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Metrics on twisted pluricanonical bundles and finite
generation of twisted canonical rings

Bojie He and Xiangyu Zhou
∗

Abstract: In this paper, we first introduce the notion of admis-
sible Bergman metrics. Then we establish a connection between
singularities of admissible Bergman metrics and finite generation
of twisted pluricanonical rings with m-multiplier ideal sheaves on
smooth projective pairs. It involves an analytic approach to Bouck-
som’s result about asymptotic multiplier ideal of a graded system
of ideals. In the end, we give a few applications of our main theo-
rem.
Keywords: Multiplier ideal sheaf, canonical ring, Siu-type metric,
admissible Bergman metric, pluricanonical bundle.

1. Introduction

Let L be a line bundle over a compact complex manifold X equipped with a
singular hermitian metric hL = e−ϕL for some ϕL ∈ L1

loc. L is called pseudo-
effective if iΘhL(L) ≥ 0 in the weak sense of currents, i.e. ϕL is plurisubhar-
monic. Nadel ([24]) proposed the notion of multiplier ideal sheaves associated
with a plurisubharmonic function ϕL:

(1) I(ϕL)x :=
{
f ∈ OX,x; |f |2e−ϕL ∈ L1 nearx}

for any x ∈ X. More generally, the so-called m-multiplier ideal sheaves are
defined as

(2) Im(ϕL)x := {f ∈ OX,x; |f |2/me−ϕL ∈ L1 nearx}

for any m ∈ N. Sometimes, we adopt notations I(hL) or Im(hL) to represent
(1) or (2) for convenience. Both (1) and (2) are coherent analytic sheaves
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([24], [32], [7]). The latter result is obtained by combining the former result,
a regularization process for plurisubharmonic functions ([13]), and the strong
openness property of multiplier ideal sheaves ([17]).

Let h1 = e−ϕL and h2 = e−ψL be two singular metrics with semi-positive
curvature current on L. The metric h1 is said to be more singular than h2,
denoted by h1 � h2 (or ϕL � ψL), if ϕL ≤ ψL + O(1) on X. Two metrics are
said to be equivalent, denoted by h1 ∼ h2 (or ϕL ∼ ψL), if ϕL = ψL + O(1)
on X. There is a unique element up to equivalence among all the singular
metrics on L with semi-positive curvature current, say hmin = e−ϕmin , having
minimal singularities on X ([10] or Definition 1.4 in [13]).

Let (X,Δ) be a smooth projective klt pair, which means that X is a
smooth projective variety, Δ is a Q-effective divisor whose corresponding
multiplier ideal sheaf is trivial on X. Its graded canonical section ring is
defined as follows:

(3) R(X,KX + Δ) =
⊕
k∈N

H0(KX , �kKX + kΔ�),

where �·� means round down. A main question in birational geometry is to ask
whether (3) is finitely generated or not. In [4], the authors has demonstrated
the well-known result:

Theorem 1.1. If KX + Δ is big, then R(X,KX + Δ) is finitely generated.

Here a Q-divisor D is said to be big if h0(X,OX(kD)) ≥ CkdimX holds
for some C > 0 and sufficiently large divisible k.

In [4], the authors also obtained the following result as a corollary of
Theorem 1.1 by combining Theorem 5.2 in [16]:

Corollary 1.1. For any smooth projective klt pair (X,Δ), R(X,KX + Δ) is
finitely generated.

A projective pseudo-klt (Definition 2.7 in [21]) pair (X,L) means that
(L, hL) is pseudoeffective and I(hL) = OX . This notion can be generalized
when L is a Q-line bundle. Precisely speaking, (X,L) is called a pseudo-
klt pair if the line bundle k0L for some k0 divisible enough admits a singu-
lar hermitian metric hk0 = e−k0ϕL with semi-positive curvature current and
I(ϕL) = OX . For example, when L is a line bundle and m ∈ N, (X, 1

mL)
is a pseudo-klt pair if there exists a singular metric hL with semi-positive
curvature current and I(h1/m

L ) = OX .
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Any klt pair must be pseudo-klt. For a pseudo-klt pair (X,L), the question
then becomes to ask whether its graded canonical section ring

R(X,KX + L) =
⊕
k∈N

H0(KX , �kKX + kL�)

is finitely generated. The following result has been established thus far:

Theorem 1.2 (Remark 1.2 (b) in [8]). If (X,L) is a smooth projective pseudo-
klt pair and KX + L is big, then R(X,KX + L) is finitely generated.

For completeness, we will recall the proof of Theorem 1.2 in Section 3.
Siu has provided an analytic approach to Theorem 1.1 when Δ = 0 ([33],

[34], [35]) by using Skoda’s L2 division theorem ([36]). His idea is to show
that his construction of singular metric with semi-positive curvature current
(which will be called Siu-type metrics later) has stable vanishing order every-
where. For this motivation, a descending inductive argument on the discrep-
ancy subspaces, where stable vanishing order of Siu-type metrics is not yet
known to be achieved, has been established.

The goal of this paper is to introduce the notion of admissible Bergman
metrics and connect the singularities of admissible Bergman metrics on the
Q-bundle KX +L to finite generation property of a subgraded algebra (8) of
R(X,KX + L) with m-multiplier ideal sheaves. For this purpose, we review
the definition of Siu-type metrics, which play important roles in the proofs of
invariance of plurigenera ([31], [32]) and finite generation of canonical rings.

By multiplying a sufficiently divisible integer m ∈ N, we may restrict
ourselves to working on the twisted pluricanonical bundles mKX + L, where
L is a genuine line bundle. Let

S :=
⊕
k∈N

Sk ⊂ R(X,mKX + L)

be a subgraded C-algebra of R(X,mKX +L), which implies that each Sk is a
linear subspace of H0(X, kmKX + kL) and SkSl ⊂ Sk+l. Let bk be the base
ideal associated to each Sk, which is defined as the image of the map

Sk ⊗C OX(−kmKX − kL) → OX .

One can define the metric on mKX +L induced by a basis of Sk, denoted by
|Sk|−2/k. Indeed, if dimSk = qk and {s(k)

1 , . . . , s
(k)
qk } denote such basis, then

|Sk|2 = |s(k)
1 |2 + · · · + |s(k)

qk
|2.
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Note this definition is independent of the choice of basis (Proposition 3.1 in
[20]) up to equivalence.

We can always arrange

(4) |Sj |2/j ≤ |Sk!|2/k!

for any j = 1, . . . , k and j = (k − 1)! upon scaling. This can be done due to
the basic relationship SkSl ⊂ Sk+l.

Siu has constructed

(5) hS,ε• = e−ϕS,ε• , ϕS,ε• := log
( ∞∑

k=1
εk|Sk|2/k

)

as a singular metric on mKX + L, where {ε•} is chosen to be a sequence of
positive numbers satisfying

(6)
∞∑
k=1

εk sup{g(Sk, Sk)2/k;x ∈ X} < ∞,

g is an arbitrary and auxiliary smooth metric on mKX + L. Such {ε•} satis-
fying (6) will be called admissible ([20], [30]) and it is clearly independent of
the choice of g.

Theorem 1.3. Let S = R(X,mKX + L) be the full graded linear system.

1. (Theorem 6.5 in [5]) If mKX + L is big, then S is finitely generated if
and only if ϕS,ε• has minimal singularities.

2. ([33], [34]) Let m = 1 and L = 0. If ϕS,ε• is equivalent to a finite sum,
then S is finitely generated.

Now we recall the so-called m-Bergman metrics on mKX + L. Let L be
a line bundle over a projective manifold X equipped with a positively curved
singular metric hL. The m-Bergman kernel Bm of mKX + L is defined as
(7)
Bm(x) := sup

{
u(x) ⊗ u(x);u ∈ H0(mKX + L) and

∫
X
|u|2/mh1/m

L ≤ 1
}

and its inverse B−1
m can be thought of as a metric, known as the m-Bergman

metrics on mKX + L. According to a standard normal family argument
(Proposition 28.3 in [19]), it has semi-positive curvature current. Indeed, lower
semi-continuity of hL will be sufficient to obtain this property.
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If we set

(8) Sk := H0(X, k(mKX + L) ⊗ Ikm(h1/m
L ))

and use the Hölder inequality

∫
X
|s(k) · s(l)|2/(k+l)h

1/m
L ≤

(∫
X
|s(k)|2/kh1/m

L

) k
k+l
(∫

X
|s(l)|2/lh1/m

L

) l
k+l

for any s(k) ∈ Sk and s(l) ∈ Sl, we see that S actually becomes a subgraded
algebra of R(X,mKX + L). The rank of the Kodaira map induced by Sk

for sufficiently large and divisible k, is nothing but the generalized Kodaira
dimension κ(X,KX + 1

mL, h
1/m
L ) which was introduced in [42]. This viewpoint

will lead to a more direct proof of Theorem 1.1 in [42]. We will give its details
in a forthcoming paper.

