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Sum expressions for p-adic Hecke L-functions of totally
real fields
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Abstract: As a continuation of previous work, we establish sum
expressions for p-adic Hecke L-functions of totally real fields in
the sense of Delbourgo, assuming a totally real analog of Heegner
hypothesis. This is done by finding explicit formulas of the periods
of the corresponding p-adic measures. As an application, we extend
the Ferrero-Greenberg formula of derivatives of p-adic L-functions
to this setting.
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1. Introduction

Let p be a rational prime, F//Q be a totally real field, O be its ring of integers,
Nm : F' — Q be the norm map, and y be a Hecke character of the narrow ray
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class group Cl, (N) for some nonzero integral ideal /. The complex Hecke
L-function attached to y is given by (when Re(s) > 1)

Li(s,y) = Z x(a)

ofaco Nm(a)*

By the work of Deligne-Ribet [16], Cassou-Nogues [3] and Barsky [1], there
exists a p-adic Hecke L-function Lg (s, x) on Z, that interpolates its complex
counterpart for all m € Z- (see [23, p. 105], [16, Theorem 8.2]):

(1.1)  Lep(—m,x) = [ = xwp™ (»)Nm(p)™ ) Lr(1 —m, xwp™),
plp

where wp is the composition of Nm and the Teichmiuller character w, and
the right hand side is algebraic by Siegel and Klingen. In this article, we
will establish a sum expression for Lg,(s,x) in the sense of Delbourgo, by
assuming what we call the Cassou-Nogués condition for N, an analogue of
Heegner hypothesis in the totally real case. In fact, the general case with an
auxiliary Euler factor will also follow via a simple adaptation of our proof. We
note that such expressions are known to exist for Kubota-Leopoldt p-adic L-
functions by works of Delbourgo [12, 13, 14], Knospe-Washington [27] and the
author [35]. For a detailed discussion, we refer the reader to the introduction
of [35].

1.1. Review of Shintani’s method

To state our results properly, we recall Shintani’s treatment of Hecke L-
functions, along the way fixing some notation used throughout this article.
Let F and y be as above, and let k = [F' : Q]. Fix a numbering of real places
of F, {o1, -+ ,0%}, so that we have an embedding FF < RF ~ F ®q R.
Denote by R, the positive real numbers. For any subset X of F, write
X, = X NRY, and denote OF particularly by E. Fix the direction vec-
tor e, = (0,0,---,0,1) € R™ From the work of Shintani [32], Colmez [4] (see
also [17] for a detailed discussion of Colmez’s construction in the cubic case)
and Yamamoto [34], there exists a finite collection {V'}, each V' = {vy,--- , v} }
being a Q-basis of F' and a subset of Oy such that the following cone decom-
position holds [34, Proposition 5.6]:

(1.2) (FeR)y =R} = | || |eC(V).

eeE V
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Here C(V) = Y c;<x Ryv;, and C(V) is the upper closure of C(V) with
respect to e, [34, Definition 5.5]. Let P(V) be the fundamental parallelotope
of C(V), that is, the subset of C(V) determined by the property that any
v € C(V) can be uniquely written in the form v = v + Y ;<;cp nsv; for
some vy € P(V) and (n;)i1<i<k € Z>O Take a set of prime-to-N integral
ideal representatives of the narrow class group Cl; (1), {as,---,an}. Then as
observed by Shintani, since (a; '), /E is in set bijection with
|_|az-_lﬂC |_| |_| $+Z20U1+"'+Z20’l}k,
\4 Vo zeP(V)Na;?

we have

Li(s.x) = X aZ Z Z Z X(x 4+ nyvy + -+ - + ngog)

Nm(z +njvy + -+ +ngo s’
xEP(V)ﬁa Ing,ng>0 ( 101 k k)

Throughout this article, we will fix a Shintani cone decomposition.
1.2. Main results

We introduce now the presiding assumptions:

(A1) We will always suppose that N satisfies the Cassou-Nogues condition
O/N ~Z/N for N =Nm(N);

often we will simply say that N is a Cassou-Nogues ideal. Additionally,
we always suppose that N # O, and is prime to p.

(A2) We choose each fractional ideal a; to be integral and prime to both p
and N.

(A3) For all V in the Shintani cone decomposition and each v; € V, we
require that v; € O,. Moreover, in order to apply Euler’s method to
remove the pole, we assume that v; is prime to N as in [3, p. 38, (6.ii)]
and [26, top of p. 41].

The following result is the culmination of the computations done in § 3-
§ 4, whose proof forms the trunk of this paper.

Theorem 1.1. Let the notation and assumptions be as above. Let ¢ > 1 be a
power of p that is congruent to 1 mod N. Furthermore, let 1 be a character

on Cly(p™®) = lim Cli(p™). We have

(1= YN)NY ") Ly (s, )
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. Ywpt(a;)
S Yy 5 S et 3t
n—oo <~ (Nm(a;)) n -
1<i<h GP(V)ﬂa 0<ly, Il <q 1<i<k
ng(p’x+Zlgi§k livi)=1

Ywit (@ + 3 <icp livs)
(Nm(z + 32 i livi))*

where the coefficients are given by

(1)t
aV,N(y) = N1 Z didy - - - dj.

1<d1,d2,+ ,dp <N
div1+-+dpvg=—y mod N

When x is a Hecke character on Cli(N') with nontrivial narrow modulus,
i.e., x s not from Cl(1), we have

LF,p(S;X¢)
W Clz
= lim > Xfﬁ e )OEEDD 3 vz + 3 livg)x
1<i<h m az)> V ozeP(V)Na;?t 0<ly, -, lg<q™ 1<i<k

ng(p’m+Z1§igk liv;)=1

Ywp' (@ + D1<i<k livi)
(Nm(z + > i< livi))®’

where

avy(z + Z liv;) = (—1)F Z x(z + Z div;).

1<i<k 0<d; <1;,1<i<k 1<i<k

Remark 1.2. Actually, following [3], we can establish a sum expression when
the conductor of y is arbitrary, at the expense of multiplying Lg,(s, x1) by
an auxiliary Euler factor as in the first part of the theorem; see Remark 3.11.
Still, the Cassou-Nogues condition seems indispensable if we want to remove
the extra Fuler factor.

Remark 1.3. We indicate conceptually how Theorem 1.1 is proved. As dis-
cussed in [35, § 1.5], the sum expressions can be established from three ingre-
dients: integral representations, computability of periods, and the uniform pe-
riodicity of the periods. In our setting, the first ingredient is available thanks
to the work of Cassou-Nogues, complemented by a reinterpretation due to
Katz [26]. As such, the main novelty of the present proof is the determina-
tion of the explicit formulas (Theorem 3.6 and 4.4) of the periods concerned,
whereby uniform periodicity automatically follows.
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Remark 1.4. An interesting consequence is that the periods mentioned above
are Z[1/N,im(x)]-valued, which previously are known to be valued in a finite
extension of Z,. As such, this allows us to speak of their 2-divisibilities even
when p is odd. In Appendix B, we shall compute some approximate coefficients
of the Iwasawa functions attached to the p-adic L-functions of Q(v/5) where p
is odd, and remarkably the Deligne-Ribet 2-divisibility (see, e.g., [30, (4.8)]),
a priori only making sense when p = 2, propagates in all the numerical
examples considered.

Remark 1.5. It will also follow from our proof that one can use these ex-
pressions to compute p-adic L-values with a precision of O(¢"), by taking
the finite sums on the right hand sides of both expressions without limits.
Regarding this, it is tempting to compare this method to those of Roblot [31]
and Lauder-Vonk [28].

As a byproduct, following the sum expression-to-derivative philosophy
demonstrated in [35, § 4], we obtain

Corollary 1.6 (Generalized Ferrero-Greenberg formula). Assume in addition
that

(A4) The prime p is inert in F' and x(p) = 1.
(A5) For allV in the cone decomposition, V is a Z,, basis of O, = Jm O/p".

Then, we have

Pp(0xwr) =(=1D"1 3" x(a) Y > S x@+ D] dwi)x

1<i<h V. zeP(V)nat 0<dy, - dx <N 1<i<k
T+ D 1<i<p divi
10gp FF,p,V N .

Here, the multiple p-adic Gamma function I'r), 1 is defined in (5.1).
Remark 1.7. Fora given V., aslongas p{ [0 : 32 << Zvi], Op = 321 <ick Zpi-
Remark 1.8. Tt is worth pointing out that formulas of a similar guise can
be found in the work of Cassou-Nogues [2, Théorem 6] and that of Kashio
[25, Theorem 6.2]. However, the above formula appears to be of a distinct
nature, as our multivariate p-adic Gamma function is defined elementarily
in the spirit of Morita [29], while the Gamma functions in aforementioned
papers are constructed inexplicitly as certain derivatives.

Remark 1.9. Using the sum expression as sketched in Remark 3.11, we can
derive a Ferrero-Greenberg type formula for an arbitrary conductor which
involves an auxiliary Cassou-Nogues ideal. The details will be discussed in a
separate paper.
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The assumption that p is inert and x(p) = 1 fits the special case of the
Gross-Stark conjecture, now a theorem of Dasgupta-Darmon-Pollack [8] and
Dasgupta-Kakde-Ventullo [11], when the vanishing order of the L-function is
one. See [21, § 3] or a summary in [7, § 2.1]. Combining this and the corollary,
we get the following Gross-Koblitz type formula (c¢f. [22, Theorem 1.7]):

Corollary 1.10. Keep the assumptions in Corollary 1.6. Let H/F be the
narrow ray class field attached to Cly(N)/(p)%, U, = {u € H* : |u|, =
1 for all place v t p}, and assume

(A6) H is a CM extension.

