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Genericity on submanifolds and application to universal
hitting time statistics

Han Zhang

Abstract: We investigate Birkhoff genericity on submanifolds of
homogeneous space X = SLd(R) � (Rd)k/SLd(Z) � (Zd)k, where
d ≥ 2 and k ≥ 1 are fixed integers. The submanifolds we con-
sider are parameterized by unstable horospherical subgroup U of
a diagonal flow at in SLd(R). As long as the intersection of the
submanifold with any affine rational subspace has Lebesgue mea-
sure zero, we show that the trajectory of at along Lebesgue almost
every point on the submanifold gets equidistributed on X. This
generalizes the previous work of Frączek, Shi and Ulcigrai in [8].

Following the scheme developed by Dettmann, Marklof and Ström-
bergsson in [3], we then deduce an application to universal hitting
time statistics for integrable flows.
Keywords: Homogeneous dynamics, ergodic theory, equidistri-
bution, diagonal flow.

1. Introduction

Let (X,B, μ, R) be a probability measure preserving system, where (X,B)
is a Borel measurable space with probability measure μ, and Rt : X → X

is an R-action (or Z-action) preserving μ. Assume that R is ergodic, then
Birkhoff’s ergodic theorem (cf. [4]) asserts that, for any f ∈ L1

μ(X),

1
T

∫ T

0
f(Rtx)dt T→∞−−−→

∫
X
fdμ,

(
or 1

N

N∑
n=1

f(Rnx) N→∞−−−−→
∫
X
fdμ

)
,(1.1)

for μ-almost every x ∈ X. In particular, (1.1) holds for any f ∈ Cc(X),
where Cc(X) denotes the collection of all compactly supported and continuous
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functions on X. Therefore, (1.1) implies that for μ-almost every x ∈ X,

1
T

∫ T

0
δRtxdt

T→∞−−−→ μ,

(
or 1

N

N∑
n=1

δRnx
N→∞−−−−→ μ

)
,(1.2)

in the weak* topology on the set of all probability measures on X. Here δ is
the Dirac measure on X.

For x ∈ X, we say that x is Birkhoff generic with respect to (μ,R)
if x satisfies (1.2). Given a Radon measure ν on X (possibly singular to μ),
if ν-almost every x ∈ X is Birkhoff generic with respect to (μ,R), we say
that ν is Birkhoff generic with respect to (μ,R). It is then natural to ask the
following.
Question 1.1. Under what conditions the measure ν is Birkhoff generic with
respect to (μ,R)?

This question had been previously studied in the case of X = R/Z, μX

is the Lebesgue measure on X and Rn = ×n mod Z in [10]. It was shown
that for any m,n ∈ N, any Rm invariant ergodic probability measure ν is
Birkhoff generic with respect to (Rn, μX). This result was strengthened later
in [9]. An analogous question was also studied in the context of moduli space
of translation surfaces in [29].

We consider Question 1.1 in the setting of homogeneous dynamics. Let
X = G/Γ, where G is a Lie group and Γ is a lattice in G. Here and hereafter
let μ = μX be the G-invariant probability measure on X. Let {Rt}t∈R be a
one-parameter flow in X. Assume that Rt = u(t), where {u(t)}t∈R is a one-
parameter unipotent flow, that is, the adjoint action of u(t) on the Lie algebra
of G is unipotent. In this case, Ratner’s uniform distribution theorem [20]
says that for any x ∈ X, x is Birkhoff generic with respect to (ν, u(t)), where
ν is the u(t)-invariant probability measure supported on the orbit closure
{u(t)x : t ∈ R}. By Ratner’s orbit closure theorem [19], these orbit closures
are all homogeneous. Thus this provides a satisfactory answer to Question 1.1.

On the other hand, when Rt = at, here and hereafter {at}t∈R is a one-
parameter diagonal flow on G, that is, the adjoint action of at on Lie algebra
of G is semisimple, a description of Birkhoff genericity of x ∈ X under the
flow at is much harder. Indeed, the question of describing the orbit closures
of diagonal action remains open (cf. [15][27, Conjecture 1]).

Nevertheless, there is a natural class of probability measures ν on X that
are interesting to study with respect to Question 1.1. This class of measures
is given as follows. We define the unstable horospherical subgroup U+ with
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respect to at by

U+ := {g ∈ G : a−tgat
t→∞−−−→ Id},

where Id is the identity element of G. Let Y ⊂ U+ be a submanifold and ν
be a normalized bounded supported volume measure of Y (here and hereafter
by normalized measure, we mean that ν is renormalized to be a probability
measure). It has been proved in [21][22][23][28] that if Y satisfies certain
algebraic conditions, then the translation of the measure ν under at converges
weakly to μ as t → ∞. That is, for any f ∈ Cc(X),∫

f(atx)dν(x) t→∞−−−→
∫

fdμ.

As in Question 1.1, it is curious to ask the following
Question 1.2. Assume that a bounded supported normalized volume mea-
sure ν of a submanifold Y ⊂ U+ is such that the translate of ν under at is
equidistributed with respect to μ, is it true that ν is also Birkhoff generic
with respect to (μ, at)?

Roughly speaking, Question 1.2 is answered when the manifold Y is con-
siderably “large” compared to the unstable horosphere subgroup of at. In [25],
Shi considered the situation where G is a semisimple Lie group, Y = U is the
at expanding subgroup (cf. [24]) of U+ and ν is a normalized bounded sup-
ported Haar measure on U . By [21], ν satisfies the assumption of Question 1.2.
Shi showed that ν is also Birkhoff generic with respect to (μ, at), and thus gave
an affirmative answer to Question 1.2. In the special case where G = SLd(R)
and Γ = SLd(Z), authors in [13] also obtained the effective convergence rate
of (1.2).

In [8], the authors considered the setting where G = SL2(R) � R2, Γ =
SL2(Z) � Z2 and X = G/Γ. One of the main results in [8] asserts that if Y
is a C1 curve in U+ that intersects any affine rational line in a Lebesgue null
set, then a normalized bounded supported volume measure ν on Y is Birkhoff
generic with respect to (μ, at). By the equidistribution result of translation
of such ν under at in [3], the result in [8] also gives an affirmative answer to
Question 1.2 in the case where Y is a curve.

Let X = SL3(R)/SL3(Z). In a recent preprint [12, Theorem 1.4], it is
shown that when the natural measure ν on the planar line L ⊂ U+ gets
equidistributed under at, then for ν almost every point x in L, the orbit
{atx}t≥0 is dense in X. This supports an affirmative answer to Question 1.2.

The aim of this paper is to generalize the genericity results in [8] to
X = SLd(R) � (Rd)k/SLd(Z) � (Zd)k and gives an affirmative answer to
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Question 1.2 when the manifold Y satisfies certain diophantine condition.
We also deduce an application of our results to the statistics of universal
hitting time for integrable flows.

1.1. Notations

From now on, any vector in the Euclidean space will be taken to be a column
vector, and we will use boldface letters to denote vectors and matrices. Also,
a.e. will be the shorthand for Lebesgue almost everywhere. | · | will denote
Lebesgue measure of measurable subsets of Euclidean space or absolute value
of real numbers. ‖·‖ will denote the standard Euclidean norm and ‖·‖∞ the
sup norm of a vector or matrix. Throughout this article, for two matrices A

and B, A ·B will denote matrix multiplication.
For m,n ∈ N, Matm×n(R) will denote the space of m by n real matrices.

(Rn)m is the direct product of m copies of Rn.
Fix integers d ≥ 2, k ≥ 1. Let G′ = SLd(R), G = SLd(R) � (Rd)k,

Γ′ = SLd(Z) and Γ = SLd(Z)� (Zd)k. It is well known that Γ′ is a lattice in
G′ and Γ is a lattice in G.

Let X = G/Γ. Denote μX the G-invariant probability measure on G/Γ.
Note that the action of G′ on (Rd)k is given by

g · v = (g · v1, · · · , g · vk),

where g ∈ G′ and v = (v1, · · · ,vk) with vi ∈ Rd. The multiplication law in
G is given by

(g,v) · (g′,v′) = (g · g′,v + g · v′).

G′ is naturally embedded into G by

G′ ∼= (G′,0) ≤ G.

Fix an r ∈ {1, · · · , d− 1}. For t ∈ R and s ∈ Matr×(d−r)(R), denote

at = diag[e(d−r)t, · · · , e(d−r)t, e−rt, · · · , e−rt],(1.3)

u(s) =
[

1r s
0d−r,r 1d−r

]
,(1.4)

U := {u(s) : s ∈ Matr×(d−r)(R)} ∼= Matr×(d−r)(R).(1.5)
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For a column vector or a matrix v, let (v)≤r (or (v)>r) be the first r rows
(or last d− r rows) of v. For example, if v ∈ (Rd)k, then

(v)≤r ∈ (Rr)k, (v)>r ∈ (Rd−r)k.

With the above notations, the unstable horospherical subgroup U+ of at
in G is

U+ = U ·
{(

Id,

[
(v)≤r

0

])
: v ∈ (Rd)k

}
.

Lastly, for a map ϕ : Matr×(d−r)(R) → (Rd)k, we write ϕ(s) =
(ϕij(s))1≤i≤d,1≤j≤k.

We also write

uϕ(s) := u(s) · (Id,ϕ(s)).(1.6)

1.2. Main results

For any s ∈ Matr×(d−r)(R) and T > 0, define the probability measure

μs,T = 1
T

∫ T

0
δatuϕ(s)Γdt.(1.7)

As before, we say that uϕ(s)Γ is Birkhoff generic with respect to (X,μX , at)
if μs,T converges to μX in the weak*-topology as T → ∞.

One of our main results is the following:

Theorem 1.3. Let U ⊂ Matr×(d−r)(R) be a bounded open subset. Let ϕ :
U → (Rd)k be a C1-map satisfying (ϕ(s))>r ≡ 0 for any s ∈ U . Assume that
for any m ∈ Zk \ {0},

|{s ∈ U : (ϕ(s))≤r · m ∈ s · Zd−r + Zr}| = 0,(1.8)

then for Lebesgue a.e. s ∈ U , uϕ(s)Γ is Birkhoff generic with respect to
(X,μX , at).

Using the observation that if a trajectory equidistributes with respect to
μX , then all other parallel trajectories will also equidistribute with respect to
μX (see Lemma 2.3), we can remove the assumption that (ϕ(s))>r ≡ 0 and
strengthen Theorem 1.3 to the following.
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Corollary 1.4. Let U be a bounded open subset of Matr×(d−r)(R). Let ϕ :
U → (Rd)k be a C1 map. If for any m ∈ Zk \ {0},

|{s ∈ U : (ϕ(s))≤r · m ∈ s · Zd−r + Zr}| = 0,

then for Lebesgue a.e. s ∈ U , uϕ(s)Γ is Birkhoff generic with respect to
(X,μX , at).

We also obtain the following variants of Theorem 1.3.

Theorem 1.5. Let U be a bounded open subset of Matr×(d−r)(R). Let ϕ :
U → (Rd)k be a C1 map. Let M ∈ SLd(R). If for any m ∈ Zk \ {0},∣∣∣∣∣

{
s ∈ U : ϕ(s) · m ∈ M−1u(−s) ·

[
0

Rd−r

]
+ Zd

}∣∣∣∣∣ = 0.(1.9)

Then for Lebesgue a.e. s ∈ U , u(s)M(Id,ϕ(s))Γ is Birkhoff generic with
respect to (X,μX , at).

Remark 1.6. By the equidistribution result in [3], Theorem 1.5 gives an affir-
mative answer to Question 1.2.
Remark 1.7. The conditions (1.8) and (1.9) are indeed necessary. For example
in Theorem 1.3, suppose that (ϕ(s))≤r · m ∈ s · Zd−r + Zr for some s ∈ U
and m ∈ Zk \ {0}, then the at trajectory along uϕ(s)Γ will concentrate on a
proper submanifold of G/Γ.

