = GL1(R) → K1(R) is
an isomorphism, and split by the determinant GL(R) → R×. By a result of
Dennis–Stein [SD73, Theorem 2.7] for a local ring the map K1(R)⊗K1(R) →
K2(R) is surjective. The claim in (2) is standard.

Lemma 4.7. Every element in K2(F ) can be written as β = {π, u0} +∑r
i=1{ui, vi} for some r and ui, vi ∈ O×

F .

Proof. Standard. By linearity it suffices to prove the claim for a pure symbol
{x, y} with x, y ∈ F×. We may write x = πau and y = πbv for a, b ∈ Z and
u, v ∈ O×

F , so by linearity

{x, y} = {πa, πb} + {πa, v} + {u, πb} + {u, v}
= ab{π, π} + {π, va} + {π, u−b} + {u, v}.

The Steinberg relation implies that {π, π} = {π,−1}, so this simplifies to
{π, (−1)abvau−b} + {u, v}, proving the claim.

The following is well-known to experts, and in much broader generality.
We record it in the version suitable for us.

Lemma 4.8. Let π be a uniformizer of F . Then for any u ∈ U2
F there exist

a, b ∈ U1
F such that {π, u} = {a, b} holds in K2(F ).

Proof. Since u ∈ U2
F , we may write u = 1 − z with z ∈ OF of valuation

v(z) ≥ 2. Define g := 1 + zπ−1 − z. Note that since v(z) ≥ 2, the term zπ−1,
and thus zπ−1 − z, lies in m. Hence, g ∈ U1

F . We compute

(1 − π) · (1 − z) = 1 − π − z + πz = 1 − π(1 + zπ−1 − z) = 1 − πg,

i.e. 1 − z = 1−πg
1−π . Now we compute

{π, u} = {π, 1 − z} =
{
π,

1 − πg

1 − π

}
= {π, 1 − πg}

by the Steinberg relation {π, 1−π} = 0. Using the Steinberg relation a second
time, we obtain

= {πg, 1 − πg} − {g, 1 − πg} = −{g, 1 − πg},

but g ∈ U1
F and 1 − πg ∈ U1

F , so take a := g−1 and b := 1 − πg.
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We need the following crucial observation of Hasse on the higher unit
filtration and p-power maps. We let

e1 := e

p− 1,

where e := eF/Qp
is the absolute ramification index.

Lemma 4.9 (Hasse). The filtration of the higher unit groups is compatible
with the p-power filtration in the following sense:

1. Suppose i ≥ 1. Then for all sufficiently large k we have

(U1
F )pk ⊆ U i

F .

2. Suppose i ≥ 1. Then whenever k ≥ 1 and i > pe1 + (k − 1)e one has
the inclusion

U i
F ⊆ (U1

F )pk .

Proof. The crucial ingredient is a case-by-case study of the map x 	→ xp which
one can find explained in [FV02, Chapter I, (5.7) Proposition]. The cases are
as follows: If 1 ≤ t ≤ e1, then (U t

F )p ⊆ Upt
F and if t > e1, then (U t

F )p ⊆ U t+e
F .

As p ≥ 2 and e ≥ 1, it is clear that after taking p-th powers often enough,
we land in the second case, and then can reach arbitrarily high up in the
filtration. This settles (1). We could be more precise about how big k has to
get, but we have no use for this information. For (2) one uses that once t > e1
the p-power map

U t
F /U

t+1
F −→ U t+e

F /U t+e+1
F , x 	→ xp

is surjective, see [FV02, Chapter I, (5.7) Proposition, part (3)] for the proof.
Thus, U t+e

F = (U t
F )p · U t+e+1

F . As the same holds for any greater t as well, we
may apply the same computation to the underlined term, giving

U t+e
F = (U t

F )p · (U t+1
F )pU t+e+2

F

and since (U t+1
F )p ⊆ (U t

F )p, we get U t+e
F = (U t

F )pU t+e+l for any l ≥ 1. Letting
l → +∞ and using

⋂
c≥t U

c
F = {1}, we obtain the crucial equality

U t+e
F = (U t

F )p (once t > e1).

Hence, if i − ke > e1, we get (by inductively running through the above
identity from right to left for varying t)

(U1
F )pk ⊇ (U i−ke

F )pk = (U i−ke+e
F )pk−1 = · · · = U i

F .
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However, i− ke > e1 is equivalent to i > pe1 + (k − 1)e. This settles (2).

We write
h : K2(F ) −→ μ(F ).

for the Hilbert symbol. We had recalled its definition in §2.1.

Theorem 4.10 (Moore). The map h is surjective and ker(h) is a divisible
group.

The proof is not terribly difficult. We refer to [FV02, Chapter IX, (4.3)
Theorem] for a textbook proof. In fact, it is also known that the kernel is
uniquely divisible, but this is much harder to show and we shall not need it.

Next, using our toolbox from Algebraic K-theory as in §A there is a
localization sequence of spectra

(4.9) Km(OF ) −→ K(OF ) −→ K(F ).

It induces a long exact sequence in K-theory groups and the boundary map

K2(F ) ∂−→ Km,1(OF )
(�)∼= K1(κ) ∼= κ×

for κ := OF /m the residue field, is known as the tame symbol. An explicit
formula for this map is known, see Equation 1.1. The isomorphism (�) stems
from devissage and is available because OF is regular. It has no counterpart
for the rings Rm in general.

Lemma 4.11. For n := #μ(F ) write n = pkn0 with (n0, p) = 1. Then the
diagram

(4.10) K2(F ) h

∂

μ(F )

pk

κ×

is commutative. The downward arrow refers to taking the pk-th power.

Proof. For any m | n write (x, y)m := ArtF (x) m
√
y

m
√
y for the m-Hilbert symbol.

