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Abstract: Based on the definitions of dual quermassintegrals,
dual affine quermassintegrals and dual harmonic quermassinte-
grals, we generalize them to the dual p-quermassintegrals, such
that the cases p = 1, n and −1 just are the dual quermassinte-
grals, dual affine quermassintegrals and dual harmonic quermass-
integrals, respectively. Further, we orderly establish the dual Lq

Brunn-Minkowski type inequality, dual log-Brunn-Minkowski type
inequality and Blaschke-Santaló type inequality for the dual p-
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1. Introduction and results

The setting for this paper is n-dimensional Euclidean space R
n. Let Kn

o

denote the set of convex bodies (compact, convex subsets with non-empty
interiors) containing the origin in their interiors in R

n. Let Sn
o denote the
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set of star bodies (about the origin) in R
n. Let B denote the n-dimensional

Euclidean unit ball centered at the origin, and the surface of B is written Sn−1.
We use V (K) to denote the n-dimensional volume of a body K, and write
V (B) = κn. Let G(n, i) (i = 0, 1, · · · , n) denote the Grassmann manifold of
i-dimensional subspaces of Rn, and let μi denote the usual Haar measure on
G(n, i), normalized so that μi(G(n, i)) = 1.

For each convex body K, 1 ≤ i ≤ n − 1 and any ζ ∈ G(n, i), the i-
dimensional volume Vi(K|ζ) is called the projection function of K, where
K|ζ is the orthogonal projection of K onto ζ. Based on the notion of projec-
tion function, the quermassintegrals (see [8, 11, 12]), affine quermassintegrals
(see [11]), harmonic quermassintegrals (see [8, 12]) and the general forms (i.e.,
p-quermassintegrals) of the three aforementioned quermassintegrals (see [16])
were introduced, respectively. Duality, for each K ∈ Sn

o , 1 ≤ i ≤ n−1 and any
ζ ∈ G(n, i), the i-dimensional volume Vi(K ∩ ζ) is called the section function
of K. According to the notion of section function, the dual quermassinte-
grals, dual affine quermassintegrals and dual harmonic quermassintegrals are
respectively defined as follows:
Definition 1.A. For K ∈ Sn

o and i = 0, 1, · · · , n, the dual quermassintegrals,
W̃i(K), of K are defined by letting W̃0(K) = V (K), W̃n(K) = κn and for
0 < i < n,

W̃i(K) = κn

κn−i

∫
G(n,n−i)

Vn−i(K ∩ ξ)dμn−i(ξ),

where Vn−i denotes (n− i)-dimensional volume.
Definition 1.B. For K ∈ Sn

o and i = 0, 1, · · · , n, the dual affine quermass-
integrals, Ãi(K), of K are defined by letting Ã0(K) = V (K), Ãn(K) = κn

and for 0 < i < n,

Ãi(K) = κn

κn−i

(∫
G(n,n−i)

Vn−i(K ∩ ξ)ndμn−i(ξ)
) 1

n

.

Definition 1.C. For K ∈ Sn
o and i = 0, 1, · · · , n, the dual harmonic quer-

massintegrals, H̃i(K), of K are defined by letting H̃0(K) = V (K), H̃n(K) =
κn and for 0 < i < n,

H̃i(K) = κn

κn−i

(∫
G(n,n−i)

Vn−i(K ∩ ξ)−1dμn−i(ξ)
)−1

.

Note that the definitions of dual quermassintegrals and dual affine quer-
massintegrals see Lutwak’s papers [9] and [12], the dual harmonic quermass-
integrals was given by Yuan, Yuan and Leng (see [18]). In addition, Gardner
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(see [5]) extended the definitions of dual quermassintegrals and dual affine
quermassintegrals from star bodies to a bounded Borel set. For the studies of
quermassintegrals and dual quermassintegrals, a lot of research results were
aggregated in books [4, 8, 14] and papers [1, 2, 3, 5, 7, 9, 10, 11, 12, 17, 18].

