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Abstract: We study the path homology groups with coefficients
in a general ring R, and show that such groups are always finitely
generated. We further prove two versions of Eilenberg-Zilber the-
orem for the Cartesian product and the join of two regular path
complexes over a commutative ring R. Hence Künneth formulas
are derived for the two cases over a PID. Note that this generalizes
the related results proved for regular path complexes over a field
K in [7], whose proofs can not be carried over here parallelly.
Keywords: Directed graphs, path complexes, path (co)homology,
cross product, Künneth formula.

1 Introduction 698

2 Preliminaries 699

2.1 Path complexes 699

2.2 Path (co)homology 700

3 Künneth formulas for path homology 704

3.1 The case of Cartesian product 704

3.2 The case of join 709

Acknowledgements 711

References 711

Received October 5, 2021.
2010 Mathematics Subject Classification: Primary 05C25, 13D03, 55U25;

secondary 13D07, 55N35.
∗The author is supported by the National Natural Science Foundation of China

(No.12071422, No.12131015).
†The author is supported by the Zhejiang Provincial Natural Science Foundation

(No. LQ20A010008).
‡Corresponding author.

697

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


698 Fang Li and Bin Yu

1. Introduction

Homological theory for graphs appears in a natural way, in fact, when consid-
ering digraphs (i.e., directed graphs), we can define their (co)homology groups
in a similar way as that in topology (see [5]). These (co)homology groups can
be used directly to study the relationship among digraphs and their related
theories.

Historically, in order to study the topological structure of digraphs and
further to classify them, there are many attempts to form a homological
theory for digraphs. Among these approaches there are three of them be-
ing well-known: regarding a digraph as a special one-dimensional simplicial
complex, considering all the cliques of a digraph as simplices of the corre-
sponding dimensions ([1, 11]), or taking Hochschild cohomology of the path
algebra of a digraph ([9]). But as it is commented in [5] that all these ap-
proaches have their emphasises and limitations. In view of this, the authors of
[5] introduced the notions of path complexes and path homology over a field
(while their cohomology version can be found in [4]). This new (co)homology
theory for digraphs, including its sequel notions and results, not only shares
many properties with the above approaches but also avoid many limitations.
It is shown that one can use path homology to give a refined classification
of digraphs via some homological invariants such as the dimensions of the
homology groups, Euler characteristic and so on. On the other hand, as we
can see that from [6], path cohomology theory is a powerful tool when one
deals with the algebraic aspect of simplicial cohomology, in fact it allows a
delicate proof to the isomorphism obtained in [2] without using Cohomology
Comparison Theorem.

Furthermore, as one of the most fundamental functorial properties, the
classic Eilenberg-Zilber theorem and Künneth formula holding for the Carte-
sian product space of two topological spaces have also analogues in the the-
ory of path homology. In fact, the similar results hold for both the Cartesian
product and the join of two regular path complexes over a field from digraphs
([7]).

Meanwhile, as we usually do in the theory of simplicial (co)homology, it
seems that there is no need to confine the coefficients of path (co)homology in
a field, since different coefficient rings usually induce different (co)homology
groups. For instance, when one ignores the orientation of a simplicial complex
one should consider directly its simplicial homology groups with coefficients
in Z2 instead of Z.

So in this paper, we start from the path (co)homology with coefficients in
a general ring R. Our main goal is to generalize the Eilenberg-Zilber theorem
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to regular path complexes over any commutative ring, hence it enables us
to obtain Künneth formula for regular path complexes over any PID. To be
specified, the paper is organized as follows. We set off after reviewing some
definitions and notations in Section 2, the connection between path homology
groups with coefficients in a ring R and in Z is studied, as a conclusion we
show that such path homology groups are finitely generated (see Theorem 2.3
and Corollary 2.5). In Section 3, analogues of the Eilenberg-Zilber theorem
are obtained in a unified way for the Cartesian product and the join of two
regular path complexes (Theorems 3.5 and 3.8) over any commutative ring.
These imply respectively two general Künneth formulae for path homology
with coefficients in principle ideal domains. Note that not only this generalizes
the previous result in [7] obtained for path complexes over a field K, but also
our proofs here go rather different from those given in [7].

