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Quantum complexity of permutations
Andrew Yu

∗

Abstract: Quantum complexity of a unitary measures the runtime
of quantum computers. In this article, we study the complexity of
a special type of unitaries, permutations. Let Sn be the symmetric
group of all permutations of {1, · · · , n} with two generators: the
transposition and the cyclic permutation (denoted by σ and τ). The
permutations {σ, τ, τ−1} serve as logic gates. We give an explicit
construction of permutations in Sn with quadratic quantum com-
plexity lower bound n2−2n−7

4 . We also prove that all permutations
in Sn have quadratic quantum complexity upper bound 3(n− 1)2.
Finally, we show that almost all permutations in Sn have quadratic
quantum complexity lower bound when n → ∞. The method de-
scribed in this paper may shed light on the complexity problem for
general unitaries in quantum computation.

1. Introduction

A quantum computation is a unitary transformation implemented by a given
finite set of unitary transformations called logic gates. Quantum complexity
of a unitary transformation is then defined as the smallest number of logic
gates needed to implement the unitary transformation (cf. [1, 2, 3, 5, 6, 7,
8, 9, 10, 11, 12]). A central problem in quantum computation is to estimate
the quantum complexity of a unitary. In [1, 2, 7, 8, 11], a geometric method
was developed to investigate quantum complexity. Quantum complexity has
also been found to have surprising connections to high energy physics. For
example, it is conjectured by Stanford and Susskind that quantum complexity
is dual to wormhole volume in quantum field theory [13].

In this article, we use a combination of geometric ideas with combinatorial
techniques to study the quantum complexity of permutations, a special type
of unitary transformations. Permutations plays an important role in quan-
tum computations. For example, the swap gate is a widely-used permutation
in quantum computation. It is well known that the matchgate can be simu-
lated in a classical computer in polynomial time [14]. However, the matchgate
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together with the swap gate is universal in the sense that any quantum com-
putation can be (approximately) implemented by a sequence of these gates
[15].

The main results of this article are as follows. First, we give an ex-
plicit construction of permutations with quadratic quantum complexity lower
bound n2−2n−7

4 . Secondly, we show that all permutations have quadratic quan-
tum complexity upper bound 3(n − 1)2. Finally, we prove that almost all
permutations have quadratic quantum complexity lower bound 1

32n
2 − 3.

We define the symmetric group Sn to be the group of all permutations
of the set {1, · · · , n}. Let σ be the permutation: σ(1) = 2, σ(2) = 1, and
σ(i) = i if i �= 1, 2, and let τ be the cyclic permutation: τ(1) = 2, τ(2) =
3, · · · , τ(n − 1) = n, τ(n) = 1. The permutations σ and τ generate the
symmetric group Sn in the sense that every element in Sn can be written as
the product of a sequence of permutations from {σ, τ, τ−1} (cf. Theorem 1.4).

A quantum computation can be described as a sequence of logic gates. In
our model, we choose the generators σ, τ , and τ−1 as logic gates. One moti-
vation for choosing these logic gates is that they are essentially the smallest
set of generators to implement all permutations. Since any permutation can
be expressed as a product of a sequence of the chosen logic gates, a quan-
tum computation is equivalent to a permutation. Quantum complexity of a
permutation is then the smallest number in a sequence of these gates needed
to implement the permutation. It is a natural problem to estimate quantum
complexity of permutations in Sn.

In the following theorem, we construct an explicit permutation with
quadratic quantum complexity lower bound (such a permutation is also called
quadratically hard to implement).

Theorem 1.1. If ω is the permutation of the set {1, 2, · · · , n} defined as
follows:

ω(1) = 1, ω(2) = 3, · · · , ω
(
n + 1

2

)
= n, ω

(
n + 1

2 + 1
)

= 2,

ω

(
n + 1

2 + 2
)

= 4, · · · , ω(n) = n− 1

when n is odd, and

ω(1) = 1, ω(2) = 3, · · · , ω
(
n

2

)
= n− 1, ω

(
n

2 + 1
)

= 2, ω
(
n

2 + 2
)

= 4,

· · · , ω(n) = n
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when n is even, then ω has quadratic quantum complexity lower bound n2−2n−7
4 ,

more precisely, if we write
ω = ρ1 · · · ρl

with each ρi (1 ≤ i ≤ l) being a permutation from the generating set {σ, τ, τ−1},
then

l ≥ n2 − 2n− 7
4 .

The following very bumpiness concept provides the intuition why the
permutation in Theorem 1.1 has quadratic quantum complexity lower bound.