In this paper, based on the definitions of dual quermassintegrals, dual
affine quermassintegrals and dual harmonic quermassintegrals, we general-
ize them to the dual p-quermassintegrals, such that the special cases p =
1, n and −1 just are the dual quermassintegrals, dual affine quermassinte-
grals and dual harmonic quermassintegrals, respectively. Whereafter, we or-
derly establish the dual Lq Brunn-Minkowski type inequality, dual log-Brunn-
Minkowski type inequality and Blaschke-Santaló type inequality of the dual
p-quermassintegrals. Here, we give definition of dual p-quermassintegrals as
follows:
Definition 1.1. Let K ∈ Sn

o , i = 0, 1, · · · , n and p be any real. For p �= 0,
the dual p-quermassintegrals, Q̃i,p(K), of K are defined by letting Q̃0,p(K) =
V (K), Q̃n,p(K) = κn and for 0 < i < n,

(1.1) Q̃i,p(K) = κn

κn−i

(∫
G(n,n−i)

Vn−i(K ∩ ξ)pdμn−i(ξ)
) 1

p

.

For p = 0, we define Q̃0,0(K) = V (K), Q̃n,0(K) = κn and for 0 < i < n,

(1.2) Q̃i,0(K) = lim
p→0

Q̃i,p(K) = κn

κn−i

(
exp

∫
G(n,n−i)

ln Vn−i(K∩ξ)dμn−i(ξ)
)
.

Note that for p > 0 and K is a bounded Borel set, definition (1.1) was
given by Gardner (see [5]).

Clearly, the cases p = 1, n,−1 of Definition 1.1 successively are Definition
1.A, Definition 1.B and Definition 1.C, i.e.,

(1.3) Q̃i,1(K) = W̃i(K), Q̃i,n(K) = Ãi(K), Q̃i,−1(K) = H̃i(K).

From the Jensen mean integral inequality, we easily know that: If K ∈ Sn
o ,

i = 0, 1, · · · , n, reals p, q �= 0 and p < q, then

(1.4) Q̃i,p(K) ≤ Q̃i,q(K),

with equality for 0 ≤ i < n if and only if Vn−i(K ∩ ξ) is a constant for all
ξ ∈ G(n, n− i).
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For the dual quermassintegrals, dual affine quermassintegrals and dual
harmonic quermassintegrals, the related dual Brunn-Minkowski inequalities
for the radial Minkowski additions of star bodies were established as follows:
Theorem 1.A. If K,L ∈ Sn

o and 0 ≤ i < n, then

(1.5) W̃i(K+̃L)
1

n−i ≤ W̃i(K)
1

n−i + W̃i(L)
1

n−i ;

(1.6) Ãi(K+̃L)
1

n−i ≤ Ãi(K)
1

n−i + Ãi(L)
1

n−i ;

(1.7) H̃i(K+̃L)
1

n−i ≤ H̃i(K)
1

n−i + H̃i(L)
1

n−i .

In inequality (1.5), equality holds for 0 ≤ i < n − 1 if and only if K and
L are dilated; for i = n − 1, (1.5) is an equality. In inequalities (1.6) and
(1.7), equality holds if and only if K and L are dilated. Here K+̃L denotes
the radial Minkowski addition of K and L.

Note that inequality (1.5) can be found in [5], inequality (1.6) was estab-
lished by Yuan and Leng (see [17], also see Gardner [5]), inequality (1.7) was
due to Yuan, Yuan and Leng (see [18]).

Nextly, together with the Lq radial Minkowski combinations of star bod-
ies, we establish the dual Lq Brunn-Minkowski type inequalities of dual p-
quermassintegrals. If p �= 0, we have result as follows:
Theorem 1.1. Let K,L ∈ Sn

o , 0 ≤ i < n, λ, μ ≥ 0 (not both zero) and reals
p, q �= 0. If 0 < q < n− i and p(n−i)

q ≥ 1, then

(1.8) Q̃i,p(λ ·K+̃qμ · L)
q

n−i ≤ λQ̃i,p(K)
q

n−i + μQ̃i,p(L)
q

n−i ;

if q < 0 and p(n−i)
q ≤ 1, or q > n− i and p(n−i)

q ≤ 1, then

(1.9) Q̃i,p(λ ·K+̃qμ · L)
q

n−i ≥ λQ̃i,p(K)
q

n−i + μQ̃i,p(L)
q

n−i .