From now on, we will keep notation (8) for S unless otherwise specified.
In a manner similar to the construction of Siu-type metrics, we may also

choose {δ•} to be a sequence of positive numbers satisfying that

(9) inf
k∈N

δ−1
k B

−1/k
km ≥ C > 0

locally on X, where Bkm stands for the km-Bergman kernel of kmKX + kL
as (7). Such {δ•} exists, for example, by taking all δk = 1 (see Lemma 2.2
below), which is referred to as the canonical metric in [38] when m = 1 and
L = OX . Such {δ•} satisfying the restrained condition (9) will be also called
admissible.

Taking admissible {δ•}, we can define an admissible Bergman metric on
mKX + L as follows

(10) B−1
S,δ•

= e−ψS,δ• := ( inf
k∈N

δ−1
k B

−1/k
km )∗,

where “∗” stands for the lower semi-continuity regularization process. If we
write B

−1/k
km = e−ψk with local plurisubharmonic weight ψk, then (10) is

equivalent to saying that

ψS,δ•(x) = lim sup
y→x

(sup
k∈N

log δk + ψk(y)).

To be concrete, in Example 5.1 below, these asymptotic metrics are com-
puted in some special cases.

We can now state the main result in the present paper as follows.
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Theorem 1.4 (Main theorem). In the above settings, we have the followings:

1. If lim δk = 0 and B−1
S,δ•

has minimal singularities, then S is finitely
generated.

2. If the admissible Bergman metric B−1
S,δ•

is equivalent to a finite infimum,
then S is finitely generated.

3. Let
(
X, L

m

)
be a smooth projective pseudo-klt pair for some m ∈ N.

Suppose that mKX + L is big, then B−1
S,δ•

has minimal singularities for
all admissible {δ•}.

Remark 1.1. The first two statements are analogues of Theorem 1.3 1) and
2). The difference is that S, which may rely on hL, does not have to be the full
graded linear system. The last statement 3) of Theorem 1.4 is an analogue of
the converse statement of Theorem 1.3 1) for admissible Bergman metrics.

Remark 1.2. Unlike 1.3 1) which assumes minimality of ϕS,ε• without any
additional restrained condition (except (6)) on {ε•}, the condition lim δk = 0
in Theorem 1.4 1) cannot be omitted (see Example 5.1 below).

Remark 1.3. From the proof of Theorem 1.4 3), we actually show that B−1/k
km

has minimal singularities for sufficiently large k ∈ N. In this circumstance,
S will be the full graded linear system.

Remark 1.4. In 3), if we merely assume the weight of hL to be quasi-
plurisubharmonic (i.e.,

√
−1ΘhL(L) ≥ −Cω for a Kähler form ω and a large

constant C > 0) and keep the assumptions that I(h1/m
L ) = OX and mKX +L

is big, then one still obtains that B−1
S,δ•

always has semi-positive curvature
current and minimal singularities for all δk = 1. The reason is that, when
hL has analytic singularities, this result was already proved in Proposition
19.8 in [10] (take ϕ = ϕmin in Proposition 19.8); for the general case, one
should only add the openness property ([1] or [17]) of multiplier ideal sheaves
into its original proof. This observation will be useful in subsection 5.1 for
a smooth metric hL, and in subsection 5.3 and 5.4 for a singular metric hL

with semi-positive curvature current.

A key ingredient for the proofs of Theorem 1.4 is to compare the singu-
larities of the asymptotic metrics hS,ε• and B−1

S,δ•
. It is worth noting that their

singularities differ not only from the way they are constructed, but also from
different choices of {ε•} and {δ•}. Nonetheless, using the strong openness
property of multiplier ideal sheaves ([17]), we can deduce:

Theorem 1.5. For any c > 0 and any admissible {ε•} and {δ•},

(11) I(cϕS,ε•) = I(cψS,δ•).
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ϕS,ε• and ψS,δ• satisfying (11) are said to be v-equivalent. We remark
that this fact has been obtained by using the valuative characterization of
multiplier ideals ([30]’s appendix or [6]). Our proof of Theorem 1.5 is analytic
which essentially uses the strong openness property of multiplier ideals (see
Lemma 2.2 below).

The rest of the proof for the first two parts of Theorem 1.4 is motivated by
the idea in [5]. The main tool is a characterization of finite generation of S via
singularities of the family of metrics {φm := log |Sm!|2/m!} (see Lemma 3.5
below). The final part 3) in Theorem 1.4 makes use of Theorem 1.2 and
Theorem 1.5.

Let us turn to some applications of Theorem 1.4:
The first application (Corollary 5.1) is about comparing singularities of

admissible Bergman metrics as in [20].
The second application (Corollary 5.2) is about giving another criterion of

semi-ampleness for pseudo-klt pairs in terms of admissible Bergman metrics.
The third application is to show that, if f : X → Y is either an al-

gebraic fiber space (Corollary 5.3) or a Kähler fiber space (Corollary 5.5),
the relative twisted pluricanonical bundle is f -big and L → X is equipped
with a positively curved singular metric hL whose singularities are “mild”
enough, then the general fiberwise metrics with minimal singularities can be
glued as a global metric h on the relative twisted pluricanonical bundle with
semi-positive curvature current on X. Furthermore, Corollary 5.4 (see also
Remark 5.7) asserts that h has minimal singularities as well when hL has an-
alytic singularities. Note in Corollary 5.5, although the assumption on f has
been relaxed, we require the singularities of the metric hL on the twisted line
bundle L to be even “milder”. This type of results, meaning gluing fiberwise
metric with minimal singularities as a global metric on the twisted relative
canonical bundle with semi-positive curvature current, has been systemati-
cally studied in [38] (with respect to fiberwise supercanonical metrics) and in
[8], [15] (with respect to fiberwise Kähler-Einstein metrics).

This paper will be organized as follows. In Section 2, we give a proof of
Theorem 1.5. In Section 3, we list some lemmas which will be used in the
proof of the main result. In Section 4, we give the proof of Theorem 1.4. In
Section 5, we discuss some applications of Theorem 1.4.

2. Proof of theorem 1.5

In this section, we will give an analytic approach to Theorem 1.5 and compare
the singularities of two types of metrics with semi-positive curvature currents,
hS,ε• and B−1

S,δ•
.
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2.1. Multiplier ideal sheaves of Siu-type plurisubharmonic
functions

Plurisubharmonic functions are useful in both several complex variables and
complex geometry. Let ϕ be a plurisubharmonic germ at the origin o ∈ Cn,
then its Lelong number at o is defined by

ν(ϕ, o) := lim inf
z→o

ϕ(z)
log |z|

and its multiplier ideal at o is defined by

I(ϕ)o :=
{
f ∈ OCn,o; |f |2e−ϕ ∈ L1 near o

}
.

Let ψ be another plurisubharmonic germ at o. Recall that ϕ is more singular
than ψ (denoted by ϕ � ψ) if ϕ ≤ ψ + O(1). It is easy to see I(ϕ)o ⊂ I(ψ)o
and ν(ϕ, 0) ≥ ν(ψ, 0) if ϕ � ψ. Their singularities are typically compared
in the following two ways ([20]). One is saying that, ϕ and ψ are equivalent
(denoted by ϕ ∼ ψ) if ϕ = ψ + O(1). The other is saying that, ϕ and ψ are
v-equivalent (denoted by ϕ ∼v ψ) if I(cϕ)o = I(cψ)o for any c > 0.