Corollary 1.8. Let U be a bounded open subset of Matr×(d−r)(R). Let ϕ :
U → (Rd)k be a C1 map. Let (M,v) ∈ G. If for any m ∈ Zk \ {0},∣∣∣∣∣

{
s ∈ U : (ϕ(s) + v) · m ∈ u(−s) ·

[
0

Rd−r

]
+ M · Zd

}∣∣∣∣∣ = 0,

then for Lebesgue a.e. s ∈ U , uϕ(s)(M,v)Γ is Birkhoff generic with respect
to (X,μX , at).

For 1 ≤ i ≤ d, let ei ∈ Rd be the column vector such that i-th row of ei
is 1 and others are 0.

Corollary 1.9. Let U be a bounded open subset of Matr×(d−r)(R). Let E1 :
U → SOd(R) be a smooth map such that the map s �→ E1(s)−1 · [er+1, · · · , ed]
has a nonsingular differential at Lebesgue almost every s ∈ U . Let ϕ : U →
(Rd)k be a C1 map. Assume that for any m ∈ Zk \ {0},∣∣∣∣∣

{
s ∈ U : ϕ(s) · m ∈ E1(s)−1 ·

[
0

Rd−r

]
+ Zd

}∣∣∣∣∣ = 0,
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then for Lebesgue a.e. s ∈ U , E1(s)(Id,ϕ(s))Γ is Birkhoff generic with respect
to (X,μX , at).

Corollary 1.9 will allow us to deduce an application to universal hitting
time for integrable flows in d-torus Td (see Theorem 9.5).

1.3. Ingredients of the proof

Proof of Theorem 1.3 follows the similar strategy as in [8]. However, some
new ingredients are required. We need the description of orbit closures of G′

in X. This can be done using Ratner’s orbit closure theorem following the
approach in [3].

We need to construct a suitable mixed height function in our situation,
which measures the distance of point to the cusp and singular submanifolds.

Also due to higher rank, some technical difficulties arise in the proof
of uniform contraction property of the mixed height function. To overcome
these difficulties, we apply a linear algebra lemma (see Lemma 6.13) which is
inspired by the proof of [11, Proposition 3.4].

1.4. Overview

In Section 2, we make some reductions and give a proof of Theorem 1.3 and
Corollary 1.4.

In Section 3, we will investigate the orbit closure of G′ in X using Ratner’s
orbit closure theorem.

In Section 4, we prove that for a.e. s ∈ U , the limit measure is invariant
under the unipotent group U . This enables us to apply Ratner’s measure
classification theorem.

In Section 5 and Section 6, we will construct mixed height function βm
for m ∈ Zk \ {0}, and give a proof of its uniform contraction property.

In Section 7, we prove Proposition 2.1 using mixed height function.
In Section 8, we deduce variants of Theorem 1.3.
In Section 9, we deduce an application to universal hitting time statistics.

2. Reductions and proof of Theorem 1.3

In this section, assuming several Theorems/Propositions/Lemmas that will
be proved later, we give a proof of Theorem 1.3.

By Proposition 4.1, for a.e. s ∈ U , after possibly passing to a subsequence
the weak* limit μs of μs,T is U -invariant. From the definition of μs,T (see
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(1.7)), it follows that μs is also D = {at : t ∈ R}-invariant. Hence for a.e.
s ∈ U , μs is DU -invariant. Note that DU is an epimorphic subgroup of
G′ = SLd(R). By [17], as μs is a probability measure invariant under DU , μs
is G′-invariant. By Ratner’s measure classification theorem, any G′ invariant
and ergodic probability measure is supported on an orbit closure of G′ on X.

A consequence of Ratner’s orbit closure theorem (Theorem 3.1) shows
that any orbit closure of G′ is either

(1) the whole X, or
(2) concentrated in a proper closed submanifold Xm for some m ∈ Zk \

{0}, where

Xm =
{
(g, gv)Γ : g ∈ G′,v · m ∈ Zd

}
.

Therefore, it remains to show that for a.e. s ∈ U , μs is a probability
measure on X and μs(Xm) = 0 for any m ∈ Zk \ {0}.

Let

M1 := N1 ·
(

max
1≤i≤r,1≤j≤d−r

sup
s∈U

‖∂ijϕ(s)‖∞
)

+ 1,(2.1)

where N1 = 8r2k1/2(d− r), and ∂ijϕ is a d by k matrix whose (p, q)-th entry
is ∂ϕpq/∂sij . Here the choice of N1 is flexible, we just choose a value for N1
that is convenient for us.

By assumption (1.8) of Theorem 1.3, for any m ∈ Zk \ {0}, the set

Badm =
{
s ∈ U : ∃a ∈ Zd−r,b ∈ Zr such that (ϕ(s))≤r · m = s · a + b,

and ‖a‖∞ ≤ M1 ‖m‖
}

(2.2)

has Lebesgue measure zero.
Since there are only finitely many a ∈ Zd−r such that ‖a‖∞ ≤ M1 · ‖m‖,

Badm is a closed set with Lebesgue measure zero. Thus to prove Theorem 1.3,
it suffices to prove it for a closed cube contained in U \ Badm. Now let’s fix
a closed cube I ⊂ U \Badm.

Let K be a measurable subset of X. For any T > 0, we define the average
operator AT

K : U → [0, 1] by

AT
K(s) = 1

T

∫ T

0
χK(atuϕ(s)Γ)dt = μs,T (K),

where χK is the characteristic function of K.
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The key proposition, which ensures that μs is a probability measure
putting zero mass on Xm for a.e. s ∈ I, is the following:

Proposition 2.1. Let m ∈ Zk \ {0}. Let ϕ : I → (Rd)k be a C1 map
satisfying (ϕ(s))>r ≡ 0 for any s ∈ I. Suppose that

inf
s∈I

{‖(ϕ(s))≤r · m − s · a − b‖∞ : ‖a‖∞ ≤ M1 ‖m‖ , a ∈ Zd−r,b ∈ Zr} > 0.
(2.3)

Then for any ε > 0, there exists a compact subset Kε ⊂ X \ Xm and v > 0
such that for any T > 0,

|{s ∈ I : AT
Kε

(s) ≤ 1 − ε}| ≤ e−vT |I|.(2.4)

It will be proved in Lemma 6.1 that condition (2.3) in Proposition 2.1
follows from condition (1.8) in Theorem 1.3.

Proposition 2.1 will be proved in Section 6. Combining Borel-Cantelli
lemma, a direct consequence of Proposition 2.1 is the following:

Proposition 2.2. Under the assumptions of Theorem 1.3, for a.e. s ∈ U , by
possibly passing to a subsequence, μs,T converges to a probability measure μs
on X in weak*-topology as T → ∞, and μs(Xm) = 0 for any m ∈ Zk \ {0}.

Proof. Fix an m ∈ Zk \ {0} and ε > 0. By Proposition 2.1, we can choose
a compact subset Kε of X \ Xm such that (2.4) holds for any T > 0. Let
T = n ∈ N and apply Borel-Cantelli lemma to the collection of the sets

{s ∈ I : An
Kε

(s) ≤ 1 − ε}, n ∈ N.

We can find a measurable subset Iεm of I with full measure such that for any
s ∈ Iεm, An

Kε
(s) > 1 − ε for all sufficiently large n ∈ N. Therefore, for any

s ∈ Iεm, μs(X) ≥ 1 − ε and μs(Xm) ≤ ε. Let Im = ∩∞
n=1I

1
nm, then Im has full

Lebesgue measure in I, and for any s ∈ Im, μs(X) = 1 and μs(Xm) = 0.
To complete the proof, we let I ′ =

⋂
m∈Zk\{0} Im. Then I ′ has full Lebesgue

measure in I and the proposition holds for all s ∈ I ′.

Assuming Proposition 2.2, Proposition 4.1 and Theorem 3.1, we are ready
to prove Theorem 1.3:

Proof of Theorem 1.3. By Proposition 2.2 and Proposition 4.1, we conclude
that for a.e. s ∈ U , the weak* limit μs of μs,T as T → ∞ is

(1) a probability measure on X, and μs(Xm) = 0 for any m ∈ Zk \ {0};
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(2) DU -invariant.
Since DU is an epimorphic subgroup of G′ = SLd(R), and μs is a DU -

invariant probability measure on X, μs is G′-invariant by [17, Theorem 1].
By Ratner’s measure classification theorem [19], any ergodic component

of such μs is supported on an orbit closure of G′ on X. Theorem 3.1 describes
all the possible orbit closures of G′ on X: either it is X or it is concentrated
on Xm for some m ∈ Zk \ {0}.

Since μs(Xm) = 0 for any m ∈ Zk \ {0}, we conclude that for a.e. s ∈ U ,
μs = μX .

We note the following

Lemma 2.3. Assume that for some x ∈ X = G/Γ,

1
T

∫ T

0
δatxdt

T→∞−−−→ μG/Γ, in weak*-topology,

and for some g ∈ G, atga−t → Id ∈ G as t → ∞, then

1
T

∫ T

0
δatgxdt

T→∞−−−→ μG/Γ, in weak*-topology.

For any ϕ : Matr×(d−r)(R) → (Rd)k, and any s ∈ Matr×(d−r)(R), we can
write

atuϕ(s) = at(u(s),ϕ(s))

= at(Id,
[

0
(ϕ(s))>r

]
)a−t · at(u(s),

[
(ϕ(s))≤r

0

]
),

where

ϕ(s) =
[

0
(ϕ(s))>r

]
+
[
(ϕ(s))≤r

0

]
.

Since

at(Id,
[

0
(ϕ(s))>r

]
)a−t → (Id,0),

by Lemma 2.3 and Theorem 1.3, Corollary 1.4 is proven.
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3. Orbit closure

In this section, we will classify all orbit closures of G′ in X following [3].
Recall that G′ = SLd(R) and G = SLd(R) � (Rd)k.

Consider a base point (Id, ξ) ∈ G. Since G′ is a simple Lie group, an
application of Ratner’s orbit closure theorem gives the following theorem
describing the orbit closure of G′ · (Id, ξ)Γ/Γ in G/Γ:

Theorem 3.1. The orbit closure G′ · (Id, ξ)Γ/Γ is G/Γ if and only if for any
m ∈ Zk \ {0}, ξ · m /∈ Zd.

By Ratner’s orbit closure theorem ([20]), for any ξ ∈ (Rd)k, there exists
a closed subgroup H of G containing G′ such that

G′ · (Id, ξ)Γ/Γ = H · (Id, ξ)Γ/Γ,

and H · (Id, ξ)Γ/Γ admits an H-invariant probability measure.
It can be checked that if there exists m ∈ Zk \ {0} such that ξ ·m ∈ Zd,

then G′ · (Id, ξ)Γ ⊂ Xm, where

Xm = {(g, gv)Γ : g ∈ G′,v ∈ (Rd)k such that v · m ∈ Zd}.(3.1)

This is a closed submanifold of X of codimension d. In this case, the orbit
G′ · (Id, ξ)Γ/Γ does not equidistribute in X.

The converse of Theorem 3.1 will follow from Lemmas 3.2-3.4. We will
follow the proof strategy of [3, Theorem 3]. Let ξ, H be as above.

Lemma 3.2. There is a linear subspace U ⊂ Rk such that H = SLd(R) �
L(U), where L(U) is a subset of Matd×k(R) such that for any element v of
L(U), each row vector of v is a vector in U .

Proof. Let L = {v ∈ (Rd)k : (Id,v) ∈ H}. Because G′ ⊂ H, for any v ∈ L,
we have (g,0) · (Id,v) · (g,0)−1 = (Id, gv) ∈ H. It follows that L is G′-
invariant and SLd(R)�L ⊂ H. For any (g,v) ∈ H, we have (g−1,0) ·(g,v) =
(Id, g−1v) ∈ H, so g−1v ∈ L. Since L is G′-invariant, v ∈ L. Therefore
H = SLd(R) �L.