This is the variant of the Hilbert symbol taking a root of possibly lesser order
than would be maximally permitted to obtain a Kummer extension. Then
n = pk(q − 1) with q := #κ and then h(x, y)pk = (x, y)pkn = (x, y)q−1 (by
[FV02, Chapter IV, (5.1) Prop., (7)]) and (x, y)q−1 = ∂{x, y} (by [FV02,
Chapter IV, (5.3) Theorem, for n taken to be q − 1]).
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Corollary 4.12. The map K2(OF ) → K2(F ) is injective, so we may regard
K2(OF ) as a subgroup of K2(F ). The restriction h |K2(OF ) is a surjective map

h |K2(OF ) : K2(OF ) −→ μ(F )[p∞]

and the kernel is a divisible group.

Proof. Using the localization sequence of Equation 4.9, we obtain

· · · j
K2(OF ) i

K2(F ) ∂

h

K1(κ) 0

μ(F ),

where the dashed arrow is the Teichmüller lift, i.e. the fact that the multi-
plicative group of the residue field, F×

q , can be identified isomorphically with
the prime-to-p roots of unity 〈ζq−1〉 in Equation 4.2. This is a section to the
downward arrow on the right in Diagram 4.10. We see that the image of the
dashed arrow amounts precisely to the prime-to-p torsion summand of μ(F ).
Since h is surjective, the image of h |K2(OF ) must surject onto the p-primary
summand. Moreover, we have j = 0, so the map i is injective by [Wei13,
Chapter V, Corollary 6.6.2]. Now suppose α ∈ K2(OF ) lies in the kernel of
h. To check that α is a divisible element, say α = Mβ for a given M ≥ 1,
write α = M(q − 1)β′ for some β′ in K2(F ). This is possible since by The-
orem 4.10 kernel elements are divisible in K2(F ). As the codomain of ∂ has
order q − 1, we must have ∂ ((q − 1)β′) = 1, so (q − 1)β′ ∈ K2(OF ). Thus, α
can be written as an M -th multiple of an element in K2(OF ).

Corollary 4.13. Suppose p is odd. Then the group K2(O0) is divisible.

Proof. Apply Corollary 4.12 to the field F := F0. Suppose p is odd. As F0/Qp

is unramified by construction, it does not contain any non-trivial p-power
roots of unity (This is classical. Observe that otherwise Qp(ζp − 1)/Qp is a
subextension, but its minimal polynomial ((T + 1)p − 1)/T is Eisenstein and
thus this is a non-trivial degree p− 1 > 1 totally ramified field extension), so
μ(F0)[p∞] = 0. The case p = 2 is different and the claim would be false.

We are ready to prove a key property for our study of the K-theory of
the rings Rm. For n := #μ(F ) write n = pk(q − 1) with k ≥ 0. Below, we
shall refer to the value of k on several occasions.



Hilbert reciprocity using K-theory localization 427

Lemma 4.14. Suppose p is odd. Then for all sufficiently large m ≥ 1 it holds
that for any u, v ∈ 1 + m̃m the Hilbert symbol h(u, v) vanishes. If k ≥ 1, then
any

m > pe1 + (k − 1)e

is sufficiently large. For k = 0, any m ≥ 1 works.

Proof. Suppose k = 0. Then F has no non-trivial p-power roots of unity.
Hence, by Corollary 4.12 the group K2(OF ) is divisible. By the factorization

(4.11) K2(Rm) −→ K2(OF ) h−→ μ(F )

coming from Rm ⊆ OF , the Hilbert symbol must vanish (the image of a
divisible element is divisible, but since μ(F ) is a finite group, it follows that
the map h |K2(OF ) is zero). This case was easy. For the rest of the proof we
suppose k ≥ 1. By Lemma 4.9 we have

(4.12) Um
F ⊆ (U1

F )pk .

Now write
u = 1 − px + πmy (x ∈ O0 and y ∈ OF )

using that m̃m = pO0 + mmOF by Equation 4.4. Then

u = (1 − px) ·
(1 − px + πmy

1 − px

)
= (1 − px) ·

(
1 + πmy

1 − px

)

= (1 − px) ·

⎛⎝1 + πmy
∑
l≥0

(px)l
⎞⎠ = (1 − px) · β.

Note that β ∈ 1 +mmOF , i.e. β ∈ Um
F . We can perform an analogous decom-

position for v, say v = (1 − py) · β′ with β′ ∈ Um
F . Then

{u, v} = {1 − px, 1 − py} + {1 − px, β′} + {β, 1 − py} + {β, β′}.

We now work in K2(F ). As β ∈ Um
F , we may write β = βpk

0 by Equation 4.12,
and as U1

F is a Zp-module, even β = β
pk(q−1)
00 = βn

00. The same works for β′.
Thus, the term {1 − px, β′} + {β, 1 − py} + {β, β′} is an n-th multiple of
something. Therefore, under h, which is a map to a group of order n, these
elements must map to zero. It remains to check that

h(1 − px, 1 − py) = 0,
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but this is clear since 1− px, 1− py ∈ O0, so our element comes from the left
under the composition K2(O0) → K2(Rm) → K2(F ), but K2(O0) is divisible
by Corollary 4.13, and mapping a divisible element to a group of order n
again must map the element to zero. This is the same idea as we had used
in Equation 4.11, but with a reversed direction of inclusion, O0 ⊆ Rm. This
finishes the proof.

Proposition 4.15. Suppose p is odd. For m ≥ 1 sufficiently big, the Hilbert
symbol vanishes on the image of K2(Rm) → K2(F ). If k ≥ 1, then any

m > pe1 + (k − 1)e

is sufficiently large. For k = 0, any m ≥ 1 works.

Proof. We had shown that Rm is a local ring in Lemma 4.1. By Equation 4.5
we have

(4.13) R×
m
∼= 〈ζq−1〉 × (1 + m̃m).

Now by Proposition 4.6 the Hilbert symbol vanishes on K2(Rm) once it van-
ishes on all pure symbols {a, b} with a, b ∈ R×

m. Using the decomposition in
Equation 4.13 it suffices to check this for

(A) {ζq−1, ζq−1}, (B) {ζq−1, u}, (C) {u, v}

with u, v ∈ 1 + m̃m. The symbols of type (A) and (B) are zero by adapting
[FV02, Chapter IX, (4.1) Lemma] to Rm. We provide the details: (B) All pure
symbols {ζq−1, u} with u ∈ 1 + m̃m are zero. To see this, note that ζq−1 is
(q− 1)-torsion, but since 1 + m̃m is a Zp-module (Lemma 4.3) and 1

q−1 ∈ Zp,
we can take a root,

{ζq−1, u} = {ζq−1, (u
1

q−1 )q−1} = {ζq−1
q−1 , u

1
q−1 } = 0.