An equivalent formulation of v-equivalence is that for all proper modifi-
cations π : Ũ → U above o the Lelong numbers of their pull-backs at π−1(o)
are equal, according to the strong openness property of multiplier ideals ([17])
and the main result of [6]. We deduce from this fact that

(12) ϕ ∼ ψ ⇒ ϕ ∼v ψ ⇒ ν(ϕ, o) = ν(ψ, o)

holds. The converse of each “⇒” in (12) fails in general because one can take

ϕ = ψ −
√
− log |z|

as a counterexample for the first implication and

ϕ = max{log |z|, log |w|2}, ψ = max{log |z|, log |w|}

for the second.
We now recall plurisubharmonic functions associated with a graded sys-

tem of ideals {a•} = {ak}k∈N on a complex manifold X, where each ak ⊂ OX

is an ideal sheaf on X and akal ⊂ ak+l. Assume that at any point x ∈ X, there
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exists a neighborhood U of x, where ak is generated by g
(k)
1 , . . . , g

(k)
qk ∈ O(Ū).

We will use the notation

|ak|
2
k := |g(k)

1 | 2
k + · · · + |g(k)

qk
| 2
k .

for simplicity. Given an admissible sequence of positive numbers {εk}k∈N,
which means that the inequality

∞∑
k=1

εk|ak|
2
k =

∞∑
k=1

εk

qk∑
j=1

|g(k)
j | 2

k < ∞

holds, there will be a well-defined plurisubharmonic function

ϕ = ϕa• := log
( ∞∑

k=1
εk|ak|

2
k

)

on U .
Denote multiplier ideal sheaves of ak with coefficient c > 0 by J (c · ak)

(section 9.2 in [22]), which can be equivalently defined as

J (c · ak) = I(log(|g(k)
1 | + · · · + |g(k)

qk
|)2c)

on U . The asymptotic multiplier ideal sheaf (Definition 11.1.15 in [22]) of
{a•} with coefficient c > 0, written as J (c · a•), is defined to be the unique
maximal member among the family of ideals

{
J
(
c

p
· ap
)

; p ∈ N

}
.

Thus J (c·a•) = J
(
c
p · ap
)

on a relative compact subset V � X for sufficiently
large and divisible p.

Multiplier ideal sheaves of ϕ = ϕa• and asymptotic multiplier ideal sheaves
of {a•} coincide. This result is helpful to construct toric plurisubharmonic
functions with clusters of jumping numbers in [30].

Theorem 2.1 (Appendix in [30]). For any c > 0, J (c · a•) = I(c · ϕa•).

As Dano Kim told us, the valuative characterization of multiplier ideals
which is used in Boucksom’s original proof of Theorem 2.1 actually relies on
the strong openness property of multiplier ideals.
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Theorem 2.2 (Subsection 3.3 in [17]). Let Δn be the unit polydisc in Cn.
Assume that ϕj ∈ PSH(Δn) being a sequence of plurisubharmonic functions
increasingly converging a.e. towards ϕ ∈ PSH(Δn), then

⋃
j

I(ϕj) = I(ϕ).

The following fact will be a direct consequence of Theorem 2.2:

Corollary 2.1. Let Δn be the unit polydisc in Cn. Assume that ϕj , ψj ∈
PSH(Δn) being two sequences of plurisubharmonic functions increasingly con-
verging a.e. towards ϕ ∈ PSH(Δn) and respectively ψ ∈ PSH(Δn). Suppose
moreover that I(ϕj) = I(ψj) for each j ∈ N, then

I(ϕ) = I(ψ).

Now we are in position to give the

Proof of Theorem 2.1. Let ϕ = ϕa• , then it suffices to show I(cϕ)x = J (c ·
a•)x for any x ∈ ⋂V (ak), where V (ak) is the corresponding analytic subset.
According to Definition 2.1 and the Noetherian property, one can find a large
integer N0 > 0 such that

(13) J (c · a•)x = J
(

c

N0
· aN0

)
x

⊂ I(c · ϕ)x.

To see the inverse direction, thanks to Theorem 2.2, there exists N1 > 0 such
that

(14) I
(
c · log

(
N∑
k=1

εk|ak|
2
k

))
x

= I(c · ϕ)x

as soon as N ≥ N1. If we fix an N2 ≥ max{N0, N1} and observe that

a
1·2·...·(k−1)·(k+1)·...·N2
k ⊂ aN2!

for 1 ≤ k ≤ N2, then it implies that the inequalities

(15) εk|ak|
2
k ≤ Ck|aN2!|

2
N2! , 1 ≤ k ≤ N2
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hold on U for some Ck > 0 independent of x. A summation of inequalities
(15) yields that

(16) log
(

N2∑
k=1

εk|ak|
2
k

)
≤ 2

N2!
log |aN2!| + logC

hold on U , where C =
∑N2

k=1 Ck is independent of x ∈ U . As a consequence
of (13), (14) and (16), we get

(17) J (c · a•)x = J
(

c

N2!
· aN2!

)
x

⊃ I
(
c · log

(
N2∑
k=1

εk|ak|
2
k

))
x

= I(c ·ϕ)x,

which finishes our proof.

As pointed out in Corollary 2.3 in [30], ϕ = log
(∑∞

k=1 εk
∑qk

j=1 |g
(k)
j | 2

k

)
and ϕ′ = log

(∑∞
k=1 ε

′
k

∑qk
j=1 |g

(k)
j | 2

k

)
are v-equivalent for any two different

choices of admissible {ε•} and {ε′•}.
We now present a comparable formulation in terms of a graded system

of linear series. Let us begin with a line bundle L over a compact complex
n-fold X with non-negative Kodaira-Iitaka dimension

lim sup
k→∞

log h0(X, kL)
log k =: κ(X,L) ≥ 0

and let
S :=
⊕
k∈N

Sk ⊂ R(X,L) :=
⊕
k∈N

H0(X, kL)

be a subgraded section ring of L, where all Sk are linear subspaces of H0(X, kL)
and SkSl ⊂ Sk+l.

Definition 2.1 (Definition 1.1.8 in [22]). The base ideal of |Sk|, written as
bk or b(X, |Sk|), is defined to be the image of the map Sk ⊗C L−1 → OX .

Remark 2.1. It is easy to check that {b•} forms a graded system of ideals
on X and ϕS,ε• defined in (5) satisfies ϕS,ε• = log(

∑∞
k=1 εk|bk|2/k

)
.

Now Theorem 2.1 immediately implies:

Corollary 2.2. For any c > 0, J (c ·b•) = I(c ·ϕS,ε•). In particular, all ϕS,ε•

are v-equivalent with any admissible choice of {ε•}.
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2.2. Comparing admissible Bergman metrics and Siu metrics

Let X be a compact complex manifold and L a line bundle over X equipped
with a singular metric hL with semi-positive curvature current. We will fix
some m ∈ N and consider the line bundles mKX + L as before and keep the
notation (7) and (8) in this subsection. For any k ∈ N, Bkm will stand for
the km-Bergman kernels of the line bundle kmKX + kL as in (7), where kL
is equipped with the metric hk

L.

Lemma 2.1. For k ≥ 1, |Sk|−2/k is equivalent to B
−1/k
km as metrics on mKX+

L.

Proof. It suffices to show the k = 1 case. For any ξ = ξx ∈ −(mKX + L)x,
one may write the dual m-Bergman metrics |ξ|Bm as

(18) sup
{
|ξ · u(x)|;u ∈ H0(X,mKX + L), ‖u‖

2
m
m :=

∫
X
|u ∧ u| 1

mh
1
m
L ≤ 1

}
.

by (7). Let s1, . . . , sN be a basis of S1, and

max∑N

j=1 |bj |
2=1

‖
N∑
j=1

bjsj‖m =: Cmax > 0,

min∑N

j=1 |bj |
2=1

‖
N∑
j=1

bjsj‖m =: Cmin > 0.

Our mission is to show Bm ∼∑N
j=1 |sj |2 ∼ |S1|2. It is easy to see

E1 :=

⎧⎨
⎩u =

∑N
j=1 ajsj

Cmax
;

N∑
j=1

|aj |2 ≤ 1

⎫⎬
⎭ ⊂ {u; ‖u‖m ≤ 1} ⊂

(19)

⎧⎨
⎩u =

∑N
j=1 ajsj

Cmin
;

N∑
j=1

|aj |2 ≤ 1

⎫⎬
⎭ =: E2.