Definition 1.2. We identify the set {1, 2, · · · , n} with the set of all integers
modulo n. A permutation ω of {1, 2, · · · , n} is said to be very bumpy if, for
each k ∈ {0, 1, 2 · · · , n− 1},

#{ i ∈ {1, 2, · · · , n} : d(k + ω(i), i) ≥ n

8 } ≥ n

4 ,

where addition is performed modulo n and d(x, y) = min{|x−y|, n−|x−y|}.

The next theorem gives a quadratic quantum complexity lower bound for
very bumpy permutations.

Theorem 1.3. If a permutation ω of {1, 2, · · · , n} is very bumpy, then ω has
quadratic quantum complexity lower bound, more precisely, if we write

ω = ρ1 · · · ρl

with each ρi (1 ≤ i ≤ l) being a permutation from the generating set {σ, τ, τ−1},
then

l ≥ n2

32 − 3.

The following result gives a quadratic upper bound for quantum complex-
ity of all permutations.

Theorem 1.4. Every permutation in Sn has quantum complexity upper bound
3(n− 1)2, more precisely, for any permutation ω ∈ Sn, we can write

ω = ρ1 · · · ρj

with each ρi (1 ≤ i ≤ j) being a permutation from the generating set {σ, τ, τ−1}
and

j ≤ 3(n− 1)2.



578 Andrew Yu

Theorem 1.1 implies that the quadratic quantum complexity upper bound
in the above theorem is optimal for permutations.

Our final theorem says that a permutation has quadratic quantum com-
plexity lower bound with probability 1 (as n → ∞).

Theorem 1.5. Almost all permutations have quadratic quantum complexity
lower bound, more precisely, the ratio of the number of permutations in Sn

with quantum complexity lower bound 1
32n

2 −3 over #Sn = n! goes to 1 when
n → ∞, where #Sn is the number of elements in the symmetric group Sn.

We prove the above theorem by showing that almost all permutations are
very bumpy.

The rest of this article is structured as follows. In Section 2, we introduce
a discrete geometry method to study quantum complexity lower bound. In
Section 3, we give an explicit construction of permutations with quadratic
quantum complexity lower bound and prove that very bumpy permutations
have quadratic quantum complexity lower bound. In Section 4, we show that
all permutations have quadratic quantum complexity upper bound. In Section
5, we prove that almost all permutations have quadratic quantum complexity
lower bound.

2. Discrete geometry and quantum complexity lower bound

In this section, we introduce a discrete geometry method for deriving lower
bounds for the quantum complexity of any permutation. In the next section,
we will combine this method with other combinatorial ideas to give an ex-
plicit construction of permutations with quadratic quantum complexity lower
bound.

A pair of elements {x, y} in {1, 2, · · · , n} are said to be neighbors if |x−
y| = 1 or {x, y} = {1, n}. We will introduce a discrete path distance d on the
set {1, 2, · · · , n} such that the distance between two neighbors is 1.

A function φ from {1, · · · , k} to {1, 2, · · · , n} is called a discrete path if
φ(i) and φ(i+1) are either neighbors or φ(i) = φ(i+1) for each i = 1, · · · , k−1.
The length of the discrete path φ is defined to be

d(φ(1), φ(2)) + · · · + d(φ(k − 1), φ(k)),

where
d(φ(i), φ(i + 1)) = 1

if φ(i) and φ(i + 1) are neighbors as defined above, and

d(φ(i), φ(i + 1)) = 0
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if φ(i) = φ(i + 1).
A discrete path φ as defined above is said to be connecting a pair of

elements {x, y} in {1, 2, · · · , n} if

φ(1) = x, φ(k) = y.

Definition 2.1. The discrete path distance on {1, 2, · · · , n} is defined as
follows. For any pair {x, y} in {1, 2, · · · , n}, the discrete path distance between
x and y is defined to be the length of the shortest discrete path connecting x
to y.

The following basic fact plays an essential role in the proof of Theorem
1.1 and Theorem 1.2.

Lemma 2.2. The discrete path distance between any pair of point x and y
in {1, 2, · · · , n} is equal to

d(x, y) = min{|x− y|, n− |x− y|}.

Proof of Lemma 2.2. We place {1, 2, · · · , n} on a circle such that two neigh-
bors from {1, 2, · · · , n} are adjacent to each other on the circle. One way to
do this is to place each k from 1 to n at the position exp(2πki

n ) = cos(2πki
n ) +

i sin(2πki
n ) on the unit circle in the complex plane.

We claim that there exists a shortest discrete path φ connecting x to y
such that
(1) φ(i) �= φ(i + 1) for all i = 1, · · · , k − 1;
(2) the sequence φ(1), · · · , φ(k), is ordered either clockwise or anti-clockwise
on the circle.