In each case, equality holds if and only if K and L are dilated. Here λ·K+̃qμ·L
denotes the Lq radial Minkowski combination of K and L.

Let q = 1, λ = μ = 1 in Theorem 1.1, we have the following dual Brunn-
Minkowski type inequality of dual p-quermassintegrals.
Corollary 1.1. If K,L ∈ Sn

o , 0 ≤ i < n and real p ≥ 1
n−i , then

(1.10) Q̃i,p(K+̃L)
1

n−i ≤ Q̃i,p(K)
1

n−i + Q̃i,p(L)
1

n−i ,
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with equality if and only if K and L are dilated.
Taking p = 1, n in Corollary 1.1, then inequality (1.10) yields inequality

(1.5) and inequality (1.6), respectively.
In Theorem 1.1, if p = 1, n,−1, then by (1.3) we may orderly get the dual

Lq Brunn-Minkowski type inequalities of dual quermassintegrals, dual affine
quermassintegrals and dual harmonic quermassintegrals.

If p = 0, we have the following dual Lq Brunn-Minkowski type inequalities
for the dual p-quermassintegrals.
Theorem 1.2. Let K,L ∈ Sn

o , 0 ≤ i < n, real q �= 0 and λ ∈ [0, 1]. If
q > n− i, then

(1.11) Q̃i,0(λ ·K+̃q(1 − λ) · L) ≥ Q̃i,0(K)λQ̃i,0(L)1−λ;

if q < 0, then

(1.12) Q̃i,0(λ ·K+̃q(1 − λ) · L) ≤ Q̃i,0(K)λQ̃i,0(L)1−λ.

In each case, equality holds for λ ∈ (0, 1) if and only if K = L; for λ = 0 or
λ = 1, inequalities (1.11) and (1.12) both are equalities.

Further, based on Wang and Liu’s dual log-Brunn-Minkowski inequal-
ity (see [15]), we give the dual p-quermassintegrals form of dual log-Brunn-
Minkowski inequality.
Theorem 1.3. For K,L ∈ Sn

o , λ ∈ [0, 1], 0 ≤ i < n and real p, if p ≥ 0,
then

(1.13) Q̃i,p(λ ·K+̃0(1 − λ) · L) ≤ Q̃i,p(K)λQ̃i,p(L)1−λ,

with equality for λ ∈ (0, 1) if and only if K and L are dilated. For λ = 0 or
λ = 1, inequality (1.13) becomes an equality. Here, λ ·K+̃0(1−λ) ·L denotes
the log-radial combination of K,L ∈ Sn

o .
Let p = 1, n in Theorem 1.3, we respectively obtain the dual log-Brunn-

Minkowski type inequalities for the dual quermassintegrals and dual affine
quermassintegrals as follows:
Corollary 1.2. If K,L ∈ Sn

o , λ ∈ [0, 1] and 0 ≤ i < n, then

W̃i(λ ·K+̃0(1 − λ) · L) ≤ W̃i(K)λW̃i(L)1−λ;

Ãi(λ ·K+̃0(1 − λ) · L) ≤ Ãi(K)λÃi(L)1−λ.

In each inequality, equality holds for λ ∈ (0, 1) if and only if K and L are
dilated; for λ = 0 or λ = 1, above inequalities become equalities.
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Finally, according to the well-known Blaschke-Santaló inequality, we ob-
tain related dual p-quermassintegrals version. Recall that Lutwak ([13]) im-
proved the Blaschke-Santaló inequality as follows:
Theorem 1.B. If K ∈ Sn

o whose centroid is at the origin, then

(1.14) V (K)V (K∗) ≤ κ2
n,

with equality if and only if K is an ellipsoid centered at the origin. Here K∗

denotes the polar of K.
From inequality (1.14), we have the following Blaschke-Santaló type in-

equality for the dual p-quermassintegrals.
Theorem 1.4. If K is an origin-symmetric star body, 0 ≤ i < n and real
p ≤ n− 1, then

(1.15) Q̃i,p(K)Q̃i,p(K∗) ≤ κ2
n,

with equality for i = 0 if and only if K is an ellipsoid centered at the origin,
for 0 < i < n if and only if K is a ball centered at the origin.