On one side,

(20) |ξ · u(x)|2 =
|∑N

j=1 aj(ξ · sj(x))|2
C2

max
≤
∑N

j=1 |ξ · sj(x)|2
C2

max
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holds for any u =
∑N

j=1 ajsj

Cmax
and
∑N

j=1 |aj |2 ≤ 1 by the Cauchy-Schwarz
inequality. One can choose {a0

j ; j = 1, . . . , N} depending on ξ such that∑N
j=1 |a0

j |2 = 1 and (20) becomes an equality, i.e.

(21) |ξ · u0(x)|2 =
∑N

j=1 |ξ · sj(x)|2
C2

max
.

The former inclusion of (19) implies the fact that

(22) |ξ|2Bm
≥ sup{|ξ · u(x)|2;u ∈ E1} ≥ |ξ · u0(x)|2.

Combining (21) and (22), we obtain that

(23) |ξ|2Bm
≥
∑N

j=1 |ξ · sj(x)|2
C2

max
.

On the other side, the latter inclusion of (19) implies that

(24) |ξ|2Bm
≤ sup{|ξ · u(x)|2;u ∈ E2} ≤

∑N
j=1 |ξ · sj(x)|2

C2
min

,

where the last “≤” also comes from the Cauchy-Schwarz inequality. Our claim
follows immediately from (23) and (24).

Remark 2.2. When k = m = 1 in Lemma 2.1, Bergman metric precisely
equals the metric induced by any orthonormal basis of H0(X, (KX + L) ⊗
I(ϕL)).

Let us consider a family of Bergman metrics {B−1/k
km ; k ∈ N} on mKX +L.

The following lemma will allow us to construct an asymptotic metric with
“minimal” singularities among this family.

Lemma 2.2. All B1/k
km are locally bounded above by a constant C independent

of k.

Proof. Choosing a coordinate (z1, . . . , zn) centered at x ∈ X and a holomor-
phic frame eL of L in some open set Ω, we can write any u ∈ H0(X, kmKX +
kL) in Ω as

u = u′(z)dz⊗km ⊗ e⊗k
L ,

where u′ is holomorphic, dz = dz1 ∧ ... ∧ dzn. We may assume that hL|Ω is
written as

〈eL, eL〉hL = e−ϕL
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and supΩ ϕL := C0 < ∞ after shrinking Ω if necessary. Then by definition
Bkm can be trivialized as

Bkm(z) = sup
‖u‖km≤1

|u′(z)|2.

If u is normalized by ‖u‖km = 1, then by applying the mean value inequality
on some Ω′ � Ω we obtain that
(25)

|u′(z)| 2
km ≤ C1 dist(Ω′, ∂Ω)eC0/m

∫
Ω
|u′(z)| 2

km e−
ϕL
m dλ ≤ C2‖u‖

2
km

km = C2,

where C2 = C1 dist(Ω′, ∂Ω)eC0/m. This immediately yields our result if we
replace C by Cm

2 .

Remark 2.3. In this lemma, only lower semi-continuity of hL has been used.

We can construct

(26) B−1
S := ( inf

k∈N
B

−1/k
km )∗

as a singular metric on mKX+L with semi-positive curvature current by using
Lemma 2.2, where “∗” stands for the lower semi-continuity regularization
process. The metric in (26) is referred to as the canonical metric in [38] and
[39] when L = 0 and m = 1. More generally, we will investigate metrics
B−1

S,δ•
= e−ψS,δ as in (10) for an admissible choice of {δ•}.

One may refer to Section 4.2 in [39] for constructing another type of the
asymptotic metrics, which is called the super canonical metrics on canonical
bundles of projective klt pairs. The author’s method is replacing each Sk by
H0(X, k(mKX + L) + A), where A is an auxiliary ample line bundle. In this
way, the super canonical metric no longer owns a sup in the envelope, but
just a limsup. Through its construction, the author proved that it always has
minimal singularities (Theorem 4.2 in [39]).

We are in position to show the

Proof of Theorem 1.5. Setting

ϕN := log(
N∑
j=1

εj |Sj |2/j)

and
ψN := sup

1≤k≤N
log δk + ψk,
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we infer that ϕN ∼ ψN and I(ϕN ) = I(ψN ) for any N ∈ N thanks to
Lemma 2.1. Since ϕN (resp. ψN ) increasingly converges towards ϕS,ε• (resp.
ψS,δ•) as N → ∞ almost everywhere, Corollary 2.1 finally asserts the desired
equality.

Remark 2.4. Combining Theorem 1.5 and Corollary 2.2, one can conclude
that I(c · ψS,δ•) = J (c · b•). In particular, all ψS,δ• are v-equivalent with any
admissible choice of {δ•}.

It is however natural to ask when those two v-equivalent metrics hS,ε• and
B−1

S,δ•
are genuinely equivalent. We will give a partial answer to this question:

Proposition 2.1. Let hS,ε• = e−ϕS,ε• and B−1
S,δ•

= e−ψS,δ• be two singular
metrics on mKX + L for some admissible {ε•} and {δ•}. Then

1. There exists an appropriate choice of {ε′•} such that ϕS,ε′• � ψS,δ•;
2. There exists an appropriate choice of {δ′•} such that ψS,δ′• � ϕS,ε•.

Proof. We only give the proof of the first statement here since the other will
be derived in a similar manner. Let

ϕN := log
(

N∑
k=1

ε′k|Sk|
2
k

)

and respectively
ψN := sup

1≤k≤N !
(log δk + ϕk)

for any N ≥ 1. Thanks to Lemma 2.1 and the convention (4), we get

ϕN ≤ log
(

N∑
k=1

ε′k

)⎛⎝ qN !∑
j=1

|s(N !)
j |2
⎞
⎠

1
N !

≤

log
[(

N∑
k=1

ε′k

)
· CN/δN !

]
+ (log δN ! + ϕN !) ≤ C + ψN

provided that {ε′•} satisfies

sup
N

(
N∑
k=1

ε′k

)
· CN/δN ! := C < ∞.

Hence the first statement follows by letting N → ∞ and taking the upper
semi-continuity regularization process.
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3. Key lemmas

This section contains a list of key lemmas that will be used in the proof of the
main theorem. The following lemma is about the finite generation of canonical
ring of a projective pseudo-klt pair. For the sake of completeness, we give its
proof originating from [8] here:

Lemma 3.1 (=Theorem 1.2). Let L be a Q-line bundle over X. If (X,L) is
a smooth projective pseudo-klt pair and KX + L is big, then R(X,KX + L)
is finitely generated.

Proof. Let us first assume that KX + L ∼Q A + E for an ample divisor A
and an effective divisor E, where ∼Q means Q-linear equivalence. Thanks to
Theorem 2.2 or the openness property ([1]),

(27) I(ϕL + k−1ϕE) = I(ϕL) = OX

for k � 0, where ϕE is a canonical weight attached to E.
Now we fix a Kähler form ω = iΘhA(A) on X with respect to a smooth

metric hA on A, as well as a smooth metric h0 on L. Writing e−ϕL = hL =
h0e

−ψL for some quasi-plurisubharmonic function ψL, we understand that
there exists a closed positive (1, 1) current T ∈ c1(A + L) satisfying

T := ik−1ΘhA(A) + iΘhL(L) = ik−1ΘhA(A) + iΘh0(L) + i∂∂ψL ≥ k−1ω.

