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Moment polytopes on Sasaki manifolds and volume
minimization
Akito Futaki

Abstract: We show that transverse coupled Kähler-Einstein met-
rics on toric Sasaki manifolds arise as a critical point of a volume
functional. As a preparation for the proof, we re-visit the trans-
verse moment polytopes and contact moment polytopes under the
change of Reeb vector fields. Then we apply it to a coupled ver-
sion of the volume minimization by Martelli-Sparks-Yau. This is
done assuming the Calabi-Yau condition of the Kähler cone, and
the non-coupled case leads to a known existence result of a trans-
verse Kähler-Einstein metric and a Sasaki-Einstein metric, but the
coupled case requires an assumption related to Minkowski sum to
obtain transverse coupled Kähler-Einstein metrics.

1. Introduction

Sasaki-Einstein metrics drew much attention from theoretical physics and
mathematics during last two decades. The first breakthrough was an irreg-
ular example found in physics literature by Gauntlett, Martelli, Sparks and
Waldrum [23]. Then in the toric case the existence was proven in our paper
[20] using volume minimization of Martelli, Sparks and Yau [30], [31]. More
recently it has been shown that the existence is equivalent to a notion called
K-stability by Collins and Székelyhidi [7], [8]. Sasaki manifolds are character-
ized by two Kähler structures, one on the Riemannian cone and the other on
the local orbit spaces of the one parameter group of transformations, which
we call the Reeb flow, generated by the Reeb vector field. In fact, the exis-
tence of a Sasaki-Einstein metric is equivalent to the existence of a Ricci-flat
Kähler metric on the Kähler cone, and also equivalent to the existence of
a transverse Kähler-Einstein metric of positive scalar curvature on local or-
bit spaces of the Reeb flow. Therefore there are two possible extensions of
these studies, one on the Kähler cone and the other on the Kähler local orbit
spaces of the Reeb flow. In [10], de Borbon and Legendre used the volume
minimization argument to prove the existence on toric Kähler cone manifolds
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of Ricci-flat Kähler cone metrics with cone angle along the boundary invariant
divisors without assuming the Calabi-Yau condition of the Kähler cone. This
Calabi-Yau condition will be explained in the paragraph after Proposition 1.1
below. The purpose of this paper is to study the possibility to prove the exis-
tence on toric Sasaki manifolds of transverse coupled Kähler-Einstein metrics
in the sense of Hultgren and Witt Nystrom [27] assuming the Calabi-Yau
condition of the Kähler cone by using the volume minimization argument
of Martelli-Sparks-Yau. Our study shows that the non-coupled transverse
Kähler-Einstein metric recovers the toric Sasaki-Einstein metrics as in [20]
but the coupled case requires an additional Minkowski sum assumption to
obtain transverse coupled Kähler-Einstein metrics.

The transverse coupled Kähler-Einstein metrics are defined as follows.
A Sasaki manifold S is determined by contact distribution D, pseudo-convex
CR-structure J on D and Reeb vector field ξ. The pseudo-convex CR-structure
determines Kähler structures on the local orbit spaces of the Reeb flow. Dif-
ferential forms on S obtained by pulling back from those local orbit spaces are
called basic forms. Naturally ∂ and ∂ operators can be considered to operate
on basic forms, which we denote by ∂B and ∂B, and we obtain Dolbeault
theory, Hodge theory and Chern-Weil theory for basic forms. Suppose that
the basic first Chern class cB1 (S) is positive, i.e. represented by a real closed
positive (1, 1)-basic form, and that we are given a decomposition

(1.1) 2πcB1 (S) = γ1 + · · · + γk

of 2πcB1 (S) into a sum of basic Kähler classes γα. Basic Kähler metrics ωα ∈ γα
are called transverse coupled Kähler-Einstein metrics if

(1.2) ρT (ω1) = · · · = ρT (ωk) =
k∑

β=1
ωβ

where
ρT (ωα) = −i∂B∂B logωm

α

is the transverse Ricci form of ωα. Naturally, by the Chern-Weil theory,

2πcB1 (S) = [ρT (ωα)]B

where [·]B denotes a basic cohomology class.
As a preparation, we study the relation of transverse moment map image

and the contact moment map image, and how the decompositions of the basic
first Chern class induce the Minkowski sum decompositions of the image of
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the contact moment map. The linkage of transverse moment map and the
contact moment map is played by the conditions cB1 (S) > 0 and c1(D) = 0
where D is the contact distribution with complex structure J . As will be
shown in Lemma 4.1 these two conditions imply that

cB1 (S) = τ [dηξ]B

for some positive constant τ where ηξ is the contact form with respect to the
Reeb vector field ξ. Since the transverse moment map is with respect to the
basic Kähler class cB1 (S) and the contact moment map is with respect to the
contact form ηξ we can compare the two moment maps. The result we obtain
about the comparison is stated as follows.

Proposition 1.1. Let (S,D, J, ξ) be a Sasaki manifold such that cB1 (S) > 0
and c1(D) = 0. Suppose that a real compact torus T acts effectively on S
preserving (D, J, ξ) and that the Lie algebra t of T contains ξ (but we do not
need to assume S is toric in this proposition). Suppose also that we are given
a decomposition (1.1).

(1) There is a unique point o, which we call the origin, in the image Pξ ⊂
{p ∈ t∗ | 〈p, ξ〉 = 1} of the contact moment map and a Minkowski sum
decomposition

(1.3) Pξ = Pξ,1 + · · · + Pξ,k

into the sum of convex polytopes Pξ,α ⊂ Pξ, where we regard the hy-
perplane {p ∈ t∗ | 〈p, ξ〉 = 1} as a vector space by choosing the origin
o to be zero, such that if there are transverse coupled Kähler-Einstein
metrics then the sum of the barycenters of Pξ,α lies at the origin o.

(2) The Minkowski sum decomposition in (1) is unique up to translations
of Pξ,α to Pξ,α + cα with cα ∈ t∗ such that

∑k
α=1 cα = o.

(3) The Minkoswski sum decomposition of Pξ in (1) determines a Minkowski
sum decomposition of the contact moment cone Cξ

(1.4) Cξ = Cξ,1 + · · · + Cξ,k

into the sum of cones Cξ,α ⊂ t∗ in such a way that the intersection of
Cξ,α with Pξ is Pξ,α.