Let p = 1,−1 in Theorem 1.4 and by equality (1.3), we may obtain
the Blaschke-Santaló type inequalities for dual quermassintegrals and dual
harmonic quermassintegrals.
Corollary 1.3. If K is an origin-symmetric star body and 0 ≤ i < n, then

(1.16) W̃i(K)W̃i(K∗) ≤ κ2
n;

(1.17) H̃i(K)H̃i(K∗) ≤ κ2
n.

In each inequality, equality holds for i = 0 if and only if K is an ellipsoid
centered at the origin, for 0 < i < n if and only if K is a ball centered at the
origin.

Note that inequality (1.16) can be found in [6], inequality (1.17) was
established by Yuan, Yuan and Leng (see [18]).

2. Background materials

If K is a compact star shaped subset (about the origin) in R
n, then its

radial function, ρK = ρ(K, ·) : Rn\{0} → [0,∞), is defined by (see [4, 14])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n\{0}.
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If ρ(K, ·) is positive and continuous, K will be called a star body. Two star
bodies K and L are said to be dilated (of one another) if ρK(u)/ρL(u) is
independent of u ∈ Sn−1.

Based on the radial function, we have the following polar coordinate for-
mula of volume:

(2.1) V (K) = 1
n

∫
Sn−1

ρ(K, u)ndu.

For the radial function, we see that if K ∈ Sn
o , 1 ≤ i ≤ n and ζ is the

i-dimensional subspace of Rn, then for any u ∈ Sn−1 ∩ ζ (see [4]),

(2.2) ρ(K ∩ ζ, u) = ρ(K, u).

For K,L ∈ Sn
o , λ, μ ≥ 0 (not both zero) and real q �= 0, the Lq radial

Minkowski combination, λ · K+̃qμ · L ∈ Sn
o , of K and L is defined by (see

[14])

(2.3) ρ(λ ·K+̃qμ · L, ·) = [λρ(K, ·)q + μρ(L, ·)q]
1
q .

If λ = μ = 1, then K+̃qL is called the Lq radial Minkowski addition of K
and L. In particular, K+̃1L = K+̃L is the radial Minkowski addition of K
and L.

In (2.3), let μ = 1 − λ (λ ∈ [0, 1]) and q → 0, then

lim
q→0

ρ(λ·K+̃q(1−λ)·L, ·) = lim
q→0

[λρ(K, ·)q+(1−λ)ρ(L, ·)q]
1
q = ρ(K, ·)λρ(L, ·)1−λ.

Thereout, Wang and Liu ([15]) introduced the notion of log-radial combina-
tion as follows: For K,L ∈ Sn

o and λ ∈ [0, 1], the log-radial combination,
λ ·K+̃0(1 − λ) · L, of K and L is defined by

(2.4) ρ(λ ·K+̃0(1 − λ) · L, ·) = ρ(K, ·)λρ(L, ·)1−λ.

If E is a nonempty set in R
n, the polar duality of E, E∗, is defined by

(see [4])
E∗ = {x : x · y ≤ 1, y ∈ E}, x ∈ R

n.

From above definition, we easily know that E∗ is convex, and for K ∈ Kn
o

and ζ is a subspace of Rn (see [4]),

(2.5) K∗ ∩ ζ = (K|ζ)∗.
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3. Dual Lq Brunn-Minkowski type inequalities

In this section, we start to prove the dual Lq Brunn-Minkowski type
inequalities of dual p-quermassintegrals for the Lq radial Minkowski combi-
nations. The following dual Lq-Brunn-Minkowski inequality is essential.
Lemma 3.1 ([3]). If K,L ∈ Sn

o , real q �= 0 and λ, μ ≥ 0 (not both zero),
then for 0 < q < n,

(3.1) V (λ ·K+̃qμ · L)
q
n ≤ λV (K)

q
n + μV (L)

q
n ;

for q < 0 or q > n,

(3.2) V (λ ·K+̃qμ · L)
q
n ≥ λV (K)

q
n + μV (L)

q
n .

In each case, equality holds if and only if K and L are dilated.
Lemma 3.2. If K,L ∈ Sn

o , real q �= 0, λ, μ ≥ 0 (not both zero) and ξ ∈
G(n, n− i), then

(3.3) (λ ·K+̃qμ · L) ∩ ξ = λ · (K ∩ ξ)+̃qμ · (L ∩ ξ).