By Demailly’s regularization process ([9] or Corollary 13.13 in [10]), there
exists a quasi-plurisubharmonic function {ψ′

L} with logarithmic poles such
that

(28) ψL � ψ′
L

and simultaneously

(29) T ′ := ik−1ΘhA(A) + iΘh0(L) + i∂∂ψ′
L ≥ 1

2kω

holds.
Since finite generation of canonical ring serves as a birationally invariant

property, we may assume
T ′ = [D] + β

after taking a log resolution μ : X ′ → X of singularities of ψ′
L and E and

replacing X by X ′, where β is a closed smooth positive (1, 1) form outside
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the exceptional divisor E′ := Exc(μ) =
∑

ajE
′
j from (29) and D +E′ +E is

an effective Q-divisor with simple normal crossing support.
In view of (28) and (27), we also obtain that

(30) I(ϕD + δϕE′ + k−1ϕE) = OX

for some small δ > 0. It follows from Lemma 13.18 in [10] that one may pick
a sequence of rational number δj ≤ δ and ε0 > 0 and a smooth (1, 1) form
uj representing c1(E′

j) such that β −∑ δjajuj = T ′ − [D] −∑ δjajuj ≥ ε0ω

becomes a Kähler form.
In summary, we can write L+ k−1A ∼Q Bk +Hk for some ample Hk and

effective Bk with simple normal crossing support, where Bk := D+
∑

δjajE
′
j

and Hk := L+ k−1A−∑ δjajE
′
j −D. Note that (X,Δk := Bk + k−1E) is klt

thanks to (30), the canonical ring of KX + Δk + Hk is finitely generated by
Theorem 1.1. From the following equivalence relation

(1 + k−1)(KX + L) ∼Q KX + Δk + Hk

on X, we are done.

Let Ω ⊂ Cn be a domain and ϕ a plurisubharmonic function defined on
Ω. We say that ϕ has analytic singularities if

ϕ = c log(|f1|2 + · · · + |fN |2) + O(1)

near any point a ∈ Ω for some holomorphic functions fj and c > 0.

Lemma 3.2 (Theorem 4.3 in [20]). Let ϕ, ψ be two plurisubharmonic func-
tions on Ω. Assume that ϕ and ψ are v-equivalent and ϕ has analytic singu-
larities, then ϕ is less singular than ψ.

The proof of Lemma 3.2 is based primarily on Demailly’s approximation
of plurisubharmonic functions via Bergman kernels ([10]). Some details of the
proof are omitted here.

Let X be a projective manifold, L a line bundle over X endowed with
a positively curved metric hL and S as in (8), ϕS,ε• , ψS,δ• defined as in (5),
(10).

Lemma 3.3. If S is finitely generated, then for a suitable choice of {ε•}
(resp. {δ•}), ϕS,ε• (resp. ψS,δ•) has analytic singularities.
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Proof. Assume that S is finitely generated by
⊕N

k=1 Sk, then

Sp =
∑

j1+2j2+···+NjN=p

N∏
k=1

Sjk
k

holds for each p > N .
Thanks to this fact, for any s(p) ∈ Sp, it can be expressed as

s(p) =
∑

j1+2j2+···+NjN=p

⎛
⎝ ∑

0≤tk≤qk,1≤k≤N

at1,...,tk

N∏
l=1

(s(l)
tl )jl
⎞
⎠ ,

where all at1,...,tk are complex numbers, {s(l)
tl }0≤tl≤ql forms a basis of Sl. The

geometric-arithmetic mean inequality asserts that

|s(p)|2/p ≤ C1,p
∑

j1+2j2+···+NjN=p

⎛
⎝ ∑

0≤tk≤qk,1≤k≤N

at1,...,tk

N∏
l=1

|s(l)
tl |

2jl/p

⎞
⎠ ≤

(31) C2,p
∑

0≤tl≤ql,1≤l≤N

|s(l)
tl |

2/l

for some C1,p, C2,p > 0.
As a consequence of (31), we obtain

(32) |Sp|2/p ≤ Cp

∑
0≤tl≤ql,1≤l≤N

|s(l)
tl |

2/l

for some Cp > 0. If our choice of {ε•} ensures that

(33)
∑
p>N

εpCp = C < ∞,

then it will be clear that ϕS,ε• is equivalent to log
(∑N

j=1 |Sj |2/j
)

from (32)
and (33), which finishes the first part of our proof. As for ψS,δ• , we can show
the statement in the same way.

Remark 3.1. There is a similar argument for a graded system of ideals {a•}
and one may refer to Lemma 5.9 in [23] for more details.

We now assume that L is big. Combining the strong openness property
([17]) of multiplier ideal sheaves and Theorem 1.11 in [11], it is known that:
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Lemma 3.4. J (c · ‖L‖) = I(c · ϕmin) for any c > 0.

Remark 3.2. If we take S = R(X,L) to be the full graded linear system,
then Proposition 9.2.22 in [22] tells us that

J (c · b•) = J (c · ‖L‖).

Therefore, J (c · b•) = I(c · ϕmin) when L is big.

The following lemma characterizes finite generation of S via singularities
of the family of metrics {φm := log |Sm!|2/m!}. By convention (4), we already
know that φm ≥ φl for any m ≥ l.

Lemma 3.5 (Theorem 6.6 in [5]). φm = φl +O(1) for any m ≥ l if and only
if S is finitely generated.

Remark 3.3. The original statement in [5] considers S to be the full linear
system, while it still works for general S through a similar proof.

4. Proof of theorem 1.4

Proof.

1. By contradiction, we assume that S is not finitely generated. We claim
that for each l ∈ N, sup1≤k≤l ψk cannot have minimal singularities. In
fact, If sup1≤k≤l ψk has minimal singularities for some l, Lemma 2.1 tells
us that φl is less singular than sup1≤k≤l ψk and therefore φl is minimal.
By the basic fact that φm ≥ φl for any m ≥ l, we understand that φm is
likewise minimal and hence φm = φl +O(1) holds. Applying Lemma 3.5
it contradicts the fact that S is not finitely generated.
Let

(34) Eδ• := {x ∈ X; sup
k≥1

δkB
1/k
km (x) �= BS,δ•(x)}

be a measure zero subset of X. By our assumption, it suggests that
there exist {xl} ⊂ X\Eδ• and Cl → +∞ such that

(35) sup
1≤k≤l

ψk(xl) ≤ ϕmin(xl) − Cl.

Therefore, one obtains an inequality
(36)
sup
k≥1

δkB
1/k
km (xl) ≤ eϕmin(xl) max{( sup

1≤k≤l
δk)e−Cl , sup

k≥l
δkB

1/k
km (xl)e−ϕmin(xl)}
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from (35). According to Lemma 2.2,

(37) B
1/k
km e−ϕmin ≤ (sup

k≥1
B

1/k
km )∗e−ϕmin ≤ eC

for some C > 0 independent of k. Note that

( sup
1≤k≤l

δk)e−Cl → 0, sup
k≥l

δk → 0

as l → ∞, we infer

logBS,δ•(xl) ≤ ϕmin(xl) + max{( sup
1≤k≤l

δk)e−Cl , C + log(sup
k≥l

δk)} → −∞

as l → ∞ by (36) and (37), which contradicts the fact that B−1
S,δ•

has
minimal singularities.

2. Thanks to Proposition 2.1 and Lemma 2.1, there exists a Siu-type met-
ric ϕS,ε′ such that ϕS,ε′ � ψS,δ ∼ φm0 for some m0. By the construction
of Siu-type metric, It follows that φl ∼ φm0 for all l ≥ m0. Therefore,
our claim follows from Lemma 3.5.

3. By Theorem 1.2, we infer that S is finitely generated. According to
Lemma 3.3, ψS,δ0

• has analytic singularities for an appropriate choice of
{δ0

•}. Thanks to Lemma 3.4 and Theorem 1.5 (see also Remark 2.4), we
get ψS,δ0

• ∼v ϕmin. Now applying Lemma 3.2 we can show ψS,δ0
• ∼ ϕmin.

Furthermore, by the fact that ψS,δ0
• is actually equivalent to a finite

supreme, we obtain ψS,δ0
• � ψS,δ1

• for any admissible choice of {δ1
•}.

Therefore, ψS,δ1
• has minimal singularities as well.

5. Applications

5.1. Equivalence of admissible Bergman metrics

Let X be a projective manifold, L a line bundle over X. We endow L−KX

with a smooth metric hL−KX and S = R(X,L) as in (8), ϕS,ε• , ψS,δ• defined
as (5), (10). In this subsection, we discuss how the singularities of ψS,δ• are
affected by the choice of {δ•}. In [20], the author has already shown that there
exists an infinite family of Siu-type metrics having non-equivalent singularities
for some L.