Let A ∈ sld = Lie(G′), then for any t ∈ R, and any v ∈ L

exp(tA)v − v
t

∈ L.

Let t → 0, we obtain A ·v ∈ L. Recall that sld consists of all trace zero d× d
matrices. Let Eij be the d×d matrix with 1 in the (i, j)-th entry and zero for
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all other entries. Then for any i �= j, Eijv ∈ L. Since Eij ·Eji = Eii, for any i
we have Eiiv ∈ L as well. Therefore, L is invariant under left multiplication
of all d × d real matrices. Since left multiplication is row operation, there is
a linear subspace U ⊂ Rk such that L = L(U).

Let π1 : G → G′ be the natural projection map and ΓL = L(U) ∩ Γ.

Lemma 3.3. Let U be the linear subspace of Rk obtained by the Lemma 3.2.
Then U ∩ Zk is a lattice in U and ξ ∈ (Qd)k + L(U).

Proof. By Lemma 3.2, H = SLd(R)�L(U ) and H · (Id, ξ)Γ/Γ is closed and
admits an H-invariant probability measure, therefore ΓH = (Id, ξ)Γ(Id,−ξ)∩
H is a lattice in H.

By [18, Corollary 8.28], ΓL is a lattice in L(U ), that is, (Zd)k ∩ L(U) is
a lattice in L(U). Thus U has a basis belonging to Zk, and it follows that
Zk ∩U is a lattice in U .

Recall that Γ′ = SLd(Z). Now consider π1(ΓH) = {γ ∈ Γ′ : ξ − γ ·
ξ ∈ (Zd)k + L(U)}. Again by [18, Corollary 8.28], π1(ΓH) is a lattice in G′.
Therefore π1(ΓH) is a finite index subgroup of Γ′. Pick a γ ∈ π1(ΓH) such
that Id− γ is invertible, then ξ ∈ (Qd)k + L(U).

Lemma 3.4. Let U be the linear subspace of Rk obtained by Lemma 3.2. If
for any m ∈ Zk \ {0}, ξ · m /∈ Zd. Then U = Rk and hence, H = G.

Proof. Suppose U �= Rk, then dimU < k. Since U∩Zk is a lattice in U , there
exists a nonzero v ∈ Zk ∩U⊥. Since ξ · v ∈ (Qd)k · v + L(U) · v = (Qd)k · v,
we can choose m to be a suitable integral multiple of v such that ξ ·m ∈ Zd,
this contradicts to the assumption of the lemma.

4. Unipotent invariance

The collection of all probability measures on the one point compactification
X∗ of X is a compact space in weak*-topology. Therefore, for any s ∈ U ,
after possibly passing to a subsequence, we have

1
T

∫ T

0
δatuϕ(s)Γdt

T→∞−−−→ μs in weak* topology,

for some probability measure μs on X∗. Throughout this section, the function
ϕ is assumed to be C1 and satisfy (ϕ(s))>r ≡ 0.

Proposition 4.1. For a.e. s ∈ U , μs is U -invariant.
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Proof. Since U is a bounded open subset of Matr×(d−r)(R), it is enough to
prove the proposition for a.e. s in an open cube of U .

We may choose an open interval I ⊂ R such that Ir(d−r) ⊂ U . For 1 ≤
i ≤ r, 1 ≤ j ≤ d− r, let Eij ∈ Matr×(d−r)(R) be the matrix with 1 in (i, j)-th
entry and zero otherwise.

If s1, s2 are two real numbers linearly independent over Q, then the closure
of the subgroup generated by {u(s1Eij), u(s2Eij) : 1 ≤ i ≤ r, 1 ≤ j ≤ d− r}
is U .

Therefore, given s′ ∈ R, without loss of generality, it suffices to prove that
for a.e. s ∈ Ir(d−r), the limit measure μs is invariant under u(s′E11).

Note that there exists a countable dense subset of Cc(G/Γ) consisting of
smooth functions. Let ψ ∈ C∞

c (G/Γ). For t > 0 and w ∈ Matr×(d−r)(R),
define

ψt(w) = ψ(atuϕ(w)Γ) − ψ(u(s′E11)atuϕ(w)Γ).

Hence, we only need to show that for this ψ, for a.e. w ∈ Ir(d−r),

1
T

∫ T

0
ψt(w)dt T→∞−−−→ 0.

This follows from Theorem 4.2 and Lemma 4.3 as follows.

Theorem 4.2. [13, Theorem 3.1] Let (Y, μ) be a probability space. Let F :
Y ×R+ → R be a bounded measurable function. Suppose that there exist δ > 0
and c > 0 such that for any l ≥ t ≥ 0,

|
∫
Y
F (x, t)F (x, l)dμ(x)| ≤ c · e−δ min(t,l−t),(4.1)

then given any ε > 0, for μ-a.e. y ∈ Y ,

1
T

∫ T

0
F (y, t)dt = o(T− 1

2 · log 2
3+εT ).

Lemma 4.3. There exist c > 0 such that for any t, l > 0,

|
∫
Ir(d−r)

ψt(w)ψl(w)dw| ≤ c · e−|l−t|.

Proof. In the following proof, for positive valued functions f, g, we write f =
O(g) if there exists a positive constant C depending only on ψ,ϕ, s′ and |I|
(these are fixed throughout the proof) such that f ≤ Cg. Also, for any positive
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number ε > 0, we let OG(ε) denote a group element in a O(ε)-neighborhood
of Id in G.

Without loss of generality, we assume that l ≥ t. For s0 ∈ I, consider the
interval

I(s0) = (s0 − |I|e−
d(l+t)

2 , s0 + |I|e−
d(l+t)

2 )

such that I(s0) ⊂ I. For any s ∈ I(s0), and any w ∈ {0} × Ir(d−r)−1,

|ψt(sE11 + w) − ψt(s0E11 + w)| ≤ |ψ(atuϕ(sE11 + w)Γ)
− ψ(atuϕ(s0E11 + w)Γ)| + |ψ(u(s′E11)atuϕ(sE11 + w)Γ)
− ψ(u(s′E11)atuϕ(s0E11 + w)Γ)|.

Note that

atuϕ(sE11 + w) = at(u(sE11 + w),ϕ(sE11 + w))
= at(u(s0E11 + w + (s− s0)E11),ϕ(s0E11 + w)

+ ϕ(sE11 + w) −ϕ(s0E11 + w))
= (u(edt(s− s0)E11), e(d−r)t(s− s0)∂11ϕ)atuϕ(s0E11 + w).

where the last equality follows by mean value theorem (for simplicity of
notations, by uniform boundedness of ||∂11ϕ||∞ on U , we write ∂11ϕ for
∂11ϕ(s̃E11 + w) with arbitrary s̃). Since

e(d−r)t|s− s0| ≤ edt|s− s0| ≤ e−
d(l+t)

2 · edt|I| = e−
d(l−t)

2 |I|,

we have

atuϕ(sE11 + w) = OG(e−
d(l−t)

2 |I|)atuϕ(s0E11 + w)

= OG(e−
d(l−t)

2 )atuϕ(s0E11 + w).

Likewise,

u(s′E11)atuϕ(sE11 + w) = OG(e−
d(l−t)

2 )u(s′E11)atuϕ(s0E11 + w).

Since ψ ∈ C∞
c (G/Γ), ψ is Lipschitz, and hence

|ψt(sE11 + w) − ψt(s0E11 + w)| = O(e−
d(l−t)

2 ).
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Therefore,∫
I(s0)

ψt(sE11 + w)ψl(sE11 + w)ds

=
∫
I(s0)

(ψt(s0E11 + w) + O(e−
d(l−t)

2 )) · ψl(sE11 + w)ds

= ψt(s0E11 + w)
∫
I(s0)

ψl(sE11 + w)ds + O(e−
d(l−t)

2 ) · |I(s0)|.(4.2)

Now we estimate
∫
I(s0) ψl(sE11 + w)ds. Note that

u(s′E11)aluϕ(sE11 + w)
= al(u((s + e−dls′)E11 + w),ϕ(sE11 + w))
= al(Id,ϕ(sE11 + w) −ϕ((e−dls′ + s)E11 + w))
· a−laluϕ((s + e−dls′)E11 + w)

= al(Id, e−dls′∂11ϕ)a−laluϕ((s + e−dls′)E11 + w)
= OG(e−rl)aluϕ((s + e−dls′)E11 + w).

As ψ is Lipschitz,

ψl(sE11 + w)
= ψ(aluϕ(sE11 + w)Γ) − ψ(aluϕ((s + e−dls′)E11 + w)Γ) + O(e−rl).

Since I(s0) and I(s0) + e−dls′ overlap except for a length of O(e−dl), we have∫
I(s0)

ψl(sE11 + w)ds

=
∫
I(s0)

ψ(aluϕ(sE11 + w)Γ) − ψ(aluϕ((s + e−dls′)E11 + w)Γ) + O(e−rl)ds

= O(e−dl) + O(e−rl)|I(s0)|

= O(e−
d(l−t)

2 )|I(s0)| + O(e−(l−t))|I(s0)|
= O(e−(l−t))|I(s0)|.

Now we consider the partition I =
⋃p

j=1 Ij such that Ij = [sj−1, sj ] with
sj − sj−1 = 2e−

d(l+t)
2 |I| for 1 ≤ j ≤ p − 1, and sp − sp−1 ≤ 2e−

d(l+t)
2 |I|. By

(4.2), we have∫
I

ψt(sE11 + w)ψl(sE11 + w)ds
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=
p∑

j=1

∫
Ij

ψt(sE11 + w)ψl(se11 + w)ds

=
p−1∑
j=1

∫
Ij

ψt(sE11 + w)ψl(sE11 + w)ds + O(e−
d(l+t)

2 )|I|

=
p−1∑
j=1

O(e−(l−t))|Ij | + O(e−
d(l+t)

2 )|I|

= O(e−(l−t))|I| = O(e−(l−t)).

The above estimate holds for any w ∈ {0}×Ir(d−r)−1. Now the lemma follows
from the above estimate and Fubini’s theorem.

5. Margulis’ height function

In this section, we will recall the definition of Margulis’ height function on
SLd(R)/SLd(Z) and its uniform contraction property.

Margulis’ height function was first introduced in [6] and later developed in
several papers (see for example [1][25]). It measures the depth of elements of X
into the cusps. It has been used to study equidistribution problem for certain
unbounded functions (cf. [6][7][16]) and random walks on homogeneous spaces
(cf. [1][5]).

We start with the vector space V = ∧∗Rd =
⊕

0≤i≤d ∧iRd, where G′ =
SLd(R) acts on V naturally.

Let Δ be a lattice in Rd. We say that a subspace L of Rd is Δ-rational if
L∩Δ is a lattice in L. For any Δ-rational subspace L, denote d(L) or dΔ(L)
the volume of L/L∩Δ. Note that d(L) is the norm of u1 ∧ u2 ∧ · · · ∧ ul in V,
where {ui}1≤i≤l is a Z-basis of L ∩ Δ. If L = {0}, we set d(L) = 1.

For any lattice Δ, we define for 0 ≤ i ≤ d,

αi(Δ) := sup
{ 1
d(L) : L is a Δ-rational subspace of dimension i

}
.

Proposition 5.1. There exists a continuous map α̃ : SLd(R)/SLd(Z) →
[1,∞] and b1 > 0 such that for B a bounded open box in Matr×(d−r)(R), for
all t > 0 large enough and for any unimodular lattice Λ of Rd,

1
|B|

∫
B
α̃(atu(s)Λ)ds < 2−r(d−r)−2α̃(Λ) + b1,
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and there exists ν > 0 such that

α1(Λ)ν ≤ α̃(Λ).