Moreover, the symbols (A) are zero. To this end, copy the proof that K2(Fq) =
0, which holds up to an error in 1+pO0 in O0, but 1+pO0 is also a Zp-module
under exponentiation, so the same argument as for (B) works. Thus, it remains
to consider the symbols of type (C). This case is covered by Lemma 4.14.

Lemma 4.16. Suppose α ∈ K2(F ) is a divisible element in the group. Then
for any c ≥ 0 the element lies in the image of K2(Rc) → K2(F ) induced from
the inclusion Rc ⊂ F .
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Proof. Fix any integer c ≥ 2. Pick M := (q − 1)M0 such that M0 is a suffi-
ciently large p-power such that(

U1
F

)M0 ⊆ U c
F

holds. This is possible by Lemma 4.9. As Equation 4.2 asserts that O×
F

∼=
〈ζq−1〉 × U1

F , we deduce that
(
O×

F

)M ⊆ U c
F . As α is divisible, we find some

β ∈ K2(F ) such that
α = M3 · β

holds in K2(F ). We may write β = {π, u0}+
∑r

i=1{ui, vi} for some ui, vi ∈ O×
F

by Lemma 4.7. Now,

M2 · {ui, vi} = {uMi , vMi } ∈ {U c
F , U

c
F}

and

M3 · {π, u0} = M2 · {π, uM0 } = M2 · {a, b} = {aM , bM} ∈ {U c
F , U

c
F}

with a, b ∈ U1
F supplied by Lemma 4.8 (using that uM0 ∈ U2

F ). Since U c
F =

1+mcOF ⊆ Rc, we obtain that α = M3β ∈ imK2(Rc). This proves our claim
for c ≥ 2. The smaller the c, the bigger the ring Rc, so we get the claim for
all c ≥ 0.

Since (Rm, m̃m) is a local ring with field of fractions F by Lemma 4.1, we
get a localization fibration sequence

(4.14) Km̃m(Rm) −→ K(Rm) −→ K(F )

of spectra. It induces a long exact sequence of homotopy groups

· · · −→ K2(Rm) −→ K2(F ) ∂−→ Km̃m,1(Rm) β−→ K1(Rm) γ−→ K1(F ) −→ · · · ,

where ∂ denotes the connecting homomorphism ∂ : K(F ) → ΣKm̃m(Rm). The
greek letters serve the purpose to refer to these arrows below.

Theorem 4.17. Suppose p is odd.

1. Then the sequence of subgroups

imK2(R0) ⊇ imK2(R1) ⊇ imK2(R2) ⊇ · · ·
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of K2(F ) becomes stationary after finitely many steps. In particular,
there is a unique minimal m0 ≥ 0 such that

(4.15) imK2(Rm0) =
⋂
c≥0

imK2(Rc).

2. The group in Equation 4.15 agrees with the kernel of the Hilbert symbol
on K2(F ).

3. If F/Qp is unramified, m0 = 0.
4. For any m ≥ m0 there is a canonical isomorphism

φ : Km̃m,1(Rm) ∼= μ(F )

such that

(4.16) · · · K2(Rm)

0

K2(F ) ∂

h

Km̃m,1(Rm)

φ

0

μ(F )

commutes.

Proof. (Claim 1) By Proposition 4.15 for m sufficiently big we obtain that
h(imK2(Rm)) = 0. By Theorem 4.10 it follows that for any such m the
elements in im (K2(Rm)) are divisible elements in K2(F ). By Lemma 4.16
any divisible element lies in

⋂
c≥0 imK2(Rc). Thus, after finitely many steps

the sequence becomes stationary and then equals
⋂

c≥0 imK2(Rc). Pick m0
to be the minimal such.

(Claim 2) Since any element in imK2(Rc) for c sufficiently large must
be divisible by Proposition 4.15, but the Hilbert symbol maps to a finite
group, the group in Equation 4.15 is contained in the kernel of h. Again by
Theorem 4.10 the kernel of the Hilbert symbol consists of divisible elements,
so Lemma 4.16 yields the reverse inclusion.

(Claim 3) If F/Qp is unramified, then F = F0, so R0 = OF = O0 and by
Lemma 4.13 K2(R0) = K2(O0) is a divisible group, so already on the largest
possible group in our filtration the Hilbert symbol must be trivial, i.e. m0 = 0
already does the trick according to Claim 2.

(Claim 4) Since Rm is a local ring and F a field, we may use [Sri08,
Example 1.6] to see that the determinant induces the downward isomorphisms
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in
K1(R)
∼=

γ
K1(F )

∼=

R× F×,

showing that γ is injective, and thus β = 0. Hence, we obtain Figure 4.16.
The top row now yields

K2(F )/ imK2(Rm) ∂−→
∼

Km̃m,1(Rm).

However, by Claim 1 and Claim 2, the group imK2(Rm) is precisely ker(h),
and the Hilbert symbol, the vertical arrow h, is surjective by Theorem 4.10,
so the map φ exists by the universal property of cokernels and must be an
isomorphism as well.

Definition 4.18 (Local optimal order). If p is odd, define R := Rm0 with
m0 as in Theorem 4.17. For p = 2, take R := OF . We call R the optimal
order in F .

5. Global theory

We now transport the local theory to the global setting using adèles.

5.1. A family of global orders

Let F be a number field. If v is a place, we write Fv for the completion at v.
The adèles are the restricted product

AF :=
∏′

v

Fv

over all places. If v is a finite place, let Ov denote the ring of integers of Fv,
otherwise Ov := Fv.