2. Preliminaries

Throughout this paper, K denotes a field and R denotes an associative unitary
ring if not specified. We recall from [5] some notations and definitions in this
section, though most of them are defined temporarily in the case where K is
a field, as we shall see that they can be easily extended to the case when one
replaces K by a unital ring R.

2.1. Path complexes

Definition 2.1. Let V be an arbitrary non-empty finite set whose elements
will be called vertices. For any non-negative integer p, an elementary p-path
on a set V is any ordered sequence {ik}pk=0 (or simply written as i0 · · · ip) of
p+ 1 vertices (needs not be distinct) of V . Furthermore, an elementary path
i0 · · · ip is said to be non-regular if ik−1 = ik for some 1 ≤ k ≤ p, and regular
otherwise.

Denote by Λp = Λp(V ;K) the K-linear space that consists of all formal
linear combinations of all elementary p-paths with the coefficients from K.
The elements of Λp are called p-paths on V , and an elementary p-path i0 · · · ip
as an element in Λp is written as ei0···ip . Obviously the basis in Λp is the family
of all elementary p-paths, and each element v in Λp has the following form:

v =
∑

i0,··· ,ip∈V
vi0···ipei0···ip
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where vi0···ip ∈ K. For any p ≥ −1, consider the subspace of Λp spanned
by the regular elementary paths: Rp = Rp(V ;K) :=span{ei0···ip : i0 · · · ip is
regular}, whose elements are called regular p-paths.

For any p ≥ 0, define the boundary operator ∂ : Λp → Λp−1 as a linear
operator that acts on elementary paths by

(2.1) ∂ei0···ip =
p∑

q=0
(−1)qe

i0···îq ···ip

where the hat îq means omission of the index iq. Note that such boundary
operators make Λ∗ = {Λp} a chain complex (see [5, Lemma 2.4]). Similarly we
can define the regular complex R∗ = {Rp} consisting of regular elements and
with natural boundary operators, i.e., those boundary operators are defined
by the induced maps of ∂ acting on the quotient space Λp over non-regular
paths, and it is easy to check that R∗ = {Rp} is a chain complex under
such boundary operators (see [5] for details). Let V , V ′ be two finite sets,
by definition, any map f : V → V ′ gives rise to two natural morphisms
Λ∗(V ) → Λ∗(V ′) and R∗(V ) → R∗(V ′).

The central concept in our study is the following.

Definition 2.2. A path complex over a finite set V is a non-empty collection
P (V ) (abbreviated as P if no ambiguity) of elementary paths on V with the
following property: for any n ≥ 0, if i0 · · · in ∈ P then also the truncated
paths i0 · · · in−1 and i1 · · · in belong to P . The elementary n-paths from P is
denoted by Pn. If all the paths in P are regular, then P is called a regular
path complex. P is called finite if P≥m are all empty for some m > 0.

2.2. Path (co)homology

When a path complex P is fixed, all the n-paths of the form
∑s

j=1 rjei(j) with
s a finite integer, each rj ∈ K and i(j) = i

(j)
0 i

(j)
1 · · · i(j)n such that ei(j) ∈ Pn

are called allowed, otherwise are called non-allowed. The set of all allowed
n-paths is denoted as An(P ) = An(P ;K). Furthermore, for any n ≥ 0 we
define Ωn(P ) as follows:

Ωn(P ) = Ωn(P ;K) := {pn|pn ∈ An(P ) and ∂(pn) ∈ An−1(P ).}.

Apparently each Ωn(P ) is a K-module, namely a vector space over K. It is
easy to verify that ∂(Ωm(P )) ⊆ Ωm−1(P ) and ∂2 = 0, thus we obtain a chain
complex of K-modules:

Ω∗(P ) = Ω∗(P ;K) := · · · → Ωn(P ) → Ωn−1(P ) → · · · → Ω0(P ) → 0.
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Therefore, for any n ≥ 0 we define the n-th path homology group of P as
Hn(Ω∗(P )), or denoted shortly by Hn(P ). If the path complex P is regular,
which is the case we shall study in this paper, all the above definitions and
notations have modified versions when one replaces the boundary operator
by the modified boundary operator which is used to define R∗.