Let u, € Q®z U, be the rational Brumer-Stark unit (denoted by u = u(*B)

in [21, Conjecture 3.13], where P is a fized prime above p in H). For any
fractional ideal a prime to N, let o4 € Gal(H/F) be the image of a under
Artin reciprocity, and write a = a;(y) for some unique 1 < i < h and y €

C(V), where V' appears in the Shintani cone decomposition and is uniquely
determined by a. Denote also by v the order of (p) in Cl(N). Then
(1.3)

log, Nmrgqq,/q, (up®)

=(-1)" Z Z Z log, I'rp,v <x il Elﬁsk dwi) .

0Sj<v zep(V)na; ! 0<dy, - ,d <N
v =np
z+zlgi§kdzv1,p y (mod N)

Remark 1.11. The assumption (A6), as is already present in [21], ensures
that there are totally odd characters on Gal(H/F); otherwise all the p-adic
L-functions Lg,(s, xwr) attached to characters y of Gal(H/F) are identically
Z€ro.

For a direct p-adic analytic formula of u, via the multiplicative inte-
gral, we refer the reader to works of Dasgupta and collaborators, for example
[7, Proposition 3.3]; for another formula of w, in terms of the Dedekind-
Rademacher cocycle when F/Q is quadratic, see [5, 6]. We also draw atten-
tion to the recent breakthroughs of Dasgupta-Kakde [9, 10], which establish
the integrality of w, away from 2, as well as the multiplicative integral repre-
sentation under certain assumptions.

1.3. Outlook

In the spirit of Iwasawa [24], Ferrero [18] and Ferrero-Washington [20], the
explicit period formulas (3.4) and (4.2) are expected to play important roles
in understanding the analytic u- and A-invariants of abelian extensions of F';
see Appendix B for more detail. If we further assume that p # 2 and the
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degree of the extension is prime to p, then results of Wiles [33, Theorem 1.3
and Theorem 1.4] assert that the analytic and algebraic Iwasawa invariants
coincide. We hope to investigate this question in the future.

In another direction, it would be very desirable to know if equation (1.3)
could shed light on the explicit construction of the Brumer-Stark unit wu,,
which, when F' = Q, is known to be essentially a Gauss sum [22]. In fact, to
the best of the author’s knowledge, it is not clear whether a complex analogue
of (1.3) exists, unless F' = Q, in which case it is a result of Deligne [15].

1.4. Notation

We will retain the notation introduced above; this includes our assumptions
made at the beginning of § 1.2. In the rest of this paper, x exclusively denotes
a finite Hecke character on Cly(N) of nontrivial narrow modulus. For any
h € Z~, and a € Z/h, we denote by a, and at,il the unique integers in [0, h)
and (0, h] respectively, such that a = a}, = ai mod h. Additionally, thanks to
the Cassou-Nogues condition, we write aj; for (a mod Ny if a € F is N-
integral, and similarly for an. Also, denote by O,, the p-adic ring O ®zZ,, and
F, the algebra F'®q Q,. Throughout we will fix embeddings of Q into C and
C,, so we can regard Q as a subfield of both. The letter z is reserved to denote
an element of F' that is A'p-integral, and V is reserved to denote a Q-basis of
F, its elements being vy, -+ - , vy, all of which are in O, and are prime to N.
A governing convention is the vectorial notation: frequently we abbreviate a
tuple (aq,--- ,ax) as simply a, so we have a + b = (a1 + by, -+, ax + bx) and
a-b=73" 1, aib;. Moreover, if a and b are two tuples, we understand a < b
as inequalities for all components, and the same for a < b, etc.; such use will
be propagated when @ € R¥ and b € R, in which case b is understood as the
vector (b,b,---,b). If a generator set V' = {vy,--- , v} as above is fixed, for
any z € Fj,, we always suppose z is of the form } ., ziv; with z; € Q,; this
is legitimate since V' is also a Q,-basis of F},. Also put Oy = Zvy + - - - + Zuy,
and Oy, = Zyvy + - - - + Z,vy, for which the previous convention applies by
regarding both Oy and Oy, as subgroups of F},. Finally, we denote by 14 the
indicator function that has value 1 if the condition A is true and otherwise
0, and, given a finite group G, denote by G” the dual group Hom(G, Q*).

2. Preliminaries on p-adic measures

We give here a quick recapitulation of some background material; more de-
tailed accounts can be found in [23, § 3.6-§ 3.9] and [26]. Recall Cly(p™)
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denotes the completion @1” Cly (p™). Following Cassou-Nogues, there exists
a p-adic measure pp - on Cly(p™) such that for any Hecke character ¢ on

Cl+(poo>’

(2.1) =1 = »N)N)' ") Lpy(s, ) =/ Ywp' (@) (Nma) " upr(a).

Cly (p™)

When the Hecke character x is present, there is a measure pp, on Cly (p™)

such that for all v,

(2.2) Lip(s, x) = /C o U ) (Nme) gy ()

the removal of the auxiliary Euler factor reflects the regularity of Lz (s, x¥)
at s = 1. Essentially, the construction of these p-adic measures can be sum-
marized in two steps:

(i) Given a tuple (V,z) where V is a generator set and z € F is Np-
integral, let ¢ € Zs( be such that z € p~'Oy, C F, and denote by
Vi=p V= {v| =p~tvy,- v, = p~tug} and Oy, =p 'Oy,p. Then
one may construct certain p-adic measures WUv,a N and W,z ON OVT,p
that are supported on z + Oy, C O,,.

(ii) Let i : O — Cl(p™) be the canonical map (see [23, p. 103, (1b)]),

and let gy : Opi, N O = OX = CL(p™) 22%% CL(p™) be
the composition and (g; v )« the induced pushforward on measures. The
constructions in (i) are assembled to form:

(2.3) HEN = Z Z Z (gi,V)*(MV,z,N|OVT’pﬁO§)’

I<ish Vo geP(V)Na;*

(2.4) HEy = Z Z Z X(ai)(Qi,v)*(/iv,z,x‘ovtpmo;)~

1<i<h Vo geP(V)Na;?

We elaborate slightly on the first step. Let (V,x) be given and let R be
a finite flat extension of Z,. By restricting the Amice transform, essentially
Cartier duality a la Katz [26, Theorem 1], R-valued measures on Oy, are in
bijection with elements in the formal algebra

n

Ayt = Rlty, - /(8 =1, 8~ 1) = [ty — 1, 1, — 1]].
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Formally we denote the isomorphism by & : Mes(Oy+,, R) = Ay,
where Mes((f)m,p, R) stands for the set of measures on Oyt valued in R. In
turn, the constructions of py, - and py,, can be achieved by manufacturing
certain power series fy, n and fy .y, respectively. We postpone the minutiae
of these power series, in fact rational functions, to individual sections below.
For now, we are content to record a general formula to be used for period
computations. For ease of notation, given o = ojvy + -+ + ajv), € Oy,

denote by t* the monomial t‘fitgé -+ tpk € Ayy. For any ¢ € (Oyi,/p™)", we
define the evaluation -|, on Ay+ by dictating t*|, = p(a) for all o € Oy .

Proposition 2.1. Let i € Mes(Oy 4, R). For all a € Oy, and n € Zxo,
we have

1 _
p(a+p"Ovyp) = POk Z ¢ (@) Ay
PE(Oy+ /P TN

Proof. The p-adic module Oy+, comes equipped with a basis Oy, ~
@1<i<kZyp - v}, and the Amice transform for the formal torus of Ay+ respects
this splitting [23, proof of Theorem 3.7.1], i.e., the isomorphism loc. cit. is
given by taking the completion of the tensor of the one-dimensional isomor-
phisms R[[t; — 1]] ~ Mes(Z,, - v}, R). The formula then follows from that in
the one-dimensional case, which can be found in p. 84, ibid. (Note here that
p"Ovyp = p" MOy ) U

Remark 2.2. As pointed out by Remark 1.7, the passage from V to V1 is
unnecessary for all but finitely many primes p.

3. Explicit period formula: the zeta case

Given z € F that is N'p-integral and V' = {vy,--- , v}, the power series that
corresponds to py 4 A is given by [23, § 3.8]

§(x)t”
X t = A 7
fvan(t) #le%j\m [li<ick (1 = &(vy)to) € Ayt

and we are interested in computing

1 _
(3.1) tvan(a+p"Ovy) = Dk > ¢ @) franle-
PE(Oy /PN
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For this purpose, we break fv, - up as the sum » ¢ ico/ann fv,en e, where

fvane = I gg?—t;v-) ) and we compute periods of corresponding mea-
1<i<k 4

sures [,z A ¢ individually.
3.1. First step

Set

Rv’z(a,pn): {y:{b—i— Z liviEF:l,-EZ,Ogli<p”,y—a€p"(9wp}.