The origin o in fact corresponds to the zero of the transverse moment
polytope as the proof shows.

A Sasaki manifold S of dimension 2m + 1 is said to be toric if its Kähler
cone C(S) is toric. Thus a real compact torus T of dimension m + 1 acts
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effectively on S preserving the contact distribution D, the pseudo-convex
CR-structure J on D and the Reeb vector field ξ, and the Lie algebra t of T
contains ξ where the elements of t are identified with vector fields on S. Let

C = {p ∈ t∗\{o} | 〈p, 
a〉 ≥ 0, a = 1, · · · , d}

be the moment cone of C(S), which is a convex rational polyhedral cone,
where 
a ∈ t such that 2π
1, · · · , 2π
d are primitive elements of the kernel Λ
of exp : t → T . For a compact toric Sasaki manifold S we have the following
equivalent conditions, c.f. [6], Theorem 1.2:

(a) cB1 (S) > 0 and c1(D) = 0.
(b) There is a rational vector γ ∈ t∗ such that

〈γ, ξ〉 = −m− 1 and 
a(γ) = −1 for a = 1, · · · , d.

(c) The power of the canonical line bundle K⊗�
C(S) of the cone C(S) is a

trivial line bundle for some integer 
.

Because of (c) we call these equivalent conditions Calabi-Yau condition of
the Kähler cone. The condition (b) appeared in [30] as (2.57), (2.60). The
existence of −γ is also known in algebraic geometry of toric varieties, see [9],
Theorem 4.2.8. The paper [10] also gives an account from the broader view
points of what they call angle cone.

Theorem 1.2. Let S be a toric Sasaki manifold satisfying Calabi-Yau con-
dition of the Kähler cone. Then, in Proposition 1.1, we can take

o = − 1
m + 1γ.

Using Proposition 1.1 and Theorem 1.2 we apply the volume minimization
argument of Martelli-Sparks-Yau in the following setting. Let S be a toric
Sasaki manifold satisfying Calabi-Yau condition of the Kähler cone. We regard

Ξo := {ξ′ ∈ C∗ ⊂ t | 〈ξ′,o〉 = 1}(1.5)
= {ξ′ ∈ C∗ ⊂ t | 〈ξ′, γ〉 = −m− 1}

as the space of Reeb vector fields satisfying the Calabi-Yau conditions of the
Kähler cone.

Let γ1, · · · , γk be basic Kähler classes with respect to the Reeb vector
field ξ. But we do not assume cB1 (S) = (γ1 + · · ·+γk)/2π for the moment. Let
Pξ,1, · · · , Pξ,k be compact convex polytopes corresponding to γ1, · · · , γk,
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which are assumed to be subsets in the contact moment polytope Pξ of S,
and Cξ,1, · · · , Cξ,k be convex polyhedral cones in the contact moment convex
cone Cξ of the Kähler cone C(S) of S such that Pξ,α = Cξ,α ∩ Pξ.

Choose ξ′ ∈ Ξo, and set for α = 1, · · · , k

Pξ′ = {p ∈ Cξ | 〈ξ′, p〉 = 1},

Pξ′,α = Cξ,α ∩ Pξ′ ,

Δξ′,α = {p ∈ Cξ,α | 〈ξ′, p〉 ≤ 1}.
We now consider the functional W : Ξo → R defined by

W (ξ′) :=
k∑

α=1
log Vol(Pξ′,α)

|ξ′|(1.6)

=
k∑

α=1
log((m + 1)Vol(Δξ′)).(1.7)

Theorem 1.3. Let S be a toric Sasaki manifold with Calabi-Yau condition
of the Kähler cone, i.e. cB1 (S) > 0 and c1(D) = 0.

(1) W is a strictly convex function on Ξo.
(2) If we have a critical point ξ′ ∈ Ξo such that

Pξ′ = Pξ′,1 + · · · + Pξ′,k

then there exist transverse couple Kähler-Einstein metrics with respect
to ξ′.

(3) In the case of k = 1, if we take γ1 = cB1 (S) and Pξ,1 = Pξ then we have
Pξ′,1 = Pξ′ for any ξ′ ∈ Ξo, and thus the assumption in (2) is always
satisfied. Further, the functional W is a strictly convex proper function
and always have a critical point.

The part (3) is due to Martelli-Sparks-Yau [30, 31], and the part (2) is an
attempt to extend their argument to the coupled case. However, even if we
assume cB1 (S) = (γ1 + · · · + γk)/2π and Pξ = Pξ,1 + · · · + Pξ,k it is not clear
whether P ′

ξ = Pξ′,1 + · · · + Pξ′,k for other ξ′ ∈ Ξo, and can not conclude the
existence of transverse coupled Kähler-Einstein metrics. In the last section,
this will be explained using the CR f -twist of Apostolov-Calderbank [2].

The volume minimization arguments were used for the studies of non-
linear problems extending Kähler-Einstein metrics in which Killing vector
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fields or Killing potentials are involved: Kähler-Ricci solitons [32], Sasaki-
Einstein metrics [30, 31] and conformally Kähler, Einstein-Maxwell metrics
[18], see also the survey [19]. In all these cases, a volume functional is defined
on the space of Killing vector fields, and the derivative is an obstruction to
the existence of those metrics which extends the obstruction to the existence
of Kähler-Einstein metrics [13].

After this introduction, the plan of this paper is as follows. In Section 2 we
review basic facts about Sasaki manifolds. In Section 3 we review known facts
on transverse Kähler geometry and the transverse moment map. In Section
4, we map a Minkowski sum decomposition of the image of the transverse
moment map to the image of the contact moment map to obtain a Minkowski
sum decomposition of of the contact moment map image. The properties of
the latter is stated as Proposition 1.1. Then we prove Theorem 1.2. In Section
5 we use the volume minimization argument and prove Theorem 1.3.