Moreover, a measurable subset K of SLd(R)/SLd(Z) is precompact if there
exists N > 0 such that

K ⊂ {x ∈ X : α̃(x) ≤ N}.

Proof. Define α̃ = ε−q(1) ·∑d
i=0 ε

q(i) · αν
i , where ε, ν > 0 are sufficiently small

numbers and q(i) = i(d− i). The fact that α̃ satisfies conclusion of Proposi-
tion 5.1 will follow from [25, Lemma 4.1].

The function α̃ above is the Margulis’ height function that we need in our
setting.
Remark 5.2. The function α̃ satisfies Lipschitz property as follows: For any
bounded neighborhood V of e of SLd(R), there exists M > 0 such that for
any x ∈ SLd(R)/SLd(Z), any g ∈ V,

α̃(gx) ≤ Mα̃(x).

Indeed, M > 0 is the maximum of operator norms of elements in V acting on
V.

6. Mixed height function

In this section, we will construct a mixed height function, which is crucial for
us to prove Proposition 2.1. The main result of this section is the following:

Proposition 6.1. Let ϕ be a C1 map from U to (Rd)k satisfying (ϕ(s))>r ≡ 0
for any s ∈ U . For any m ∈ Zk \ {0}, any closed cube I ⊂ U \ Badm (for
Badm, see (2.2)), there are t > 0 sufficiently large (depending on I, m) and
measurable function βm : G/Γ → (0,∞] such that the following hold:

(1) For any l > 0, {x ∈ G/Γ : βm(x) ≤ l} is compact;
(2) For any x ∈ G/Γ, βm(x) = ∞ if and only if x ∈ Xm;
(3) Given any n ∈ Z≥0, a box J ⊂ I with J =

∏r(d−r)
i=1 Ji, where Ji ⊂ R

and |Ji| ≤ 2e−dnt for all i. There exists M̃1 > 0 such that for any s, s̃ ∈ J ,
one has

βm(antuϕ(s̃)Γ) ≤ M̃1βm(antuϕ(s)Γ);
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(4) There exists M̃2 > 0 depending on t, for any n ∈ Z≥0, any s ∈ I and
any τ ∈ R with |τ | ≤ t, one has

βm(aτantuϕ(s)Γ) ≤ M̃2βm(antuϕ(s)Γ);

(5) There exists b > 0 such that the following holds: for any n ∈ Z≥0 and
any box J ⊂ I with J =

∏r(d−r)
i=1 Ji satisfying either n ≥ 1 and |Ji| ≥ e−dnt

for all 1 ≤ i ≤ r(d− r), or n = 0 and J = I, one has
∫
J
βm(a(n+1)tuϕ(s)Γ)ds ≤ 1

2

∫
J
βm(antuϕ(s)Γ)ds + b|J |.

Remark 6.2. The function βm in Proposition 6.1 is the desired mixed height
function.

From now on until the end of this section, we will fix a closed cube I ⊂
U \ Badm. Recall that the finite number M1 is defined as in (2.1). By the
choice of I, and the fact that there are only finitely many a ∈ Zd−r satisfying
‖a‖∞ ≤ M1 ‖m‖, we obtain σ > 0 such that

inf
s∈I

{‖(ϕ(s))≤r · m − s · a − b‖∞ : ‖a‖∞ ≤ M1 ‖m‖ , a ∈ Zd−r,b ∈ Zr} = σ.

(6.1)

Remark 6.3. By (6.1), we can choose a closed neighborhood I ′ of I such that
I ′ is a closed cube contained in U and satisfies

inf
s∈I′

{‖(ϕ(s))≤r · m − s · a − b‖∞ : ‖a‖∞ ≤ M1 ‖m‖ , a ∈ Zd−r,b ∈ Zr} = σ

2 .

Next we construct a suitable function measuring the distance to the closed
submanifold Xm. For m ∈ Zk \ {0}, consider the quotient space

(Rd)km := {v ∈ (Rd)k : v · m ∈ Zd}/ ∼,

where v ∼ v′ if and only if v · m = v′ · m. One can directly verify that ∼ is
an equivalence relation.

Lemma 6.4. For any (g,v) ∈ G, there exists at most one v0 ∈ (Rd)km such
that

‖(v − gv0) · m‖ <
1
2 inf

w∈Zd\{0}
‖gw‖ .(6.2)
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Proof. Suppose there are two vectors v0 and v′
0 in (Rd)km satisfying (6.2) such

that v0 �∼ v′
0. Then

‖g(v0 − v′
0) · m‖ ≤ ‖(v − gv0) · m‖ + ‖(v − gv′

0) · m‖ < inf
w∈Zd\{0}

‖gw‖ .

But since v0 �∼ v′
0, (v0 − v′

0) · m ∈ Zd \ {0}. This is a contradiction.

Definition 6.5. Let m ∈ Zk \ {0}. For any (g,v) ∈ G, we say that ξg,v ∈
(Rd)km exists if ξg,v satisfies (6.2) in the place of v0. By convention, we set
ξg,v = ∞ if it does not exist. Define the function

αm(g,v) =

⎧⎨
⎩
∥∥∥(v − gξg,v) · m

∥∥∥−1
, If ξg,v exists;

1, if ξg,v = ∞.
(6.3)

Remark 6.6. By Lemma 6.4, αm is a well-defined function on G. By Minkowski’s
first theorem, there is a constant 0 < μd ≤ 1 such that if ξg,v exists for (g,v),
then αm(g,v) > μd. Therefore, by definition of αm, we have αm(g,v) > μd

for any (g,v) ∈ G. Moreover, by (6.1), for any s ∈ I, αm(uϕ(s)) ≤ σ−1.

Lemma 6.7. αm is a well-defined function on G/Γ. Moreover, αm is lower
semi-continuous.

Proof. Take any (g,v) ∈ G and any (γ,v′) ∈ Γ.
If ξg,v exists, then γ−1(ξg,v + v′) ∈ (Rd)km. Note that

∥∥∥(v + gv′ − gγ · γ−1(ξg,v + v′)) · m
∥∥∥ =

∥∥∥(v − gξg,v) · m
∥∥∥ <

1
2 inf

w∈Zd\{0}
‖gw‖ .

Thus ξgγ,v+gv′ = γ(ξg,v + v′) exists and αm(g,v) = αm(gγ,v + gv′).
If ξg,v does not exist, same argument as above shows that ξgγ,v+gv′ does

not exist neither.
If ξg,v exists, it is locally constant. Therefore, αm is lower semi-continuous.

Let ν ∈ (0, 1
r(d−r)) be a number satisfying Proposition 5.1. Let c = 4 ·

(10r2d)ν · 2r(d−r) and t > 0 be a sufficiently large number (to be specified
later). Define

βm = αν
m + ceνrtα̃.(6.4)

We will prove that βm satisfies properties (1)-(5) of Proposition 6.1.
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Proof of Proposition 6.1 (1). Since

{x ∈ X : βm(x) ≤ l} ⊂ {x ∈ X : α̃(x) ≤ lc−1e−νrt},

{x ∈ X : βm(x) ≤ l} is precompact. As α̃ is continuous and αm is lower
semicontinuous, {x ∈ X : βm(x) ≤ l} is closed and thus compact.

Proof of Proposition 6.1 (2). If for some x ∈ G/Γ, βm(x) = ∞, then αm(x) =
∞ as α̃(x) < ∞. Let x = (g,v)Γ/Γ. By definition of αm, we have (v − gξ) ·
m = 0 for some ξ ∈ (Rd)km. Note that g−1v · m = ξ · m ∈ Zd. Hence
(g,v)Γ = (g, gg−1v)Γ ∈ Xm.

Conversely, if x = (g,v)Γ/Γ ∈ Xm, then by definition of Xm, we have
g−1v · m ∈ Zd. Choose any ξ ∈ (Rd)k such that g−1v · m = ξ · m, then
(v − gξ) · m = g(g−1v · m − ξ · m) = 0. Therefore, αm(x) = ∞.

Notations. Let’s fix some simplified notations for the rest of the proof.
We will fix an m ∈ Zk \{0} till the end of this section. In the following, t > 0
is a sufficiently large number.

• For any n ∈ N, any s ∈ U , denote antuϕ(s) = (gn(s),vn(s)).
• If ξgn(s),vn(s) exists, denote ξgn(s),vn(s) = ξn,s.
• For any v ∈ (Rd)km, n ∈ N, s ∈ U , let

w(n, s,v) = (vn(s) − gn(s)v) · m

=
[
e(d−r)nt[(ϕ(s))≤r − (v)≤r − s · (v)>r] · m

e−rnt(v)>r · m

]
=

⎡
⎢⎣
w1(n, s,v)

...
wd(n, s,v)

⎤
⎥⎦ .

We note that if ξn,s exists, then αm(antuϕ(s)) =
∥∥∥w(n, s, ξn,s)

∥∥∥−1
.

• For any differentiable function ψ : Matr×(d−r)(R) → R, by mean value
theorem in several variables, for any s, s̃ ∈ Matr×(d−r)(R), there is a ŝ
such that

ψ(s̃) − ψ(s) =
r∑

i=1

d−r∑
j=1

∂ψ

∂sij
(ŝ) · (s̃ij − sij).

Since the functions that we consider have bounded first derivative on
a bounded set, we will omit this ŝ for simplicity.

• For 1 ≤ i ≤ d − r, let ei denote the column vector in Rd−r with 1 in
i-th row and 0 elsewhere. Let <,> denote the usual inner product of
column vectors.
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Lemma 6.8. Let n ≥ 1 be an integer and t > log(2μ−1
d σ−1), where μd > 0

is the constant given as in Remark 6.6. For any s ∈ I ′, where I ′ is given as
in Remark 6.3, if ξn,s exists, then

∥∥∥(ξn,s)>r · m
∥∥∥
∞

> M1 ‖m‖.

Proof. Suppose
∥∥∥(ξn,s)>r · m

∥∥∥
∞

≤ M1 ‖m‖. By definition of I ′,

∥∥∥(vn(s) − gn(s)ξn,s) · m
∥∥∥ ≥

∥∥∥(vn(s) − gn(s)ξn,s)≤r · m
∥∥∥
∞

≥ e(d−r)nt
∥∥∥[(ϕ(s))≤r − (ξn,s)≤r − s(ξn,s)>r] · m

∥∥∥
∞

≥ et
σ

2 > μ−1
d .

By Remark 6.6, this contradicts the existence of ξn,s.

Proof of Proposition 6.1 (3). If n = 0, by Remark 6.6, we have μν
d ≤

αν
m(uϕ(s̃)) ≤ σ−ν . Since α̃ is continuous and bounded on compact sets, there

exists 0 < m < M such that for any s ∈ I,

m ≤ α̃(uϕ(s)Γ) ≤ M.

Therefore,

βm(uϕ(s̃)Γ) ≤ σ−ν + ceνrt ·M ≤ σ−ν + ceνrtM

μν
d + ceνrtm

βm(uϕ(s)Γ).

Assume n ≥ 1. If ξn,s̃ does not exist, then by definition, αν
m(antuϕ(s̃)Γ) = 1.

Now we suppose that ξn,s̃ exists.
Case 1:

∥∥∥(w(n, s, ξn,s̃))≤r

∥∥∥
∞

≥ N2

∥∥∥(w(n, s, ξn,s̃))>r

∥∥∥
∞

, where N2 =
2(r + 1)(d− r).

Choose t > log(2μ−1
d σ−1), by Lemma 6.8, the Lipschitz continuity of ϕ,

and the choices of M1 and J , we have
∥∥∥(w(n, s̃, ξn,s̃))≤r − (w(n, s, ξn,s̃))≤r

∥∥∥
∞

≤ 2e−rnt(r + 1)(d− r)
∥∥∥(ξn,s̃)>r · m

∥∥∥
∞
.