1<i<k
We prove
Lemma 3.1. Suppose & € (O/N)" is nontrivial. Then
32 panelotrOp,) = W

y€Rv,.(a,p") [l<i<k(l— E(prui))

Proof. Using Proposition 2.1 it suffices to prove the equality in Q, thus in
C. Introduce an auxiliary real parameter 0 < u < 1, and for y € F, write
u? = u”'¥ with o) from § 1.1. Then we have

1 _
ptDk Z v @) franele
E(Oy 1, /P
L wE@)p(s - a)
)" [Li<ick(1 — uvi&(vi)p(vi))

u—s1— pnttk
p pE(Oy 1, /ot

Next, identify (Z/p"**)* with Hom(Oy+ ,/p"™, Z/p"*") by the pairing
(z,w) = Y1cich Ziwi, where 2 = Y ooy, 210} € Oyt /p" M and w € (Z/p" )",
Choose a primitive p"**-th root of unity ¢ and further identity (Z/p"+*)* with
Hom(Oy+ ,/p"*, pipnst), s0 w(z) = (% for w, z as before. We then find

1 u&(x)p(r —a
3 {(z)p(z —a)

plrok PEOy+ /PN hi<icn (1 = uti(vi)p(vi))

B 1 uxé“(x)((xfa,w)
- plnttk 2 Ti<i<i (1 — uvig(v;)( Vi)

0<wy, - wp <pntt
1

:W Z Z Uerl'vg(x +1- U)C<$*a+l~v,w>

0<wy, wp<p™tt Iy, lg 20
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= Z w1 v)
li, -, lkg=0
z+lv—a€p™ Ot

u’é(y)
") [Ti<ick (1 — up™i&(pmv;))

YERvz(a,p

£(y) -
7 n) [Ti<ick(1 = &(p™0i)) (u—17).

yERvy,z(a,p

Here in the third equality we used the fact that for z € Oy ,/p" Oy,
ZOSw<p"+t <<Z7w> = pn+t1z:0~ U

Remark 3.2. The set Ry ;(a,p™) is nonempty if and only if a + p"Oy,, =
x+1-v+p"Oy, for some 0 <1 < p", i.e., a+p"Oy, C x + Oy,. Suppose
this is the case. Then, as V' is also a Q,-basis of F},, Ry ,(a,p") is the singleton
{x+1 v}

3.2. Second step

To state the result below, we need some notation. For any y € F that is
N-integral, set

1<i<k

R(y,N)—RV(y,N)—{Z— Z ziviEF:ziEZ,O§Zi<N,z—y€./\/'}.

Also, we define the coefficients {b; }o<i<r C Z, by the expansion:

1— k
Nk<1_u1jv> — by 4+ by (= 1) 4 - + byt — 1)F + Ofu — 1)

note that by = 1. Finally, for z = >, ;4 ziv; € F, write Z =31,y 2.

Lemma 3.3. We have

" —1)k z z
pantarron) = Gy y . b (5) +eem ()]

YyERy 4 (a,p™) 2z€ER(—y/p"

Proof. Again it suffices to prove the identity over Q, thus over C, by sum-
ming (3.2) over all nontrivial £ € (O/N)". Let u € (0, 1) be a real parameter.
Then

n - ()
vz n(a+p"Ovy) = lim Z Z —.
U e ye Ry (ap™) [h<ick(I — u€(prvi))
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Before taking the limit, we have

£(y)
2 2 )

&A1 yert(apm [hzize(l =

_Z Z Z bt +lk5 +pnl-v)

5751 yEsz(ap )ll, lk>0

1
_ Z Z Nyttt _ L

YyERy o (a,p™) | 1, k>0
Ly+p™l-veN

1 u?
QPRSI TR W]

YyERvz(a,p™) | z€R(—y/p"N)

Since the above rational function is regular at u = 1, after we take the limit
u — 17, only the constant term survives. Therefore it boils down to comput-
ing the degree zero term of

u® 1 s [ T—u\F
Na—uvr “nera e v )

S
~— —
=
|
[a—
~.
|
|'M
Sl
<
|
[—
e
+
)
—
IS
|
=

1 <
NEL(1 —u)* 0Ziek \!
Dy . (=1)* (2
which is clearly &=t Y o<i<s bi (k,z) =
3.3. Final step

Lemma 3.4. For all 0 < i < k, there exist polynomials P;(X) € Q[X], such
that for any Cassou-Nogués ideal N and any y € O/N,

a) if 0 <i <k, then

b) ifi =k, then

> (Z) = > didy - - di + Py(N).

ZER(y,N) 1<dy,d2,- ,dp <N
d1v1+~--+dkvkzy mod N
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Proof. Write z = z1v1 + -+ - + 2pvg, 80 2 = 21 + - - - + 2. We have

ST e < Z 21 2\ %
’ 14 =i i) \ 72 ix)’

where the sum is over all nonnegative tuples (iy,--- ,ix) with 73 + --- +
i, = 4. Thus the study of the sum 3= cp, A (5) boﬂs down to that of

ZZER(yJ\/) ( ) ( ) for each tuple (217 . Zk)

Assume first some i, = 0; without loss of generality say r = k. Note that
this assumption is automatic if i < k. In this case, consider the following
parametrization of R(y, N):

B o b

{ Z divi + (y div1 dk—lvk—l) vk €EF:0<dy,do,  ,dp_1 < N},

; Uk N
1<i<k—1

Using this, we find
?1 2k 21 2h_1
ZGI%M <“> <’k> zez%,fv) <“> <ik—1>
- ¥ (d) (d)
0<dy, e <N \11 Tk—1
N N
_<i1 + 1) (ikl + 1)'

As such, for 0 < i < k, we conclude that

1 X X
RX) =% 2 <11—|—1> ' (ik—|—1>'

i1+ i =1

As for the remaining case that none of i, is 0, we must have i = k and
i1 =19+ =1, = 1. In turn,

Z (il) (Zlk> = Z dydy - - - d.

z€R(y,N) 1<dy,d2, ,di, <N
div1+--+divp=y mod N

It also follows that

P’“(X):% 2 (h)—il)m(ikil)' -

i1t tig=k
2112 ’Lk 0



610 Luochen Zhao

Combining Lemmas 3.3 and 3.4, we conclude that

n -1 k
v,z n(a+p OV,p):gvk—,)l E E didz ---dp + P(N) |,
YyERy 4 (a,p™) 1<dy,d2,+,dp <N
divi+-+dgvp=—y/p"™ mod N

for some polynomial P(X) independent of a,n,y. To ease notation, denote
by

(3.3) Hy(y) = Z dydy - - dp.

1<dy,d2,+ ,dx <N
div1+-+dpvg=—y mod N

Lemma 3.5. For the polynomial P(X) as above, we have

P(N) = —Nk-1 (N_1>k

2

Proof. Recall ¢ > 1 denotes a power of p with ¢ = 1 mod V. Using the
additivity of py . ar as a measure, we have

wan(@+0vy) = Y pvan(@+1-v+q0y,).
0<ly, Ik <q

Bearing Remark 3.2 in mind, we have

—1)k
pvan(@+1-v+qOyy) = (Nk_)l[HV(:L“ +1-v)+ P(N)],

for e € {0,1} and 0 <y,--- I < ¢°. Therefore

Hy(z)= ) Hy(z+1-v)+(¢" = 1)P(N).

0<iy,--,lx<q

A small computation shows

Z Hy(z+1-v)

0<ly,,lk<q

—x—l'v—dv d_U_ °
— E E dldkl( 1Y1 klkl)
N

0<ly Ay <q 0<ds, 1 <N Uk

g—1N(N—-1)
N 2

k—2

:Hv(l’) + Z didy -+ dp_1
0<dy,,dp—1<N

(@24 )
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—Hy(z) + N1 (%)k (" —1).

Combine the equations and we find P(N) = —Nk-1(X-1)k, O

In summary, we have established the first period formula below.

Theorem 3.6. Let F'/Q be a totally real number field of degree k, p be a
rational prime and N # O be a Cassou-Nogues ideal prime to p. Let v € F
be Np-integral and V = {vy, -+ ,v} C Oy be a Q-basis of F, all of whose
elements are prime to N'. Then the attached p-adic measure jiyznr on Oyt
is valued in Z[1/N], and we have

(3.4)

n 1 r+1l-v N —1\*
pvanN(@+1-v+p Ov,p)_(—l)k[Nk_le( o )-( 5 >]7

foralln € Zso andl = (lh,--- k) with 0 <ly,--- I <p™.

Remark 3.7. When ' = Q and z = 0, this specializes to the period formula
of the regularized Bernoulli measure (see, e.g., [27, Theorem 3.1]):
N -1

pn-(a+p"Zy) = —(=a/p")y + ——

Corollary 3.8. Let the assumptions be as in Theorem 3.6. Let further 1 be
a finite character of Cly(p>). Then

(3.5)

(1= YN)N)' ") Lpy(s, pwr)

_ -1y (ai) Hy(x+1-v)
—CUTN D NGy 2 2 > Ty X

1<i<h zeP(V)na; ! 0=l lg<q”
ged(p,z+l-v)=1

Y(x+1-v)
(Nm(z +1-v))*

Proof. This follows from the integral representation (2.1), the pushforward

formula (2.3), and the vanishing of lim,, o0 Y o<ty 1y<qn V(@ +1-0)(Nm(z+
ged(p,x+i-v)=1

l-v))~* (cf. the proof of Lemma 4.6). O

Remark 3.9. When F' # Q, s = 0 and % is the trivial character, through

the interpolation property (1.1) and the vanishing of (r(0), we derive the
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following curious identity

Yy g (M) ] o

1<i<h Vo geP(V)Na;*

For a simple example take F' = Q(1/5), for which we have h = |Cl,(1)| = 1.
As such, take {a;}1<i<p ={O}and V = {1, = %} The set P(V)N O is
then the singleton {1}. We have thus proved the following

Proposition 3.10. Suppose N > 1 is such that X? —3X + 1 has a solution
e modulo N. Then

(N —1)?

1
~ d(—1—de)y = .

1<d<N

It would be interesting to give this an elementary proof.

Remark 3.11. For the duration of this remark let xy be a Hecke character of
an arbitrary conductor f C O. Below we briefly sketch how to establish a
sum expression of Ly, (s, xwr) using the period formula (3.4), at the price of
working with an auxiliary Cassou-Nogueés ideal A'. We will loosely follow the
original strategy of [3]. First, we need to upgrade the assumptions (A1) and
(A3)in§ 1.2 to

(A1T) The ideal AV is Cassou-Nogues, not equal to O and prime to pf.
(A3T) For all V in the Shintani decomposition and each v; € V', v; is prime
to N and v; € fy.