2. Deformations of Sasakian structures

Let S be a (2m + 1)-dimensional smooth manifold. A contact structure on
S is a 2m-dimensional distribution D ⊂ TS such that the Levi form LD :
D ×D → TS/D defined by

LD(X, Y ) = −ηD([X, Y ])

is non-degenerate where ηD : TS → TS/D is the projection. The pair (S,D)
is called a contact manifold, and D is also called the contact distribution.
We assume TS/D is an oriented real line bundle. If τ is a positive section of
TS/D, then ητ = τ−1ηD is a contact form, i.e. dητ |D is non-degenerate. Then
there is a unique vector field ξ, called the Reeb vector field, such that

i(ξ)ητ = 1, i(ξ)dητ = 0

where i(ξ) denotes the inner product by ξ. In this case ηD(ξ) = τ . The flow on
S generated by ξ, i.e. the one parameter group of transformations generated
by ξ, is called the Reeb flow. Since i(ξ)dητ = 0 and Lξdητ = 0 where Lξ

denotes the Lie derivative by ξ, then dητ descends to a symplectic form on
local orbit spaces of the Reeb flow. Let Ωk

B(S) denote the set of all k-forms
on S which are obtained by pulling back from the local orbit spaces of the
Reeb flow. We call such forms basic k-forms with respect to ξ. Obviously a
k-form α on S belongs to Ωk

B(S) if and only if i(ξ)α = 0 and Lξα = 0. The
2-form dητ is a typical example of a basic 2-form.

A vector field X on S is said to be a contact vector field if LXC
∞(D) ⊂

C∞(D).
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Lemma 2.1. Sending a contact vector field X to ηD(X) ∈ C∞(TS/D)
gives an isomorphism between the Lie algebra of contact vector fields and
C∞(TS/D). If σ = fτ ∈ C∞(TS/D) for a smooth function f ∈ C∞(S), then
the corresponding contact vector field X with ηD(X) = σ is expressed as

(2.1) X = fξ + Kf

for Kf ∈ C∞(D) satisfying

(2.2) i(Kf )dητ |D = −df |D

Proof. We only show (2.2). Other part of the proof is left to the reader, or
see the proof of Lemma 1 in [2], p.1055. If X is given by (2.1) then ηD(X) =
fτ = σ. For Y ∈ C∞(D) we have

(i(X)dητ )(Y ) = −Y f

since LXC
∞(D) = C∞(D). This implies

(i(X)dητ )|D = −df |D.

On the other hand, using (2.1) we have

i(X)dητ = i(Kf )dητ .

Then (2.2) follows from the last two equations.

Lemma 2.2. In Lemma 2.1, if [X, ξ] = 0 then f is a basic function with
respect to ξ, i.e. ξf = 0, and Kf descends to a Hamiltonian vector field of f
on local orbit spaces of the Reeb flow.

Proof. One can show that f is basic by

0 = (dητ )(X, ξ) = Xητ (ξ) − ξ(ητ (X)) − ητ ([X, ξ]).

One can also show [Kf , ξ] = 0 using (2.1) together with [X, ξ] = 0 and ξf = 0.
Thus Kf descends to the local orbit spaces of the Reeb flow, and (2.2) shows
that Kf is the Hamiltonian vector field of f .

Let J ∈ End(D) be an almost complex structure of the contact distribu-
tion D, i.e. J2 = −id. We say that (D, J) is a CR-structure if

D1,0 := {X − iJX |X ∈ D}
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is involutive, i.e. the set C∞(D1,0) of smooth sections of D1,0 is closed under
the bracket. A CR-structure (D, J) is said to be strictly pseudo-convex if
dητ (· , J ·)|D is a positive definite Hermitian form for a positive section τ .
Note that this definition is independent of the choice of a positive section τ .
Then the triple (S,D, J) is called a strictly pseudo-convex CR-manifold.

A contact vector field ξ is said to be a CR-vector field if LξJ = 0.

Definition 2.3. If ξ is a CR-vector field on a strictly pseudo-convex CR-
manifold and ηD(ξ) gives a positive section then we call (D, J, ξ) a Sasaki
structure and (S,D, J, ξ) a Sasaki manifold. The CR-vector field ξ is called
the Reeb vector field of the Sasaki manifold. (This definition of Reeb vector
field is compatible with the above definition if we take τ = ηD(ξ).)

Since LξJ = 0 and D1,0 is involutive then the local orbit spaces of the
Reeb flow have a complex structure. Further, for the submersions πi : Ui → Vi

of a small open set Ui ⊂ S onto a local orbit space Vi, the map

πi ◦ π−1
j |πj(Ui∩Uj) : πj(Ui ∩ Uj) → πi(Ui ∩ Uj)

is biholomorphic. The collection of such (Ui, Vi, πi)’s is called a transverse
holomorphic structure. Further, by the property of strong pseudo-convexity,
1
2dητ descends to Vi’s to define Kähler forms ωi’s, and πi ◦ π−1

j |πj(Ui∩Uj)’s are
Kähler isometries. We call the collection of such (Ui, Vi, πi, ωi)’s a transverse
Kähler strucure.

Remark 2.4. The convention of 1
2dητ , but not dητ , is the standard choice of

the transverse Kähler form. This makes 1
2 i∂∂r

2 the Kähler form on the cone
C(S), see the proof of Proposition 2.9.

Lemma 2.5. Let (S,D, J) be a strictly pseudo-convex CR-manifold. Suppose
that ξ and ξ′ be two commuting Reeb vector fields, i.e. [ξ, ξ′] = 0, giving rise
to two Sasaki structures (D, J, ξ) and (D, J, ξ′) on S. Then ξ′ is expressed as

(2.3) ξ′ = fξ + Kf

where Kf ∈ C∞(D) descends to a Killing vector field on local orbit spaces of
the Reeb flow of ξ and f is a positive basic function with respect to ξ which
descends to a Killing potential of Kf .

Proof. A section Y ∈ C∞(D) such that LξY = 0 descends to a vector field on
local orbit spaces of the Reeb flow of ξ, which we denote by Y ∨. For another
W ∈ C∞(D) such that LξW = 0 we have

[Y ∨,W∨] = ([Y,W ] − ητ ([Y,W ])ξ)∨.
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By Lemma 2.2 K∨
f is a Hamiltonian vector field of the basic function f . To

show that K∨
f is a Killing vector field we need to show LK∨

f
J∨ = 0. This is

equivalent to

(2.4) [K∨
f , J

∨Y ∨] = J∨[K∨
f , Y

∨].