= 2(r + 1)(d− r)
∥∥∥(w(n, s̃, ξn,s̃))>r

∥∥∥
∞
.

Hence, by the assumption of Case 1,
∥∥∥w(n, s̃, ξn,s̃)

∥∥∥ ≥
∥∥∥(w(n, s̃, ξn,s̃))≤r

∥∥∥
∞

≥
∥∥∥(w(n, s, ξn,s̃))≤r

∥∥∥
∞

− 2(r + 1)(d− r)
∥∥∥(w(n, s, ξn,s̃))>r

∥∥∥
∞
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≥ 1
d2

∥∥∥w(n, s, ξn,s̃)
∥∥∥ .

Case 2:
∥∥∥(w(n, s, ξn,s̃))≤r

∥∥∥
∞

< N2

∥∥∥(w(n, s, ξn,s̃))>r

∥∥∥
∞

. Then

∥∥∥w(n, s̃, ξn,s̃)
∥∥∥ ≥

∥∥∥(w(n, s̃, ξn,s̃))>r

∥∥∥
∞

=
∥∥∥(w(n, s, ξn,s̃))>r

∥∥∥
∞

≥ 1√
rN2

2 + d− r

∥∥∥w(n, s, ξn,s̃)
∥∥∥ ≥ 1

5dr2

∥∥∥w(n, s, ξn,s̃)
∥∥∥ .

By construction of ξn,s, we have
∥∥∥w(n, s, ξn,s̃)

∥∥∥ ≥
∥∥∥w(n, s, ξn,s)

∥∥∥. Combining
Case 1 and Case 2, we have

∥∥∥w(n, s̃, ξn,s̃)
∥∥∥ ≥ min{ 1

5dr2 ,
1
d2 }

∥∥∥w(n, s, ξn,s)
∥∥∥ .

Therefore,

αν
m(antuϕ(s̃)Γ) ≤ max(d2ν , (5dr2)ν) · αν

m(antuϕ(s)Γ).

For α̃, by Remark 5.2, we have for large enough M > 0,

α̃(antuϕ(s̃)Γ) = α̃(u(ednt(s̃ − s))antuϕ(s)Γ) ≤ Mα̃(antuϕ(s)Γ).

By the above, let M̃1 = 2 max{M,d2ν , (5dr2)ν , σ−ν+ceνrtM
μν
d
+ceνrtm }, then

βm(antuϕ(s̃)Γ) ≤ M̃1βm(antuϕ(s)Γ),∀n ∈ Z≥0.

Proof of Proposition 6.1 (4). By Remark 5.2, since |τ | ≤ t, we have

α̃(aτantuϕ(s)Γ) ≤ er(d−r)νtα̃(antuϕ(s)Γ).

Let aτantuϕ(s) = (aτgn(s), aτvn(s)).
If ξaτgn(s),aτvn(s) does not exist, then αm(aτantuϕ(s)Γ) = 1.
If ξaτgn(s),aτvn(s) = v exists, then

αν
m(aτantuϕ(s)Γ) = ‖(aτ (vn(s) − gn(s)v) · m‖−ν

≤ e(d−r)νt ‖(vn(s) − gn(s)v) · m‖−ν

≤
{
e(d−r)νtαν

m(antuϕ(s)Γ) If v = ξgn(s),vn(s)

e(d−r)νt2να̃(antuϕ(s)Γ) If v �= ξgn(s),vn(s)
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Let

M̃2 = max
(
e(d−r)νt,

2νe(d−r)νt + c · er(d−r)νteνrt

c · eνrt

)
,

then by the above estimates, Proposition 6.1 (4) is proved.

To prove property (5) of Proposition 6.1, we record the following lemmas:

Lemma 6.9. [25, Lemma 4.8] Let n ∈ Z≥0 and t > 0. Let I0 = [−1, 1]r(d−r),
J =

∏r(d−r)
i=1 Ji, where Ji is an interval with |Ji| ≥ e−dnt for each i. Let

Ψ : G/Γ → R+ be a measurable function. Then
∫
J

Ψ(a(n+1)tuϕ(s)Γ)ds ≤
∫
J

∫
I0

Ψ(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃ds.(6.5)

Lemma 6.10. Let κ : I0 = [−1, 1]r(d−r) → R+ be a measurable function.
Suppose that there exists C > 0 such that for any ε > 0,

|{s ∈ I0 : κ(s) < ε}| ≤ C · ε
1

r(d−r) .

Then for any 0 < ν < 1
r(d−r) , there exists cν > 0 such that
∫
I0

κ(s)−νds ≤ Cν·r(d−r) · cν .

Proof. This is a direct generalization of [8, Lemma 6.10].

The following lemma is a special case of [11, Lemma 3.3].

Lemma 6.11. Let V be a bounded open subset of Matr×(d−r)(R), and let
f ∈ C1(V ) be such that for some constants A1, A2 > 0, one has

A2 ≤ |∂ijf(s)| ≤ A1,∀1 ≤ i ≤ r, 1 ≤ j ≤ d− r, ∀s ∈ V,

and ‖f‖V ≤ A1,

where ‖·‖V denote the sup norm of a function on V . Then for any box (or
ball) B ⊂ V , any ε > 0, one has

|{s ∈ B : |f(s)| < ε}| ≤ r(d− r) · CA1,A2

(
ε

‖f‖B

) 1
r(d−r)

|B|,

with CA1,A2 = 12A1
A2

.
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Lemma 6.12. Let N ≥ 1 be an integer. Let f : RN → R be a C1 map. Given
B ∈ SON (R), for any s ∈ RN , let s′ = Bs. Then

(
∂f

∂s′1
, · · · , ∂f

∂s′N

)t

= B
(
∂f

∂s1
, · · · , ∂f

∂sN

)t

,

where superscript t denotes the transpose of the vector.

Proof. Since s′ = Bs, s = B−1s′. Using chain rule, it can be verified that
(
∂f

∂s′1
, · · · , ∂f

∂s′N

)t

= (B−1)t ·
(
∂f

∂s1
, · · · , ∂f

∂sN

)t

.

As B ∈ SON (R), we have (B−1)t = B. This proves the lemma.

Lemma 6.13. Let N ≥ 1 be an integer. Given real numbers 0 < c2 < C2 <

c1 < C1, and a partition {I1, I2, I3} of {1, · · · , N} such that I1 �= ∅. There
is B ∈ SON (R) (depending only on the partition) such that the following
holds: For any vector v = (v1, · · · , vN )t ∈ RN (here superscript t denote the
transpose of the corresponding vector) satisfying

• For any i ∈ {1, · · · , N}, |vi| ≤ C1;
• For any i ∈ I1, |vi| ≥ c1;
• For any i ∈ I2, |vi| ≥ C2;
• For any i ∈ I3, |vi| ≤ c2.

If we denote v′ = (v′1, · · · , v′N )t = Bv, then for any i = 1, · · · , N ,

min
{

c1√
N

−
√
Nc2, C2

}
≤ |v′i| ≤ C1 +

√
Nc2.

Proof. If I3 = ∅, then the lemma is trivial. Now we assume that I3 �= ∅.
Let p ∈ N be such that p − 1 = #I3, then 2 ≤ p ≤ N . Without loss of
generality, we may assume that 1 ∈ I1 and I3 = {2, · · · , p}. Choose a
B = (bij) ∈ SON (R) satisfying

• bi1 = 1√
p , for 1 ≤ i ≤ p;

• bij = 0 if j ≤ p < i, or i ≤ p < j;
• bij = δij if i ≥ p + 1 and j ≥ p + 1.

Note that for any i = 1, · · · , p, v′i = 1/√p · v1 +
∑p

j=2 bijvj . Therefore, for any
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1 ≤ i ≤ p, we have the lower bound

|v′i| ≥
1
√
p
|v1| −

p∑
j=2

|bij ||vj | ≥
c1√
p
−

⎛
⎝ p∑

j=2
|c2|2

⎞
⎠

1
2

≥ c1√
N

−
√
Nc2,

where in the second inequality we apply Cauchy-Schwartz inequality. Also for
any 1 ≤ i ≤ p, we have the upper bound

|v′i| ≤
1
√
p
|v1| +

p∑
j=2

|bij ||vj | ≤ C1 +
√
Nc2.

On the other hand, for any p + 1 ≤ i ≤ N , we have v′i = vi. Therefore, for
any 1 ≤ i ≤ N ,

min
{

c1√
N

−
√
Nc2, C2

}
≤ |v′i| ≤ C1 +

√
Nc2.

Roughly speaking, Lemma 6.13 says that one can find a suitable rotation
B ∈ SON (R) depending only on the partition of {1, · · · , N} such that for
any vector v ∈ RN , as long as there is a coordinate of v with large enough
absolute value, the absolute value of all coordinates of the new vector Bv are
bounded below by a suitable constant.

Proof of (5) of Proposition 6.1. If n = 0 and J = I. Then for any s ∈ I, by
Proposition 6.1 (4),

βm(atuϕ(s)Γ) ≤ M̃2βm(uϕ(s)Γ) ≤ M̃2(σ−ν + M).

Then for any b ∈ R such that b > M̃2(σ−ν + M),∫
I
βm(atuϕ(s)Γ)ds ≤ 1

2

∫
I
βm(uϕ(s)Γ)ds + b|I|.

Now we assume n ≥ 1 and let t > 0 be a sufficiently large number (to be
specified later). By Lemma 6.9,∫

J
βm(a(n+1)tuϕ(s)Γ)ds ≤

∫
J

∫
I0

βm(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃ds.

By Proposition 5.1, for t > 0 sufficiently large, there exists b1 > 0 such that
for any s ∈ J , ∫

I0

α̃(atu(s̃)antu(s)Γ)ds̃ ≤ 1
4 α̃(antuϕ(s)Γ) + b1.(6.6)
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Note that since∫
I0

α̃(atu(s̃)antu(s)Γ)ds̃ =
∫
I0

α̃(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃

≤ 1
4 α̃(antuϕ(s)Γ) + b1,

by definition of βm, it remains to estimate the following integral for any s ∈ J :∫
I0

αν
m(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃.(6.7)

Define for any s ∈ J ,

I01(s) := {s̃ ∈ I0 : ŝ = s + s̃e−dnt, ξn+1,ŝ exists, ξn+1,ŝ �= ξn,s},
I02(s) := {s̃ ∈ I0 : ŝ = s + s̃e−dnt, ξn+1,ŝ exists, ξn+1,ŝ = ξn,s},
I03(s) := {s̃ ∈ I0 : ŝ = s + s̃e−dnt, ξn+1,ŝ does not exist}.

Since for s̃ ∈ I03, αν
m is dominated by α̃, by Lemmas 6.14, 6.15 given as

follows, we have∫
I0

αν
m(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃ =

∫
I01(s)

αν
mds̃ +

∫
I02(s)

αν
mds̃ +

∫
I03(s)

αν
mds̃

≤ (10r2d)νeνrt · 2r(d−r) · α̃(antuϕ(s)Γ) + 1
4α

ν
m(antuϕ(s)Γ) + 2ν+r(d−r).

As we choose b > 2ν+r(d−r) + cb1e
rνt, recall that c = 4 · (10r2d)ν · 2r(d−r), we

have∫
J
βm(a(n+1)tuϕ(s)Γ)ds ≤

∫
J

∫
I0

βm(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃ds

≤
∫
J
[ 14c · e

rνtα̃(antuϕ(s)Γ) + 1
4α

ν
m(antuϕ(s)Γ) + 2ν+r(d−r) + cb1e

rνt]ds,

≤ 1
2

∫
J
βm(antuϕ(s)Γ)ds + b|J |.