Proof. According to (2.2) and (2.3), since ξ ∈ G(n, n − i), thus we have
for any u ∈ Sn−1 ∩ ξ,

ρ((λ ·K+̃qμ · L) ∩ ξ, u)q = ρ(λ ·K+̃qμ · L, u)q = λρ(K, u)q + μρ(L, u)q

= λρ(K ∩ ξ, u)q + μρ(L ∩ ξ, u)q = ρ(λ · (K ∩ ξ)+̃qμ · (L ∩ ξ), u)q.
This gives (3.3). �

Proof of Theorem 1.1. For 0 < q < n− i, from dual Lq-Brunn-Minkowski
inequality (3.1) for (n− i)-dimensional case, we get for any ξ ∈ G(n, n− i),

(3.4) Vn−i(λ · (K ∩ ξ)+̃qμ · (L∩ ξ))
q

n−i ≤ λVn−i(K ∩ ξ)
q

n−i +μVn−i(L∩ ξ)
q

n−i ,

and equality holds if and only if K ∩ ξ and L ∩ ξ are dilated for any ξ ∈
G(n, n− i), i.e., K and L are dilated.

If p(n−i)
q ≥ 1, by (1.1), (3.3), (3.4) and the Minkowski integral inequality,

we have that

Q̃i,p(λ ·K+̃qμ · L)
q

n−i

=
(

κn

κn−i

) q
n−i

[∫
G(n,n−i)

Vn−i((λ ·K+̃qμ · L)∩ ξ)pdμn−i(ξ)
] q
p(n−i)
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=
(

κn

κn−i

) q
n−i

[∫
G(n,n−i)

(
Vn−i(λ · (K ∩ ξ)+̃qμ · (L∩ ξ))

q
n−i

)p(n−i)
q

dμn−i(ξ)
] q
p(n−i)

≤
(

κn

κn−i

) q
n−i

[∫
G(n,n−i)

(
λVn−i(K ∩ ξ)

q
n−i +μVn−i(L∩ ξ)

q
n−i

)p(n−i)
q

dμn−i(ξ)
] q
p(n−i)

≤λ

(
κn

κn−i

) q
n−i

[∫
G(n,n−i)

Vn−i(K ∩ ξ)pdμn−i(ξ)
] q
p(n−i)

+ μ

(
κn

κn−i

) q
n−i

[∫
G(n,n−i)

Vn−i(L∩ ξ)pdμn−i(ξ)
] q
p(n−i)

=λQ̃i,p(K)
q

n−i + μQ̃i,p(L)
q

n−i .

Therefore, inequality (1.8) is proved.
According to the equality conditions of inequality (3.4) and the Minkowski

integral inequality, we see that equality holds in inequality (1.8) if and only
if K and L are dilated.

For q < 0 or q > n − i, applying dual Lq-Brunn-Minkowski inequality
(3.2) to (n− i)-dimensional case, we know that for any ξ ∈ G(n, n− i),

(3.5) Vn−i(λ · (K ∩ ξ)+̃qμ · (L∩ ξ))
q

n−i ≥ λVn−i(K ∩ ξ)
q

n−i +μVn−i(L∩ ξ)
q

n−i ,

and the equality condition is the same as (3.4), i.e., equality holds in (3.5) if
and only if K and L are dilated.

From this, similar to the proof of inequality (1.8), if p(n−i)
q ≤ 1, then

by (1.1), (3.3), (3.5) and the Minkowski integral inequality, we can obtain
inequality (1.9) and its equality condition. �

Proof of Theorem 1.2. For q > n − i(> 0) or q < 0, let μ = 1 − λ
(λ ∈ [0, 1]) in inequality (3.5), then by (1.2), (3.3), (3.5) and notice that
function f(x) = ln x is concave on x ∈ (0,+∞), we have that for q > n− i,

Q̃i,0(λ ·K+̃q(1 − λ) · L)

(3.6)

= κn

κn−i

(
exp

∫
G(n,n−i)

ln Vn−i((λ ·K+̃q(1 − λ) · L) ∩ ξ)dμn−i(ξ)
)