But this follows from the following three equalities:

([ξ′, JY ] − ητ ([ξ′, JY ]ξ)∨ = J∨[ξ′, Y ]∨,

([fξ, JY ] − ητ ([fξ, JY ])ξ)∨ = f [ξ, JY ] − ((JY )f)ξ − ητ (f [ξ, JY ]
−((JY )f)ξ)ξ

= (fJ [ξ, Y ] − ((JY )f)ξ + ητ (((JY )f)ξ)ξ)∨

= (fJ [ξ, Y ])∨

and

J∨[fξ, Y ]∨ = (J([fξ, Y ] − ητ ([fξ, Y ])ξ))∨

= (J(f [ξ, Y ] − (Y f)ξ − ητ (f [ξ, Y ] − (Y f)ξ)ξ)∨

= (fJ [ξ, Y ])∨.

Alternatively, one may simply argue that, since the flow generated by ξ′ pre-
serves J and this flow descends to the flow generated by K∨

f preserving J∨,
we obtain LK∨

f
J∨ = 0.

Since both ητ (ξ) and ητ (ξ′) give positive orientation then

f = ητ (ξ′)
ητ (ξ)

> 0.

This completes the proof of Lemma 2.5.

Associated with a Sasaki structure we have a Riemannian metric g defined
by

g(ξ, ξ) = 1, g(ξ,D) = 0,
and

(2.5) gD = 1
2dητ (· J ·).

The Riemannian manifold (S, g) associated with the Sasaki Structure (S,D,
J, ξ) as above is often called a Sasaki manifold. The normalization of g(ξ, ξ) =
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1 is the standard choice, and this choice determines various constants. For
example, if (S, g) is an Einstein manifold, called a Sasaki-Einstein manifold,
then the Ricci curvature Ricci satisfies

(2.6) Ricci = 2mg,

and in this case the transverse Kähler metric is Kähler-Einstein with the
transverse Ricci curvature RicciT satisfying

(2.7) RicciT = (2m + 2) gT

where gT is the Kähler metric on the local orbit spaces of the Reeb flow
naturally induced from gD, called the transverse Kähler metric. Note that
many authors use different conventions of Ricci curvature between Rieman-
nian geometry and Kähler geometry because the trace is taken respect to an
orthonormal basis of the real tangent bundle in Riemannian geometry while
holomorphic tangent bundle in Kähler geometry, resulting in Kählerian Ricci
curvature being a half of the Riemannian Ricci curvature. Ricci curvature
in (2.7) is Riemannian Ricci curvature. To distinguish them we denote the
Kählerian Ricci curvature by Ric while the Riemannian Ricci curvature by
Ricci. Thus (2.7) is equivalent to

(2.8) RicT = (m + 1) gT .

By the same reason the Kählerian scalar curvature is one fourth of Rieman-
nian scalar curvature. In this paper we only deal with the Kählerian trans-
verse scalar curvature, which we denote by RT . Thus, for a Sasaki-Einstein
manifold, we have

(2.9) RT = m(m + 1).

Note also that the associated transverse Kähler form ωT is given by

(2.10) ωT = 1
2dητ .

As the expression of (2.10) shows, the transverse Kähler form ωT is identified
with the differential 2-form 1

2dητ on S as a basic 2-form.
Next we see that a Sasaki manifold is obtained as a link of a Kähler cone.
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Definition 2.6. Let (S, g) be a Riemannian manifold. The Riemannian cone
(V, gV ) of (S, g) is the pair of the product manifold V = R+ × S and the
warped product metric

gV = dr2 + r2g

on V where r is the standard coordinate of R+.

Let (V, gV ) be a Riemannian cone of (S, g) as above. If (V, gV ) is Kähler
then (S, g) is a Sasaki manifold in the following way. We identify (S, g) as the
submanifold {r = 1} in (V, gV ). Then

η = dcr|S={r=1}

is a contact form where our convention of dc is

(dcf)(Y ) = df(−JY ) = (i(∂ − ∂)f)(Y ),

D = ker η is a contact distribution, and ξ := Jr ∂
∂r |r=1 is the Reeb vector

field.

Proposition 2.7. Let (S,D, J, ξ) be a Sasaki manifold as defined in Defini-
tion 2.3. Then there is a Kähler cone (V, gV ) such that the Sasakian structure
on {r = 1} ⊂ V described as above is isomorphic to (S,D, J, ξ).

Proof. Let (V, gV ) be the Riemannian cone of (S, g). We show that the almost
complex structure J on the CR-structure D extends to an integrable complex
structure J on V such that (gV , J) is Kähler. Extend J on D to TV by

J(r ∂

∂r
) = ξ.

Consider dcr = dr(−J ·) with respect to J on V . Then one can check

dcr|{r=1} = ητ , τ = ηD(ξ).

We extend ητ to V by
ητ = dc log r.

One can then show that dr + irητ and C∞(D1,0 ∗) generates sections of the
type (1, 0) cotangent bundle of V and that they form a differential ideal. Thus
J on V is integrable.

Then since gV = dr2 + r2gS its fundamental 2-form ωV is computed by

ωV = dr(J ·) ∧ dr + r2gS(J, ·, ·)
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= dr ∧ dcr + r2

2 dητ

= 1
2∂∂r

2.

This shows that gV is a Kähler metric.

Thus we have an equivalent definition of Sasaki manifolds:

Definition 2.8. An odd dimensional Riemannian manifold (S, g) is called a
Sasaki manifold if its Riemannain cone (V, gV ) is Kähler.

3. Deformations of the transverse Kähler structures

As described in the previous section, a Sasakian structure on a differential-
ble manifold S is given by the triple of (D, J, ξ) where (D, J) is a strongly
pseudo-convex CR-structure and ξ is a Reeb vector field. When we consider
deformations of Sasakian structures we may separate into two types of de-
formations, one fixing (D, J) and the other fixing ξ. The case fixing (D, J)
was already considered in Lemma 2.5, in which ξ and ξ′ are commutative.
This leads us to the setting where a compact real torus T of dimension n acts
effectively on a Sasaki manifold (S,D, J, ξ) in such a manner that T preserves
(D, J) and the Lie algebra t of T contains ξ. Then T -action extends naturally
as isometries of the Kähler cone associated to (S,D, J, ξ), and the image of
its moment map μξ : V → t∗ is a convex polyhedral cone ([28]). If further
n = m+1, which is the maximal dimension of the effective torus action, V is a
toric manifold and the complex structure of V is invariant under T -invariant
deformations of (D, J, ξ).