The above definitions and notations also have dual versions. For any in-
teger p ≥ −1, denote by Λp = Λp(V ;K) the linear space of all K-valued
functions on (p + 1)-multiplicative product V p+1 of set V . Otherwise we set
Λ≤−2 = {0}. In particular, Λ0 is the linear space of all K-valued functions
on V , and Λ−1 is the space of all K-valued functions on Λ0 := {0}, that
is, one can identify Λ−1 with K. The elements of Λp are called p-forms on
V , one can identify Λp with the dual space of Λp via the canonical identity
Λp ∼= HomK(Λp, K). The boundary operator (2.1) should be replaced now by
exterior differential d : Λp → Λp+1 given by

(2.2) (dω)i0···ip+1 =
p+1∑
q=0

(−1)qω
i0···îq ···ip+1

for any ω ∈ Λp. Similarly we define the space of regular p-forms Rp =
Rp(V ) := HomK(Rp, K) (hereafter this means, any element in Rp always
takes Λp \ Rp, i.e., non-regular p-paths to 0). Given a path complex P , we
define the space of allowed p-forms Ap(P ) = Ap(P ;K) := HomK(Ap(P ), K),
also denote

N p = Λp \ Ap(P ) and J p = N p + dN p−1,

and define
Ωp(P ) = Ap/(Ap ∩ J p).

Actually, it follows from [5, Lemma 3.19] that Ωp(P ) is the dual space of
Ωp(P ) while d is dual to ∂, that is to say, one has

(2.3) Ωp(P ) ∼= HomK(Ωp(P ), K) and d ∼= HomK(∂,K).

It can be shown that {Ωp(P )} amounts to a cochain complex with the dif-
ferential operator given by (2.2), whereas the n-th path cohomology group of
P for any n ≥ 0 is referred to the n-th cohomology group Hn(Ω∗(P )) of this
cochain complex, which is denoted shortly by Hn(P ).

All of the above definitons can be easily carried over to the case when
replacing K by any ring R (see, e.g., [3]). In this paper, path (co)homology
is understood to be with coefficients in a ring R, and we shall omit “R”
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in the notation if there is no ambiguity. As a preparation for proving the
following interesting result, for any path p =

∑s
k=1 rkek ∈ Ωn(P ;R), define

the support of p to be the set consisting of ek with nonzero coefficient rk, and
denote it by Supp(p). Moreover, p is called minimal if p 	= p1 + p2 whenever
Supp(p1) � Supp(p) and Supp(p2) � Supp(p). By reduction of the cardinal of
support, one sees easily that any path in Ωn(P ;R) is a R-linear combination of
minimal n-paths, though may not be unique (comparing with the definitions
above [10, Lemma 2.1]).

Theorem 2.3. For any path complex P over a finite set V and ring R, there
is a chain isomorphism

Ω∗(P ;R) ∼= R⊗Z Ω∗(P ;Z).

Proof. It needs only to show that Ωn(P ;R) ∼= R ⊗Z Ωn(P ;Z) for any n ≥ 0
since the operator ∂ acts on both of them in an obvious way. We claim that the
canonical map f : R⊗Z Ωn(P ;Z) → Ωn(P ;R) induced by ri ⊗ ziei �→ (rizi)ei
with ri ∈ R, zi ∈ Z and ei ∈ Pn gives the desired isomorphism. First note
that f is obviously injective. To show that it is also surjective, suppose

(2.4) p =
∑
ei∈I

riei

is a path in Ωn(P ;R) where I is a finite subset of Pn and all ri 	= 0. More-
over, suppose that p is minimal, since otherwise one can write p as a linear
combination of minimal n-paths.

We aim to show that all ri’s in (2.4) differ up to a sign. The proof is purely
an exercise of linear algebra. To see this, first note that any ei in (2.4) is not
in Ωn(P ;R) since p is minimal, so each ei has some boundary (n − 1)-path
which is not in Pn−1. For clarity, one can rewrite (2.4) as p =

∑m
i=1 riei, where

m is the total number of elementary n-paths in I. Then starting with e1, pick
one of its boundary (n− 1)-paths which is not in Pn−1, so it must also occur
as the boundary (n − 1)-paths of some other elementary n-paths in I since
∂(p) ∈ An−1(P ;R), this cancelling relation leads to a equation

ε11r1 + ε12r2 + · · · + ε1mrm = 0,

where each ε1i is ±1 or 0 up to whether and how the sign of this elementary
(n− 1)-path occurs in the boundary of corresponding ei. Next we repeat this
procedure for the rest finite boundary (n−1)-paths of e1 (if such path exists)
which are not in Pn−1, and obtain an equation for each one of them:

εj1r1 + εj2r2 + · · · + εjmrm = 0



Künneth formulas for path homology 703

with each εji ∈ {±1, 0} and j ≥ 2. After this, one can continue this procedure
for e2, e3, · · · and so on until it is finished. Hence we get a system of homoge-
nous linear equations whose coefficients matrix is (εkl) with 0 < l ≤ m and
0 < k ≤ t for some integer t. It is apparent that any p with the form of (2.4)
is in Ωn(P ;R) only if this system of equations has at least a nonzero solution,
or equivalently, the rank s of (εkl) is less than m. We shall show that it is
exactly m− 1.

Note that since any two paths ei and ej in I have at most one common
elementary (n− 1)-path appeared in their boundary (perhaps with different
signs), the matrix (εkl) admits a property that i) all elements are in {±1, 0};
ii) the elements at the four intersections of any two rows and two columns
of it could not be all ±1, i.e., one of them must be 0. In order to obtain the
row standard simplest form of (εkl), one needs only to exchange two rows or
add ±1 times (chosen properly so as to cancel 1 or −1 in some columns) of
some row to another row successively, also note that the above property is
still preserved when applying these row transformations. Now if s < m − 1,
then there is a finite basis {ri} consisting of m − s elements such that any
other rj can be written as a linear combination of them, thus p can be written
as a sum of m− s terms each with its coefficient in {ri}. It applies that each
such term is in Ωn(P ;R) since {ri} can be arbitrary chosen while the linear
equations are still satisfied (let one of them be 1 and others be 0), thus p is
not minimal, a contradiction. Hence s = m−1, but the above property shows
exactly that all ri’s differ up to a sign, since any one of the first m elements
in the last column of the row standard simplest form of (εkl) could not be
0 for all ri 	= 0, they can only be ±1. Hence all ri’s are ±rt for some fixed
rt.

Let R = Z, one obtains immediately the following result.

Corollary 2.4. For each n ∈ N, Ωn(P ;Z) is finitely free generated by a
Z-basis with the form of {∑i±ei}.

Proof. Since Ωn(P ;Z) is a submodule of finitely free Z-module An(P ;Z) and
Z is a PID, Ωn(P ;Z) is finitely free genereated. The result follows then from
the proof of Theorem 2.3.

This corollary generalizes [10, Corollary 2.4], since the word regular has
a stricter meaning there. Also we deduce a result that will be used in Section
3.

Corollary 2.5. For each n ∈ N, Ωn(P ;R) is finitely generated as an R-
module by the generators {∑i ±ei}.
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It can be shown that the module Ωn(P ;R) is actually a finitely free R-
module with the basis {∑i ±ei}, by using a similar discussion as that in the
proof of Theorem 2.3. We omit the detail since we do not need this more
delicate result.

3. Künneth formulas for path homology

Now we turn to the functorial properties of path homology. Similar to sim-
plicial homological theory, the authors of [7] defined the Cartesian product
for two path complexes (see [7, Definition 4.5]), and furthermore gave the
analogues of the Eilenberg-Zilber theorem and Künneth formula for regular
path complexes with coefficients in a field K.

In this section, we will generalize these results to a more general setting,
i.e., for regular path complexes with coefficients in a commutative ring R.
With the same assumption, we show that the pattern of the proof can also be
used to obtain the Künneth formula for the join of two regular path complexes
(see Definition 3.7 below) over any PID.

3.1. The case of Cartesian product

For our purpose, let us first recall the definition of the cross product of two
path complexes from [7].