= κn

κn−i

[
exp

∫
G(n,n−i)

n− i

q

× lnVn−i(λ · (K ∩ ξ)+̃q(1 − λ) · (L ∩ ξ))
q

n−i dμn−i(ξ)
]
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≥ κn

κn−i

[
exp

∫
G(n,n−i)

n− i

q

× ln
(
λVn−i(K ∩ ξ)

q
n−i + (1 − λ)Vn−i(L ∩ ξ)

q
n−i

)
dμn−i(ξ)

]

≥ κn

κn−i

[
exp

∫
G(n,n−i)

n− i

q

×
(
λ lnVn−i(K ∩ ξ)

q
n−i + (1 − λ) lnVn−i(L ∩ ξ)

q
n−i

)
dμn−i(ξ)

]

= κn

κn−i

[
exp

∫
G(n,n−i)

(
λ ln Vn−i(K ∩ ξ) + (1 − λ) lnVn−i(L ∩ ξ)

)
dμn−i(ξ)

]

=
(

κn

κn−i
exp

∫
G(n,n−i)

ln Vn−i(K ∩ ξ)dμn−i(ξ)
)λ

·
(

κn

κn−i
exp

∫
G(n,n−i)

lnVn−i(L ∩ ξ)dμn−i(ξ)
)1−λ

= Q̃i,0(K)λQi,0(L)1−λ.

This is just inequality (1.11).
If q < 0, similar to the proof of inequality (1.11), we easily prove inequality

(3.6) is reverse. From this, inequality (1.12) is obtained.
According to the equality conditions of inequality (3.5) and the definition

of concave function, we see that if λ ∈ (0, 1), then equality hold in (1.11)
and (1.12) if and only if K and L are dilated and Vn−i(K ∩ ξ) = Vn−i(L ∩ ξ)
for any ξ ∈ G(n, n − i), i.e., equality hold in (1.11) and (1.12) if and only if
K = L. If λ = 0 or λ = 1, inequality (1.11) and inequality (1.12) clearly are
equalities. �

4. Dual Log-Brunn-Minkowski type inequality

In order to prove Theorem 1.3, we need the following dual log-Brunn-
Minkowski inequality which be established by Wang and Liu (see [15]).
Lemma 4.1. If K,L ∈ Sn

o and λ ∈ [0, 1], then

(4.1) V (λ ·K+̃0(1 − λ) · L) ≤ V (K)λV (L)1−λ,

with equality for λ ∈ (0, 1) if and only if K and L are dilated. For λ = 0 or
λ = 1, (4.1) becomes an equality.
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Lemma 4.2. If K,L ∈ Sn
o , λ ∈ [0, 1] and 0 ≤ i < n, then for any ξ ∈

G(n, n− i),

(4.2) (λ ·K+̃0(1 − λ) · L) ∩ ξ = λ · (K ∩ ξ)+̃0(1 − λ) · (L ∩ ξ).

Proof. By (2.2) and (2.4) we have that for any u ∈ Sn−1 ∩ ξ,

ρ((λ ·K+̃0(1 − λ) · L) ∩ ξ, u) = ρ(λ ·K+̃0(1 − λ) · L, u)

= ρ(K, u)λρ(L, u)1−λ = ρ(K ∩ ξ, u)λρ(L ∩ ξ, u)1−λ

= ρ(λ · (K ∩ ξ)+̃0(1 − λ) · (L ∩ ξ), u).

This provides (4.2). �
Proof of Theorem 1.3. For 0 ≤ i < n, applying inequality (4.1) to (n− i)-

dimensional case, then by (4.2) we know that for λ ∈ [0, 1] and ξ ∈ G(n, n−i),

Vn−i((λ ·K+̃0(1− λ) ·L)∩ ξ) = Vn−i(λ · (K ∩ ξ)+̃0(1− λ) · (L∩ ξ))

(4.3) ≤ Vn−i(K ∩ ξ)λVn−i(L ∩ ξ)1−λ.