This finishes the proof of property (5) of Proposition 6.1, modulo Lem-
mas 6.14, 6.15.

Lemma 6.14. Let J be the box as in Proposition 6.1 (5). There is t > 0
sufficiently large such that for any s ∈ J ,∫

I01(s)
αν

m(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃ ≤ eνrt(10r2d)ν2r(d−r) · α̃(antuϕ(s)Γ).
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Proof. We will prove that for t > 0 sufficiently large, for any s̃ ∈ I01(s),

αν
m

(
a(n+1)tuϕ(s + s̃e−dnt)Γ

)
≤ eνrt

(
10r2d

)ν
· α̃ (antuϕ(s)Γ) .

For s̃ ∈ I0, denote ŝ = s + s̃e−dnt.
Case 1:

∥∥∥(w(n, s, ξn+1,ŝ))≤r

∥∥∥
∞

≥ N2

∥∥∥(w(n, s, ξn+1,ŝ))>r

∥∥∥
∞

, where N2 =
2(r + 1)(d− r).

By definition of M1 (cf.(2.1)), the choice of N1 and Lipschitz continuity
of ϕ, we have for any i, j, p, q,

∣∣∣∣∣∣
k∑

q=1

∂ϕpq

∂sij
·mq

∣∣∣∣∣∣ ≤ ‖m‖ ·

⎛
⎝ k∑

q=1
|
∂ϕpq

∂sij
|2
⎞
⎠

1
2

≤ ‖m‖ k 1
2
M1

N1
≤
∥∥∥(ξn+1,ŝ)>r · m

∥∥∥
∞
.

By Lemma 6.8, the choices of the sidelength of the box and N2,∥∥∥w(n + 1, ŝ, ξn+1,ŝ)
∥∥∥ ≥

∥∥∥(w(n + 1, ŝ, ξn+1,ŝ)≤r

∥∥∥
∞

= e(d−r)(n+1)t
∥∥∥[(ϕ(̂s))≤r − (ξn+1,ŝ)≤r − ŝ · (ξn+1,ŝ)>r] · m

∥∥∥
∞

≥ e(d−r)t
∥∥∥(w(n, s, ξn+1,ŝ))≤r

∥∥∥
∞
−

(1 − (r + 1)(d− r)
N2

)e(d−r)t
∥∥∥(w(n, s, ξn+1,ŝ))≤r

∥∥∥
∞

≥ e(d−r)t 1
2d

∥∥∥w(n, s, ξn+1,ŝ)
∥∥∥ .

Choose t > 0 large enough such that e(d−r)t 1
2d > 1, we obtain

αν
m(a(n+1)tuϕ(s + s̃e−dnt)Γ) =

∥∥∥w(n + 1, ŝ, ξn+1,ŝ)
∥∥∥−ν

≤ e−ν(d−r)t(2d)ν
∥∥∥w(n, s, ξn+1,ŝ)

∥∥∥−ν

≤ e−ν(d−r)t(2d)ν · 2ν sup
w∈Zd\{0}

‖antu(s)w‖−ν

≤ α̃(antuϕ(s)Γ).

Case 2:
∥∥∥(w(n, s, ξn+1,ŝ))≤r

∥∥∥
∞

< N2

∥∥∥(w(n, s, ξn+1,ŝ))>r

∥∥∥
∞

.
Then by the choice of N2, we have

∥∥∥w(n + 1, ŝ, ξn+1,ŝ)
∥∥∥ ≥ e−rt

∥∥∥(w(n, s, ξn+1,ŝ))>r

∥∥∥
∞
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≥ e−rt 1
5r2d

∥∥∥w(n, s, ξn+1,ŝ)
∥∥∥ .

Therefore,

αν
m(a(n+1)tuϕ(s + s̃e−dnt)Γ) =

∥∥∥w(n + 1, ŝ, ξn+1,ŝ)
∥∥∥−ν

≤ eνrt(5r2d)ν
∥∥∥w(n, s, ξn+1,ŝ)

∥∥∥−ν

≤ eνrt(10r2d)ν sup
w∈Zd\{0}

‖antu(s)w‖−ν

≤ eνrt(10r2d)να̃(antuϕ(s)Γ).

Combining cases 1 and 2, the lemma is proven.

Lemma 6.15. There exists t > 0 sufficiently large such that for any s ∈ J ,∫
I02(s)

αν
m(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃ ≤ 1

4α
ν
m(antuϕ(s)Γ).

Proof. We fix s ∈ J for the rest of the proof. For s̃ ∈ I0, denote ŝ = s+ s̃e−dnt.
Since s̃ ∈ I02(s), for simplicity we denote ξn+1,ŝ = ξn,s = v.

Case 1: ‖(w(n, s,v))≤r‖∞ ≥ N2 ‖(w(n, s,v))>r‖∞, where N2 = 2(r +
1)(d− r).

Then we have by Case 1 of Lemma 6.14,

‖w(n + 1, ŝ,v)‖ ≥ e(d−r)t 1
2d ‖w(n, s,v)‖ .

Hence, for t > 0 sufficiently large such that e−(d−r)νt · (2d)ν ≤ 1
4 , we obtain

αν
m

(
a(n+1)tuϕ(s + s̃e−dnt)Γ

)
≤ 1

4α
ν
m (antuϕ(s)Γ) .

Case 2: ‖(w(n, s,v))≤r‖∞ < N2 ‖(w(n, s,v))>r‖∞.
Recall that I0 = [−1, 1]r(d−r). For any B ∈ SOr(d−r)(R), we have B · I0 ⊂

I ′0, where I ′0 is the unit ball in Rr(d−r). We may choose t > 0 large enough
such that for any s ∈ I, any s̃ ∈ I ′0, we have s + e−dnts̃ ∈ I ′, where I ′ is given
as in Remark 6.3. Define a function S on I ′0 by

S(s̃) =
r∑

i=1
wi

(
n + 1, s + s̃e−dnt,v

)
,∀s̃ ∈ I ′0.

Note that ‖w(n + 1, ŝ,v)‖ ≥ 1
r |S(s̃)|.
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We will apply Lemma 6.13 to find B ∈ SOr(d−r)(R) such that after the
change of basis s̃′ = Bs̃, for

A1 = e(d−r)t max
{

4
√
r(d− r), 2(r(d− r))3/2 + r

}
‖w(n, s,v)‖ ,

A2 = e(d−r)t 1
40r3d(d− r) ‖w(n, s,v)‖ ,(6.8)

we have

A2 ≤ ‖S‖I′0 ≤ A1; A2 ≤
∣∣∣∣∣ ∂S∂s̃′ij

(s̃′)
∣∣∣∣∣ ≤ A1,∀i, j,∀s̃′ ∈ I ′0.(6.9)

Applying Lemma 6.11 to S(s̃′), since B preserves Lebesgue measure, we
obtain that for any ε > 0,

|{s̃ ∈ I0 : |S(s̃)| ≤ ε}| ≤ |{s̃′ ∈ I ′0 : |S(s̃′)| ≤ ε}|

≤ r(d− r)12A1

A2
·
(

ε

‖S‖ I′0

) 1
r(d−r)

· |I ′0|

≤ C̃ · e− 1
r
t · ε

1
r(d−r) · ‖w(n, s,v)‖−

1
r(d−r) ,

where C̃ is a constant depending only on r and d. Choose t > 0 large enough,
by Lemma 6.10, with 0 < ν < 1

r(d−r) ,∫
I02(s)

αν
m(a(n+1)tuϕ(s + s̃e−dnt)Γ)ds̃ ≤

∫
I0

1
‖w(n + 1, s + e−dnts̃,v)‖ν ds̃

≤ rν ·
∫
I0

1
|S(s̃)|ν ds̃

≤ rνcνC̃
νr(d−r) · e−ν(d−r)t ‖w(n, s,v)‖−ν

≤ 1
4α

ν
m(antuϕ(s)Γ).

This prove the lemma. Therefore, it remains to achieve (6.9). Consider the
function Ψ =

∑r
q=1

∑k
p=1 mpϕqp, where m = (m1, · · · ,mk)t. We have

S(s̃) = e(d−r)(n+1)t
[
Ψ(s + e−dnts̃) − Ψ(s) −

r∑
i=1

d−r∑
j=1

e−dnts̃ij < (v)>r · m, ej >

+ e−(d−r)nt
r∑

i=1
wi(n, s,v)

]
.(6.10)
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Let N3 = 4r(d − r), define the partition {I1(s), I2(s), I3(s)} of {(i, j) : 1 ≤
i ≤ r, 1 ≤ j ≤ d− r} by

I1(s) := {(i, j) : |< (v)>r · m, ej >| = ‖(v)>r · m‖∞};

I2(s) := {(i, j) : ‖(v)>r · m‖∞ > |< (v)>r · m, ej >| ≥ 1
N3

‖(v)>r · m‖∞};

I3(s) := {(i, j) : |< (v)>r · m, ej >| < 1
N3

‖(v)>r · m‖∞}.

Note that by definition, I1(s) �= ∅. Using (6.10), the choice of N3, and the
estimate

∣∣∣∣∣ ∂Ψ
∂s̃ij

(s + e−dnts̃)
∣∣∣∣∣ ≤

⎛
⎝ k∑

p=1
m2

p

⎞
⎠

1
2

·

⎛
⎝ k∑

p=1
(

r∑
q=1

∂ϕqp

∂sij
)2)

⎞
⎠

1
2

≤ ‖m‖ k
1
2 · rM1

N1
,∀s̃ ∈ I ′0,

the following holds for any s̃ ∈ I ′0:

• For any (i, j), where 1 ≤ i ≤ r, 1 ≤ j ≤ d− r,∣∣∣∣∣ ∂S∂s̃ij
(s̃)
∣∣∣∣∣ ≤ C1 := 2e(d−r)t ‖(w(n, s,v))>r‖∞ ;

• For any (i, j) ∈ I1(s),∣∣∣∣∣ ∂S∂s̃ij
(s̃)
∣∣∣∣∣ ≥ c1 := e(d−r)t

(
1 − k1/2r

N1

)
‖(w(n, s,v))>r‖∞ ;

• For any (i, j) ∈ I2(s),∣∣∣∣∣ ∂S∂s̃ij
(s̃)
∣∣∣∣∣ > C2 := e(d−r)t

(
1
N3

− k1/2r

N1

)
‖(w(n, s,v))>r‖∞ ;

• For any (i, j) ∈ I3(s),∣∣∣∣∣ ∂S∂s̃ij
(s̃)
∣∣∣∣∣ < c2 := e(d−r)t

(
1
N3

+ k1/2r

N1

)
‖(w(n, s,v))>r‖∞ .

Applying Lemma 6.13 with N = r(d−r), and C1, c1, C2, c2 given as above,
we obtain B = B(s) ∈ SOr(d−r)(R) (Since the partition depends only on s,
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B depends only on s), such that after the change of basis s̃′ = Bs̃, the vector
v(s̃′) = ( ∂S

∂s̃′ij
(s̃′))ij satisfies the following: For any 1 ≤ i ≤ r, 1 ≤ j ≤ d− r,

min
{

c1√
N

−
√
Nc2, C2

}
≤
∣∣∣∣∣ ∂S∂s̃′ij

(s̃′)
∣∣∣∣∣ ≤ C1 +

√
Nc2,∀s̃′ ∈ I ′0.(6.11)

By the assumption of Case 2, and the choice of N2, it is elementary to verify
that

min
{

c1√
N

−
√
Nc2, C2

}
≥ e(d−r)t 1

40r3d(d− r) ‖w(n, s,v)‖ , and

C1 +
√
Nc2 ≤ 4

√
r(d− r)e(d−r)t ‖w(n, s,v)‖ .(6.12)

Moreover, using the expression (6.10), we obtain

‖S‖I′0 ≤ e(d−r)t(2(r(d− r))3/2 + r) ‖w(n, s,v)‖ .(6.13)

Also, note that

‖S‖I′0 ≥ inf
s̃∈I0,(i,j)∈I1

∣∣∣∣∣ ∂S∂s̃ij
(s̃)
∣∣∣∣∣ ≥ e(d−r)t 1

10r2d
‖w(n, s,v)‖ .(6.14)

Now we choose A1, A2 as in (6.8), by (6.11)(6.12)(6.13)(6.14), (6.9) is achieved.
This finishes the proof of the lemma.