Theorem 5.1 (Theorem 3.5 in [20]). Fix an admissible {ε•} and assume
S = R(X,L) is not finitely generated. Then there always exists another Siu-
type metric h′ = e

−ϕS,ε′• such that ϕS,ε′• is strictly singular than ϕS,ε• (denoted
by ϕS,ε′• � ϕS,ε•).
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The idea of proof of Theorem 5.1 mainly follows from the argument of
the proof of Proposition 6.5 in [5]. As stated in [20], such an example of L
due to Zariski is precisely given as follows

Example 5.1 (Section 2.3.A in [22]). Let X be the blow up of P2 at 12 generic
points belonging to an elliptic curve C0 ⊂ P2, L given as in Section 2.3.A in
[22]. Then L is big and nef, but R(X,L) is not finitely generated. The line
bundle L has the property that there exists a curve C such that |kL−C| is free
for any k ≥ 1. Indeed, C is the strict transformation of C0. If C is written
as {z = 0} in a local chart (U, (z, w)), then

ϕR(X,L),ε• = log
∞∑
k=1

εk|z|2/k + O(1)

and

(38) ψR(X,L),δ• = ∗sup
k∈N

(log δk + k−1 log |z|2) + O(1)

along {z = 0}. If we choose {δ0
k = 1}, then ψR(X,L),δ0

• becomes a bounded
weight with minimal singularities (see Remark 1.4). It is clear that ϕR(X,L),ε•
is not equivalent to any finite sum as log

∑k0
k=1 εk|z|2/k and will never have

minimal singularities. If we choose {δ1
k = e−k/2} for instance, then

ψR(X,L),δ1
• ≤ −2

√
− log |z| + O(1)

along C from (38) and is likewise non-minimal. Note ψR(X,L),δ• is not equiv-
alent to any finite supremum as sup1≤k≤k0(log δk + k−1 log |z|2) for any ad-
missible {δ•}.

We can also establish an analogue of Theorem 5.1 with respect to admis-
sible Bergman metrics via a similar method as in [20], as well as the proof
of Theorem 1.4 1). This family seems to be “bigger” because it contains a
metric with minimal singularities as illustrated in Example 5.1.

Corollary 5.1. Fix an admissible {δ•} and assume L is not finitely generated.
Then there always exists another metric h′ = e

−ψS,δ′• such that ψS,δ′• � ψS,δ• ,
which means ψS,δ′• is strictly singular than ψS,δ• .

Proof. By our assumption and Theorem 1.4 2), ψS,δ• is not equivalent to any
finite supreme sup1≤k≤k0 ψk for any k0 ∈ N. First choose {δ′•} such that lim
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δ′k/δk = 0 and let Eδ′• be defined as in (34). By this assumption, there exist
{xl} ⊂ X\Eδ′• and Cl → +∞ such that

(39) sup
1≤k≤l

ψk(xl) ≤ ψS,δ•(xl) − Cl.

Then it follows from (39) that:

sup
k≥1

δ′kB
1/k
km (xl) ≤ eψS,δ• (xl) max{( sup

1≤k≤l
δ′k)e−Cl , sup

k≥l
(δ′k/δk)} ≤

(40) eψS,δ• (xl) sup
k≥l

(δ′k/δk) → 0

as l → ∞, provided that Cl growing fast enough such that

( sup
1≤k≤l

δ′k)e−Cl ≤ sup
k≥l

(δ′k/δk)

holds. Now (40) meets what we want.

5.2. A criterion for semi-ampleness

Let X be a projective manifold, L a line bundle over X endowed with a
positively curved metric hL, S as in (8), ϕS,ε• , ψS,δ• defined as in (5), (10)
and m ∈ N. The numerical dimension of L (Remark 2.3.17 in [22]) denoted
by n(L) is defined to be the largest integer p ∈ N such that Lp · V > 0 for
some p-dimensional subvariety V .

Definition 5.1.

1. L is called nef if L · C ≥ 0 for any curve C in X.
2. L is called good (or abundant) if n(L) = κ(L).
3. L is called semi-ample if L⊗k is free for some k ∈ N.

Assume that
(
X, L

m

)
is a pseudo-klt pair and mKX + L is Q-effective,

then S = R(X,mKX +L). The following result illustrates when its canonical
bundle is semi-ample.

Theorem 5.2 (Theorem 1.4 in [21]). mKX + L is semi-ample if and only if
ϕS,ε• is locally bounded for some admissible {ε•}.

Remark 5.1. In the above theorem, the last statement is also equivalent to
the statement that ϕS,ε• is locally bounded for any admissible {ε•} by its proof.
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The proof of Theorem 5.2 relies on a result of Russo ([29]):

Proposition 5.1 (Theorem 2 in [29]). mKX +L is nef and good if and only
if J (c · ‖mKX + L‖) = OX for c sufficiently large.

Using Theorem 1.4 we can also give the following analytic characterization
of semi-ampleness in terms of admissible Bergman metrics.

Corollary 5.2. mKX +L is semi-ample if and only if ψS,δ• is locally bounded
for some lim δk = 0.

Proof. One direction is clear. It suffices to show that mKX+L is nef, good and
finitely generated when ψS,δ• is locally bounded. According to Theorem 1.5,
we get that J (c · ‖mKX + L‖) = I(c · ψS,δ•) = OX for any c > 0. Hence
mKX +L is nef and good from Proposition 5.1. On the other side, since ψS,δ•

has minimal singularities we infer that mKX +L is finitely generated thanks
to Theorem 1.4 1), which accomplishes our proof.

Remark 5.2. The last statement can be also replaced by “ψS,δ• is locally
bounded for any lim δk = 0”.

5.3. Variation of metrics with minimal singularities on f-big line
bundle mKX/Y + L with klt singularities of hL under

projective deformation

In this subsection, we focus on the problem of gluing fiberwise closed positive
(1, 1) currents with minimal singularities as a global closed positive (1, 1) cur-
rent with minimal singularities. This type of results has been systematically
studied in [38], [8], [15], etc.

The well-known Ohsawa-Takegoshi L2 extension theorem [25] will be a
useful tool for us. For the sake of brevity, we will only look at L2/m extension
theorems for regular hypersurfaces, though they can be generalized to higher
codimensional cases.

Lemma 5.1 (Theorem 0.3 in [3]). Let Ω ⊂ Cn be a pseudoconvex open set and
σ : Ω → D a holomorphic function. Assume that dσ does not vanish on the
hypersurface V := σ−1(0). Suppose that ϕ is a plurisubharmonic function on
Ω such that ϕ|V �≡ −∞. Then for each holomorphic section f ∈ H0(V,K⊗m

V )
with m ∈ N and ∫

V
|f |2/me−ϕ < ∞,

there is a section F ∈ H0(Ω, K⊗m
Ω ) such that F |V = f ∧ dσ⊗m and∫

Ω
|F |2/me−ϕ ≤ C0

∫
V
|f |2/me−ϕ
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holds, where C0 is the same constant in Ohsawa-Takegoshi extension theorem.

Let us recall some classical settings to define the relative Bergman metrics.
Let X, Y be connected complex manifolds and f : X → Y a proper surjec-

tive holomorphic map with connected fibers. Let L → X be a pseudoeffective
line bundle equipped with a singular metric hL with semi-positive curvature
current. Let KX/Y := KX − f∗KY be the relative canonical bundle and let
Y0 be the set of regular values of f ,

Ym,ext := {y ∈ Y0;h0(Xy,mKXy + LXy) = rank f∗(mKX/Y + L)},

and respectively X0 := f−1(Y0), Xm,ext = f−1(Ym,ext). Let Yh := {y ∈
Y0;h|Xy �≡ +∞} be a set whose complement has zero measure in Y . It is
well known that Ym,ext is a Zariski open subset of Y . Assume that

H0(Xy, (mKXy + LXy) ⊗ Im(h1/m
L )) �= 0

holds for some y ∈ Ym,ext
⋂
Yh. We can now assign the m-Bergman metric (7),

denoted by B−1
m,y, to each fiber Xy where y ∈ Ym,ext. Gluing them together

we may endow (mKX/Y +L)|Xm,ext with a metric B−1
m,X/Y , which is known as

the relative m-Bergman metric ([2], [27], [41], etc).

Theorem 5.3 ([2], [27], and [18] for m = 1). If f is projective, then B−1
m,X/Y

is lower semi-continuous, positively curved. Moreover, it can be naturally ex-
tended across X\Xm,ext as a new metric with semi-positive curvature current.