Motivated by this toric setting, when we consider deformations fixing ξ we
restrict ourselves to the situation where the complex structure of the Kähler
cone V is fixed. Then the transverse holomorphic structure on the local orbit
spaces of the flow generated by ξ is also fixed. Thus we try to deform the
transverse Kähler form

ωT = 1
2dηξ

into another transverse Kähler form with different contact structure where
we have written ηξ instead of ητ with τ = ηD(ξ) and keep this new notation
hereafter. As in Kähler geometry one may deform the transverse Kähler form
ωT into

ωT
ϕ = ωT + i∂B∂Bϕ
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using a basic smooth function ϕ ∈ C∞
B (S). Here ∂B and ∂B are basic ∂ and

∂ operators which are naturally defined on complex valued basic forms, and
∂B naturally defines basic Dolbeault cohomology Hp,q

B (S). Then we have

ωT
ϕ = 1

2dd
c log re2ϕ

= 1
2d(ηξ + 2dcϕ).

Thus

(3.1) D′ := ker(ηξ + 2dcϕ)

is a variation of D with fixed Reeb vector field ξ. This deformation of D into
D′ is regarded as a deformation of the cone manifold structure by changing
the radial function r into re2ϕ. As argued in [25, 7, 5, 3], if we fix D and
deform ξ we can take {r′ = 1} = {r = 1} = S, but when ξ is fixed and D is
deformed the submanifold {r = 1} has to change into {re2ϕ = 1}.

Let ω be arbitrary basic Kähler form (not necessarily equal to ωT = 1
2dηξ).

Denote by ρT (ω) the transverse Ricci form associated with the transverse
Ricci curvature RicT (ω):

ρT (ω) = −i∂B∂B logωm.

Then the basic cohomology class represented by ρT (ω)/2π is independent of
the choice of the Kähler form ω. We call this basic cohomology class the basic
first Chern class and denote it by cB1 (S).

Next we recall known results about an obstruction to the existence of
transverse Kähler-Einstein metrics and transverse coupled Kähler-Einstein
metrics studied in [13], [14], [15], [20], [16], [21], [22], [17]. Suppose cB1 (S) > 0
and choose this basic class as a basic Kähler class. Unless we assume c1(D) = 0
as in Lemma 4.1 in Section 4, this class may not be a positive multiple of
the standard transverse Kähler class [ωT ]B = [ 12dηξ]B where [·]B denotes the
basic cohomology class, but for later applications we have in mind the case
when cB1 (S) = (m + 1)[ 12dηξ]B.

Let T be a real compact torus acting effectively as CR-automorphisms of
(D, J) such that ξ is contained in the Lie algebra t of T . We identify a Lie
algebra element X ∈ t as a smooth vector field on S. Further, by Lemma 2.5,
X descends to a holomorphic Killing potential on local orbit spaces of the
Reeb flow of ξ, thus as a transverse holomorphic vector field. We take this
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view point below. Let ω be a T -invariant basic Kähler form in 1
m+1c

B
1 (S). Let

F be a T -invariant basic smooth function on S such that

(3.2) ρT (ω) = (m + 1)ω + i∂B∂BF.

Then since cB1 (S) > 0, for any X ∈ t there exists a smooth basic function v
such that

(3.3) i(X)ω = −dv.

Note that for ξ ∈ t, i(ξ)ω = 0 since ω is basic and thus v = 0. Then with the
normalization of v, by

(3.4)
∫
S
v eFωm ∧ ηξ = 0

the same arguments as in Proposition 4.1 in [14] (see also Theorem 2.4.3 in
[15]) one can show that v satisfies

(3.5) ΔBv + viFi + (m + 1)v = 0

where ΔB denotes the ∂B-Laplacian. Note that

viFi = gijvjFi

= i

2(X − iJX)F

= 1
2(JX)F

since F is T -invariant. Define Fut : t/Rξ → R by

Fut(X) =
∫
S
viFi ω

m ∧ ηξ(3.6)

=
∫
S

1
2(JX)F ωm ∧ ηξ.

Then as in [13], [20], Fut is independent of choice of ω in 1
m+1c

B
1 (S), and the

non-vanishing of Fut obstructs the existence of a transverse Kähler-Einstein
metric in 1

m+1c
B
1 (S) by (3.2). This invariant can be expressed in terms of the

transverse moment map μT : S → (t/Rξ)∗

(3.7) 〈μT (x), X〉 = v(x)
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where v is related with X by (3.3) with the normalization (3.4). The image of
μT is a compact convex polytope, and this polytope is unchanged even if the
Kähler form ω is changed in the same cohomology class. This can be checked
by noting that the vertices of the polytopes are the critical values of v’s and
that if ω changes to ωϕ = ω + i∂B∂Bϕ then v changes to v + vαϕα, and the
critical values do not change. Notice that (3.4) and (3.5) are also preserved
under these changes. Then since

(3.8) Fut(X) = −(m + 1)
∫
S
v ωm ∧ ηξ

by (3.5) it follows that Fut vanishes if and only if the barycenter of the image
of the moment map μT lies at zero.

To express this moment polytope of μT we let KS denote the complex line
bundle over S consisting of basic (m, 0)-forms. Then cB1 (S) = c1(K−1

S ). The
moment polytope of μT is associated with the basic Kähler class 1

m+1K
−1
S .

Thus we express the moment polytope of μT by 1
m+1P−KS .

Next we recall an obstruction to the existence of transverse coupled
Kähler-Einstein metrics. Suppose cB1 (S) > 0. A decomposition of cB1 (S) is
a sum

cB1 (S) = (γ1 + · · · + γk)/2π

of positive basic (1, 1) classes γα/2π. If we choose basic Kähler forms ωα

representing γα, there exist smooth basic functions Fα such that

(3.9) ρT (ωα) −
√
−1∂B∂BFα =

k∑
β=1

ωβ , α = 1, · · · , k.