As before, we also assume
(A2) All representatives a; of Cl; (1) are integral and prime to pN.

Note that if (A3) is satisfied, we can achieve (A3") by rescaling all of Vs
simultaneously by an element in f; \ N if needed, so that the decomposi-
tion (1.2) still holds.

Under these assumptions, for £ € uy and a a fractional ideal, consider
the complex functions

€x+l-v

Lvag(s) =D xopor7 s
=0 Nm(z +1-v)
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and

L(a, s, x) = Z x(b)

0£6CO
[b]=[a]eCL (1)

where if ¢ is a fractional ideal, [¢c] denotes its class in Cl;(1). Then, if a = a;
for some i, we have (cf. [3, Théoreme 4]):

NI (/\/’)L(a/\f‘l s,x) — L(a, s, )

=Nm(a Z Z x(azx) Z Ly ge(s).

V zeP(V)Na-1! E£1,EN=1

Therefore,

- (1=
Z (Clz Z Z X(aix) Z LV,%g(S).

1<i<h V. zeP(V)na;! E£LEN =1

Building on this, and removing the summands of Ly, ¢ such that ged(z 41 -
v,p) # 1 if necessary, we can run the interpolation argument in [3, § IV] to
obtain

— (1= xwpN)(N)'""*) Ly (s, xwr)
= > (Nm(e)* Y > x(az)Lypvaen(s wr),
< v

zeP(V)Na; !

where L,y n (s, wp) = fog (Nma) ~*py o ar(o). Thus the sum expression of
—(1 = xwr(N){(N)Y )L, (s, xwr) would follow from Theorem 3.6.

4. Explicit period formula: the Dirichlet case

Retain the setting of the last section. Let further y be a finite Hecke character
on Cl; (N) of nontrivial narrow modulus; that is to say, x is nontrivial on the
image of (O/N)* from the canonical exact sequence

E—= (O/N)* = Cly(N) = Cl (1) — 1.

In this case, the rational function is given by

tx+d-v

Jvax(t) = Z x(x+d-v)

0<dy, - dp<N [hcic (X =)
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which a priori lives in the fraction field of Ay+. As a preliminary, we prove

Lemma 4.1. For all1 <i <k and any C a pt-th root of unity, the function
fvanx(t) is regular at t; = (. Thus fyvg, belongs to Ay+.

Proof. Since 1 — tNvi =1 — tZNP t7 the vanishing order of the denominator of
fvay at ti = ¢ is exactly 1. Thus it suffices to show the numerator also has
vanishing order > 1 at ¢; = . Without loss of generality suppose i = k. We
have

Z x(z +d - o)=Y

0<dy, " ,dx<N

- Z D i v Z x(x+d- U)titd’“

0<di, - dk—1<N O<dr<N

=Y AR Y (et deo) + (- Oglt)
0<dy, " ,dr—1<N O0sdr<N

=(tx — Q)g(t),

for some g(t) € Ay+.

We now show that this implies that fy,,(t) € Ay+. Note first that

N
Fran@™)y =3 x(@+d-v) —.
0<d<N ngigk(l - t? )

Since ged(N, p) = 1, we see that for all 1 <i <k, til/N € Ay, so fv,xvx(tl/N)
belongs to Frac(Ay+). Let [N] be the multiplication-by-N endomorphism of
Frac(Ay+) induced from that of the formal torus of Ay+. Then, since p{ N,
[N] is an isomorphism and preserves Ayi. As such, noticing the image of
fvan@/N) under [N] is fya,(t), we see that the only possible poles of
fvay(t) are the N-multiples of those of fy.,,(t'/V). Since the latter is con-

tained in p,:, we conclude that fy, , is regular by the first part. O

Since [ty 4, is the measure corresponding to fy; ., we may apply Propo-
sition 2.1 to compute the period

1 _
(4'1) ,UV,m,x(a +pnOV,p) = p(nT)k Z ¥ 1(a)fV,z,X|s0'
PE(Oyt /PN

Below we shall establish the explicit formula of py,, in several steps. To-
wards this, we introduce a stratification of (Oy+,/p"**)". As in the proof of
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Lemma 3.1, we identify Hom(Oy+,/p™™, Z/p"*") with (Z/p™**)*. For any
subset S C {1,2,---,k}, we define

Ps = {w € (Z/p" )" : p'w; = 0 for all i € S, plw; # 0 otherwise}.

Clearly (Z/p"*t)k = | |g Ps. As a consequence, we can dismantle formula (4.1)
into

1
vz (a+p"Oyy) = e S > o) fvanles
p SC{1, k} ¢€Ps

and we denote the S-piece W S peps @) fuenle by Qs(a,n).
4.1. The initial case

We start with S = &, so Ps = Py = {w € (Z/p")k : plw; # 0 for all 1 <
i < k}. Recall for n € Z~ and a € Z,,, we denote by a;n the unique integer in
[0,p™) such that a;n = a mod p™; we extend it further to a € Q, by putting
a'z’)n = 0if a ¢ Z,. Our computation in the S = & case will be based on the
following elementary lemma (the notation introduced only exists therein):

Lemma 4.2. Let p be a prime and N € Zsq be prime to p. Let k € Z~y,
v e ((Z/N)), z € (Z/N)* and y € ZE. Let further x be a nontrivial
Dirichlet character on (Z/N)*, and ¢ be a p-power root of unity with order
p"*tt for some n,t € Z>y. Then

C(y+dpt)'w

p(“H)k Z Z xztd-v) [Ti<ick (1 — CoilP")

wEPy 0<dy -+ ,dp <N

1)k ant\’
:( T}k) Z x(z+d-v) H (—%)pn.

P g<dy <N 1<i<k

Proof. 1t suffices to prove the equality in C. For this let u € (0,1) be an
auxiliary real parameter. Then

g(y+dpt)-w

(n+t)k Z Z xztd-v) [Ti<ics (1 — ugwilNe)

wEPy 0<dy,++ ,di <N

Ptk Y o x(z4d-v) Y Z il ¢ (yrdp! +Np)-w
pn—i-t

0<d<N wEPg Iy, ,1,>0
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1

=tk Z x(z+d-v) Z Zull+'~~+lkC(y+dpt+prz).w'
+
p\n 0<d<N wWE(Zpr+t)k 120

Here the last equality follows from the orthogonality of x: If w € (Z/p"Tt)k \

Py then without loss of generality we may assume p'wy, = 0. As such, for all
Ogdlv'” 7dk—l <N7

Z x(z+d- U)C(y+dpt+Nptl)‘“’ = ((ZH‘NPtl)‘prt Zlgigk—l diwi Z x(z+d-v)=0.

0<dp <N 0<dp <N

Continuing with our computation, we have

1

bt dpt+Nptl)-
W Z X<Z+d'v)2u1+ Flk Z C(y-‘rp-i-p)w
0<d<N 1>0 wE(ZJprtt)E
= > x(z+d-v) > L
0<d<N >0

y+dpt+Npil=0 mod p"tt
7y1'+di17t b
A

= Z x(z+d-v) H .

n

0<d<N 1<i<k —up
= Z X(Z+dv) H ( L )p (n ) (2 )7
0<d<N 1<i<k (I —w)p™ + O(u—1)

where in the last equality we used the regularity of the rational function at
u = 1. The result then follows by letting u — 17. O

We may now compute the S = @-piece using the lemma. Below denote by
¢ a primitive p"**-th root of unity, and for a € Oy, write a = Do 1<i<k Qi
for some a; € p~'Z,. Then

1 C(a:-i—d-v,w)
Qp(a,n) =———>= ¢law x(z+d-v) T
prOk w;;z 0Sd1,;dk<1\f [hcick (1 — P8
—1)F i — i —d;\’
:( nk) Z X(z+d-v) H (%)
P o<dy o di<N 1<i<k pr

4.2. General cases via reduction

Now we consider S C {1,2,---,k} that is nonempty. Write V% = {vi}ties,
and O‘%’p = ®©jgsZyv;. Also, for any ¢ € (Oyi,)" ~ @En(Z/p")k, write

©° = ‘P‘OST , which is also defined on Oy, via the canonical projection
Vip
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Oyi, — ng ,- Forany T' C {1,2,--- ,k}\ S, denote by P2 the substratum
of [Tjes(Z/p™H):

P2 = {(w))jgs € [1jgs(Z/p"*") : p'w; = 0 for all i € T, p'w; # 0 otherwise}.