Remark 5.3. When f : X → Y is merely supposed to be a Kähler fiber space,
which means, f is a proper surjective holomorphic map with connected fibers
and the total space X is Kähler, this result was obtained in [40] for m = 1 by
using Guan-Zhou method in [18]. For m ≥ 2, this result was independently
obtained in [7] when X, Y are compact, and in [41] (see Theorem 5.4 below)
for the general case by overcoming some extension difficulties for m ≥ 2
pointed out in Remark 4.2.4 in [27]. Both methods involve using the optimal
L2 and L2/m extension results (i.e., the constant C0 = 2π in Lemma 5.1). One
might also refer to [14] for another new proof of the log-plurisubharmonicity
of the relative m-Bergman kernels.

From now on, we assume that f is projective and denote B−1
m,X/Y by its

natural extension according to Theorem 5.3.

Lemma 5.2 (Corollary 4.3.2 in [27]). Let B−1
km,X/Y be the relative km-Bergman

metric defined on (kmKX/Y + kL). Then there is a constant C independent
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of k such that
B

1/k
km,X/Y ≤ C

locally on X.

This proof originally dates back to Theorem 4.2.7 in [27], which essentially
uses Lemma 5.1 to give the uniform upper bound of the weight. Now the
metric

(41) B−1
m,X/Y,∞ := ( inf

k∈N
B

−1/k
km,X/Y )∗

on mKX/Y + L is well-defined and we can prove the following result.

Corollary 5.3. Let X, Y be connected complex manifolds and f : X → Y
a proper surjective projective morphism with connected fibers. Let L → X be
a pseudoeffective line bundle equipped with a singular metric hL with semi-
positive curvature current. Assume that

(42) Y 0 :=
{
y ∈ Y0; I(hL|Xy) = OXy}

is a Zariski open subset of Y for some m ∈ N. Assume also that mKXy+LXy

is big for each y ∈ Y 0, then there exists a singular metric h on mKX/Y + L
such that:

1. h has semi-positive curvature current.
2. h|Xy has minimal singularities for any y ∈ Y 0.

Proof. Let
h := B−1

m,X/Y,∞

be a singular metric as in (41) on mKX/Y + L with semi-positive curvature
current, according to Theorem 5.3. In this setting, we get Y 0 ⊂ Ykm,ext by
invariance of plurigenera (Theorem 16.2 in [10]). Therefore,

(43) h|Xy = (inf
k∈N

B
−1/k
km,X/Y )∗|Xy ≤ ( inf

k∈N
B

−1/k
km,X/Y |Xy)∗ = (inf

k∈N
B

−1/k
km,y )∗

holds for all y ∈ Y 0. The right hand side of (43) has minimal singularities
thanks to the fact that I(hL|Xy) = OXy ⇒ I(h1/m

L |Xy) = OXy and Theo-
rem 1.4 3). Therefore, h|Xy has minimal singularities for any y ∈ Y 0.

Remark 5.4. We have the following remarks:

1. If I(hL) = OX and hL has analytic singularities, (42) will be satisfied
(Section 9.5.D in [22]).
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2. Invariance of plurigenera can also be deduced from the conclusion of
Corollary 5.3 and the Ohsawa-Takegoshi L2 extension theorem ([25]).

3. If condition (42) is replaced by the following assumption: 1
mL is still a

genuine line bundle and Y 0 := {y ∈ Y0; I(h1/m
L |Xy) = OXy} is a Zariski

open subset of Y for some m ∈ N, then the conclusion of Corollary 5.3
still holds via the same proof as above.

4. An alternative way to show that h|Xy has minimal singularities has been
discussed in Remark 1.4.

It is tempting to ask whether h = B−1
m,X/Y,∞ has minimal singularities on

X0 = f−1(Y 0) as in [15]. To be more precise, we suppose that Y = Y 0 = Bm

is a unit ball in Cm, V ⊂⊂ Y a relative compact open subset. Fix any smooth
metric h∞ on mKX/Y + L and set

(44) h0 := inf{h :
√
−1Θh(mKX/Y + L) ≥ 0, h ≥ h∞}, h0 = e−ϕ0

to be the lower envelope of all positively curved metric h on mKX/Y +L. Thus
h0 has minimal singularities on f−1(V ), which does not rely on the choice of
h∞. Our answer to this question in some special cases are as follows.

Corollary 5.4. Let the settings be as in Corollary 5.3 or Remark 5.4 3). As-
sume moreover that hL has analytic singularities, then there exists a constant
C = CV , such that

(45) C−1h0 ≤ h ≤ C · h0

holds on f−1(V ).

Proof. The left hand side is just an easy consequence of the first statement
of Corollary 5.3 and (44). Therefore, it remains to show the right hand side
inequality. First note that h0|Xy is a well-defined singular metric on mKXy+L
with semi-positive curvature current. By our assumption on hL, Lemma 3.2
in [12] and the fact that ϕ0 is locally bounded above, there exists a constant
C = CV independent of y such that

(46)
∫
Xy

e
ϕ0−ϕL

m ≤ C

holds for any y ∈ V . Thanks to (46) and Proposition 19.8 in [10], one may
find a sequence of sections σk,y ∈ H0(Xy, kmKXy + kL|Xy) such that

(47) (ϕ0

m
− logC)|Xy = (lim sup

k→∞

1
mk

log |σk,y|2)∗,
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where

(48)
∫
Xy

|σk,y|2/kmh1/m
L ≤ 1.

From the definition of km-Bergman metrics, (47) and (48), we obtain that

(49) ϕ0

m
− logC ≤ 1

m
logBm,X/Y,∞

holds on f−1(V ). Eventually, (45) comes from taking exponential on both
sides of (49) and replacing Cm by a new constant C.

5.4. Variation of metrics with minimal singularities on f-big line
bundle mKX/Y + L with mild singularities of hL under

Kähler fibration

Our goal in this subsection is to extend Corollary 5.3 in the Kähler fiber space
setting. Precisely speaking, let f : X → Y be a proper surjective holomorphic
map from a Kähler manifold X to a connected complex manifold Y with
connected fibers. Let L → X be a pseudoeffective line bundle equipped with
a singular metric hL with semi-positive curvature current. In addition, we
require the singularities of metric hL of the twisted line bundle L to be “mild”
enough.

Before stating the main result of this subsection, let us first list some
important results which we will use later. Let Xm,ext and the relative Bergman
metric B−1

m,X/Y be defined as in subsection 5.3. As mentioned in Remark 5.3,
Zhou and Zhu has obtained that

Theorem 5.4 (Theorem 1.5 in [41]). B−1
m,X/Y is lower semi-continuous, pos-

itively curved. Moreover, it can be naturally extended across X\Xm,ext as a
new metric with semi-positive curvature current.

The proof of Theorem 5.4 is essentially based on the fact (part of Theorem
1.4 in [41]) that, once F ∈ H0(Xy,mKXy + L|Xy) has an extension F1 on a
neighborhood of Xy, it has another extension F2 with an additional optimal
L2/m estimate. This improvement of [41] is crucial for the proof of Theorem 5.4
because we only know this fact under the additional assumption that F1 is
locally L2/m integrable near Xy before ([3], [27], [14], etc.).

We still denote B−1
m,X/Y by its natural extension on X and use Lemma 5.1

to give the uniform upper bound of the family of the Bergman kernels
{B1/k

km,X/Y }k∈N. The metric as in (41) on mKX/Y + L is also well-defined.
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One main difficulty in this context is that, invariance of (twisted) pluri-
genera might be not that clear since f is not a projective morphism anymore.
However, to conquer this, the following result in [28] tells us that f is not
that far from a projective morphism if there exists a fiberwise big line bundle
in the total space.

Lemma 5.3 (A particular case of Theorem 1.8 in [28]). Let f : X → Y = Δ
be a smooth family (i.e. a surjective proper holomorphic submersion over the
unit disc) and assume that there exists a line bundle L → X such that L|Xy

is big for any y ∈ Δ. Then for some N ∈ N, there exists a bimeromorphic
map Φ : X ��� X ′ over Δ, to a subvariety of PN × Δ with every fiber X ′

t

being a projective variety of PN .