According to the equality condition of inequality (4.1), we know that equality
holds in inequality (4.3) for λ ∈ (0, 1) if and only if K∩ξ and L∩ξ are dilated
for any ξ ∈ G(n, n − i), i.e., K and L are dilated. For λ = 0 or λ = 1, (4.3)
becomes an equality.

If p > 0, by (1.1), inequality (4.3) and the Hölder integral inequality, we
have that for λ ∈ (0, 1),

[
Q̃i,p(K)λQ̃i,p(L)1−λ

]p

=
[(

κn

κn−i

)p ∫
G(n,n−i)

Vn−i(K ∩ ξ)pdμn−i(ξ)
]λ

·
[(

κn

κn−i

)p ∫
G(n,n−i)

Vn−i(L ∩ ξ)pdμn−i(ξ)
]1−λ

=
(

κn

κn−i

)p[ ∫
G(n,n−i)

(
Vn−i(K ∩ ξ)pλ

) 1
λ

dμn−i(ξ)
]λ
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·
[ ∫

G(n,n−i)

(
Vn−i(L ∩ ξ)p(1−λ)

) 1
1−λ

dμn−i(ξ)
]1−λ

≥
(

κn

κn−i

)p ∫
G(n,n−i)

[
Vn−i(K ∩ ξ)λVn−i(L ∩ ξ)1−λ

]p
dμn−i(ξ)

≥
(

κn

κn−i

)p ∫
G(n,n−i)

Vn−i((λ ·K+̃0(1 − λ) · L) ∩ ξ)pdμn−i(ξ)

= Q̃i,p(λ ·K+̃0(1 − λ) · L)p.
This yields the case p > 0 of inequality (1.13).

From the equality conditions of inequality (4.3) and the Hölder integral
inequality, we see that equality holds in the case p > 0 of inequality (1.13)
for λ ∈ (0, 1) if and only if K and L are dilated.

If p = 0, then (1.2) and (4.3) give that for λ ∈ [0, 1],

Q̃i,0(λ ·K+̃0(1 − λ) · L)

= κn

κn−i

[
exp

∫
G(n,n−i)

ln Vn−i((λ ·K+̃0(1 − λ) · L) ∩ ξ)dμn−i(ξ)
]

≤ κn

κn−i

[
exp

∫
G(n,n−i)

(
lnVn−i(K ∩ ξ)λ + lnVn−i(L∩ ξ)1−λ

)
dμn−i(ξ)

]

= κn

κn−i

[
exp

(
λ

∫
G(n,n−i)

lnVn−i(K ∩ ξ)dμn−i(ξ)

+(1 − λ)
∫
G(n,n−i)

lnVn−i(L ∩ ξ)dμn−i(ξ)
)]

=
[

κn

κn−i

(
exp

∫
G(n,n−i)

ln Vn−i(K ∩ ξ)dμn−i(ξ)
)]λ

·
[

κn

κn−i

(
exp

∫
G(n,n−i)

lnVn−i(L ∩ ξ)dμn−i(ξ)
)]1−λ

= Q̃i,0(K)λQ̃i,0(L)1−λ.

From this, we obtain the case p = 0 of inequality (1.13).
According to the equality condition of inequality (4.3), we see that if

λ ∈ (0, 1), then equality holds in the case p = 0 of inequality (1.13) if and
only if K and L are dilated.

For λ = 0 or λ = 1, (1.13) obviously becomes an equality. �
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5. Blaschke-Santaló type inequality

Theorem 1.4 shows the Blaschke-Santaló type inequality for dual p-
quermassintegrals. Here, we complete its proof.
Lemma 5.1 (see [5], Theorem 7.4) If K,L ∈ Sn

o , 0 ≤ i < j < n, real p
satisfies 0 < p ≤ n− i− 1, then

(5.1)
(
Q̃i,p(K)

κn

) 1
n−i

≥
(
Q̃j,p(K)

κn

) 1
n−j

,

with equality if and only if K is a ball centered at the origin.
Lemma 5.2. If K ∈ Kn

o , 0 < i < n, and p < 0 or 0 < p ≤ n− 1, then

(5.2) Q̃i,p(K) ≤ κ
i
n
n V (K)

n−i
n ,

with equality if and only if K is a ball centered at the origin.
Proof. Let i = 0 in Lemma 5.1, replace j by i and notice that Q0,p(K) =