Let X, Y be two finite sets. For two elementary m and n-paths ei0···im ∈
Rm(X) and ej0···jn ∈ Rn(Y ). Naturally, we have (m+1)(n+1) pairs of vertices
of (i0, j0), (i0, j1), · · · , (i1, j0), · · · , (im, jn) in X × Y . We now view the pairs
(k, l) with 0 ≤ k ≤ m and 0 ≤ l ≤ n as the vertices of an m × n rectangle
grid in R2, which are assigned the order “<” such that (k, l) < (p, q) for
k ≤ p, l < q or k < p, l ≤ q. Then for each m + n step-like edgepath σ with
vertices (0, 0), · · · , (k, l), · · · , (m,n), we can associate it with an elementary
(m + n)-path eσ = e(i0,j0)···(ik,jl)···(im,jn). Furthermore, we define the cross
product of two elementary paths ei0···im and ej0···jn as

ei0···im × ej0···jn =
∑
σ

(−1)|σ|eσ,

where σ runs through all the possible m + n step-like paths in the grid from
(0,0) to (m,n), and |σ| is the number of squares in the grid lying below
the path σ, also note that ‘×’ here means the cross product. This formula
can be extended bilinearly to give the cross product u × v of any two paths
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u ∈ Rm(X) and v ∈ Rn(Y ), and the differential operators are given by the
following formula (see [5, Proposition 7.2]):

(3.1) ∂(u× v) = ∂(u) × v + (−1)mu× ∂(v).

More generally, we have the following definition.

Definition 3.1 ([7],Definition 4.2). For any two path complexes P (X), P (Y ),
their Cartesian product P (X)�P (Y ) (or P (X ×Y ) for short) are defined as
the path complex over X × Y with each elementary k-path of P (X × Y ) of
the form eσ, where the k step-like path σ comes from the above construction
for any elementary s-path eα = ei0i1···is ∈ Ps(X) and elementary (k− s)-path
eβ = ej0j1···jk−s

∈ Pk−s(Y ) with all im ∈ X and jn ∈ Y , while its differential
operators are given by (3.1).

To simplify notations, we shall abbreviate An(P (X)) (resp. Ωn(P (X))) as
An(X) (resp. Ωn(X)) if there is no confusion. Also recall that An(X × Y ) is
the set of all R-linear combinations of elements in Pn(X×Y ) and Ωn(X×Y )
is defined as the set {zn|zn ∈ An(X × Y ) and ∂n(zn) ∈ An−1(X × Y ).}.
Lemma 3.2. Ωs(X) × Ωk−s(Y ) ⊆ Ωk(X × Y ).

Proof. It can be proved easily from the boundary formula for cross products.

The following lemma comes from [5, Proposition 7.12], whose proof can be
carried over to the case where R is a commutative ring without any change.

Lemma 3.3. Any path w ∈ Ω∗(X × Y ) admits a representation

w =
∑

ex∈P (X), ey∈P (Y )
cxy(ex × ey)

with finitely many nonzero coefficients cxy ∈ R which are uniquely determined
by w. Furthermore, the cross products {ex × ey} across all ex ∈ P (X) and
ey ∈ P (Y ) are R-linearly independent.

Our proof in the sequel depends on the following key lemma (comparing
its proof with that of [7, Theorem 5.1]).

Lemma 3.4. Any path w ∈ Ωn(X × Y ) can be written as a finite sum:

w =
∑
k

∑
i≤n

(
pki (X) × qkn−i(Y )

)

where k runs a finite set, each pki (X) ∈ Ωi(X) and qkn−i(Y ) ∈ Ωn−i(Y ).
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Proof. Let w be an n-path in Ωn(X × Y ), by Lemma 3.3 we can write it as
a finite sum:

(3.2) w =
n∑

i=s

( ∑
ex∈Pi(X), ey∈Pn−i(Y )

cxy(ex × ey)
)
,

and let Ji(X) and Jn−i(Y ) be respectively subsets of Pi(X) and Pn−i(Y )
consisting of all paths ex and ey such that the coefficients cxy ∈ R of ex × ey
in (3.2) are non-zero, while s ≥ 0 is the lowest index of ex appeared in
the expression. We do the proof by induction on the total number a of the
elementary paths in

⋃
i Jn−i(Y ).

If a = 1, that is to say, w =
(∑

ex c
xyex

)
× ey ∈ Ωn(X × Y ) where

ex ∈ Js(X) and {ey} = Jn−s(Y ) for some fixed integer s ≤ n. Now

∂(w) = ∂
(∑

ex

cxyex
)
× ey + (−1)s

(∑
ex

cxyex
)
× ∂(ey) ∈ An−1(X × Y )

and Lemma 3.3 imply that ∂
(∑

ex c
xyex

)
∈ As−1(X) and ∂(ey) ∈ An−s−1(Y ).