We say ωα’s are transverse coupled Kähler-Einstein metrics if Fα is constant
so that transverse coupled Kähler-Einstein metrics satisfy

ρT (ω1) = · · · = ρT (ωk) =
k∑

β=1
ωβ .

We will also call transverse coupled Kähler-Einstein metrics coupled Sasaki-
Einstein metrics when we further assume c1(D) = 0 since, for k = 1, 1

m+1ω1
is a Sasaki-Einstein metric with respect to a modified contact form as in (3.1).

We choose ωα in γα and normalize Fα so that

(3.10) eF1ωm
1 = · · · = eFkωm

k
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and put

(3.11) dV := eFαωm
α ∧ ηξ.

For X ∈ t, let vα be the basic function satisfying

(3.12) i(X)ωα = −dvα

with normalization condition

(3.13)
∫
S
(v1 + · · · + vk) dV = 0.

Then as proved in [21], Theorem 3.3, vα’s satisfy

(a) ∇i
αvα = ∇i

βvβ for i = 1, 2, . . . , n and α, β = 1, 2, . . . , k.

(b) Δαvα + viαFαi +
k∑

β=1
vβ = 0 for α = 1, 2, . . . , k, where Δα = −∂

∗
α∂ is the

Laplacian with respect to the Kähler form ωα.

It is also shown in [21], Theorem 5.2, that (3.13) is equivalent to the Minkowski
sum relation

k∑
α=1

Pα = P−KS

where Pα is the moment polytope for ωα. This of course means

(3.14)
k∑

α=1

1
m + 1Pα = 1

m + 1P−KS ,

the right hand side being the moment polytope for μT . Define Futcpld : t → R
by

(3.15) Futcpld(X) =
k∑

α=1

∫
S vα ωm

α ∧ ηξ∫
S ω

m
α ∧ ηξ

.

Then Futcpld is independent of the choice of ωα in γα, the nonvanishing of
Futcpld obstructs the existence of transverse coupled Kähler-Einstein metrics
and Futcpld vanishes if and only if the sum of the barycenters of Pα lies at zero
([21], Theorem 1.4). In the toric case where dimT = m + 1, the vanishing of
Futcpld is a sufficient condition for the existence of transverse coupled Kähler-
Einstein metrics, which is a straightforward extension of the celebrated results
of Wang-Zhu [34], Donaldson [12], Hultgren [26].
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As a summary of this section, the obstructions Fut, Futcpld and the trans-
verse moment polytopes of μT depend only on the Reeb vector field ξ, its
basic first Chern class cB1 (S) and its decomposition. But as mentioned above
we have in mind the case cB1 (S) = (m+ 1)[ 12dηξ]B, in which case Fut, Futcpld
are independent of the choice of D′ of the form (3.1). As a conclusion of this
section, when we study Fut, Futcpld and moment polytopes under the varia-
tion of Reeb vector fields we may choose an arbitrary strongly pseudo-convex
CR-structure (D, J), fix it, and thus are in the position of Lemma 2.5.

4. The transverse moment map and the contact moment
map

The equality (2.8) shows that a necessary condition for the existence of a
Sasaki-Einstein metric is

(4.1) cB1 (S) = (m + 1)[12dηξ]B

as a basic cohomology. Here [dηξ]B denotes the basic cohomology class which
is a positive (1, 1)-class as a basic class though it is zero as a de Rham class
of S. Recall that the basic first Chern class is said to be positive, denoted
cB1 (S) > 0, if it is represented by a positive basic (1, 1)-form, i.e. a basic Käh-
ler form. This is an obvious necessary condition for the existence of Sasaki-
Einstein metric by (4.1). The following lemma is well-known and important
for us, see [4].

Lemma 4.1. If cB1 (S) > 0 and c1(D) = 0 then by changing r into ra for a
positive constant a if necessary we can assume (4.1) is satisfied. (The trans-
formation from r into ra is called the D-homothetic transformation.)

Proof. If c1(D) = 0, then cB1 = τ [dηξ] for some constant τ by [4], Corollary
7.5.26. Since cB1 (S) > 0 we must have τ > 0. Then we may take a = (m +
1)/τ .

The summary at the end of previous section is an observation concerning
the transverse moment map μT , but we may compare it with the contact
moment map μcon : V → t∗ defined by

(4.2) 〈μcon(x), X〉 = (r2ηξ(X))(x).

The linkage between the transverse moment map μT , which is defined with
respect to the transverse Kähler class cB1 (S), and the contact moment map
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μcon, which is defined with respect to the contact form ηξ, is played by the
conditions c1(D) = 0 and cB1 (S) > 0 in Lemma 4.1. The relation of v in (3.7)
and ηξ(X) in (4.2) is that

v = m + 1
2 ηξ(X) + c

where c is determined by the normalization (3.4).
By [28], the image of μcon is a convex polyhedral cone, which we denote

by C. Identifying S with {r = 1} we have the moment map of S by restricting
μcon to {r = 1}. The image of S is

Pξ := Image(μcon) ∩ {p ∈ t∗ | 〈p, ξ〉 = 1}

since ηξ(ξ) = 1. This set is called the characteristic hyperplane in C.
Since the Hamiltonian functions for the basis of t/Rξ determine affine

coordinates on the images of μT and μcon, the map

(4.3) Φ := μT ◦ (μcon)−1|Pξ
: Pξ →

1
m + 1P−KS

is an affine map in terms of those affine coordinates. Note that 1
m+1P−KS is

in (t/Rξ)∗ which is a vector space and contains the origin 0 but that Pξ is in
a hyperplane in the cone C ⊂ t∗.

Proof of Proposition 1.1. We take o and Pξ,α so that to be Φ(o) = 0 and
Φ(Pξ,α) = 1

m+1Pα in (3.14). Then we obtain the Minkowski decomposition
as claimed in (1). Further, the barycenter of the domain polytope is mapped
to the barycenter of the image polytope by an affine map, and thus the last
claim in (1) follows.

By (3.13), Pα’s are unique up to translations Pα + cα satisfying c1 + · · ·+
ck = 0, from which (2) follows.

There is a unique cone Cξ,α such that Cξ,α ∩ Pξ = Pξ,α. Then (1.3) im-
plies (1.4). This completes the proof of Proposition 1.1.