There is an exact sequence

(5.1) 0 −→ OF
diag−→ F ⊕

∏
v

Ov
diff−→ AF −→ 0

with diag(x) := (x, x, . . .) the diagonal map.
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Suppose m = (mv)v is an effective Weil divisor on SpecOF . We can define

(5.2) Rm := F ∩ (
∏

vRv,mv) ,

where the meaning of “Rv,mv” is as follows: for a finite place we mean Rmv ⊆
Ov in the sense of Equation 4.3, and for an infinite place we mean Fv. For
the divisor m = 0 we get Rm = OF by Equation 5.1. If m′ ≥ m are effective
Weil divisors on SpecOF , we obtain a commutative diagram

(5.3) 0 Rm′ F ⊕ ∏
v Rv,m′

v
AF 0

0 Rm F ⊕ ∏
v Rv,mv AF 0.

The exactness of the rows is clear, except perhaps the surjectivity on the
right. Suppose (αv)v ∈ AF is an adèle. Then for any integer N ≥ 1 the vector
( 1
Nαv)v is also an adèle, because the adèle ring AF is a Q-algebra. Since the

right arrow in Equation 5.1 is surjective, we find β ∈ F and (βv)v ∈ ∏Ov

such that ( 1
Nαv)v = (β − βv)v. In particular, (Nβ − Nβv)v maps to (αv)v,

but Nβ ∈ F and once N is sufficiently divisible by prime factors lying below
those places with mv � 0, we get Nβv ∈ Rv,mv for all v.

Lemma 5.1. The set Rm ⊆ OF is a one-dimensional Noetherian domain
of finite index [OF : Rm] < ∞ and with field of fractions F . It is a finitely
generated free Z-module of rank [F : Q].

Proof. Harmless. Consider the quotient of the bottom row by the top row
in Diagram 5.3 for the choice m = 0 and m′ equal to the m in the claim
of this lemma. The resulting downward injections are an isomorphism on F

and AF , so [OF : Rm] =
∏

v[Ov : Rv,mv ] < ∞, showing that OF is a finite
Rm-algebra. It follows that Rm is a Noetherian one-dimensional ring. For any
x ∈ F , we can write x = a

b with a, b ∈ OF and then x = ga
gb with ga, gb ∈ Rm,

so FracRm = F .

Now fix m. Let γ be a further effective Weil divisor on SpecOF . Define

Iγ := F ∩
(∏

vm̃
γ
v

v

)
,

where at the finite places m̃v refers to the unique maximal ideal m̃mv of the
local ring Rv,mv , and we let m̃v := Fv at the infinite places. Since γ is a Weil
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divisor, we have m̃
γ
v

v = (1) for all but finitely many places. It is clear that
Iγ ⊆ Rm is an ideal. We obtain a diagram, similar to Diagram 5.3,

(5.4) 0 Iγ F ⊕ ∏
v m̃

γ
v

v AF 0

0 Rm F ⊕ ∏
v Rv,mv AF 0

Rm/Iγ
∼ ∏

v Rv,mv/m̃
γ
v

v ,

where the downward arrows between the first rows are just the inclusions.
The exactness of the middle row holds for the same reason as before, since
for any c ≥ 1 we can also pick N sufficiently divisible such that Nβv ∈ m̃c

v.
The downward arrows induce isomorphisms on the summand F as well as on
AF . It follows that the bottom horizontal arrow is indeed an isomorphism.
Since m̃

γ
v

v = (1) for all but finitely many places, the product in the bottom
row is over a finite set, and moreover we deduce that Rm/Iγ is a finite ring.

Lemma 5.2. We keep m fixed. The inclusion of Rm into the product coming
from Equation 5.2 induces an isomorphism of topological rings

(5.5) lim←−
γ

Rm/Iγ ∼=
∏
v

Rv,mv ,

where the finite rings Rm/Iγ are equipped with the discrete topology, γ runs
through all effective Weil divisors on SpecOF (partially ordered by ≤), the
limit is given the inverse limit topology, Rv,mv is taken with its natural sub-
space topology from Lemma 4.4, and

∏
is given the product topology. More-

over, on the left side the inverse limit agrees with the profinite completion of
Rm, seen as an abelian group.

Proof. The bottom isomorphism in Diagram 5.4 yields isomorphisms

(5.6) Rm/Iγ ∼=
∏
v

Rv,mv/m̃
γ
v

v

and both sides carry the discrete topology (also on the right, using that m̃
γ
v

v

is clopen in Rv,mv). Thus, running over the inverse system of effective Weil
divisors, we have levelwise isomorphisms, and thus obtain an isomorphism
in the limit. As

∏
v is a limit itself, limits commute with each other and
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lim←−
c

Rv,mv/m̃
c
v = Rv,mv , the first claim follows. Note that the topology on Rv,mv

comes from the valuation on Ov, which can be sandwiched with the filtration
by powers of m̃c

v, so the inverse limit topology agrees with the valuation
topology, and Rv,mv is adically complete (it is clopen in Ov by Lemma 4.4
and compact subspaces of complete metric spaces are themselves complete).
Finally, to see that this inverse limit agrees with the profinite completion,
we just need to use that each Rm/Iγ is a finite quotient, and conversely for
any finite quotient Rm/N (as an abelian group!), we can pick M to be the
exponent and then the Weil divisor of M on Z pulls back to a divisor on
SpecOF such that Iγ ⊆ (N)OF . Thus, the Iγ are a cofinal family.

The ring Rm is one-dimensional Noetherian, so every non-zero prime ideal
is maximal. In particular, any two distinct non-zero prime ideals are automat-
ically coprime. Thus, the Chinese Remainder Theorem yields isomorphisms
Rm/Iγ ∼=

∏
I Rm/I, where I runs through the minimal primes of the support

of Rm/Iγ , viewed as an Rm-module. In the inverse limit, this yields a ring
isomorphism

(5.7) lim←−
γ

Rm/Iγ ∼=
∏
P

FP , where FP := lim←−
i

Rm/IP,i,

where P runs through the maximal ideals of SpecRm and IP,i is a family of
ideals such that the finite modules Rm/IP,i have support equal to the point
P in SpecRm. Analogous to Lemma 5.2, the isomorphism in Equation 5.7 is
seen to be a homeomorphism.

The product decompositions in Equations 5.5 and 5.7 are indexed over
different sets: Maximal ideals of SpecOF (namely the finite places v) versus
the maximal ideals P of SpecRm.