Set k = 1, then p1
s = cxyex and q1

n−s = ey give the desired result.
Now suppose the total number of the elementary paths in

⋃
i Jn−i(Y ) is

b (b > 1), and suppose that for any a < b the result holds, we shall show that
the result also holds for a = b. We rewrite w in two forms as follows:

w =
n∑

i=s

∑
ey∈Jn−i(Y )

(( ∑
ex∈Jy

i (X)
cxyex

)
× ey

)
(3.3)

=
n∑

i=s

∑
ex∈Ji(X)

(
ex ×

∑
ey∈Jx

n−i(Y )
cxyey

)

where each set Jy
i (X) ⊆ Ji(X) in the first equality runs over all the ex’s

accompanied by each ey in the cross product of (3.2) (so is decided by ey),
and each set Jx

n−i(Y ) ⊆ Jn−i(Y ) in the second equality runs over all the ey’s
accompanied by each ex in a symmetric manner (so is decided by ex). Fix
some eȳ ∈ Jn−s(Y ), it follows from J ȳ

s (X) ⊆ Js(X) and the first equality of
(3.3) that

p1
s =

∑
ex∈J ȳ

s (X)

cxȳex ∈ As(X).

For the sake of simplicity, given any elementary n-path ev = e0···n ∈ Pn(V )
and integer 0 ≤ l ≤ n, we denote e

v(̂l) = e0···(l−1)̂l(l+1)···n. On the other hand by
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using the first and the second equalities of (3.3) alternatively we can compute
as follows:

∂(w) =
∑

ey∈Jn−s(Y )

( ∑
ex∈Jy

s (X)
cxy∂(ex)

)
× ey

+
∑

ex∈Js(X)

(
ex × (−1)s

∑
ey∈Jx

n−s(Y )
cxy∂(ey)

)

+
∑

ex′∈Js+1(X)

(
∂(ex′) ×

∑
ey′∈Jx′

n−s−1(Y )

cx
′y′ey′

)
+ R(Z)

=
∑

ey∈Jn−s(Y )

( ∑
ex∈Jy

s (X)
cxy∂(ex)

)
× ey

(3.4)

+
∑

ex∈Js(X)
ex ×

(
(−1)s

∑
ey∈Jx

n−s(Y )
cxy∂(ey) + (−1)l

∑
e
x′ (̂l)

=ex

eỹ′∈Jx′
n−s−1(Y )

cx
′y′ey′

)

+
∑

e
x′ (̂l′)

/∈Js(X)

ex′∈Js+1(X)

(
(−1)l′e

x′(l̂′) ×
∑

ey′∈Jx′
n−s−1(Y )

cx
′y′ey′

)
+ R(Z)

where R(Z) denotes the remained summand of the form
∑

ex∈Jr(X),ey∈Jt(Y )
cxyex

×ey with s < r ≤ n − 1 and t = n − 1 − r. Thus it follows from ∂(w) ∈
An−1(X × Y ), (3.4) and Lemma 3.3 that

∂(p1
s) =

∑
ex∈J ȳ

s (X)

cxȳ∂(ex) ∈ As−1(X)

and for each ex ∈ Js(X) one has

(−1)s
∑

ey∈Jx
n−s(Y )

cxy∂(ey) + (−1)l
∑

e
x′ (̂l)

=ex

eỹ′∈Jx′
n−s−1(Y )

cx
′y′ey′ ∈ An−s−1(Y ).

Namely, one has

(3.5) p1
s ∈ Ωs(X) and

∑
ey∈Jx

n−s(Y )
cxy∂(ey) ∈ An−s−1(Y )

for each ex ∈ Js(X). Now for some fixed ex̄ ∈ J ȳ
s (X) we always have eȳ ∈



708 Fang Li and Bin Yu

J x̄
n−s(Y ), so if we denote

(3.6) qn−s =
∑

ey∈J x̄
n−s(Y )

cx̄yey,

then ∂(qn−s) ∈ An−s−1(Y ) and hence qn−s ∈ Ωn−s(Y ). Therefore by Corol-
lary 2.5 there exists some generator

q1
n−s =

∑
i

±eyi ∈ Ωn−s(Y )(3.7)

with eyi = eȳ for some i. Moreover, one can make that all eyi ∈ J x̄
n−s(Y ) ⊂

Jn−s(Y ), just note that q1
n−s can be obtained by replacing (2.4) and I with

(3.6) and Jx
n−s(Y ) respectively in the proof of Theorem 2.3.