Thus if ¢ € Pg then ¢° € P3. For any g € Ayr.s = R|[[t; — 1]];¢5 C Ayt and
for any ¢ € (Oyt,)", we have compatible evaluations g|, = g|,s. Finally,
for notational convenience we set R = {x +d-v:0<dj, -+ ,dp < N} and
R = {?J Yigs Yivj 1Y = Lo<i<k Yivi € R} So R = {y% + Yics(wi +
di)v; 1 y® € R,0 < d; <Nforallz€S}

Now let ¢ € Pg. Note that

fV,a:,x|<p = (Z X(y) Y tht)> ‘

yER ngigk(l -4
W tl?t(wﬁdi)
=D > xW I ,
ySERS ngéS(l - tj ) s |\ 0<d;<N €S 1- ti
4 ies ti=Ci,i€S

where y = y% + (i + d;)v; and ¢ = ¢(v]) is some p'~th root of unity for
1 € 5. Using the regularity at ¢; = (; for all ¢ € S, we have

ZOS.di;N X(y) Hies tft(zi-ﬁ—di)
1€
[Ties(1 —t17)
Zostien X(y) Ties P/ (@i + dﬂ@pt”‘l] Mics(ts — G) + Ga () Ties(ts — G

Hz‘es Nptgi_l HiES(Q - ti) + G2(t) Hzes( C@)

where G;(t)|t,=¢,ics = 0 for i = 1,2. This shows

(=1l s

fV,z,X|SD lel Z H ‘Tz+d Cp o Z ( ) Np
0<di<N i€S ySERS [ligs(1—1¢7) 5

tY

In turn, taking a primitive p"*-th root of unity ¢, we have
Qs (a n)

<n+t Z ¢ (@) fvaxle

pEPs
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_1 —p' Wi — ‘Sl @iw;
T~ plER > > ¢ s " (%) @) N\SI Yo Tl +docr =
w;p™Z/p" T pSeP] 0=d; <N i€S
ies Z Ties
ty
Z X(Y) =
ySerRS Hj€5(1 -t ") S
( 1)‘5\ ) 0 1 .
N|S‘p\5|” r;—a;€Zp,i€S Z H$z+ )W Z ((p ) (a)><
0<€l€§N €S Sefpg
ty
Z x(v) = . Not.
ySeRS ngs(l - tj b ) S
(=)' (—1)k-1s]
le,—a7ezpzes Z H$Z+d)W Z X($+d’l})><
0<d; <N ieS 0§dj<N
zeS j¢s
H (aj — Ty —Clj)b
N n
i¢s P
_(=* zi +di j—wi—di\
= pnk 1zi*ai€Zp77:€S Z $+d v H ( N )pn .
0<d1,--,dp, <N €S jés

Remark 4.3. Recall that for y € Q,,\ Z,,, we declared y;n to be 0. Hence from
the explicit formulas of Qg(a,n) for various S, it is clear that for py,(a +
pnOV,p) #0,a€x+ Ov’p.

4.3. Ultimate formula

We can now prove

Theorem 4.4. Let the notation and assumptions be as in Theorem 3.6. Let
further x : ClL(N) — QX be a character of nontrivial narrow modulus. Then
the attached p-adic measure pry,z on Oyt , is valued in Z[1/N,im(x)], and
we have

(4.2)
n (_1)k n
Wy (®+1-v+p Ov,p):W Yo x@+(+ptd)-v) ] di
0<dy, - ,dp <N 1<i<k
for any nonnegative integer n and | = (1, ,lg) with 0 < Iy, - I < p".
Moreover, when p" = 1 mod N, we have
(4.3)
pvax(@+1-v+p"Ov,) = (—1)F Z N~ISI Z Z +d-v)Hdi.
SC{1,- 0<d; <N 0<d;<l; €S

zeS Jgs
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Proof. We have seen that v,z y (a+p"Ovyp) = Ygcqr,... gy S2s(a, n). In the fol-
lowing let h(l;—d;) be the unique integer such that (%);n = %.

By the computations done in § 4.1 and § 4.2, we find

Wz (@+1-v+p"Oy,)
lj —d; +p"h(l; — d;)

—1k XT; dz
_E Y Y e[ .

pnk
SC{1, k} 0<d, ,dp<N €S j¢s

_]En_lcl]\)[k ) > x@+d-o)[[di [[I=d; +p"n(l; — dy)]

SC{L, k} 0<dy - di<N €S jgs

CU Y erd XTI TTd 40 )

~ ok Nk
PN o<t T SC{l k}i€S  jgs

where in the second equality we used the nontriviality of x on (O/N)*. The
last term can be vastly simplified by the identity

> I II=d +p"h(l; - d))]

SC{1,- k}ieS  jgs

= Z Z (—1)IS"1=ISIpn(k=15D H d; H h(l; — dj)

SC{1, .k} S'2S €S’ jgs
= Z (=) pn(E=1SD H d; H h(l; — dj) Z (=D,
S'C{1, k} €S ¢S scs

Since Y gc g (—1)%! vanishes unless S’ = @, we have

> I IT=ds +pmn(; — dp)) = p™ T h(l — do);

SC{1, k}ic€S  j¢S 1<i<k
thereby
(4.4)
n (_l)k
Wax(@+1-v+p"Oyy) = Nh Z x(x+d-v) H h(l; — d;).
0<dy, <N 1<i<k

Now, as 0 < [; < p", 0 < d; < N, it can be shown that (see, e.g., [35,
Proposition 3.2.])

h@dﬁ:(¢_hy.

Pt /N
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Consequently,

“Vv%x(x*l'UJFPnov,p):(;vk > xaz+(l+d-v) [1 (%>

p’ﬂ
0<dy - ,dpg<N 1<i<k

= Z x(x+ (I +p"d) -v) H d;.

0<dy, ,dg<N 1<i<k

To prove the second formula (4.3), it suffices to prove it when 0 < [; < N for
all 1 <4 <k, since both sides are periodic in each of [; with period N, as long
as 0 < I; < p". Under this restriction, h(l; — d;) = (%5E)y = (d; — L)y =
d; —li + N1j,~4,. By (4.4), we have

n -1 k
pvex(a+ o4 0v) =S S @ diw) [T @tk M)

0<dy, - ,d <N 1<i<k

:(Nk Z x(z+d-v) H (di + N1j;54,)

0<dy, - ,d <N 1<i<k

=" Y NN x@+doo) ][]

SC{1,-,k} 0<d; <N 0<d; <l; i€s
i€S j¢s

4.4. The sum expression

We now prove the second part of Theorem 1.1.

Corollary 4.5. Let the notation and assumptions be as in Theorem 4.4. Let
further 1 be a finite character of Cly(p>). Then

(4.5)
LF’p(S,Xi/JwF)
SETID D = D DD DD DR RN IR

V. zeP(V)na; b 0<h, - lk<q" 0<d<lb,

i

ged(p,z+-v)=1

Proof. From the integral representation (2.2), the pushforward formula (2.4)
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and the period formula (4.3), we see that Lpy(s, x¢wr) is approximated by
(4.6)
YE+l-v) ok 5]
DRSS DD DD D S D DR
1§Z<h V. zeP(V)na; ! 0Slul<g” SC{1,- k}
ged(p, z«H w)=1

Z Z X(ac—l—dw)Hdi.

0<d; <N 0<d;<l; =
i€S j¢s

Suppose S # @; without loss of generality say k£ € S. Then

lv
Y el S S e[

0<ly e <q™ 0<d; <N 0<d, <, €S
ged(pz+-v)=1 €S jgs
P(x+1-v)
= Y. x@+do)]]d > >
0<d - di <N €5 o<l ha<g ocheq  (Nm(@ELov))
l;>d;,j¢S  ged(px+lv)=1
=0 (mod ¢"™9),

where in the last equality, ¢ is some constant that only depends on ¢ and
whose existence is ensured by the lemma below. We thus conclude that, when
taking the limit of (4.6), all the S-components die except for S = &, whereby
the desired formula follows. 0

Lemma 4.6. Let f(x) = ¢(x)(Nm(z)) ™ with s € Z,, and suppose ¢ factors
through Cly(p") for some r € Zsy. Then for all a,b € O, with a = b mod p"
for some n > r, we have f(a) = f(b) mod p™. Consequently for alln > r and
all a € O, we have

Z ¥(a+ mug)(Nm(a +mug)) =0 (mod p"™").

0<m<p"
ged(p,a+mug)=1

Proof. To prove the first congruence, first take some e € Z~q very large,
so that both a + p® and b + p® are totally positive. Then ¥ (a) = ¥((a +
%)) = (b + p°)) = ¥(b), since (a + p®)/(b+ p°) is totally positive and is
= 1 mod p". As Nm(a) = Nm(b) mod p", it follows that f(a) = f(b) mod p".
To prove the second congruence, first note that for T, = {z € O/p : x =
—a mod p for some prime p | p}, we have

> fla+mug) = > fla+ muy).

0<m<p" 0<m<p"

ged(p,a+mug)=1 m%Ta/vk mod p
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Hence if n > r, then

oo flatmu) =) > flat (m+ip" )

0<m<p" 0<i<p  0<m<p~!
m¢Ta/vk mod p mg{Ta/vk mod P

= Z Z f(a+muvg) (mod p™ 1)
0<i<p 0<m<p™!

m¢T,,,, modp

=p Z fla+mug) (mod p™ ).

0§m<pn—1

mgTe,, modp

Iterate this process until n = r, and we obtain the congruence

fla+mug) =p™ " Z fla+mu) (mod p™ ).

0<m<p" 0<m<p"
m¢Ta/“k mod p m¢Ta/vk mod p
Since f is valued in Z,, the second congruence follows. O

Remark 4.7. As a sanity check, in the simplest case when p is inert, 1 is
trivial and s = 0, under assumption (A5) we can evaluate the right hand side
of (4.5) to (1—x(p))Lr (0, x), as predicted by the interpolation property (1.1).
See Appendix A.

5. Ferrero-Greenberg type formulas

In this section, using the sum expression (4.5), we prove a generalization of
the classical formula of Ferrero-Greenberg [19]. In the rest of this article, we
assume in addition

(Ab) O, = Oy, for all V appearing in the cone decomposition.

To state the formula, we first define the p-adic Hecke-Shintani L-function

Lpyalsoct) = [ ! (@)(Nma)*iyen (@)

P

the proof of Corollary 4.5 provides the following sum expression

Lpva(s, xwr) = (—1)* Jim Z (Nm(z +1-v))~*° Z X(x+d-v).
0<ly, g <q" 0<d<l

ged(p,z+l-v)=1
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Next define the multiple p-adic Gamma function on Oy, ~ Z’; to be

Crpv (v + -+ yevr) =Crpv(yr, - yr)
(5.1) = lim H (Nm(l - v)).