We first show that there exists a shortest discrete path φ such that φ(i) �=
φ(i+1) for all i = 1, · · · , k−1. Let φ be a shortest discrete path connecting x
to y. Assume by contradiction, there exists i0 such that φ(i0) = φ(i0 +1). We
can define a new discrete path φ′ connecting x to y as follows: φ′(i) = φ(i) for
i ≤ i0 and φ′(i) = φ(i+1) for i0+1 ≤ i ≤ k−1. Note that φ′ is a discrete path
defined on {1, · · · , k− 1} satisfying φ′(1) = x and φ′(k− 1) = y. It is easy to
see that the length of φ′ is equal to the length of φ. If φ′ satisfies the above
condition (1), then φ′ is our desired discrete path. Otherwise, we repeat the
same procedure until we obtain a shortest path satisfying the above condition
(1). Notice that this process stops at some point since each time we perform
this procedure, the size of the domain of the new discrete path decreases by
one element.
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We now assume that φ is a shortest discrete path connecting x to y
and satisfies condition (1). Without loss of generality, we can assume that
φ(1), φ(2) are ordered clockwise on the circle. Assume that by contradiction
that there exists i such that φ(i), φ(i + 1) are ordered anti-clockwise on the
circle. Let i0 be the smallest integer such that φ(i0), φ(i0 + 1) are ordered
anti-clockwise on the circle. By the assumption that φ(1), φ(2) are ordered
clockwise on the circle, we know that i0 ≥ 2. Since φ satisfies the above
condition (1), it follows that φ(i0 + 1) = φ(i0 − 1). Let φ′ be a new discrete
path connecting x to y defined as follows: φ′(i) = φ(i) for i ≤ i0 − 1 and
φ′(i) = φ(i+2) for i0 ≤ i ≤ k−2. Notice that the length of φ′ is less than the
length of φ. This is a contradiction with the assumption that φ is a shortest
discrete path connecting x to y.

Now let φ be a shortest path connecting x to y satisfying the above
conditions (1) and (2). The discrete path φ have two possibilities, one going
clockwise on the circle and the other going anti-clockwise on the circle. The
lengths of the two discrete paths connecting x to y in these two possibilities
are respectively |x− y| and n−|x− y|. Since φ be a shortest path connecting
x to y, the length of φ is

min{|x−y|, n−|x−y|}.

We have the following result, which gives a lower bound for the quantum
complexity of any permutation.

Theorem 2.3. Let β be the permutation of the set {1, · · · , n}. If

β = ρ1 · · · ρm

with each ρi (1 ≤ i ≤ m) being a permutation from the generating set
{σ, τ, τ−1}, then

m ≥ min{|k − β(k)|, n− |k − β(k)|}

for all k ∈ {1, · · · , n}.

An interesting example is the transposition (1 �n2 	) switching 1 with n
2 . By

Theorem 2.3, this transposition has linear quantum complexity lower bound
and by Lemma 4.1 it also has linear quantum complexity upper bound.

Proof of Theorem 2.3. Let
β = ρ1 · · · ρm
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with each ρi (1 ≤ i ≤ m) being a permutation from the generating set
{σ, τ, τ−1}.

We define a discrete path φ in {1, 2, · · · , n} as follows:

φ(1) = k, φ(2) = ρm(k), φ(3) = (ρm−1ρm)(k), · · · , φ(m + 1) = (ρ1 · · · ρm)(k).

A crucial observation is that each permutation ρi is an element from
the generating set {σ, τ, τ−1} and hence it moves elements in {1, 2, · · · , n}
by distance at most 1, where the distance is as defined in Definition 2.1. It
follows that φ is a discrete path as defined at the beginning of this section.

By definition, we have φ(1) = k and φ(m + 1) = β(k). This implies that

d(φ(1), φ(m + 1)) = d(k, β(k)),

where d is the discrete path distance as in Definition 2.1. By Lemma 2.2,
it follows that the length of the discrete path φ is greater than or equal to
min{|k−β(k)|, n− |k−β(k)|}. By the definition of length of a discrete path,
the length of φ is less than or equal to m.

Combining the above two facts, we conclude that

m ≥ min{|k − β(k)|, n− |k − β(k)|}.

3. Explicitly constructed permutations with quadratic
quantum complexity lower bound

In this section, we combine the discrete geometric method from Section 2
with new combinatorial ideas to give an explicit construction of permutations
with quadratic quantum complexity lower bound. We prove that very bumpy
permutations have quadratic quantum complexity lower bound.

We need a few preparations. The following lemma plays an essential role in
the explicit construction of permutations with quadratic quantum complexity
lower bound.

Lemma 3.1. Let ω be a permutation of {1, · · · , n} defined by

ω(1) = k1, · · · , ω(n) = kn.