Proposition 5.3. The product decomposition of Equation 5.5 is a refinement
of the decomposition in Equation 5.7: The factors Rv,mv do not admit a further
non-trivial decomposition as a product ring, while the FP split as a finite direct
product of rings, and the factors correspond (in a fashion which can be made
canonical) to finite places v of OF lying over P.

To prove this, we need to discuss the map

jm : SpecOF −→ SpecRm.

This is a finite morphism and by the same argument as in Lemma 4.5 it
is the normalization map. For all maximal ideals p of OF coprime to the
conductor ideal the map is a local isomorphism, i.e. (Rm)p∩Rm

∼−→ (OF )p.
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For the finitely many maximal ideals not coprime to the conductor all sorts of
phenomena can occur. It might be useful to think of the geometric analogue
of a singular curve and a cusp resp. nodal singularity exhibiting analogous
phenomena. We recall a crucial principle:

Proposition 5.4 ([Die67, Theorem 6.5]). Suppose (R,m) is an excellent re-
duced Noetherian local ring. Then there is a canonical bijection between the
maximal ideals of the normalization R′ and the minimal primes of the com-
pletion R̂m.

We will not explain the precise construction of the bijection here. We also
recall:

Lemma 5.5 ([HS06, Proposition 4.3.2]). Suppose (R,m) is a complete local
Noetherian ring and S a finite R-algebra. Then S is semilocal and there is an
isomorphism of rings S ∼=

∏
Sq, where q runs through the maximal ideals of

S.

Proof of Prop. 5.3. As jm is the normalization, so is the base change to any
local ring jm ⊗Rm Rm,P for a maximal ideal P of Rm. Then Proposition 5.4
applies. The completion side, i.e. ̂(Rm,P)P , then corresponds to a factor FP =
lim←−
i

Rm/IP,i in Equation 5.7. The proposition therefore identifies the minimal

primes of FP with the maximal ideals of the normalization. However, the latter
exactly correspond to the points in the fiber of the normalization map jm over
the point P ∈ SpecRm. As FP is a finite ̂(Rm,P)P -algebra, Lemma 5.5 yields
a further decomposition. By lifting of idempotents, the factors correspond
to those of S/mS in the cited lemma, in particular each maximal ideal in
Lemma 5.5 corresponds to a unique minimal ideal of Proposition 5.4. The
factors Rv,mv are domains, so they do not permit non-trivial decompositions
as a product of rings.

Definition 5.6 (Global optimal order). Suppose v is a finite place. Write
Rv ⊆ Ov for the optimal order according to Definition 4.18. For infinite
places v, define Rv := Ov = Fv. We define

R := F ∩ (
∏

vRv) .

We call R the optimal order in F .

Of course R is an order of the type Rm for m suitably chosen.
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5.2. K-theory computations

We shall imitate Gillet’s proof of Weil reciprocity, but with the twist of ex-
ploiting the special feature that our order, while typically not regular, is
sufficiently small to make the wild part of the Hilbert symbol visible in the
boundary maps.

As before, we refer to Appendix §A for the necessary background on
Algebraic K-theory. Let I = (N) be the principal ideal generated by some
squarefree natural number N ≥ 1. As a special instance of Equation A.2 we
get the localization sequence

(5.8) KI(R) −→ K(R) −→ K(R[ 1
N

]).

We may factor I = (p1p2 · · · pr) into prime numbers, so that each pair (pi) +
(pj) = 1 is coprime for i �= j. Thus, relying on Equation A.3, we get

⊕
K(pi)(R) −→ K(R) −→ K(R[ 1

N
]).

These sequences sit in a family for N | N ′. As K-theory commutes with
filtering colimits, we obtain the fiber sequence⊕

p

K(p)(R) −→ K(R) −→ K(F ),

where the sum runs over all prime numbers and we have used that F =
colimN R[ 1

N ] (since F = Q·R). For the next step, we invoke the equivalence of
Equation A.4, showing that K(p)(R) agrees with K(p)(R̂p) of the completion.
But R̂p decomposes at the product over the completion of R over all finite
places v over p by Proposition 5.3, and combined with Lemma 5.2 this yields

K(p)(R) ∼=
∐
v|p

Km̃v(Rv),

where v runs through the finite places of F lying over the prime number p, and
m̃v refers to the unique maximal ideal of Rv. Plugging this into the previous
fiber sequence, we arrive at the fiber sequence

(5.9)
⊕
v

Km̃v(Rv) −→ K(R) −→ K(F ).
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Remark 5.7. Instead of our somewhat peculiar choice of natural numbers N
in Equation 5.8 we could also have taken any zero-dimensional ideal I in R,
the fiber sequence

KI(R) −→ K(R) −→ K(SpecR− SpecR/I)

and then taken the filtering colimit over all such ideals partially ordered by
inclusion. This yields the same colimit in Equation 5.9 (since the family of
ideals N with N ∈ Z≥1 is a cofinal subsystem).

Now consider the long exact sequence of homotopy groups attached to
Equation 5.9. Around π1 and π2 it specializes to

K2(R) −→ K2(F ) −→
⊕
v

Km̃v ,1(Rv) −→ K1(R) ι−→ · · ·

· · · ι−→ K1(F ) −→
⊕
v

Km̃v ,0(Rv) −→ K0(R) −→ K0(F ) −→ · · · .

Note that since we use non-connective K-theory, we do not per se know
that the sequence terminates in three π0-groups, there might well be negative
homotopy groups. This need not concern us however. The middle part at the
arrow ι is easy to analyze. We recall the definition of SK1:

SK1(R) := ker
(
det : K1(R) −→ R×)

.

The arrow ι thus induces a commutative diagram

1 SK1(R) K1(R) det R× 1

1 SK1(F ) K1(F )
det

F× 1.