>0,n— .
NEINTY  <lyng 1<i<k
ng(p,l'U):l

Remark 5.1. When F = Q and V' = {1} we recover Morita’s p-adic Gamma
function up to a root of unity. At the price of indulging this difference, the
convergence of the product defining I',, - is straightforward, for the existence
of limy,>0,n—y I_1<l<n; 1<i<k log, Nm(l - v) is.
ged(p,l-v)=1

Proposition 5.2. Let the notation and assumptions be as in Theorem 4.4;
additionally assume (A5). Let Ly, v (s, xwr) be the p-adic Hecke-Shintani L-
function. Then

_ r+d-v
LyvalOowr) =08 S (o d-o)log, Dy (5

0<dy, - ,dp <N
— klog, (N) Ly (0, xr)-

The proof is based on some elementary results gathered below. In what
follows, assume ¢ = 1 mod Nh.

Lemma 5.3. Suppose x is N'p-integral and is of the form x = 37, ;<1 (ci/h)v;
with hycy, -+ e, € Z and ged(h,c1,--- ,cx) = 1. Then

lim Z (Nm(z +1-v))~*° Z x(z+d-v)

n—00
0<ly,,lx<q™ 0<d<l

ged(p,z+l-v)=1
= lim > x@+(d-1)-v) > (Nm(l-v))~*.

nee 1<d dp <N " (h +q" (h
<di, -, dpg< Cﬂ,ﬁ O <l<gh+S qu <)

gcd(p7l-v):1,l§\,>d

Proof. First note that since x is p-integral and V' is a basis of O,, h is prime
to p. Using the congruences

i+ q"(h—q
r= Y Hq—}sc)w (mod ¢")
1<i<k
and

c+q¢"(h—c) c+(h—2c)
h h

=1 (mod N),
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we have

Z (Nm(x +1-v) le‘—i—dv

0<ly, lp<q" 0<d<l
ged(p,z+l-v)=1

> (Nm(l-v))~* > x(xz+d-v) (mod ¢")

c+qn}5h—c) <l<q"+ c+q™(h—c) 0§d<l,%
ged(p,l-v)=1
= Z x(x+(d—1)-v) Z (Nm(l-v))~%.
1<d<N c+qn}(Lh c) <l<gm +c+q (h c)

ged(pl-v)=1,1% >d

O
Lemma 5.4. Givenn € Z~o, t € ZN[1,N] and s € Z, write
h— n h— n
Z/h(t):{mEZ:¥§m<q"+$,m§v>t}
and
s(¢" —1) s(¢" — 1) Q"—l}
" = Z:1+—=>< 1+ —- N — .
s/n(t) {me + N, Sm< + 17 + ( t) &

The Ferrero-Greenberg map ¢ : m = mf + kN — (k + 1) + (N — m#) L
gives a bijection @s/h() — W), (t). Moreover, for m € ®f,(t) we have
m = Nu(m) mod ¢", so in particular p | m if and only if p | t(m).

Proof. Let m = mf + kN € W) (t). 1t is straightforward to show that k >
S(qn_l) and k < (1 + s/h)TL; the upper bound is unattainable because
1—|—(1+s/h) ‘N = ”+ans = 1 mod N, thus not belonging to 7, (¢)

with ¢ > 1. Conversely, any tuple (r, k) with t < < N and 2 ( 1) <k<
(hts ]\gt}zl" 1)

gives an element of @ /h( ). As such, that ¢ is a leeCtIOH between
¢, (t) and W, (¢) follows from Euclidean division. Finally, the congruence

m = Ni(m) mod ¢" follows from a simple computation in [19, proof of Lemma
1. O

Corollary 5.5. Let ¢ and h be as in Lemma 5.3. Given any d = (dy,- -+ ,dy)
with 1 < dy,--- ,di < N, the Ferrero-Greenberg map induces a bijection from

n(h — n(p —
{ZGZ’“:L}LC)§l<q"+c+qf(c),gcd(p,l-v)—1,l§v>d}
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to

{Zsz:H(h_C])V(fl -1 §z<1+7(h_cj)\(fz _1)+(Nd)qjgl,gcd(p,lm):l}.

Proof. The result follows directly from Lemma 5.4, by applying it to the
product O, ./, (d) x - x O, (dg). O

Proof of Proposition 5.2. By the above results, we can carry out the following
manipulations

( )k lLlpVx(O XWF)
= lim Z Z (x+d-v)log, Nm(x +1-v)

n—00
0ty lk<q™ 0<d<lb,
ged(p,z+lv)=1

=klog, N' lim > > x(z+d-v)+ lim > x(@+(d—1)-v)x
0<ly, le<q™ 0<d<ly, 1<d<N

ged(p, x+l v)=1
S log, (Nm(u(1) - v))
c+qn}5h7c) §l<qn+c+q"’5h75)
ged(p,l-v)=1,14, >d
_ k ;
=(=1)"klog, N - Ly v.(0, xwr) + Jim Z X+ (d—1)-v)x
1<d<N
> log, Nm(l - v)

1+ (hfcg\(]tznfl) <l<14 (hfcgé(infl) Jr(N*d)an_l
ged(pv)1

=(-1 )kklogpN Ly v (0, xwr)
4 lim Z x(@+(d—1)-v) Z (=)l

n—oo

1<d<N SC{1, k}
¢ —h+ Nh c; —h—+d;h
Ing FF,p7V Z Tﬂi + Z ij
€8 Jj¢sS

c-v d-v
=(— )k:logpN L, v(0, xwr) + Z x(x+d- U)lngFF,pv( +—>.
0<d<N Nh N

Here in the second equality we used the congruence Ni¢(m) = m mod ¢",
in the penultimate equality the inclusion-exclusion principle, and in the last
equality the nontriviality of . O

Proof of Corollary 1.6. Using Proposition 5.2, we find

LrpOxwr)= > Y > x@)pveOxwr) = > > > x(ai)x

1<i<h V. pep(v)na; ! 1ish Vo gep(V)na!
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logp Nm(a;)Lp,v,(0, xwr)

:(—1)’“71 Z Z Z X(a;(z +d-v))log, U'rp,v (m—&—]\?-v)

1<ish Voogep(v)na;!

— Z Z Z x(a3) (logp Nm(a;) + klog, N) Ly v,z(0, xwr).

Isish Vo zep(V)na;!

As p is inert and x(p) = 1, a counting argument shows

Z LP,V,I(Ov xwr) =0
zeP(V)Na; !

(see Appendix A.2, especially identity (A.3)). The proof is thus concluded. O
Appendix A. Values at s =0

Keeping the notation and assumptions from § 5, in this appendix we provide
explicit formulas for the special values Ly (0, x) and L, v.;(0, xwr), where p
is assumed to be inert in F' and Oy, = O). The former is essentially due to
Shintani [32].

A.1. The complex formula

Given a triple (V) z, x), define the complex Hecke-Shintani function

x(x+1-v)

Ly,(s,x) =) ———.
v 3:X) Nm(z +1-v)*

>0

For y € F write y the image of y under the i-th embedding o; : F — R.
Consider the function on Ri:

. @),
6_(I1+d1) Zlg;‘gk v Uy

GV,LX(UL“' 7uk) = Z X(-T—Fd?}) H

0<dy o dg<N 1<i<k 1 —e Digisk U
Biy 41 i1 (X)
o T30 [Li<i<k(li + 1)t

Using Euler’s method, one can show that (cf. [23, § 2.4]):

Ly(0,x) = Bi,.. 1(x)-
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To compute the constant term of Gy, ,(u), we use the orthogonality of x in
the same manner as § 4:

o~ (@itdi) Di<jck ol 1

Gvayu)= > xlxz+d-v) ] D,

0<d<N 1<ick 1 —e N 2agik W
k T +d;
=(-1) Z X(z+d-v) H N + O(u).
0<d<N 1<i<k

Hence we recover the formula

1\k
(A1) a0 = S8 Y xerdo) I a

0<d<N 1<i<k

A.2. The p-adic formula

Let V be a generator set in the Shintani decomposition and z € P(V)Na;*

7
for some i. By our assumptions on a; and V', we have

(a; !/ Do<ick Lvi) @ Zy = Op ) 321 <ict, Zipvi = 0.

So the finite group (a; '/ > ;< Zv;) is p-divisible. As P(V) N a; ! is in
set bijection with ai_l/ 21<i<;ivi, we define 7, to be the automorphism of
P(V)Na; ! corresponding to the p-multiplication of a; 1/ S cier Zv;. Below
we prove the interpolation formula o

(A-2) Lpv2(0, xwr) = L2 (0, x) = x(p) Ly, -1,(0, x)-

Granting (A.2), it follows that

(A.3) > Lyva(Oxwr)=(1—=x() Y. Lva(0,x)
zeP(V)Na; ! zeP(V)Na; !

for any representative a; of Cl; (1), whereby L, (0, xwr) = (1—x(p))Lr (0, X).

To begin our proof, applying Lemma 5.3 and Corollary 5.5 to the sum

expression of Ly v.(s, xwr) for x = 57, we find

Lpva(0,xwr) =(=1)* > x(z+(d—1)-v)x
1<dy, ,dg<N
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fics 2 E

R e R e S e e

ged(p,l-v)=1
Next, note that
{1+ 1)<l<1+%+(N—d)qn—]\;l,gcd(p,l~v)—1}
—pdpp o2l oy (oot o) C?é;’:_l)ﬂzvd)qn]v_l}
#{ o) "/p L (B —;)hq"/p LW —]il])q"/p}
-1 N—d)gp (B, — (50,
:H ]>Vg )H[( '/ (SR~ (5 ]
LTI dij;Ni I (@)%h—(ci;h)%h (n = 00),
1<i<k 1<i<k

where * is b if ¢; < h, and = is § if ¢; = h. Hence,

L, Vx(O, XWF)
d;h — h + ¢
SPORCERC [ a5 I1 (),
1<d<N 1<i<k 1<i<k Nh
(—1)F d;h + ¢;
~Sr X e | T d- g T (%5 ) .
0<d<N 1<i<k 1<i<k Nh

The latter sum can be further deformed:

( 1)k dih-l-ci *
Nh)k Z x(@td-o) H < >Nh

- 0<d<N 1<i<k p
_ =t Y
=~ (W O;Nx(x +pd - v) 1311_'[§k (dlh+ p)Nh
Via an elementary argument, it can be shown that
b . .
<dih+0i>* _ d;h + (;)éVh_Nhldﬂr%(;i)iwa if x =0, ie., ¢ <h;
P/nn | dh+ (;)Nh - Nh1di+%<%);h>N if =14, ie., ¢ = h.