We arrange the set

{d(1, k1), d(2, k2), · · · , d(n, kn)}
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in a non-increasing order as follows:

d1, d2, · · · , dn,

where d is the discrete path distance in Definition 2.1. If

ω = (lt lt + 1) · · · (l1 l1 + 1),

then for any 1 ≤ m ≤ n
2 , we have

t ≥ d1 + d2 + · · · + d2m −m2.

Proof of Lemma 3.1. Let

ω0 = I, ω1 = (l1 l1 + 1), ω2 = (l2 l2 + 1)(l1 l1 + 1), · · · ,

ωt = (lt lt + 1) · · · (l1 l1 + 1).

We identify the set {1, · · · , n} with the set of all integers modulo n. Place
the elements of {1, · · · , n} on the circle in the complex plane by sending
k ∈ {1, · · · , n} to exp(2πk

n ). The notation k + l will be interpreted as k + l
modulo n if k and l are elements of {1, · · · , n}.

For each j ∈ {1, 2, · · · , n}, if kj �= j, we define

ej(0) = 0 < ej(1) < · · · < ej(sj)

with ωej(sj)(j) = kj as follows.
Let ej(1) to be the largest integer such that

ωej(1)−1(j) = ωej(0)(j) = j

(note that ωej(1)(j) is either j − 1 or j + 1).
Inductively, for each i ≥ 1, if ωej(i−1)(j) �= kj , we define ej(i) to be the

largest integer such that

ωej(i)−1(j) = ωej(i−1)(j).

Once ωej(i)(j) = kj for some i, we define this i to be sj . The definition
of ej(i) implies that ωej(i)(j) is either ωej(i)−1(j)− 1 or ωej(i)−1(j) + 1. Hence
either ωej(i)−1(j) = lej(i) or ωej(i)−1(j) = lej(i) + 1.



Quantum complexity of permutations 583

By the definition of {ej(1), · · · , ej(sj)}, we know that either the sequence

(ωej(0)(j) = ωej(1)−1(j), ωej(1)(j) = ωej(2)−1(j), · · · ,

ωej(sj−1)(j) = ωej(sj)−1(j), ωej(sj)(j))

is in anti-clockwise order on the circle:

ωej(0)(j) = ωej(1)−1(j) = j, ωej(1)(j) = ωej(2)−1(j) = j + 1, · · · ,

ωej(sj−1)(j) = ωej(sj)−1(j) = kj − 1, ωej(sj)(j) = kj ,

or the sequence

(ωej(0)(j) = ωej(1)−1(j), ωej(1)(j) = ωej(2)−1(j), · · · ,

ωej(sj−1)(j) = ωej(sj)−1(j), ωej(sj)(j))

is in clockwise order:

ωej(0)(j) = ωej(1)−1(j) = j, ωej(2)−1(j) = ωej(1)(j) = j − 1, · · · ,

ωej(sj−1)(j) = ωej(sj)−1(j) = kj + 1, ωej(sj)(j) = kj .

In the anti-clockwise case, we have

ωej(i)−1(j) = lej(i) and ωej(i)(j) = lej(i) + 1.

In the clockwise case, we obtain

ωej(i)−1(j) = lej(i) + 1 and ωej(i)(j) = lej(i).

This implies that sj is either |kj − j| or n− |kj − j|. Hence sj ≥ d(j, kj).
Let

E(j) = {ej(1), ej(2), · · · , ej(sj)}.
If kj = j, we define E(j) to be the empty set ∅.
Define a discrete path φj in {1, 2, · · · , n} by:

φj(1) = ω0(j) = j, φj(2) = ωej(1)(j), φj(3) = ωej(2)(j), · · · ,

φj(sj + 1) = ωej(sj)(j) = kj .

It is easy to see that φj is a discrete path as defined in Section 2.
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Claim 1: Let j �= j′ be a pair of integers in {1, 2, · · · , n}.
(1) If the two discrete paths φj and φj′ travel in the same direction on

the circle (either clockwise or anti-clockwise), then E(j) ∩ E(j′) = ∅;
(2) If the two discrete paths φj and φj′ go in opposite direction on the

circle, then the number of elements in E(j) ∩ E(j′) is at most two.

Proof of Claim 1. We first prove part (1). Without loss of generality, we
can assume that both discrete paths φj and φj′ travel in the anti-clockwise
direction on the circle.

Assume by contradiction E(j) ∩ E(j′) �= ∅. This implies that there exist
k and k′ satisfying ej(k) = ej′(k′). Hence we have

(lej(k), lej(k) + 1) = (lej′ (k′), lej′ (k′) + 1).

By the assumption that both discrete paths φj and φj′ travel in the anti-
clockwise direction on the circle, we know

ωej(k)(j) = lej(k) + 1, ωej′ (k′)(j′) = lej′ (k′) + 1.