The horizontal surjections on the right are split. As F is a field, we have
SK1(F ) = 1. We deduce that the sequence is spliced from two exact sequences
(5.10)

0 −→ R× −→ K1(F ) −→
⊕
v

Km̃v ,0(Rv) −→ K0(R) −→ K0(F ) −→ · · ·

and

(5.11) · · · −→ K2(R) −→ K2(F ) −→
⊕
v

Km̃,1(Rv) −→ SK1(R) −→ 1.
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Although interesting in its own right, we have no immediate use for Equa-
tion 5.10. Equation 5.11 yields

(5.12) · · · −→ K2(R) −→ K2(F ) ∂−→
⊕
v

Km̃,1(Rv) −→ SK1(R) −→ 1.

From Theorem 4.17 we know that the boundary map ∂ on each summand v
agrees canonically with the full Hilbert symbol at the place v.

Below, we shall use the term “up to 2-primary torsion”. It means that we
work in the abelian category

(5.13) Q := AbelianGroups
2- primary - torsion.

To set this up in detail note that the 2-primary torsion abelian groups form
a Serre subcategory in all abelian groups, so the above quotient exists and is
an abelian category itself. A complex of abelian groups becomes exact in this
quotient category if and only if its homology is made of 2-primary torsion
groups. For example, a map A → B is a monomorphism in the quotient
category if and only if its kernel is 2-primary torsion.

As an alternative characterization, a complex of abelian groups becomes
exact in Q if and only if becomes exact when tensoring it with the flat Z-
module Z

[1
2
]
. In fact, the category Q is equivalent to the category of Z

[1
2
]
-

modules.

Theorem 5.8. Suppose F is any number field. Suppose R denotes the optimal
order. Then, in abelian groups up to 2-primary torsion, the diagram

K2(R) K2(F ) ∂ ⊕
v finite Km̃,1(Rv)

⊕vφ

SK1(R)

τ

0

K2(F )
hv

⊕
v noncomplex μ(Fv) ·mv

m

μ(F ) 0,

commutes, has exact rows, and the downward arrows are isomorphisms. In
particular, the Hilbert reciprocity law gets identified with a sequence coming
directly from a K-theory localization sequence (up to 2-primary torsion). We
deduce

SK1(R) ∼= μ(F ),

up to 2-primary torsion.
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Recall that it is known that SK1(OF ) = 0 by the work of Bass–Milnor–
Serre [BMS67].

Proof. The exactness of the top row comes from the localization sequence.
The bottom row is the Moore sequence (Theorem 2.1). We employ Theo-
rem 4.17 for all finite places over odd primes, showing that each such φ is an
isomorphism. Finite places over p = 2 have the full (local) ring of integers
as their local optimal order. Thus, at these the boundary map is just the
tame symbol and not the honest Hilbert symbol. But the tame symbol misses
only the 2-primary torsion summand of μ(Fv) as we are over p = 2, which
disappears after inverting two. Complex places play no role in the Hilbert
reciprocity law. Real places contribute factors {±1}, which also disappear
by inverting two. Thus, even though in principle the sum of the bottom row
should also include real places, it makes no difference to consider only the
finite places here as well. The snake lemma implies the claim about SK1.

Corollary 5.9. Let F be a number field with
√
−1 /∈ F . Then the statement

of Hilbert reciprocity up to sign, i.e.∏
v noncomplex

hv(α, β)
mv
m = ±1 for all α, β ∈ F×,

can be phrased as the property of being a complex (d2 = 0) for a localization
sequence in K-theory.

Proof. Theorem 5.8 shows that the said product is zero in μ(F )
[1
2
]
, but by

our assumption the 2-torsion part of μ(F ) is only {±1}.
One might also ask about the kernel of the leftmost arrow in Moore’s

sequence. It is known as the wild kernel WK2:

0 −→ WK2(F ) −→ K2(F ) −→
⊕

v noncomplex
μ(Fv)

·mv
m−→ μ(F ) −→ 0.

Following earlier work of Tate, Hutchinson has proven that WK2(F )/
K2(F )div ∈ {0,Z/2} along with a precise criterion which case occurs for
what number fields F (both cases occur), [Hut01, Hut04]. Note that our The-
orem 5.8 shows that K2(R) surjects onto the wild kernel after inverting 2.
This suggests that one can probably also define the global optimal order anal-
ogously to Theorem 4.17 as the largest Z-order in OF such that K2(R)

[1
2
]

is
divisible. This would mirror our characterization of local optimal orders in a
rather neat way.

We shall explain the relation to the picture of Kapranov–Smirnov [KS95]
in a future text.
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6. Is this a self-contained proof of Hilbert reciprocity?

Given that Gillet’s proof of Hilbert reciprocity for function fields uses nothing
more than localization, the reader might (and should) ask to what extent the
method in this text gives a self-contained proof in the number field case. First,
we have freely used the definition of the Hilbert symbol, which itself uses local
class field theory. Using only this, we then could establish the exactness of

K2(F ) ∂−→
⊕

v noncomplex
μ(Fv) −→ SK1(R) −→ 0

up to inverting 2. The issues at p = 2, a familiar nightmare of any number
theorist (and homotopy theorist...) do not appear easy to remove. At places
over p = 2 Theorem 4.17 fails, and the real places do not even possess a
valuation ideal (how to pinch a singularity in the order when there is no
maximal order?). Let us accept these shortcomings. Then the more crucial
issue is that our Hilbert reciprocity law is about the vanishing of terms in the
group SK1(R), which remains elusive without further work (see Remark 6.1).

This is really similar to a completely different approach to Hilbert reci-
procity originating from the papers [AB19, BHv21]. These papers produce, if
we only use local class field theory as input, an exact sequence