Sum expressions for p-adic Hecke L-functions of totally real fields

In the former case, we can rewrite it as
C; ’
dih + (—) — Nhl N N
P ek [(3), (5]
b b\ b
=h|d; + l i — 1 i + G
h p Nh h p h N p h

1

b
b f
ci 1 {ec Ci i
dih+<i) — Nh1 N s =h|di++ i(i> +(
Pl ek () (9)i] nlr \r L),

629

Therefore,
(—1)k dih + ¢\’
_ (V) Z x(x+d-v) )
0<d<N 1<i<k p Nh
(—1)F 5 ( 1e  (a)* )
=— x(z +pd-v) di+—|——1|—
NE RN 1<i<k hlp P/nl/ N
(-1 Z c I [e ci\”
5 (i 5 - (9)) e
NE &2\ 1<i<k hlp P/h 1<i<k
—1)* <k (Ci/P)pvi
_ ])V]z((p) Y v <Zl<z<k§lc /P)pv d v) d
0<d<N 1<i<k

The last formula is no other than —X(p>LV’T;1:E<O, X), and our proof of (A.2)

is thus complete.

Appendix B. Numerical computation of Iwasawa invariants

over Q(v/5)

This appendix is dedicated to explaining how one may use the results from the
main article to compute analytic Iwasawa A- and p-invariants of an abelian
extension of a given totally real field F' whose conductor divides a Cassou-
Nogues ideal; or more exactly that of the subfields cut out by characters of
the corresponding Galois group. For simplicity we will only treat the case
when F' = Q(+/5), the Cassou-Nogues ideal is a prime and the character is

quadratic.
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B.1. Setup

Throughout we let F = Q(v/5), O = Z[HT‘/E] be the ring of integers in F', p be
a rational prime and £ a Cassou-Nogueés prime of F', namely O/L = Z/{, with
¢ = Nm(L). We have an identification Cly(£) = (Z/£)* /() with & = 315,
since the narrow class group of F is trivial. Therefore, a character on Cl; (L)

can be identified as a Dirichlet character on (Z/¢)*. By the functional equa-

tions of the complex L-functions, the attached p-adic L-function L,(s, xw) is
nonzero if and only if x is totally odd. In simple terms, this requires that the
character is such that

x(=1)=1 and x <1 +2\/5> =—1.

Eventually we will only consider the case when x is quadratic. Under this
condition, for £ < 1000, ¢ could only be one of the primes below:

41,61, 109, 149, 241, 269, 281, 389, 409, 421, 449, 569, 601, 641, 661, 701, 821,
829,881, 929.

The major computational tool we will use is the period formula from
Theorem 4.4 of the main article. Namely, for 0 < [y,1ls < p",

(B.1)

1
p(l+l+he+p"0)) == > x(L+h+p'di+ (Iy + p'dy)e)didy,

1<d,do<t

where p is the attached p-adic measure of Ly(s, xw). Recall also we have the
integral representation

(B.2) Ly(sow) = [ (Nma)~*a(a);

or if we let s = —k where k € Z~g,
L(—kxe*) = [ Nma*ua).
Op

with L(s, xw"*) being the complex Hecke L-function.
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As an exercise, one can compute (1 + O,) for the Cassou-Nogues primes
¢ =11,19,29,31,41 and the attached quadratic character. Among them only
when ¢ = 41 the value is nonzero (= 2), and this echoes with our note that
the smallest interesting ¢ is 41.

B.2. Approximate Iwasawa functions

In the following assume p # 2. Fix now a topological generator « of 1 + pZ,,.
With the same setting as in § B.1, the Iwasawa function G, (7") € O,[[T]] is
defined by (cf. [33, p. 494, (1.3)])

Grw(7' 7 = 1) = Ly(s, xw);

here O, is O adjoining values of x. Using (B.2) and the fact that a power
series in O, [[T]] has finitely many zeroes, we deduce that

Gl 1+ T) = 1) = [ (14 T)% 0 a),

where log, @ = log, = /log, 7, with log,, being the p-adic logarithm. From this
one further obtains the congruence

(B.3)
Gy(Y1+T)-1)= Z (14+T)"x
0<m<pn
> p(L 41y + loe +p"O,)  (mod (1 +T)" —1).

0<ly,la<p™t?
ged(p, 1+l +l2e)=1
(Nm(1+11 +12¢))=y™ mod p"*!

It can be shown that the p- and A-invariants of G, (v(1 +7) — 1) coincide
with those of G,,(T), so we do not distinguish them. Assuming /1(Gy.,) = 0,
we see that the A(Gy) can be pinned down by looking at the smallest » > 0
such that the coefficient of T on the right is a p-unit, if such coefficients
exist.

We describe the steps to execute the computations, given (p,n, £):

1. Choose a set of representatives {ap = 1,a1,--- ,apn_1} of (14+pZ,)/(1+
p"t1Z,), such that a] = a; mod p"*! for 0 < j < p™.

2. Compute the table of Nm(1+l;+lz€) = (1+11)?+3(1411)la+13 mod p™H!
for 0 < I1,ly < p™*1; dispose of these entries with p | (1 +11)% + 3(1 +
ll)lz + l%
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3. Partition the remaining pairs (I1,l2) in p" groups {S; }o<i<pn, according
to (Nm(1 + Iy + la€)) = a; mod p™Hi.

4. Compute the table of values p(1+11+lae+p" ™ O,) for 0 < Iy, ly < p™T
note that in practice this only takes O(£*) time, since p(1 + Iy + lye +
p"T10,) is (-periodic in Iy, l>.

5. For each group .S;, compute the sum A; = Z(ll,lz)ES-; w(l+ 1 + le +
p" T O,). Note that (B.3) implies that

(B4) Gu(y(1+T)—1)= > A(1+T)" (mod (1+7T)" —1).

0<i<p™

B.3. Numerical examples

First let p = 3 and n = 1. We can first carry out steps 1,2,3 above, since
they do not require the knowledge of £. We have (Z/9)* ~ {£1} x {1 +3 =
4,143 x2 = 17,1}, so we take a; = 4,ay = 7. In the following table, we
record the partition of pairs (I1,[l3) for 0 < [;,ls < 9 into groups Sy, S1, 52
(an empty cell means the corresponding (I1,ls) is disposed of):

lo=0
0
1

hL

)

[\)

OO OO I NN | =
O == O =N NN
[aw] \) o
N[NNI N O DN
NN O N DN DN | =] Ot
(e [\) (e}
NN = O == O
OO OO0

As such, one can compute Ay, A1, As for varying Cassou-Nogues primes L.
Below, given a split rational prime ¢, we always pick the prime £ above ¢ to
be the one such that ¢} < &%, where ¢ € Gal(Q(v/5)/Q) is the nontrivial
element. (Recall for a € O/L = Z/{, a’ denotes the integer in [0,¢) with
a = a, mod L.) For example, with £ = 41, £ = (2 + 3+/5) since 5?%3\/5) =
8 < 5?2_3\/5) = 36. As expected, all of the three coefficients vanish for ¢ < 41.
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For interesting ¢’s we find the following table:

l AO Al A2 wa (T) mod (1 + T)3 -1 )\3
41 | —4 | 8 0 4+ 8T 0
61 | 4 |[—-12| 8 4T + 8T? 1
109 8 8 | —16 —24T — 1677 2
149 | —20 | 8 16 4 + 40T + 1677 0
241 | —4 | —12| 16 207 + 16772 1
269 20 | 12 | —28 4 — 44T — 2872 0
281 0 | =8 | 20 12 + 327 + 207? 1
389 | 16 | —32| 20 4+ 8T + 2072 0
409 | =24 20 | 4 287 + 4172 1
4211 12 | =28 16 4T + 167172 1
449 | 20 | 12 | =20 12 — 28T — 2077 1
569 | 8 | —24] 28 12 + 327 + 2877 1
601 | —4 | —20| 24 28T + 2477 1
641 8 | —16] 28 20 + 407 + 2877 0
661 | —32| 36 | —4 28T — AT? 1
701] 36 | 12 | —36 12 — 607 — 3677 ?
821 | 16 | —32 | 28 12 + 24T + 2877 2
829 | 8 | 32 | —40 —48T — 40T? 2
881 44 | —4 | —20 20 — 44T — 2077 0
929 | 8 | —32] 36 12 4 40T + 367172 1

633

In particular, we have numerically verified pu3 = 0 in these cases except for
£ = 701. Similarly, we do this for n = 2, and obtain a table