As a consequence, we have

ωq(j) = ωq(j′)

for q = ej(k) = ej′(k′).
The above equation implies j = j′, a contradiction with the assumption

that j �= j′. This completes the proof of part (1) of the Claim 1.
Now we prove part (2) of the Claim 1. Without loss of generality, we

assume that φj travels in the anti-clockwise direction on the circle and φj′

travels in the clockwise direction on the circle.
In this case, we have

ωej′ (1)−1(j′) = j′, ωej′ (1)(j′) = j′ − 1, ωej′ (2)−1(j′) = j′ − 1,

ωej′ (2)(j′) = j′ − 2, · · · , ωej′ (sj′ )−1(j′) = kj′ + 1, ωej′ (sj′ )(j
′) = kj′ .

Let k and k′ be a pair of integers such that ek(k) = ek′(k′). This assump-
tion implies

(lej(k), lej(k) + 1) = (lej′ (k′), lej′ (k′) + 1).
By the other assumption that φj travels in the anti-clockwise direction on the
circle and φj′ travels in the clockwise direction on the circle, we have

ωej(k)(j) = lej(k) + 1, ωej′ (k′)(j′) = lej′ (k′).
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As a consequence, we obtain

ωq(j) + 1 = ωq(j′)

for q = ej(k). Since the two discrete paths φj and φj′ travel in opposite
direction on the circle and each of them goes around the circle at most once,
there are at most two integers q in

{ej(0), ej(1), · · · , ej(sj)} ∩ {ej′(0), ej′(1), · · · , ej′(sj′)}

satisfying
ωq(j) + 1 = ωq(j′).

It follows that there are at most two pairs of k and k′ satisfying ej(k) = ej′(k′).
This completes the proof of part (2) of the Claim 1.

Recall d(j, kj) ≤ sj from the discussions before Claim 1. For each j ∈
{1, 2, · · · , n}, let F (j) be the subset of E(j) consisting of the first d(j, kj)
number of elements in the sequence ej(1), ej(2), · · · , ej(sj). The following
claim is a variation of Claim 1. We mention that Claim 1 already suffices to
obtain a weaker version of Lemma 3.1, which can be used to prove quadratic
quantum complexity lower bound for the permutation in Theorem 1.1 with a
smaller coefficient of n2.

Claim 2: For each j, let ψj of the discrete path obtained by restricting φj to
the domain {1, 2, · · · , d(j, kj)}. Let j �= j′ be a pair of elements {1, 2, · · · , n}.

(1) If the two discrete paths ψj and ψj′ go in the same direction on the
circle (either clockwise or anti-clockwise), then F (j) ∩ F (j′) = ∅;

(2) If the two discrete paths ψj and ψj′ go in opposite direction on the
circle, then the number of elements in F (j) ∩ F (j′) is at most one.

Proof of Claim 2. Part (1) of Claim 2 follows from part (1) of Claim 1.
Part (2) of Claim 2 can be proved using essentially the same argument

as in the proof of part (2) of Claim 1. Without loss of generality, we assume
that ψj travels in the anti-clockwise direction on the circle and ψj′ travels
in the clockwise direction on the circle. By the definitions of Fj and Fj′ , we
know that the discrete paths ψj and ψj′ travel at most half of the circle since
d(j, kj) ≤ n

2 and d(j′, kj′) ≤ n
2 . Hence there is at most one integer q in

{ej(0), ej(1), · · · , ej(d(j, kj))} ∩ {ej′(0), ej′(1), · · · , ej′(d(j′, kj′))}

satisfying
ωq(j) + 1 = ωq(j′).
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It follows that there is at most one pair of k ≤ d(j, kj) and k′ ≤ d(j′, kj′)
satisfying ej(k) = ej′(k′). This completes the proof for part (2) of Claim 2.

Let j1, j2, · · · , j2m be integers in {1, 2, · · · , n} such that

d(j1, kj1) = d1, d(j2, kj2) = d2, · · · , d(j2m, kj2m) = d2m.

We define A (respectively B) to be the set consisting of ji (1 ≤ i ≤ 2m) whose
corresponding discrete path φji is in anti-clockwise (respectively clockwise)
order on the circle.

Let a (respectively b) be the number of elements in A (respectively B).
We have

a + b = 2m.

Hence

ab ≤
(
a + b

2

)2
= m2.

By Claim 2 and Lemma 2.2, it follows that

#(F (j1) ∪ F (j2) ∪ · · · ∪ F (j2m)) = #((∪i∈AF (i)) ∪ (∪j∈BF (j)))

≥ (d1 + d2 + · · · + d2m) − ab ≥ (d1 + d2 + · · · + d2m) −m2,

where the notation # denotes the number of elements in the set. The above
inequality implies Lemma 3.1.