7. Proof of Proposition 2.1

Following a general strategy developed in [8, Section 6.6], we derive Proposi-
tion 2.1 from Proposition 6.1.

Let Y be a locally compact, second countable Hausdorff topological space.
Let B be a compact box in Matr×(d−r)(R). Let φ : Matr×(d−r)(R) → Y be
a continuous map. Let f : R × Y → Y be a continuous map and we write
f(t, y) as f t(y) for (t, y) ∈ R× Y .

Let F0 = {B}. For every n ∈ N, let Fn be a partition of elements in Fn−1
into countably many subboxes with positive Lebesgue measure. By construc-
tion, {Fn}n∈Z≥0 is a filtration. For any s ∈ B, let In(s) denote the atom in
Fn containing s.

Let β : Y → [1,∞] be a measurable map. Assume that β satisfies the
following conditions:
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(1) β satisfies contraction hypothesis: There exist 0 < a < 1 and b > 0
such that for any n ∈ Z≥0 and any atom In in Fn,∫

In

β(fn+1φ(s))ds < a

∫
In

β(fnφ(s))ds + b|In|;(7.1)

(2) β satisfies Lipschitz property: There exists a constant M > 0 such
that for any s ∈ B, any n ∈ Z≥0, and any s̃ ∈ In(s),

β(fnφ(s̃)) ≤ Mβ(fnφ(s)),
β(fn+1φ(s)) ≤ Mβ(fnφ(s));(7.2)

(3) β is bounded on φ(B), that is, there exists l > 0 such that

{φ(s) : s ∈ B} ⊂ Yl = {y ∈ Y : β(y) < l}.(7.3)

For any T > 0 and a measurable subset K of Y , define

AT
K(s) := 1

T

∫ T

0
χK(f tφ(s))dt,

where χK is the indicator function of K.

Lemma 7.1. [8, Lemma 6.20] For any ε > 0, there exist 0 < l1 < ∞ and
0 < c1 < 1 such that for K = Yl1 , and any T > 1,

|{s ∈ B : AT
K(s) ≤ 1 − ε}| ≤ cT1 |B|.

proof of Proposition 2.1. We will apply Lemma 7.1 to Y = X, B = I,
β = βm, φ(s) = uϕ(s)Γ and f t = at for t > 0 sufficiently large so that
Proposition 6.1 holds.

Recall that I is a closed cube in Matr×(d−r)(R). We may assume that
t > 0 is large enough such that e−dt is less than the length of each side of I.

We construct a filtration {Fn}n∈N on I as follows. Let F0 = {∅, I}.
Suppose that we have already constructed Fn−1. We divide each box J of
Fn−1 consecutively into cubes and boxes such that cubes have side length
e−dnt and boxes have side length between e−dnt and 2e−dnt. Then conditions
(7.1)(7.2)(7.3) follows from Proposition 6.1.

Therefore, applying Lemma 7.1, we obtain l1 > 0 such that the set K
defined by

K := {x ∈ X : βm(x) < l1}

is a compact subset of X \Xm, and (2.4) holds.
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8. Proof of variants of Theorem 1.3

Given M ∈ SLd(R), we may write

M =
[
A B
C D

]
,(8.1)

where A ∈ Matr×r(R), B ∈ Matr×(d−r)(R), C ∈ Mat(d−r)×r(R), D ∈
Mat(d−r)×(d−r)(R). For s ∈ U , we can write

u(s)M =
[
A + s · C B + s · D

C D

]
=
[
A(s) B(s)
C D

]
.(8.2)

Since M ∈ SLd(R), it is clear that the set of s ∈ U such that detA(s) = 0 is
a proper algebraic subvariety of U and hence, it has Lebesgue measure zero.

Therefore, we can assume that detA(s) �= 0, and

u(s)M =
[
A(s) 0
C D − CA(s)−1B(s)

]
·
[

1r A(s)−1B(s)
0d−r,r 1d−r

]
.

We may write

u(s)M(Id,ϕ(s)) = (u(s)M(Id,ϕ(s)))− · (u(s)M(Id,ϕ(s)))+,

where

(u(s)M(Id,ϕ(s)))− =
[
A(s) 0
C D − CA−1(s)B(s)

]
·
(
Id,

[
0

(ϕ(s))>r

])
,

(u(s)M(Id,ϕ(s)))+

=
([

1r A(s)−1B(s)
0d−r,r 1d−r

]
,

[
(ϕ(s))≤r + A(s)−1B(s) · (ϕ(s))>r

0

])
.

Lemma 8.1. For a.e. s0 ∈ U , there is an open neighborhood V of s0 contained
in U and an open subset Ṽ of Matr×(d−r)(R), such that the map φ : V → Ṽ
defined by

φ(s) = A(s)−1B(s)(8.3)

is a diffeomorphism.
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Proof. For any s0 ∈ U such that detA(s0) �= 0, there is a neighborhood V of
s0, for any s ∈ V, the map φ(s) is well defined and differentiable. Therefore
Ṽ = φ(V) ⊂ Matr×(d−r)(R) is an open subset. Let

φ−1(s̃) = (As̃ − B)(D − Cs̃)−1

for any s̃ such that det(D − Cs̃) �= 0. Now we verify that φ−1 is the inverse
of φ, that is, we need to verify that for s̃ = φ(s),

As̃ − B = s(D − Cs̃).(8.4)

Note that as s̃ = φ(s), we have (A + sC)s̃ = B + sD. Therefore, left hand
side of (8.4) is As̃ − B = (A + sC − sC)s̃ − B = sD − sCs̃, which is equal
to the right hand side of (8.4).

Proof of Theorem 1.5. Choose s0,V , Ṽ satisfying Lemma 8.1. By Lemma 2.3,
it suffices to prove that for a.e. s ∈ V, the point

(u(s)M(Id,ϕ(s)))+Γ(8.5)

is Birkhoff generic with respect to (X,μX , at). For s̃ ∈ Ṽ , define

ϕ̃(s̃) :=
[
(ϕ(φ−1(s̃)))≤r + s̃ · (ϕ(φ−1(s̃)))>r

0

]
.

Applying Corollary 1.4 to uϕ̃(s̃)Γ for s̃ ∈ Ṽ , we obtain that if for any
m ∈ Zk \ {0},

|{s̃ ∈ Ṽ : (ϕ̃(s̃))≤r · m ∈ s̃ · Zd−r + Zr}| = 0,(8.6)

then for a.e. s̃ ∈ Ṽ , uϕ̃(s̃)Γ is Birkhoff generic with respect to (X,μX , at).
Suppose for some s̃ ∈ Ṽ , and some m ∈ Zk \ {0},

(ϕ̃(s̃))≤r · m ∈ s̃ · Zd−r + Zr.(8.7)

Let s = φ−1(s̃). By definition of φ and ϕ̃, (8.7) implies that there exist
a ∈ Zd−r and b ∈ Zr such that

(A(s) · (ϕ(s))≤r + B(s) · (ϕ(s))>r) · m = B(s) · a + A(s) · b,
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then (8.7) implies that
[
A(s) B(s)
C D

]
·ϕ(s) · m =

[
B(s) · a + A(s) · b

(C · (ϕ(s))≤r + D · (ϕ(s))>r) · m

]
.(8.8)

By (8.2), (8.8) further implies that

ϕ(s) · m = M−1u(−s) ·
[

B(s) · a + A(s) · b
(C · (ϕ(s))≤r + D · (ϕ(s))>r) · m

]

∈ Zd + M−1u(−s) ·
[

0
Rd−r

]
.

Therefore, the condition (1.9) implies (8.6). By definition, for any s ∈ V,

(u(s)M(Id,ϕ(s)))+ = uϕ̃(s̃), where s̃ = φ(s).

This finishes the proof.

Proof of Corollary 1.8. Note that uϕ(s) · (M,v) = u(s)M(Id, ϕ̃(s)), where
ϕ̃(s) = M−1(ϕ(s) + v). Applying Theorem 1.5 to u(s)M(Id, ϕ̃(s))Γ, we
obtain that if for any m ∈ Z \ {0},

|{s ∈ U : ϕ̃(s) · m ∈ M−1u(−s) ·
[

0
Rd−r

]
+ Zd}| = 0,(8.9)

then for Lebesgue a.e. s ∈ U , u(s)M(Id, ϕ̃(s))Γ is Birkhoff generic with re-
spect to (X,μX , at). By definition of ϕ̃, (8.9) is equivalent to

|{s ∈ U : (ϕ(s) + v) · m ∈ u(−s) ·
[

0
Rd−r

]
+ M · Zd}| = 0.

The corollary is proven.

Proof of Corollary 1.9. Fix an s0 ∈ U at which the map s �→ E1(s)−1 ·
[er+1, · · · , ed] has a nonsingular differential. It is enough to prove the corol-
lary for a.e. s in a neighborhood of s0. Choose a neighborhood V of s0 such
that for any s ∈ V, as in (8.1) we can write

E2(s) = E1(s) · E1(s0)−1 =
[
A(s) B(s)
C(s) D(s)

]
,
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where detA(s) �= 0 and detD(s) �= 0. This can be done by smoothness of E1.
Since E2(s) ∈ SOd(R), E2(s) · E2(s)t = Id, that is,

[
A(s) B(s)
C(s) D(s).

]
·
[
A(s)t C(s)t
B(s)t D(s)t

]
= Id.

In particular, we have

A(s) · C(s)t + B(s) · D(s)t = 0.

We may write

E2(s) = E2(s)− · u(−C(s)t · (D(s)t)−1),

where

E2(s)− =
[
A(s) 0
C(s) D(s) − CA(s)−1B(s)

]
.

By Lemma 2.3, for any s ∈ U , E1(s)(Id,ϕ(s))Γ is Birkhoff generic with
respect to (X,μX , at) if and only if

u(−C(s)t · (D(s)t)−1) · E1(s0)(Id,ϕ(s))Γ

is Birkhoff generic with respect to (X,μX , at).
By assumption, the map

s �→ E2(s)−1 · [er+1, · · · , ed] =
[
C(s)t
D(s)t

]

has nonsingular differential at s0. Thus the map

φ : s �→ −C(s)t · (D(s)t)−1(8.10)

also has nonsingular differential at s0.
Shrink the neighborhood V of s0 if necessary, we can assume that there

exists an open subset Ṽ of Matr×(d−r)(R) such that φ : V → Ṽ is a diffeo-
morphism. Denote φ−1 the inverse of φ.

Let ϕ̃(s̃) = ϕ(φ−1(s̃)). Applying Theorem 1.5 to

{u(s̃)E1(s0)(Id, ϕ̃(s̃))Γ : s̃ ∈ Ṽ},
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we obtain that if for any m ∈ Zk \ {0},∣∣∣∣∣
{
s̃ ∈ Ṽ : ϕ̃(s̃) · m ∈ E1(s0)−1 · u(−s̃) ·

[
0

Rd−r

]
+ Zd

}∣∣∣∣∣ = 0,(8.11)

then for a.e. s̃ ∈ Ṽ , u(s̃)E1(s0)(Id, ϕ̃(s̃))Γ is Birkhoff generic with respect to
(X,μX , at). Since φ is a diffeomorphism, (8.11) is equivalent to∣∣∣∣∣

{
s ∈ V : ϕ(s) · m ∈ E1(s)−1 ·

[
0

Rd−r

]
+ Zd

}∣∣∣∣∣ = 0.