Apparently, one has p1
s × q1

n−s ∈ Ωs(X) × Ωn−s(Y ) ⊆ Ωn(X × Y ) from
(3.5) and (3.7). Denote w′ = w−p1

s × q1
n−s, then w′ ∈ Ωn(X×Y ) and rewrite

it as

w′ =
n∑

i=s

( ∑
ex′∈Pi(X), ey′∈Pn−i(Y )

cx
′y′(ex′ × ey′)

)
.

Similarly this expression of w′ decides respectively two subsets J ′
i(X) and

J ′
n−i(Y ) of Pi(X) and Pn−i(Y ) consisting of all paths ex′ and ey′ such that the

coefficients cx′y′ ∈ R of ex′×ey′ in it are non-zero. Comparing w = p1
s×q1

n−s+
w′ with (3.2), it then follows by Lemma 3.3 that J ′

n−i(Y ) � Jn−i(Y ) since eȳ /∈
J ′
n−i(Y ), thus by inductive hypothesis one has w′ =

∑
k≥2

∑
i≤n

(
pki (X)×qkn−i(Y )

)
with each pki (X) ∈ Ωi(X) and qkn−i(Y ) ∈ Ωn−i(Y ), and one gets the desired
result for w.

We are able to prove the first main result now:

Theorem 3.5. Let P (X) and P (Y ) be two regular path complexes and R a
commutative ring. Then for their Cartesian product P (X×Y ) = P (X)�P (Y )
the following isomorphism of chain complexes holds:

Ω∗(X) ⊗R Ω∗(Y ) ∼= Ω∗(X × Y )(3.8)

whose mapping is given by u⊗ v �→ u× v.

Proof. Let us inspect the map (3.8)

F : Ω∗(X) ⊗R Ω∗(Y ) → Ω∗(X × Y )
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defined by the formula F (u ⊗ v) = u × v for any u ∈ Ωm(X) and v ∈
Ωn(Y ). Lemma 3.3 shows that F is injective, and Lemma 3.4 implies that F
is surjective, so it only needs to show that F is a chain map, but this follows
easily from the differential operators of tensor product of two chain complexes
defined as follows in n-degree:

∂(u⊗ v) = ∂(u) ⊗ v + (−1)mu⊗ ∂(v)

with u in m-degree and v in (n−m)-degree, and the differential operators of
Cartesian products of path complexes defined by (3.1).

Künneth formula is used to compute the (co)homology of a product space
in terms of the (co)homology of the factors. For path complexes over a field,
a type of Künneth formula also holds (see, [7, Theorem 4.7]). In fact, for any
principle ideal domain R, we have the following more general result.

Corollary 3.6. Let P (X) and P (Y ) be two regular path complexes and R a
PID. Then, for each n, there holds a Künneth formula by the following natural
splitting short exact sequence

0 → ⊕i

(
Hi(X) ⊗R Hn−i(Y )

)
→ Hn(X × Y )
→ ⊕iTorR1

(
Hi(X),Hn−i−1(Y )

)
→ 0.

Proof. By Theorem 3.5 one has

Hn(X × Y ) = Hn

(
Ω∗(X × Y )

) ∼= Hn

(
Ω∗(X) ⊗R Ω∗(Y )

)
.

Note that each An(X) (n ≥ 0) is a finitely generated free R-module, thus
Ωn(X) is also a free R-module since R is a PID. Therefore, the result follows
from [8, Theorem 3B.5].

One sees that both Theorem 2.3 and Theorem 3.5 show a resemblance
between the theory of path homology and that of singular homology in topol-
ogy.

3.2. The case of join

Comparing with the approach of considering the Cartesian product, there is
another way to derive the Künneth formula via an operation called the join
(see Definition 3.7 below) of two regular path complexes. For path complexes
over a field K, this is exactly what [7, Theorem 3.3] says. In fact, the general
result also holds when one replaces the field K by any commutative ring R.
Before we set off to prove this, let us do some preparation.
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Definition 3.7 ([7],Definition 3.1). Given two disjoint finite sets X, Y and
their path complexes P (X), P (Y ), define a path complex P (X) ∗ P (Y ) (or
P (X ∗ Y ) for short) consisting of all paths of the form uv := ei0i1···imj0j1···jn ∈
Pm+n+1(X ∗ Y ) where u = ei0i1···im ∈ Pm(X) and v = ej0j1···jn ∈ Pn(Y ). The
path complex P (X ∗ Y ) is called the join of P (X) and P (Y ).