Suppose now that the dimension of the torus T is m+1 so that the Kähler
cone V = C(S) is a toric manifold. Then the moment map image is a convex
polyhedral cone which is good in the sense of Lerman [29] described as follows.
Let C be the convex rational polyhedral cone described as

C = {p ∈ t∗\{o} | 〈p, 
a〉 ≥ 0, a = 1, · · · , d}
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where 
a ∈ t such that 2π
1, · · · , 2π
d are primitive elements of the kernel Λ
of exp : t → T . We regard 
a as a linear function on t∗ and write


a(p) = 〈p, 
a〉 for p ∈ t∗.

We say C is good if for any face F = ∩k
j=1{
aj = 0} of codimension k we have

(4.4) (R
a1 + · · · + R
ak) ∩ Zm+1 = Z
a1 + · · · + Z
ak .

It is shown in [29] that if S is smooth then C := μcon(C(S)) is a good con-
vex rational polyhedral cone and conversely if C is a good convex rational
polyhedral cone then there is a smooth toric Sasaki manifold S such that
μcon(C(S)) = C.

For a toric Sasaki manifold there are descriptions using the action-angle
coordinates [24], [1], [30], [31]. As explained in the Introduction, a salient fact
when cB1 (S) > 0 and c1(D) = 0 is that there is a distinguished point γ ∈ Pξ

with the property that

(4.5) 〈γ, ξ〉 = −(m + 1) and 
a(γ) = −1 for a = 1, · · · , d,

see [30], [6]. Theorem 1.2 claims that the origin o coincides with q := − 1
m+1γ.

Proof of Theorem 1.2. By the proof of Proposition 1.1, we have only to show
Φ(q) = 0 for the affine map Φ defined (4.3). This proof is motivated by the
computations in [10]. First of all, by Donaldson’s expression of the obstruction
in [11]

(4.6) Fut(X) =
∫
∂Pξ

yσξ −
∫
∂Pξ

σξ∫
Pξ

dx̃

∫
Pξ

y dx̃

where y is an affine function corresponding to X ∈ t, x̃ = (x̃1, · · · , x̃m) are
affine coordinates on the hyperplane {p ∈ t∗ | 〈p, ξ〉 = 1}, and

d
a ∧ σξ = −dx̃1 ∧ · · · ∧ dx̃m on the facet Fa ∩ Pξ.

Note that
∫
∂Pξ

σξ∫
Pξ

dx̃
is the average (Kähler geometers’) scalar curvature, which

is equal to m(m+ 1) for ω ∈ 2πcB1 (S)/(m+ 1). As shown in [10], Lemma 3.8,
σξ is expressed using the distinguished point q by

(4.7) σξ = 1
m + 1

m∑
i=1

(−1)i+1(x̃i − qi)dx̃1 ∧ · · · ∧ d̂x̃i ∧ · · · ∧ dx̃m.
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Using dσξ = m(m + 1)dx̃ and Stokes theorem, one can show

(4.8)
∫
∂Pξ

σξ = m(m + 1)
∫
Pξ

dx̃

as expected to get average scalar curvature and
∫
Pξ

x̃idx̃ = 1
m(m + 1)

∫
Pξ

x̃idσξ

= 1
m(m + 1)

∫
∂Pξ

x̃iσξ −
1
m

∫
Pξ

(x̃i − qi)dx̃.(4.9)

It follows from (4.8) and (4.9) that

(4.10)
∫
∂Pξ

x̃iσξ −
∫
∂Pξ

σξ∫
Pξ

dx̃

∫
Pξ

x̃i dx̃ = −(m + 1)
∫
Pξ

x̃idx̃ + (m + 1)qi.

Comparing (4.6) and (4.10) we see that Fut vanishes if and only if the barycen-
ter of Pξ lies at the distinguished point q. By the affine map Φ, the barycenter
of Pξ is mapped to the barycenter of 1

m+1P−KS . Therefore, in view of (3.8),
q is mapped to the origin 0 in 1

m+1P−KS .

5. Volume minimization

In this section, we prove Theorem 1.3. Let C be one of Cξ or Cξ,α’s, and C∗ be

C∗ = {y ∈ t | 〈y, p〉 ≥ 0 for all p ∈ C}.

For a Reeb vector field ξ we put

Pξ = {p ∈ C ⊂ t∗ | 〈p, ξ〉 = 1}.

Let q ∈ Pξ be fixed (we have q in the proof of Theorem 1.2 in mind which is
also equal to the origin o in the statement of Theorem 1.2), and put

Ξq = {ξ′ ∈ C∗ ⊂ t | 〈ξ′, q〉 = 1}.

We regard Ξq as the space of Reeb vector fields, and look for ξ′ ∈ Ξq which
minimizes the volume functional defined as follows. For ξ′ ∈ Ξq we define

(5.1) Pξ′ = {p ∈ C | 〈ξ′, p〉 = 1},
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Δξ′ = {p ∈ C | 〈p, ξ〉 ≤ 1}
and the volume functional Vol : Ξq → R by

Vol(ξ′) := 1
|ξ′|Vol(Pξ′)

= (m + 1)Vol(Δξ′).(5.2)

Proposition 5.1. Let ξt = ξ′ + tν be a path in Ξq. Then

d

dt
Vol(ξt)

∣∣∣∣
t=0

= −m + 1
|ξ′|

∫
Pξ′

〈p, ν〉dσ

where dσ is the natural measure on Pξ′ induced from Pξ′ ⊂ t∗ ∼= Rm+1

where the last isomorphism is induced from the property (4.4) of good convex
polyhedral cone.

Proof. Let ξ′ be in Ξq and p be in Pξ′ so that 〈p, ξ′〉 = 1. For the path
ξt = ξ′ + tν in Ξq we have 〈q, ν〉 = 0. Write p′ ∈ Pξt as p′ = sp. Then

s = 1
1 + t〈p, ν〉

= 1 − t〈p, ν〉 + t2(〈p, ν〉)2 + O(t3).

Thus

d

dt

∣∣∣∣
t=0

d(sp1) ∧ · · · ∧ d(spm+1) = −(m + 2)〈p, ν〉dp1 ∧ · · · ∧ dpm+1

From this

d

dt
Vol(Δξt)

∣∣∣∣
t=0

= −(m + 2)
∫

Δξ′
〈p, ν〉dp1 ∧ · · · ∧ dpm+1.