Lemma 3.2. Let ω be a permutation of {1, · · · , n}. If we can write

ω = ρ1 · · · ρt

with each ρj (1 ≤ j ≤ t) being a permutation from the generating set {σ, τ, τ−1},
then there exists k such that

τkω = (li li + 1) · · · (l1 l1 + 1)

with
t ≥ 2i− 1.

Proof of Lemma 3.2. By assumption, we can write

ω = τ t0στ t1 · · · τ ti−1στ ti
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such that |t0| + |t1| + · · · + |ti| + i = t, where t0 and ti may be 0 and tj �= 0
for any 1 < j < i.

We rewrite

ω = τ t0+t1+···ti(τ−(t1+···+ti)στ t1+···+ti) · · · (τ−(ti−1+ti)στ ti−1+ti)(τ−tiστ ti).

Note that τ−(t1+···+ti)στ t1+···+ti , · · · , τ−(ti−1+ti)στ ti−1+ti , and τ−tiστ ti are
all adjacent transpositions. The inequality t = |t0|+ |t1|+ · · ·+ |ti|+ i ≥ 2i−1
follows from the fact that |tj | ≥ 1 for all 1 ≤ j ≤ i − 1. Lemma 3.2 now
follows.

The following lemma describes the bumpiness of the permutation ω in
Theorem 1.1. This bumpiness is the reason for the permutation to have
quadratic quantum complexity lower bound (c.f. Definition 1.1, Theorem 1.2
and Remark 5.3).

Lemma 3.3. Let ω be the permutation ω of {1, · · · , n} in Theorem 1.1. For
any 0 ≤ k ≤ n− 1, if we write

(τkω)(1) = k1, · · · , (τkω)(n) = kn,

then

d1 ≥ n

2−1, d2 ≥ n

2−1, d3 ≥ n

2−2, d4 ≥ n

2−2, · · · , d2m−1 ≥ n

2−m, d2m ≥ n

2−m

for any 1 ≤ m ≤ n
2 , where d is the discrete path distance in Definition 2.1

and
{d(1, k1), d(2, k2), · · · , d(n, kn)}

is rearranged in the following non-increasing order:

d1, d2, · · · , dn.

Proof of Lemma 3.3. We identify the set {1, 2, · · · , n} with the set of all inte-
gers modulo n. When n is odd, by the choices of ω(1), · · · , ω(n) in Theorem
1.1, we have

{ω(1) − 1, ω(2) − 2, · · · , ω(n) − n} = {0, 1, 2, · · · , n− 1},

where the subtraction is done modulo n. It follows that, for any integer k, we
have

{k + ω(1) − 1, k + ω(2) − 2, · · · , k + ω(n) − n} = {0, 1, 2, · · · , n− 1},
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where the addition and subtraction are done modulo n. The above equality
implies that

{d(1, k + ω(1)), d(2, k + ω(2)), · · · , d(n, k + ω(n))}

= {0, 1, 2, · · · , n− 1
2 , 1, 2, · · · , n− 1

2 } (counted with multiplicity).

This completes the proof of Lemma 3.3 when n is odd. The even case is
similar.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let ω be the permutation in Lemma 3.3. If we can
write

ω = ρ1 · · · ρt
with each ρj (1 ≤ j ≤ t) being a permutation from the generating set
{σ, τ, τ−1}, then by Lemma 3.2, we can write

τkω = (li li + 1) · · · (l1 l1 + 1)

for some integer k such that t ≥ 2i− 1.
Choose m = �n4 	. By Lemma 3.3, we have

d1 ≥ n

2 − 1, d2 ≥ n

2 − 1, d3 ≥ n

2 − 2, d4 ≥ n

2 − 2, · · · ,

d2m−1 ≥ n

2 −m, d2m ≥ n

2 −m.

Applying Lemma 3.1 to τkω, we obtain

i ≥ (d1 + · · · d2m) −m2 ≥ 2((n2 − 1) + · · · + (n2 −m)) −m2.

Hence we have

i ≥ m(n− 2m− 1) ≥ n2 − 2n− 3
8 .

By Lemma 3.2, it follows that

t ≥ 2i− 1 ≥ n2 − 2n− 7
4 .

This completes the proof of Theorem 1.1.
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The following is an example of a permutation of {1, 2, · · · , n} which sat-
isfies the conclusion of Lemma 3.3 for k = 0 but still can be implemented
linearly. This example shows that in the proof of Theorem 1.1, it is essential
for Lemma 3.3 to hold for all 0 ≤ k ≤ n− 1.

Example 3.4. Let n = 2j. Define a permutation β of {1, 2, · · · , n} by:

β(1) = j + 1, β(2) = j + 2, · · · , β(j) = 2j, β(j + 1) = 1,

. . . , β(n) = j.