Given any two paths u ∈ Pi−1(X) and v ∈ Pn−i(Y ), it is easy to check
that, the differential operator acting on the join uv ∈ Pn(X ∗ Y ) is given by
the following formula:

∂(uv) = ∂(u)v + (−1)iu∂(v).

For more properties and examples of the join of two regular path complexes
the reader may refer to [7]. To prove the asserted Künneth formula, we proceed
by a parallel way as that of proving Theorem 3.5. The key idea is to simply
replace the symbol “×” of Cartesian product by the symbol “∗” of join in the
previous proofs, and treat carefully the corresponding degrees.

In details, suppose we are given two regular path complexes P (X) and
P (Y ), let P (X ∗ Y ) be their join. We see that by definition Ωs−1(X) ∗
Ωk−s(Y ) ⊆ Ωk(X ∗ Y ) (comparing with Lemma 3.2) and each path w ∈
Ωn(X ∗ Y ) admits a representation

w =
n∑

i=1

∑
ex∈Pi−1(X), ey∈Pn−i(Y )

cxy(ex ∗ ey)

with finitely nonzero coefficients cxy ∈ R, which are uniquely determined
by w since obviously exy = ex ∗ ey across all ex ∈ P (X) and ey ∈ P (Y )
are R-linearly independent (comparing with Lemma 3.3). Now for the chain
complex Ω∗(X), we consider a new chain complex Ω′

∗(X) which is defined by
the formula Ω′

i(X) = Ωi−1(X) and ∂′
i(−) = ∂i−1(−). With this trick one is

able to prove the following result.

Theorem 3.8. Let P (X) and P (Y ) be two regular path complexes and R a
commutative ring. Then for their join P (X ∗Y ) = P (X)∗P (Y ) the following
isomorphism of chain complexes holds:

Ω′
∗(X) ⊗R Ω∗(Y ) ∼= Ω∗(X ∗ Y )(3.9)

whose mapping is given by u⊗ v �→ u ∗ v.
If furthermore R is a PID. Then there holds a Künneth formula by the

following natural splitting short exact sequence

0 → ⊕i(Hi−1(X) ⊗R Hn−i(Y )) → Hn(X ∗ Y )
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→ ⊕iTorR1 (Hi−1(X),Hn−i−1(Y )) → 0.(3.10)

for each n.

Proof. First note that as in Corollary 3.6, (3.10) follows directly from (3.9).
To obtain the isomorphism (3.9), let us consider the map

F : Ω′
∗(X) ⊗ Ω∗(Y ) → Ω∗(X ∗ Y )

given by u ⊗ v �→ u ∗ v for any u ∈ Ω′
i(X) and v ∈ Ωn−i(Y ). One sees

that the basis of Ω′
i(X)⊗Ωn−i(Y ) consists of all elements of the form ex⊗ ey

where ex and ey are some elementary paths in Ω′
i(X) = Ωi−1(X) and Ωn−i(Y )

respectively. Apparently F is injective since all exy = ex ∗ ey are R-linearly
independent.

Now we are done if we can show that the map F is surjective, but this
follows directly from the proof of Lemma 3.4. To see this one needs only to
replace the symbol “×” by “∗”, similarly Ωi(X), Pi(X) and Ji(X) etc. by
Ω′

i(X), P ′
i (X) and J ′

i(X) etc., respectively, where P ′
i (X) := Pi−1(X) and

J ′
i(X) := Ji−1(X). Then the proof still validates and this gives that F is

surjective.

Remark 3.9. If R = K is a field, one immediately obtains [7, Theorems 3.3
and 4.7] by Theorem 3.5, Corollary 3.6 and Theorem 3.8. But note that the
proofs in [7] used the dimension theory of vector spaces over a field (see [7,
Theorem 5.1]), which no more works for R-modules when R is a commutative
ring, so our proofs of Theorems 3.5, 3.8 and the proofs of [7, Theorems 3.3
and 4.7] have different points.
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