This completes the proof.

9. Application to universal hitting time statistics for
integrable flows

9.1. An adapted form of Corollary 1.9

Following notations of [3], for l > 0, let

D(e−l) = diag[e−(d−1)l, el, · · · , el].

Theorem 9.1. Let U be a bounded open subset of Rd−1 and ϕ : U → (Rd)k
be a C1 map. Let E1 : U → SOd(R) be a smooth map such that the map
s �→ E1(s)−1 · e1 has a nonsingular differential at Lebesgue almost every
s ∈ U . Assume that for any m ∈ Zk \ {0},

|{s ∈ U : ϕ(s) · m ∈ RE1(s)−1 · e1 + Zd}| = 0.

Then for Lebesgue a.e. s ∈ U , E1(s)(Id, ϕ(s))Γ is Birkhoff generic with respect
to (X,μX , D(e−l)).

Proof. For any l > 0, denote al = diag[el, · · · , el, e−(d−1)l]. Choose ω ∈
SOd(R) ∩ SLd(Z) such that for any

ω−1 ·D(e−l) · ω = al.

Note that since ω ∈ SLd(Z),

ω−1D(e−l)E1(s)(Id, ϕ(s))Γ = alω
−1E1(s)ω(Id, ω−1ϕ(s))Γ.

Applying Corollary 1.9, we obtain that for a.e. s ∈ U , ω−1E1(s)ω(Id,
ω−1ϕ(s))Γ is Birkhoff generic with respect to (X,μX , al), and the theorem
follows.
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9.2. Universal hitting time

Let (M,B, ν) be a measurable space with probability measure ν, and ϕt :
M → M be a measure-preserving dynamical system. Given some target set
D ⊂ M, it is natural to study how often a ϕ-trajectory along random initial
data x ∈ M intersects this target set. On the other hand, another question is
to consider a sequence of randomized target sets whose “size” shrink to zero,
and study the distribution of intersection times of a random ϕ-trajectory
with these shrinking targets. The interested reader is referred to [3] and the
references therein for a survey of the history of aforementioned questions.

In the setting of universal hitting time statistics for integrable flows (cf.
[3]), the above question is studied when the measurable space is a d dimen-
sional torus Td and ϕt is a linear flow on the torus. Now let d ≥ 2 and k ≥ 1
be fixed integers. In this article, the sequence of target sets we consider is a
sequence of union of k many bounded codimensional one balls in Td, whose
radius shrink to zero. More precisely, let U be a bounded open subset of Rd−1.
Consider the following smooth functions:

θ,φj : U → Td, 1 ≤ j ≤ k,

f ,uj : U → Sd−1
1 , 1 ≤ j ≤ k,

where Sd−1
1 is the unit one sphere in Rd. For the functions above, we assign

to any s ∈ U the following:

• θ(s) =initial position of the flow;
• f(s) =direction of the flow;
• uj(s) =direction of the j-th target ball;
• φj(s) =center of the j-th target ball.

With these functions, we define the flow

ϕt : U → Td × U , s �→ (θ(s) + tf(s), s).(9.1)

From now on, we fix a map v �→ Rv from Sd−1
1 to SOd(R) such that for all

v ∈ Sd−1
1 ,

Rv · v = e1,(9.2)

and v �→ Rv is smooth on Sd−1
1 \ {v0} for a singular point v0 ∈ Sd−1

1 . For
1 ≤ j ≤ k, fix a bounded open subset Ωj ⊂ Rd−1 × U . For any l > 0, denote
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the l-level target set with to be

Dl =
k⋃

j=1
Dl(uj ,φj ,Ωj),

where

Dl(uj ,φj ,Ωj) =
{(

φj(s) + e−lR−1
uj(s) ·

[
0
x

]
, s
)
∈ Td × U : (x, s) ∈ Ωj

}
.

Note that l > 0 parameterizes the size of the target. For any s ∈ U , let
T (s,Dl) be the set of hitting times defined by

T (s,Dl) := {t > 0 : ϕt(s) ∈ Dl}.

This is a discrete subset of R>0, and we label its elements by

0 < t1(s,Dl) < t2(s,Dl) < · · · .

By Santalo’s formula (cf. [2]), if s ∈ U is such that the components of f(s) are
not rationally related, then for any n ∈ N, the normalized n-th return time
to target Dl is

tn(s,Dl)
e(d−1)l · σ(s)

,

where e(d−1)l · σ(s) is the mean return time (cf. [3, Section 2]), and

σ(s) = 1∑k
j=1 |Ωj(s)|uj(s) · f(s)

, Ωj(s) = {x ∈ Rd−1 : (x, s) ∈ Ωj}.

Definition 9.2. The smooth map f : U → Sd−1
1 is regular if the push forward

of Lebesgue measure on U under f is absolutely continuous with respect to
the Haar measure on Sd−1

1 .

The following is a corollary of Theorem 9.1:

Corollary 9.3. Let U be a bounded open subset of Rd−1. Let f : U → Sd−1
1

be a regular smooth map. Let ϕ : U → (Rd)k be a C1 map. If for any m ∈
Zk \ {0},

|{s ∈ U : ϕ(s) · m ∈ Rf(s) + Zd}| = 0,(9.3)
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then for Lebesgue a.e. s ∈ U , Rf(s)(Id,ϕ(s))Γ is Birkhoff generic with respect
to (X,μX , D(e−l)).

Proof. By assumption, f is a regular smooth map from U to Sd−1
1 . By Sard’s

theorem, the set of critical points of f has Lebesgue measure 0. For any s0 ∈ U
which is not a critical point of f , there exists an open neighborhood V of s0
such that f is a diffeomorphism of V to some open subset of Sd−1

1 .
Therefore, the map s �→ R−1

f(s) · e1 = f(s) has nonsingular differentials for
all s ∈ V. Then we apply Theorem 9.1 to E1(s) = Rf(s) and the corollary
follows.

Definition 9.4. The k-tuple of smooth functions φ1, · · ·φk : U → Td is
θ-generic if for any m = (m1, · · · ,mk) ∈ Zk \ {0}, we have

∣∣∣∣∣∣
⎧⎨
⎩s ∈ U :

k∑
j=1

mj(φj(s) − θ(s)) ∈ Rf(s) + Zd

⎫⎬
⎭
∣∣∣∣∣∣ = 0.

To state our theorem precisely, we need some preparations. Our notations
follows from [3, Section 6]. Given N ∈ N, denote N = {1, · · · , N}. For j ∈
{1, · · · , k} and s ∈ U , define Rj(s) = Rf(s)R−1

uj(s). Let R̃j(s) be the matrix of
the linear transformation

x �→
(
Rj(s)

[
0
x

])
⊥
∈ Rd−1,(9.4)

where u⊥ = (u2, · · · , ud)tr ∈ Rd−1 for u = (u1, · · · , ud)tr ∈ Rd.
For any s ∈ U , we define

Ω̃j(s) := σ(s)
1

d−1 R̃j(s)Ωj(s) ⊂ Rd−1.(9.5)

Let G1 = SLd(R) � Rd. For g = (g′, (ξ1, · · · , ξk)) ∈ G and j ∈ {1, · · · , k},
write g[j] = (g′, ξj) ∈ G1. Our main theorem of this section is the following.

Theorem 9.5. Let U be a bounded open subset of Rd−1. For 1 ≤ j ≤ k, let
f ,θ,uj ,φj be given as in the beginning of this section. Let Ωj be a bounded
open subset of Rd−1 × U . For each j = 1, · · · , k, assume that

(1) |u−1
j ({v0})| = 0,

(2) uj(s) · f(s) > 0 for all s ∈ U ,
(3) for a.e. s ∈ U , the boundary ∂Ωj(s) has Lebesgue measure 0.
(4) |Ωj(s)| is a smooth positive function of s ∈ U .
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Also assume that f is regular and (φ1, · · · ,φk) is θ-generic. Then for any
N ∈ N, any Tn > 0 for n ∈ N , the following holds: For a.e. s ∈ U ,

lim
L→∞

1
L

∣∣∣∣
{
l ∈ [0, L] : tn(s,Dl)

e(d−1)l · σ(s)
≤ Tn,∀n ∈ N

}∣∣∣∣
= μX

⎛
⎝
⎧⎨
⎩gΓ ∈ X :

k∑
j=1

#
{[

t
x

]
∈ g[j]Zd : 0 < t < Tn,x ∈ −Ω̃j(s)

}
≥ n,

∀n ∈ N
})

.

Note that in [3, Theorem 2], the authors proved that for each n ∈ N, there
is some random variable τn in R>0 such that the n-th normalized hitting time
tn(·,Dl)/(e(d−1)l · σ(·)) converges to τn in distribution as l → ∞. Unlike [3],
in Theorem 9.5 we are interested in the question that given a fixed initial s,
when the target is shrinking, how often the n-th normalized hitting time is
bounded by some given constant.

For any j ∈ {1, · · · , k}, any real numbers Y < Z, following [3, Eq. (8.9)],
we define

Ãj,Y,Z =
{([

t

−R̃j(s)x

]
, s
)

: (x, s) ∈ Ωj , σ(s)Y < t ≤ σ(s)Z
}
.

Given any real numbers Yn < Zn for n ∈ N , following [3, Eq.(8.10)], we define

B[(Yn), (Zn)]={(gΓ, s)∈G/Γ × U :
k∑

j=1
#(Ãj,Yn,Zn(s) ∩ g[j] · Zd)≥n, ∀n∈N}.

where

Ãj,Yn,Zn(s) = {x ∈ Rd : (x, s) ∈ Ãj,Yn,Zn}.

For any s ∈ U , denote

B[(Yn), (Zn)](s) := {gΓ ∈ G/Γ : (gΓ, s) ∈ B[(Yn), (Zn)]}.

Lemma 9.6. [3, Lemma 17] For every s ∈ U , and B = B[(Yn), (Zn)],
μX(∂B(s)) = 0.

Proof. By [3, Lemma 14,16], it suffices to prove that for every j ∈ {1, · · · , k}
and n ∈ {1, · · · , N}, ∂Ãj,Yn,Zn(s) has Lebesgue measure zero. Now since for
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any Y < Z, we have

∂Ãj,Y,Z(s) =
{[

t

−R̃j(s)x

]
: x ∈ ∂Ωj(s), σ(s)Y < t ≤ σ(s)Z

}

⋃{[
t

−R̃j(s)x

]
: x ∈ Ωj(s), t ∈ {σ(s)Y, σ(s)Z}

}
.

By assumption, for a.e. s ∈ U , |∂Ωj(s)| = 0, the lemma follows.

We are now ready to prove Theorem 9.5.

Proof of Theorem 9.5. The proof of Theorem 9.5 is almost the same as the
proof of [3, Theorem 2], except that here we use the equidistribution result for
the average along at trajectory, while in [3], the equidistribution of at trans-
lation of the average over a bounded open subset in horospherical subgroup
is used.

Let ϕ̃ : U → (Rd)k be a map given by

ϕ̃(s) = (φ1(s) − θ(s), · · · ,φk(s) − θ(s)).

Since (φ1, · · · ,φk) is θ-generic, f is regular, assumption (9.3) in Corollary 9.3
are satisfied for the maps ϕ̃ and f , thus Corollary 9.3 applies.

Let B = B[(Yn), (Zn)] for Yn, Zn ∈ R and n ∈ N . Since by Lemma 9.6,
μX(∂B(s)) = 0, for all s ∈ U , we have for a.e. s ∈ U ,

lim
L→∞

1
L

∫ L

0
χB(s)(D(e−l)Rf(s)(Id, ϕ̃(s)))dl = μX(B(s)).

Then the rest of the proof follows from the proof of [3, Theorem 2].
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