Using the Stokes theorem we have

(m + 2)
∫

Δξ′
pidp1 ∧ · · · ∧ dpm+1 =

∫
Δξ′

(σj
∂

∂pj
(pjpi))dp1 ∧ · · · ∧ dpm+1

= 1
|ξ′|

∫
Pξ′

pidσ

Note that (5.2) can also be proved similarly. Thus we obtain

d

dt
Vol(ξt)

∣∣∣∣
t=0

= (m + 1) d

dt
Vol(Δξt)

∣∣∣∣
t=0
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= −(m + 1)(m + 2)
∫

Δξ′
〈p, ν〉dp1 ∧ · · · ∧ dpm+1

= −m + 1
|ξ′|

∫
Pξ′

〈p, ν〉dσ.

This completes the proof of Proposition 5.1.

Proposition 5.2. In the same situation as in Proposition 5.1

d2

dt2
Vol(ξt)

∣∣∣∣∣
t=0

= (m + 1)(m + 2)
|ξ′|

∫
Pξ′

〈p, ν〉2dp1 ∧ · · · ∧ dpm+1,

Proof. By similar computations as in the proof of the previous proposition
we obtain the desired equality from

d2

dt2
Vol(ξt)

∣∣∣∣∣
t=0

= (m + 1)(m + 2)(m + 3)
∫

Δξ′
〈p, ν〉2dσ

and
(m + 3)

∫
Δξ′

pipjdp1 ∧ · · · ∧ dpm+1 = 1
|ξ′|

∫
Pξ′

pipjdσ.

This completes the proof of Proposition 5.2.

Proof of Theorem 1.3. Let us take C in Proposition 5.1 and 5.2 to be one of
Cξ,1, · · · , Cξ,k, and consider the functional W : Ξq → R defined by

W (ξ′) =
k∑

α=1
log Vol(Pξ′,α)

|ξ′| .

This means that we take Pξ′ in (5.1) to be

Pξ′,α := {p ∈ Cξ,α | 〈p, ξ′〉 = 1}

and apply the subsequent computations of Proposition 5.1 and 5.2. For a
path ξt = ξ′ + tν, we obtain by Proposition 5.1, Proposition 5.2 and Schwarz
inequality,

d2

dt2
W (ξt)

∣∣∣∣∣
t=0

≥ (m + 1)
k∑

α=1

∫
Pξ′,α

〈p, ν〉2dp1 ∧ · · · ∧ dpm+1

Vol(Pα,ξ′)
.

This shows that W is strictly convex. This completes the proof of (1).
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Suppose that we have a critical point ξ′ at which the Minkowski sum we
have the Minkowski sum decomposition

Pξ′ = Pξ′,1 + · · · + Pξ′,k

holds. Then Proposition 5.1 shows that

k∑
α=1

∫
Pξ′,α

〈p− q, ν〉dσ
Vol(Pξ′,α) = 0

for any ν with 〈q, ν〉 = 0. This implies that the sum of the barycenters of
Pξ′,α’s lie at q, which is the origin o. Since the Minkowski sum decomposition
Pξ′ = Pξ′,1 + · · ·+Pξ′,k corresponds to the decomposition of the positive basic
first Chern class cB1 (S, ξ′)

2πcB1 (S, ξ′) = γ′1 + · · · + γ′k

with respect to ξ′ and the corresponding Minkowski sum decomposition of the
transverse moment map image

∑k
α=1

1
m+1P ′

α as in (3.14), this further implies
that the sum of the barycenters of the transverse moment polytopes P ′

α’s for
ξ′ lie at zero. It follows from [21], Theorem 1.4, that there exist transverse
coupled Kähler-Einstein metrics ω′

α in γ′α. This completes the proof of (2).
In the case of k = 1, if we take Pξ,1 = Pξ then Cξ,1 = Cξ (which is indeed

a convex polyhedral cone of the contact toric manifold and independent of
ξ). Hence

Pξ′,1 = Cξ ∩ Pξ′ = Pξ′ .

As shown in (2), W is a strictly convex function. W is a proper function
because as ξ′ tends to the boundary of Ξo, Pξ′ tends to plane passing through
o parallel to a facet, and the volume tends to infinity. This completes the proof
of (3).

With fixed Reeb vector field ξ, any Reeb vector field ξ′ ∈ t∗ such that
〈o, ξ′〉 = 1 determines a toric Sasaki structure satisfying the Calabi-Yau con-
dition of the Kähler cone. As was remarked in the introduction, even if we
assume cB1 (S) = (γ1 + · · · + γk)/2π and Pξ = Pξ,1 + · · · + Pξ,k we do not in
general obtain

(5.3) P ′
ξ = Pξ′,1 + · · · + Pξ′,k
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for other ξ′ ∈ Ξo, nor a decomposition of the basic first Chern class cB1 (S, ξ′)
with respect to ξ′ in the form

(5.4) 2πcB1 (S, ξ′) = γ′1 + · · · + γ′k.

The failure of getting a Minkowski sum decomposition (5.3) can be seen from
the non-linearity of the CR f -twist of Apostolov-Calderbank [2], see also [33].
For this we use Lemma 2.5.

If ξ′ ∈ t is another Reeb vector field then by Lemma 2.5 there is a positive
Killing potential f of ξ′ with respect to ξ satisfying (2.3). This implies

ηξ′ = ηD(ξ′)−1ηD = 1
f
ηξ.

If x1, · · · , xn and x′1, · · · , x′n are affine coordinates in terms of a basis of t on
Pξ and Pξ′ respectively such that o is (0, · · · , 0) in both of the coordinates
then

x′i = xi

f
.

Let P̃ξ and P̃ξ,α be the f -twist of Pξ and Pξ,α. If x = x1 + · · · + xk for some
xα ∈ Pξ,α the f -twist of x is

x̃ = x
f(x)

= x1 + · · · + xk

f(x)

�=
k∑

i=1

xi

f(xi)
= x̃1 + · · · + x̃k

The last inequality explains the failure of getting a Minkowski sum

P̃ ′
ξ = P̃ξ′,1 + · · · + P̃ξ′,k

by the f -twist.
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