Note β = τ j . Hence the permutation τ can be implemented linearly.

The proof of Theorem 1.3 is similar to that of Theorem 1.1.

Proof of Theorem 1.3. We follow the strategy of the proof for Theorem 1.1.
Choose m =

⌊
n
8
⌋
, the floor of n

8 . Let d1, d2, · · · , d2m be as in Lemma 3.1.
By Definition 1.2, we have

d1 + d2 + · · · + d2m −m2 ≥ n

8

(
2
⌊
n

8

⌋)
−

⌊
n

8

⌋2

=
(
n

4 −
⌊
n

8

⌋)⌊
n

8

⌋
=

(
n

8 + (n8 −
⌊
n

8

⌋
)
)(

n

8 − (n8 −
⌊
n

8

⌋
)
)

=
(
n

8

)2
−

(
n

8 −
⌊
n

8

⌋)2
≥ n2

64 − 1.

By Lemma 3.1 and Lemma 3.2, we obtain

l ≥ 2
(
n2

64 − 1
)
−1 ≥ n2

32−3.

4. All permutations have quadratic quantum complexity
upper bound

In this section, we prove that all permutations in symmetric groups Sn have
quadratic quantum complexity upper bound (Theorem 1.4).

We need some preparations to prove Theorem 1.4. Recall that the trans-
position (k l) is the permutation switching k with l and leaves every other
element in the set {1, 2, · · · , n} unchanged.
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Lemma 4.1. For each positive integer l ≤ n, the transposition (1 l) can be
implemented linearly, more precisely, if we write

(1 l) = ρ1 · · · ρm

with each ρi (1 ≤ i ≤ m) being a permutation from the generating set
{σ, τ, τ−1} and

m ≤ 2n− 3.

Proof of Lemma 4.1. We have

(1 l) = (1 2)(2 3) · · · (l− 2 l− 1)(l− 1 l)(l− 2 l− 1)(l− 3 l− 2) · · · (2 3)(1 2).

Notice that

(2 3) = τστ−1, · · · , (l − 2 l − 1) = τ l−3στ−(l−3), (l − 1 l) = τ (l−2)στ−(l−2).

Plugging these equations into the previous identity, after certain (magical)
cancellations of τ and τ−1, we obtain

(1 l) = στστσ · · · τστστ−1στ−1στ−1 · · ·στ−1σ︸ ︷︷ ︸
4l−7

.

Note that there are a total of 4l − 7 terms on the right hand side of the
above equation.

We can now apply the same argument using the clockwise route from 1
to l:
1, n, n− 1, · · · , l (instead of the above anti-clockwise route: 1, 2, · · · , l):

(1 l) = (1 n)(n n− 1) · · · (l + 2 l + 1)(l + 1 l)(l + 1 l + 2) · · · (n− 1 n)(n 1).

This way, we can write (1 l) as a product of at most 4(n− l) + 3 number of
terms from the generating set {σ, τ, τ−1}.

Summarizing the above discussions, we can write (1 l) as a product of
at most min{4l − 7, 4(n − l) + 3} number of terms from the generating set
{σ, τ, τ−1}. From the equation

(4l − 7) + (4(n− l) + 3) = 4n− 4,

we obtain
min{4l − 7, 4(n− l) + 3} ≤ 2n− 2.
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Since both 4l − 7 and 4(n− l) + 3 are odd number, we have

min{4l − 7, 4(n− l) + 3} ≤ 2n− 3.

This completes the proof of Lemma 4.1.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Without loss of generality, we assume that l ≥ k. We
can easily verify the formula

(k l) = τk−1(1 l − (k − 1))τ−(k−1).

The equation τk−1 = τn−(k−1) implies that τk−1 can be implemented using
at most n

2 elements from the generating set {σ, τ, τ−1}. Hence by Lemma 4.1
any transposition (k l) can be implemented by n

2 + (2n − 3) + n
2 = 3(n− 1)

elements from the generating set {σ, τ, τ−1}.
We recall that a cycle (x1 x2 · · · xk) is a permutation that sends xj to

xj+1 for all 1 ≤ j ≤ k − 1, sends xk to x1, and keeps all other elements in
{1, 2, · · · , n} unchanged. We define the length of the cycle (x1 x2 · · · xk) to
be k. Each permutation ω in Sn is a product of cycles γ1, · · · , γq:

ω = γ1γ2 · · · γq

such that
l1 + l2 + · · · + lq ≤ n,

where li is the length of the cycle γi for all 1 ≤ i ≤ q.
The cycle γi can be expressed as the product of transpositions as follows:

γi = (x1 x2 · · · xli) = (x1 x2)(x2 x3) · · · (xli−1 xli),

where 1 ≤ i ≤ q. This implies that γi can be implemented by at most
3(n− 1)(li − 1)) number of elements from the generating set {σ, τ, τ−1}.