(6.1) K2(F ) ∂−→
⊕
v

μ(Fv) −→ K2(LCAF )/div −→ 0,

(literally, without having to invert 2), where v runs over all non-complex
places and LCAF is the category of locally compact topological F -vector
spaces, G/div refers to G/Gdiv, the quotient by the subgroup of divisible el-
ements. The exactness of Equation 6.1 gets proven loc. cit. in an entirely
different fashion than the methods of the present text. There are no singular
orders involved. Even though localization sequences play a role in the proof,
one never localizes with respect to zero-dimensional subschemes. Loc. cit.
does not realize the Hilbert symbol as a boundary map. Sequence 6.1 also
turns out to be equivalent to Moore’s sequence [BHv21, Corollary 9.6], but
again with the issue that the identification K2(LCAF )/div ∼= μ(F ) remains
elusive without using global class field theory.
Remark 6.1. I see several possible approaches to compute SK1(R). In this
paper, in Theorem 5.8 we have just used Moore’s sequence. This was easy,
but would be circular to be an independent approach to Hilbert reciprocity.
Alternatively, I would believe one could use the work of Bass–Milnor–Serre on
the congruence subgroup problem [BMS67]. All elements of SK1(R) can be
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expressed through Mennicke symbols associated to invertible ideals. As R is
generally not Dedekind, finitely many ideals will fail to be invertible, but the
others suffice to generate the group. However, the next step then would be to
find relations between these Mennicke symbols, which would probably require
to connect these to power reciprocity symbols as in Bass–Milnor–Serre and
then again rely on properties also equivalent to already having Hilbert reci-
procity available. Another idea might be Iwasawa theory, because inspecting
the corresponding group in Gillet’s proof in the function field case is linked to
the Jacobian of the curve after base extension to the algebraic closure. Iwa-
sawa has taught us that the mixed characteristic counterpart of this should be
Zp-extensions. But again, relying on Iwasawa theory very quickly necessitates
relying on tools from global class field theory. This remains to be investigated.

7. Applications & complements

7.1. Metaplectic extensions

Using the above results, one can provide a quick construction of the local and
global metaplectic coverings, including the proof of the reciprocity property
of the global covering vaguely resembling Gillet’s proof of Weil reciprocity
(§3). We briefly recall the background.

The classical theta function is given by

θ(z) :=
∑
n∈Z

qn
2 with q := e2πiz

for z in the complex upper half-plane. Any even power θ2m is a modular form
of weight m for Γ0(4) and a certain nebentype. The odd powers therefore were
classically understood as something like a half-integral weight modular form,
having a more complicated transformation behaviour involving the quadratic
residue symbol. Weil [Wei64] then proposed to view these odd powers, and in
particular θ itself, as automorphic forms on a central extension

(7.1) 1 −→ μ2 −→ Ĝ −→ GL2 −→ 1

as opposed to living on the original group GL2. The appearance of quadratic
residue symbols in the transformation formulas then translates to the defin-
ing cocycle H2

grp(GL2, μ2) be given in terms of these. However, once thinking
about such central extensions, one can construct more complicated ones. Fol-
lowing Kubota [Kub69], if F is a number field and AF its adèle ring, one can
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construct a central extension

(7.2) 1 −→ μ(F ) −→ Ĝ −→ GL2(AF ) −→ 1,

which for F = Q specializes to Equation 7.1. In fact its restriction to
SL2(AF ) ⊂ GL2(AF ) is the universal topological central extension of SL2 (we
will not explain this in detail, but using the topology of the adèles, SL2(AF ) is
naturally a locally compact group and one can consider the category of central
extensions of locally compact topological groups. Algebraically, the universal
central extension is strictly bigger, [Moo68]). The extension in Equation 7.2
has the following property: If F ↪→ AF is the diagonal embedding, the pull-
back of the central extension trivializes (i.e. it splits). This property turns out
to be equivalent to Hilbert reciprocity. The pullback of the extension along
the inclusion of a local field Fv ↪→ AF gives rise to local counterparts of the
metaplectic extension. The theory of metaplectic extensions has branched
into several separate lines of development [KP84, BD01]. We just follow one
thread here.

Suppose R is any ring. Then the group of elementary matrices E(R) ⊆
SL(R) has a universal central extension, the Steinberg group St(R). Its center
agrees with the group K2(R).

(7.3) 1 −→ K2(R) −→ St(R) −→ E(R) −→ 1.

Thus, for any group homomorphism γ : K2(R) → A to an abelian group A,
one can take the pushout of this central extension along γ and get a new
central extension of E(R). If we describe the isomorphism class of a central
extension of E(R) by K2(R) through its group cocycle in H2

grp(E(R), K2(R)),
this operation just amounts to the functoriality in coefficients

γ∗ : H2
grp(E(R), K2(R)) −→ H2

grp(E(R), A).

For F/Qp a finite extension with p odd, take R := F and (R, m̃) the local
optimal order. We may use Theorem 4.17 and the boundary map ∂ : K2(F ) →
Km̃,1(Rm) to get a central extension

(7.4) 1 −→ μ(F ) −→ Ĝ −→ SL(F ) −→ 1

because for fields the inclusion E(F ) ⊆ SL(F ) is the identity. One can now pull
this back along SLn(F ) ↪→ SL(F ) to obtain the classical Kubota metaplectic
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extension for n = 2. The story for GLn is more complicated in general, but
one can get Kubota’s extension for GL2 by pulling back along

GL2(F ) ↪→ SL3(F ) M 	→
(
M

det(M)−1

)
.

We can also do all this globally. Suppose F is a number field and AF its adèle
ring. It is easy to set up a map
(7.5)

K2(AF )
{

(αv)v ∈
∏

v K2(Fv)
∣∣∣∣∣ with αv ∈ imK2(Ov) for all

but finitely many v

}
∂⊕

v Km̃,1(Rv)

SK1(R),

where the first downward arrow uses the boundary map with respect to the
local optimal order and the adelic finiteness condition ensures that the image
lands in a direct sum. The map to SK1 then comes from our global formalism.

Now push out Equation 7.3 for R := AF by the map in Equation 7.5 to
obtain a central extension

(7.6) 1 −→ SK1(R) −→ Ĝ −→ SL(AF ) −→ 1.