V (K), then inequality (5.1) gives the case 0 < p ≤ n− 1 of inequality (5.2),
i.e., for 0 < p ≤ n− 1,

(5.3) Q̃i,p(K) ≤ κ
i
n
n V (K)

n−i
n ,

with equality if and only if K is a ball centered at the origin.
If p < 0, choose real q such that 0 < q ≤ n− 1, then by inequalities (1.4)

and (5.3), we get that for p < 0,

Q̃i,p(K) ≤ Q̃i,q(K) ≤ κ
i
n
n V (K)

n−i
n ,

with equality if and only if K is a ball centered at the origin. �
Lemma 5.3. If K is origin-symmetric star body, 0 < i < n and ξ ∈ G(n, n−
i), then

(5.4) Vn−i(K|ξ)Vn−i((K|ξ)∗) ≤ κ2
n−i,

with equality if and only if K is an ellipsoid centered at the origin.
Proof. Since 0 < i < n and K is an origin-symmetric star body, thus

K∩ξ is also an origin-symmetric star body for any ξ ∈ G(n, n− i). Thereout,
applying Blaschke-Santaló inequality (1.14) to (n − i)-dimensional case, we
have for ξ ∈ G(n, n− i),

Vn−i(K|ξ)Vn−i((K|ξ)∗) ≤ κ2
n−i.
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This just inequality (5.4). And equality holds in inequality (5.4) if and only
if K|ξ is an ellipsoid centered at the origin for any ξ ∈ G(n, n− i), i.e., K is
an ellipsoid centered at the origin. �

Proof of Theorem 1.4. For i = 0, according to Definition 1.1, inequality
(1.15) is just inequality (1.14).

For 0 < i < n, if p < 0 or 0 < p ≤ n − 1, then by inequality (5.2) and
Blaschke-Santaló inequality (1.14) we get that

Q̃i,p(K)Q̃i,p(K∗) ≤
(
κ

i
n
n V (K)

n−i
n

)(
κ

i
n
n V (K∗)

n−i
n

)

= κ
2i
n
n [V (K)V (K∗)]

n−i
n ≤ κ

2i
n
n (κ2

n)
n−i
n = κ2

n.

This yields the case p < 0 or 0 < p ≤ n − 1 of inequality (1.15). And the
equality conditions of inequalities (5.2) and (1.14) show that equality holds
in the case p < 0 or 0 < p ≤ n − 1 of inequality (1.15) if and only if K is a
ball centered at the origin.

If p = 0, since K ∩ ξ ⊆ K|ξ, thus by (1.2), (2.5) and (5.4) we have that

Q̃i,0(K)Q̃i,0(K∗)

= κn

κn−i

(
exp

∫
G(n,n−i)

lnVn−i(K ∩ ξ)dμn−i(ξ)
)

· κn

κn−i

(
exp

∫
G(n,n−i)

lnVn−i(K∗ ∩ ξ)dμn−i(ξ)
)

=
(

κn

κn−i

)2
exp

[ ∫
G(n,n−i)

(
lnVn−i(K ∩ ξ) + lnVn−i(K∗ ∩ ξ)

)
dμn−i(ξ)

]

=
(

κn

κn−i

)2
exp

[ ∫
G(n,n−i)

(
lnVn−i(K ∩ ξ) + lnVn−i((K|ξ)∗)

)
dμn−i(ξ)

]

≤
(

κn

κn−i

)2
exp

[ ∫
G(n,n−i)

(
lnVn−i(K|ξ) + lnVn−i((K|ξ)∗)

)
dμn−i(ξ)

]

=
(

κn

κn−i

)2
exp

[ ∫
G(n,n−i)

ln
(
Vn−i(K|ξ)Vn−i((K|ξ)∗)

)
dμn−i(ξ)

]

≤
(

κn

κn−i

)2
exp

[ ∫
G(n,n−i)

ln
(
κ2
n−i

)
dμn−i(ξ)

]

=
(

κn

κn−i

)2
κ2
n−i = κ2

n.
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This gives the case p = 0 of inequality (1.15). And equality holds in the case
p = 0 of inequality (1.15) if and only if K is a ball centered at the origin. �
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