Combining the above facts, we conclude that the number of elements ω

needed from the generating set {σ, τ, τ−1} is at most

3(n− 1)(l1 + l2 + · · · + lq − q) ≤ 3(n− 1)2.

Hence ω can be quadratically implemented.
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5. Almost all permutations have quadratic quantum
complexity lower bound

In this section, we prove that almost all permutations have quadratic quantum
complexity lower bound.

Proof of Theorem 1.5. We prove Theorem 1.5 by showing that almost all
permutations are very bumpy.

For each k ∈ {0, 1, 2, · · · , n − 1}, we first count the number of permuta-
tions which do not satisfy the inequality in Definition 1.2:

#{ i ∈ {1, 2, · · · , n} : d(k + ω(i), i) ≥ n

8 } ≥ n

4 (∗).

If a permutation ω does not satisfy the above condition (∗), then there
exist at least p = n− �n4 � number of i ∈ {0, 1, 2, · · · , n− 1} such that

d(k + ω(i), i) < n

8 (∗∗).

Given k ∈ {0, 1, 2, · · · , n − 1}, for each subset B of {1, 2, · · · , n} with
#B = p, the number of permutations ω satisfying condition (∗∗) for all i ∈ B

is at most (
n

4 + 1
)p

(n− p)!.

This is because for each i ∈ B, ω(i) has at most n
4 + 1 possible choices of

values satisfying (∗∗), and once we fix the values of ω on B, there are (n−p)!
possibilities of choosing the permutations ω.

We also have
(n
p

)
ways of choosing subset B of {1, 2, · · · , n} satisfying the

condition #B = p.
In summary, for each k ∈ {0, 1, 2, · · · , n− 1}, the total number of permu-

tations ω satisfying the above condition (∗∗) for at least p number of i is at
most (

n

p

)(
n

4 + 1
)p

(n− p)!.

Hence the total number of not very bumpy permutations is at most

n

(
n

p

)(
n + 4

4

)p

(n− p)!.
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Using calculus, we have the following estimate

ln(p!) = ln2 + · · · + lnp ≥
∫ p

1
lnxdx

= (xlnx− x)|p1 = plnp− (p− 1).

It follows that

p! ≥ pp

ep−1 .

Applying this formula, we obtain

1
n!n

(
n

p

)(
n + 4

4

)p

(n− p)! = n

p!

(
n + 4

4

)p

≤ n
ep−1

pp

(
n + 4

4

)p

= e−1n

(
e(n + 4)

4p

)p

< n

(
e(n + 4)
4(3n

4 − 1)

)p

= n

(
e(1 + 4

n)
3 − 4

n

)p

< n

(
e(1 + 1

10)
2.999

)p

≤ n

(2.992
2.999

) 3n
4 −1

−→ 0

as n → ∞, where we use the inequality 3n
4 − 1 ≤ p ≤ 3n

4 and e < 2.72 in the
above estimate and assume that n ≥ 4000.

By Theorem 1.3, this completes the proof of Theorem 1.5.

Remark 5.3. More generally, for any 0 < b < 1
2 and 0 < c < min{4b, 1}, we

can define a permutation ω of {1, 2, · · · , n} to be (b, c)-bumpy if

#{ i ∈ {1, 2, · · · , n} : d(k + ω(i), i) ≥ bn } ≥ cn

for all k ∈ {0, 1, 2 · · · , n − 1}. The same method can be used to prove that
any (b, c)-bumpy permutation has quadratic quantum complexity lower bound
(with 1

2(4bc− c2) as the coefficient of n2). If in addition 2eb+ c < 1, then the
probability for permutations to be (b, c)-bumpy goes to 1 as n → ∞.

In fact, for all positive number c0 < 1
2e(e+2) , we can find positive constants

b and c satisfying the above conditions such that any (b, c)-bumpy permuta-
tion has quadratic quantum complexity lower bound with c0 as the coefficient
of n2 and the probability for permutations to be (b, c)-bumpy goes to 1 as
n → ∞.

Note that in Theorem 1.3 and Theorem 1.5, the constants are chosen to
be b = 1

8 and c = 1
4 .
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6. Concluding remarks

In this article, we essentially obtain the optimal results on complexity upper
bound for all permutations and lower bound for very bumpy permutations
as both upper and lower bounds are quadratic. The method used in this
article can potentially be used to study quantum complexity for more gen-
eral unitaries in quantum computations. We are currently investigating the
complexity problem for permutations on the set of n-strings of two bits with
respect to local logic gates.
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