In other words, f : X → Δ in Lemma 5.3 is a Moishezon family (see [28]),
which means bimeromorphic to a projective family (i.e. a surjective projective
morphism over the unit disk). In [28], the authors have applied this result to
answering a question proposed by Demailly on invariance of plurigenera.

Another significant result considering invariance of plurigenera in the con-
text of Moishezon family and fiberwise canonical singularities at worst, was
obtained in [37]. Note that the canonical singularity assumption aims at get-
ting the upper semi-continuity of the function y �→ h0(Xy,mKXy), where

h0(Xy,mKXy) := dimH0(Xy,mKXy).

The lower semi-continuity part mainly follows from Siu’s approach ([32]), with
a slight modification of the use of Ohsawa-Takegoshi L2 extension theorem
(see Theorem 5.5 below).

The following result about birational invariance of plurigenera is well-
known.

Proposition 5.2. Let X and X ′ be two non-singular projective varieties and
let μ : X ′ → X be a proper modification, L → X be a line bundle. Then for
any m ∈ N, equality

H0(X,mKX + L) = H0(X ′,mKX′ + μ∗L)

holds.

Proof. Since μ has connected fibers, we know that μ∗OX′ = OX . It is also
easy to see that μ∗OX′(mKX′) = OX(mKX). Therefore, according to the
projection formula we obtain that

H0(X ′,mKX′ + μ∗L) = H0(X,μ∗(mKX′ + μ∗L)) = H0(X,mKX + L),
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which completes the proof.

We proceed to generalize Theorem 1.2 in [37] with a twisted line bundle L.
Up till now, this generalization has to suppose hL to be “mild” enough. The
reason is that, for an arbitrary holomorphic map f : X ′ → X between two
complex manifolds X ′, X and a plurisubharmonic function ϕ on X, one always
has the inclusion I(f∗ϕ) ⊂ f∗I(ϕ) by the restriction formula of multiplier
ideal sheaves (Proposition 14.3 in [10]).

Lemma 5.4. Let f : X → Δ be a smooth Moishezon family. Let L → X be
a pseudoeffective line bundle equipped with a singular metric hL with semi-
positive curvature current. Assume the Lelong number of hL|Xy equals zero
for each y ∈ Δ, then the function y �→ h0(Xy,mKXy + LXy) is constant.

Proof. By Grauert’s upper semi-continuity theorem, it suffices to show that
y �→ h0(Xy,mKXy +Ly) is lower semi-continuous at y = 0. Denote the central
fiber f−1(0) by X0. As the proof of Theorem 1.2 in [37], since f is a Moishezon
family, there exists a proper modification μ : X ′ → X such that the following
holds:

1. f ◦ μ : X ′ → Δ is a projective family;
2. X ′

0 has simple normal crossing supports;
3. X ′

0 has a prime decomposition X ′
0 = Z0 +

∑N
j=1 kjZj , where Z0 is the

strict transform of X0, Zj(1 ≤ j ≤ N) is a family of smooth divisors
and kj ≥ 1 are positive integers.

Note μ also induces a proper modification on each smooth fiber near y = 0,
then by Proposition 5.2 we reduce our claim to the following inequality

(50) h0(X ′
y,mKX′

y
+ (μ∗L)Xy) ≤ h0(Z0,mKZ0 + (μ∗L)Z0)

for y ∈ Δ\{0}, after shrinking the unit disk if necessary.
Actually, (50) can be obtained by the following argument:

(51)
Any section of σ ∈ H0(Z0, (mKZ0 + μ∗L) ⊗ I((μ∗hL)|Z0)) extends to X.

The proof of the statement (51) is by almost the same method as Păun’s
one-tower proof which is explained in Theorem 16.2 in [10] (see also [26]).
The only difference between Păun’s proof and our proof here is that, in order
to construct an asymptotic singular metric H (the same notation as p.176 in
[10]) with semi-positive curvature current on mKX′ + μ∗L and extend σ via
L2 extension theory, Păun’s proof strongly depends on Ohsawa-Takegoshi L2

extension theorem (Lemma 16.3 in [10]) from smooth central fibers. While in
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our case the central fiber X ′
0 is of simple normal crossing support, what we

need is just extending pluricanonical sections on Z0 and using the following
L2 extension Theorem 5.5 to substitute Lemma 16.3 in [10].

Theorem 5.5 (Lemma 3.6 in [37]). For any holomorphic line bundle F → X ′

with a singular metric hF of semi-positive curvature, and any s ∈ H0(Z0, KZ0+
FZ0) with

∫
Z0

|s|2hF < ∞, there exists a uniform constant C > 0 and s̃ ∈
H0(X ′, KX′ + F ), such that s̃ = s ∧ dt on Z0 with

∫
X
|s̃|2hF ≤ C

∫
Z0

|s|2hF .

Finally, applying Theorem 5.5 with

(F, hF ) = ((m− 1)KX′ + μ∗L,H
m−1
m (μ∗hL)

1
m ),

one infers statement (51). By our assumption on hL, we deduce that the Le-
long numbers of μ∗hL restricted on Z0 are zero because ϕL|X0 is v-equivalent
to constant functions. Therefore, I((μ∗hL)|Z0) is trivial and H0(Z0,mKZ0 +
μ∗L) = H0(Z0, (mKZ0 + μ∗L) ⊗ I((μ∗hL)|Z0)) and (50) holds true.

Remark 5.5. When L is semi-positive, which means, there exists a smooth
metric hL with semi-positive (1, 1) curvature form, it is clear that the assump-
tion in Lemma 5.4 is satisfied. When L is trivial, one may refer to Lemma
5.2 in [15] for another proof of this result.

Now we are in position to show the main result of this subsection.

Corollary 5.5. Let X be a Kähler manifold, Y a connected complex manifold
and let f : X → Y be a proper surjective holomorphic map with connected
fibers. Let L → X be a pseudoeffective line bundle equipped with a singular
metric hL with semi-positive curvature current. Assume that mKXy +LXy is
big and the Lelong number of hL|Xy equals zero for each y ∈ Y 0, where Y 0

is contained in the regular values of f and Y \Y 0 is an analytic subset of Y .
Then there exists a singular metric h on mKX/Y + L such that:

1. h has semi-positive curvature current.
2. h|Xy has minimal singularities for any y ∈ Y 0.

Proof. Let
h := B−1

m,X/Y,∞

be a singular metric as in (41) on mKX/Y + L with semi-positive curvature
current, according to Theorem 5.4. In this setting, f is a smooth Moishezon
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family thanks to Lemma 5.3. Then we also obtain that y �→ h0(Xy, kmXy +
kLXy) is a constant function on Y 0 for any k ∈ N, thanks to Lemma 5.4.
Therefore, by Grauert’s base change theorem, we obtain that Y 0 ⊂ Ykm,ext.
As a result,
(52)

B−1
m,X/Y,∞|Xy = (inf

k∈N
B

−1/k
km,X/Y )∗|Xy ≤ ( inf

k∈N
B

−1/k
km,X/Y |Xy)∗ = (inf

k∈N
B

−1/k
km,y )∗

holds for all y ∈ Y 0. The right hand side of (52) has minimal singularities
thanks to Theorem 1.4 3) (or Remark 1.4). The fact that h|Xy has minimal
singularities comes from (52).

Remark 5.6. Under the assumption of Corollary 5.5, a paralleled result of
Theorem 1.7 in [8] asserts that there exists a singular metric hKE on mKX/Y +
L with semi-positive curvature current such that it is the unique singular
Kähler-Einstein metric with minimal singularities when restricting to each
fiber Xy for y ∈ Y 0. The reason is that, our assumption already implies that
hL has zero Lelong numbers at each point of X.

Remark 5.7. When L is trivial, we can argue as in the proof of Corollary 5.4
to obtain that h has minimal singularities on f−1(Y 0) as well, which can be
seen as a parallel result of Theorem C in [15].

The key difference between the proof of Corollary 5.5 and Corollary 5.3
is that, when f is not necessarily a projective holomorphic map, invariance of
twisted plurigenera with mild singularities still works and B−1

km,X/Y on Xkm,ext

still has semi-positive curvature current for any integer k.
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