C | Ay | Ay | A | As | Ay | As | As | A7 | As
41 4 8 —4 8§ |—-16| =8 | =16| 16 | 12
61 4 16 | =4 |-12| -4 | =8 | 12 | =24 | 20
109 24 | 16 | 16 | =16 | =24 | O 0 16 | =32
149 -12| 8 |—-12| 24 | -16| —8 | =32 | 16 | 36
241 -36 | =12 | —4 | 12 | =24 | 48 | 20 | 24 | —28
269 | —12 | —20 | =52 | 28 | 52 | —-12| 4 | —=20| 36
281 =8 | 20 | —40| —-24| -36| 44 | 32 8 16
389 | —24| 36 | —24|—-16|—68| 36 | 56 0 8
409 | =36 | 52 | 40 | 12 | —44| =52 O 12 16
421 52 | =72 | 68 | —4 | 48 | =16 | —-36| —4 | =36
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T Ay | A | Ay | Az | A, | A5 | Ag | A7 | Ag
449 12 | —20] 12 | =52 | —28 | 24| 60 | 60 | -8
569| 64 | —16| 0 | —16| 28 | —44| —40| —36 | 72
601 | 36 | 48 | 44| —52| —28 | —8 | 12 | —40| 76
641 | —24| 52| 64 | 56 | 8 | 36 | —24| 28 | -72
661 | —24| —12| 32 | —76| 60 | 12 | 68 | —12| —48
701 | —44| —4 | —76] 20 | 60 | —20| 60 | —44| 60
821 | 40| 68 | 64| 16 | —108| 60 | 40 | 8 | 32
829 32| —72| —4 | 24| 64 | 76| 64 | 40 | 40
SS1| 28 | —4 | 44 | 44| 52 |72 60 | 52 | 8
929 | —8 | 44 | —56 | —72| —60 | 108 | 88 | —16 | —16

We record the approximate Iwasawa functions modulo (1+7)% —1 separately:

(=41 44 32T + 27677 4+ 776T° + 1104T* + 904T° + 432T° + 11277 + 127°

61 —207 + 92772 + 41273 + 696T* + 680T° + 404T° + 13677 + 207T°®
109 —240T + —736T72 — 134473 — 1704T* — 1456T° — 784T° — 240T" — 32T°
149 4 4 1607 + 748T% 4+ 181671 + 2544T* + 21527° + 1088T° + 30477 + 36T°
241 224T + 388772 + 6817 — 6047 — 896T° — 596T° — 20077 — 281°

269 4+ 2807 + 872772 + 151277 + 1872T* + 1608T° + 872T° + 2687 + 36T°
281 12 + 3207 + 120872 + 20887 + 2064T* + 13007° + 5367° + 13677 + 16T°

389 4 + 248T + 944T? + 164077 + 1512T* + 8207° + 2807° + 647" + &T°
409 —56T — 8T2 + 63277 + 1236T* + 1096T° + 5327° + 14077 + 16T°

421 —368T — 144877 — 284873 — 3232T* — 23327° — 1072T° — 29277 — 36T°
449 12 + 3327 + 1384772 + 244873 + 2292T* + 1148T° + 256T° — 4T" — 8T®
569 12 — 88T + 34077 + 16287 + 2988T* + 2992T° + 1724T° + 54017 + 721°
601 527 + 102072 + 28527 + 40327* 4 3480T° + 1860T° + 56817 + 767"
641 20 — 68T — 1148772 — 308477 — 4232T* — 3552T° — 1844T° — 54817 — 7218
661 64T — 292T7% — 146473 — 2640T* — 2520T° — 13607° — 39617 — 48T°

701 | 124 576T + 1800772 + 308077 + 3520T* + 2776T° + 1432T° + 436T" + 60T°
821 12 + 4087 + 1600T7% + 3056T° + 3312T* + 2260T° + 992T° + 26477 + 3217

829 TO8T + 246872 + 439273 + 4844T7* 4 3388T° + 1464T° + 36077 + 40T°
881 20 4 172T + 109677 + 249673 + 2868T* + 1828T° + 6487T° + 1167 + 8T°
929 12 + 3047 + 98472 4+ 10727 + 120T* — 596T° — 472T° — 14477 — 16T°

This shows that pg is also zero for £ = 701, in which case A3 = 3.

For p =5 and n = 1, we record the values of A;’s:

V4 Ao | A1 | Ao As Ay me (T) mod (1 -+ T)s —1 A
41 | -4 -4 0 12 | —4 16T + 1272 — 4T3 — 4T*

61 [ —4] 4 [ 12 ]—-12] 0 —8T — 2477 — 1273
109 0 | 8 | —4] =16 ] 16 | 4+ 16T + 4477 + 48T + 16717

w

O ==
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V4 Ao Ay Ao As Ay wa (T) mod (1 -+ T)5 —1 As
149 | —20 | 20 4 4 —4 4+ 24T — 8T? — 1273 — 4T* 0
241 —4 |12 0 | 28 | —12 24T 4+ 1277 — 20T° — 121" 1
269 | —8 | —28 | 24 4 12 4+ 80T + 108772 + 5273 + 127* 0
281 | 4 32 [ 12| —-16 | -8 —72T — 108T% — 4873 — 8T* 1
389 | 16 | —8 | —40 | 32 4 4+ 24T + 80T + 48T + 4T* 0
409 | 8 16 4 | -321 16 12 — 8T + 477 + 3277 4 16717 0
4211 =32 4 | =8| o 36 132T + 20872 + 144T° + 36T* 1
449 | =36 | 20 | 20 4 4 12 + 88T + 56T + 201" + 417 0
569 | 0 | —44 ] 16 | 20 | 20 | 12+ 1287 + 19672 + 10072 +207* | 0
601 ] 40 | —-16] -8 [ —-16] © —807T + —56T7 — 16T° 2
641 | —20 | —4 0 44 | =20 48T + 1277 — 36T° — 207" 1
661 | —28 | 20 | 36 | —36| 8 16T — 24T? — 4T3 4 8T* 1
701 48 | —48] 0 -8 8 —40T + 24T 4 2473 + 8T* 2
821 | —40 | —12 ] -8 0 60 212T + 35277 + 24073 + 6077 1
829 | 52 | =8 | 12 4 | —48 | 12 —164T — 264T° — 18873 —48T* | 0
881 | 12 | 56 | —20 | —24 | —24 | —152T — 236T7% — 12077 — 24T* 1
929 | 12 | 24 | 28 4 | =56 | 12— 1327 — 29677 — 2207° —56T* | 0

For p =5 and n = 2, we have the following tables
L Ao Ay Az As Ay As As A7 As Ag Aio A1
41 0 12 0 —16 —24 —16 0 4 0 8 —20 8
61 16 24 —12 20 28 4 —32 32 —12 —8 —48 —8
109 28 —4 0 0 —20 4 —16 —40 16 —28 —28 0
149 —12 12 —12 —24 —28 32 40 28 0 8 8 —28
241 —32 4 52 —16 48 68 —8 —60 88 —36 —4 —52
269 4 —24 8 —24 —20 —36 44 68 44 —8 —12 —4
281 68 —8 40 64 —20 —60 92 —36 8 —52 —12 —16
389 —36 —40 40 88 60 0 —12 —12 —60 28 —48 —56
409 —80 4 T2 —112 48 —4 76 20 12 —24 —8 —36
421 64 88 —4 —80 96 —36 —52 —100 —24 16 —32 24
449 4 —32 68 —32 —80 16 —64 —96 16 56 —128 56
569 —16 —8 —36 80 —20 —80 12 —76 —96 16 84 —124
601 —24 40 8 52 -8 —60 —76 —56 28 44 12 16
641 —56 —8 4 4 40 —80 28 100 —28 72 120 —20
661 20 —112 88 —48 —16 —156 —28 16 —4 40 52 56
701 —60 —108 —56 0 4 —16 60 —40 56 76 —8 T2
821 88 —36 72 104 —20 80 72 —4 —124 88 —80 —24
829 —84 —116 0 100 —132 56 40 144 60 —20 52 —20
881 —116 148 —60 36 —132 8 —44 52 0 48 —4 —84
929 —52 112 —28 —92 —8 —84 —100 40 120 —132 84 —36
£ Ao | A1z | A1g | Ais | Aie | Air | Ais | A1g | Ago | A21 | Aoo | Aoz | Aoy

41 20 0 20 28 —4 —20 32 —16 4 —20 —4 —4 8

61 8 -8 4 16 16 —12 —24 —20 8 4 —4 12 —4

109 40 —40 20 12 56 12 —12 12 —16 —28 —16 20 32

149 20 —32 —36 0 —28 —40 —8 52 —48 24 8 68 0

241 —16 —12 16 0 24 —8 —36 —52 —36 20 32 4 12

269 —44 24 —32 —48 8 —44 —40 —12 84 —52 36 0 84

281 20 12 36 0 —44 —64 —40 16 8 8 28 —60 12

389 8 —48 —44 0 88 —52 56 0 100 12 —24 —4 —40

409 12 52 64 52 —24 —32 —4 —16 48 —4 —68 20 —56

421 56 36 —32 —56 —48 —4 4 —12 28 —8 44 64 —32

449 —4 52 32 20 —16 4 —36 0 52 76 48 4 —4

569 56 —8 68 12 20 —24 —12 —32 0 56 96 56 —12

601 —56 20 80 —28 64 100 —20 —80 140 —60 —4 —96 —36

641 —84 156 —64 0 —44 —24 —24 24 —4 40 4 —64 —92
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£ Az Ais A1a | Ais | Are | A7 | Ais | Aig | Ao | Ao | Aga | Asz | Aoy
661 —44 —100 —68 28 36 16 48 —20 28 68 —40 68 72
701 100 32 —120 104 —44 —24 —132 —4 28 —28 20 36 52
821 —132 —28 44 —20 56 64 56 —56 —108 —80 —8 —8 4
829 —68 —56 36 68 68 —8 0 16 —40 20 —56 —100 52
881 —120 —60 32 36 16 40 —112 36 88 20 68 112 —8
929 120 24 24 —56 —28 —68 4 100 120 76 —36 —52 —40

Again, we can see that pus = 0 in these cases. An extra feature is that
all the coefficients A; computed above are divisible by 4; this is strongly
reminiscent of the Deligne-Ribet 2-divisibility [16, Theorem 8.11] with Q(v/5)
being non-exceptional.
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