By Theorem 5.8 up to a zig-zag of isogenies of 2-power orders, this extension
agrees with the global metaplectic extension (as an elaboration: The isomor-
phism SK1(R)

[1
2
] ∼= μ(F )

[1
2
]

implies the existence of isogenies of abelian
groups with 2-power order. Pushouts along these maps on the centers of the
extension provide isogenies between the middle terms Ĝ of the same order).
Moreover, this construction trivially has all the properties as in Kubota’s con-
struction. Pulling back the extension in Equation 7.6 along Fv ↪→ AF (for v
any finite place over an odd prime) retrieves the local metaplectic extension
of Equation 7.4. The pullback along the diagonal embedding ι : F ↪→ AF

trivializes.
To see the latter, we only need to understand the isomorphism class of the

extension, i.e. we can work with the group 2-cocycles. The pullback amounts
to pulling back the cocycle, i.e if γ denotes the extension in Equation 7.6, we



444 Oliver Braunling

consider

ι∗ : H2
grp(SL(AF ), SK1(R)) −→ H2

grp(SL(F ), SK1(R)),

but the cocycle came from pushing out along a map on the level of K2, which
for the pullback ι∗γ can be factored as

K2(F ) −→ K2(AF ) Eq. 7.5−→ SK1(R),

but this is the composition of two successive arrows in the localization se-
quence (Equation 5.12). Thus, ι∗γ is the zero cohomology class. This class
corresponds to a trivial central extension. And, in view of Theorem 5.8 this
property is again (up to the 2-power isogeny) equivalent to Hilbert reciprocity.
Note that, without worrying about 2, the central extension by SK1(R) ex-
ists unconditionally and trivializes after pulling back to SL(F ). This is some
variant of Hilbert reciprocity and of the usual metaplectic covering.
Remark 7.1 ([BHv21]). The group on the upper right in Diagram 7.5 can
be shown to be isomorphic to K2(LCAF ). The horizontal arrow then merely
amounts to be induced by the functor sending the projective generator AF

to itself, equipped with its standard locally compact topology. Moreover, the
downward arrow, here denoted by ∂, can be characterized as the cokernel
under quotienting out the subgroup of divisible elements in the source group.

Appendix A. K-theory in the singular situation

In this section we summarize some background on Algebraic K-theory, fo-
cussing on what we need in this paper. As we will specifically deal with
non-regular rings, we need to use a sufficiently broad framework to handle
such singular situations. We will use the framework of Thomason–Trobaugh
[TT90].

For a scheme6 we write K(X) for its non-connective K-theory spectrum.
This can be defined as the non-connective K-theory of the category of perfect
complexes on X, or equivalently as the one of vector bundles on X. We mostly
deal with rings, so following common practice we write K(R) := K(SpecR)
for the K-theory of a ring. Equivalently, this could be defined as the K-theory
of the category of finitely generated projective R-modules.

If I is an ideal in R, we write KI(R) for what would otherwise be denoted
by

KSpecR/I(R) or K(SpecR on SpecR/I).
6We tacitly assume that all our schemes are Noetherian and separated over Z.
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This can be defined as the K-theory of perfect complexes of R-modules which
become acyclic after pulling them back to the open SpecR− SpecR/I.

We shall only need a few general facts: First, there is the general local-
ization theorem, a fiber sequence of spectra

(A.1) KI(R) −→ K(R) −→ K(SpecR− SpecR/I).

This holds for any commutative unital ring R and any ideal I. This is [TT90,
Theorem 7.4]. If I = (f) is a principal ideal, the last term agrees with
K(SpecR[f−1]). In this case KI(R) can also be defined as the K-theory of
perfect complexes P• whose (exact) basechange P• ⊗R R[f−1] is acyclic:

(A.2) KI(R) −→ K(R) −→ K(R
[ 1
f

]
).

We return to the general case. If I, J are coprime ideals, i.e. I + J = R,
then

(A.3) KIJ(R) ∼= KI(R) ⊕KJ(R).

This is [TT90, Corollary 8.1.4]: As the ideals are coprime, we have SpecR/I∩
SpecR/J = ∅, when regarded as closed subschemes in SpecR, so the upper
left corner in the cartesian square loc. cit. is the zero spectrum.

We also need a certain compatibility with completions. Suppose R is a
Noetherian ring and I any ideal. Then there is an equivalence

(A.4) KI(R) ∼−→ K
IR̂I

(R̂I),

where R̂I denotes the I-adic completion of R, and IR̂I is the extended ideal.
This is [TT90, Proposition 3.19, in the format of Exercise 3.19.2].

Finally, if R is a Noetherian regular ring, then the inclusion of the category
of finitely generated projective R-modules into the category of all finitely
generated R-modules induces an equivalence

K(R) ∼−→ K(Modfg(R)).

In this situation we have devissage: Suppose R is a regular Noetherian ring
such that R/I is also regular. Then

KI(R) ∼−→ K(R/I).

Finally, let us note that K-theory commutes with finite products of rings and
with filtering colimits.
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Appendix B. The residue theorem using Gillet’s method

Besides wanting to prove Hilbert reciprocity using Gillet’s method from §3,
one can also prove the residue theorem on curves using his technique. This
is well-known among specialists, but perhaps not too well recorded in the
literature.

Theorem B.1 (Residue theorem). Let k be a field (of any characteristic).
Let X/k be a geometrically integral smooth proper curve with function field
F := k(X). Then the composition

Ω1
F/k

∂−→
⊕
v

H1
v (X,Ω1

X/k)
Tr{v}/k−→ k

is zero, where ∂ denotes the residue of a rational 1-form. Here H1
v denotes

coherent cohomology with support7 in the closed point belonging to the place
v.

Proof. As in Gillet’s proof, we use the localization sequence, but this time
for Hochschild homology over k. To this end note that Hochschild homol-
ogy is also a localizing invariant in the sense of Blumberg–Gepner–Tabuada
[BGT13]. We get the fiber sequence

(B.1) HHZ(X) −→ HH(X) −→ HH(X − Z).

As before, we may split Z into its disjoint connected components and get
HHZ(X) =

⊕
P HHP (X), where P runs through the finitely many points

of Z. Finally, by the Hochschild–Kostant–Rosenberg (HKR) isomorphism we
have HHn(X) ∼= Ωn

X/k. As dimX = 1, we only get a non-trivial statement
for n = 1. For unravelling the Hochschild homology with support in a closed
point and showing that the boundary map agrees with the residue, see the
HKR theorem with support from [BW19, Prop. 2.0.1], noting that Hochschild
homology with support is denoted by HZ loc. cit.

One can also use cyclic homology over k. This also proves the residue
theorem.

7The right derived functors of the functor of global sections with support in the
given closed point, RΓv.
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