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On special generic maps of rational homology spheres
into Euclidean spaces∗

Dominik J. Wrazidlo
†

Abstract: Special generic maps are smooth maps between smooth
manifolds with only definite fold points as their singularities. The
problem of whether a closed n-manifold admits a special generic
map into Euclidean p-space for 1 ≤ p ≤ n was studied by sev-
eral authors including Burlet, de Rham, Porto, Furuya, Èliašberg,
Saeki, and Sakuma. In this paper, we study rational homology n-
spheres that admit special generic maps into Rp for p < n. We use
the technique of Stein factorization to derive a necessary homologi-
cal condition for the existence of such maps for odd n. We examine
our condition for concrete rational homology spheres including lens
spaces and total spaces of linear S3-bundles over S4 to obtain new
results on the nonexistence of special generic maps.
Keywords: Special generic map, definite fold point, Stein factor-
ization, homology sphere, linking form, lens space, sphere bundle.

1. Introduction

Let f : Mn → Rp, 1 ≤ p ≤ n, be a smooth map of a closed n-dimensional
smooth manifold M into Euclidean p-space. A point x ∈ M is called a definite
fold point of f if there exist local coordinates (x1, . . . , xn) and (y1, . . . , yp)
centered at x and f(x), respectively, such that f takes the form

yi ◦ f = xi, 1 ≤ i ≤ p− 1,
yp ◦ f = x2

p + · · · + x2
n.
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The map f is called a special generic map if every singular point of f is a
definite fold point. In this paper, we study special generic maps of rational
homology spheres, i.e., closed manifolds with the rational homology groups
of a sphere.

The notion of a special generic map seems to have first appeared in the
literature in a paper of Calabi [4] under the name of quasisurjective mapping.
As an important special case, we point out that special generic maps Mn → R

are the same as Morse functions of Mn with only maxima and minima as their
critical points, whereby connected Mn are homeomorphic to the standard n-
sphere Sn by the Reeb sphere theorem [15]. Special generic maps Mn → R2

were studied for n = 3 by Burlet and de Rham [3], and for n > 3 by Porto
and Furuya [14], and by Saeki [17]. Moreover, Sakuma [19] and Saeki [17]
studied special generic maps Mn → R3 under various assumptions on the
source manifold Mn. Hara [9] studied the existence of special generic maps
Mn → Rp for p ≤ n/2 by using L2-Betti numbers of Mn. Èliašberg [7] showed
that for orientable Mn, there is a special generic map Mn → Rn if and only if
Mn is stably parallelizable. Moreover, for not necessarily orientable Mn, Ando
[1] proved that the existence of special generic maps Mn → Rn is equivalent
to the condition span0(Mn) ≥ n − 1. Here, span0(Mn) denotes the stable
span of the n-manifold Mn, i.e. the number s such that s + 1 is the number
of nowhere linearly dependent sections of the stable tangent bundle of Mn.
Ando’s condition is known to be equivalent to the vanishing w2(Mn) = 0
of the second Stiefel-Whitney class of Mn for n = 2 by Èliašberg [7], and
for n = 3 by Sakuma [20]. Furthermore, for n = 4, 5, 6, 7, Sadykov, Saeki,
and Sakuma [16, Theorem 3.6] expressed Ando’s condition as the vanishing
w2(Mn) = 0 plus a secondary obstruction that involves characteristic classes
of vector bundles with a pin structure. In dimensions n ≥ 8, a characterization
of Ando’s condition in terms of characteristic classes is to our knowledge a
difficult open problem.

For a connected source manifold Mn, Saeki posed the problem to deter-
mine the dimension set S(Mn) of all integers 1 ≤ p ≤ n for which there
exists a special generic map Mn → Rp (see Problem 5.3 in [18]). The di-
mension set S(Mn) is a diffeomorphism invariant of manifolds that is in
general far from being understood. An additional obstacle is the lack of a
general diffeomorphism classification for manifolds, already for important
classes of closed smooth manifolds like homotopy 4-spheres. Nevertheless,
Kikuchi and Saeki showed in [12] that if (oriented) Mn are not smoothly (ori-
ented) nullcobordant, then S(Mn) = ∅. Moreover, Saeki [18] discovered that
S(Mn) = {1, . . . , n} if and only if Mn is diffeomorphic to the standard n-
sphere Sn. Nishioka [13] determined the dimension set S(M5) for any simply
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connected closed 5-manifold. In [24], the author determined the dimension
set S(Σ7) for 14 of Milnor’s 27 exotic 7-spheres Σ7.

In this paper, we study the dimension sets of rational homology spheres
of odd dimension by using the technique of Stein factorization of special
generic maps (see Section 2.2). Previously, Saeki [17] obtained the following
characterization of homotopy spheres in terms of Stein factorization.

Theorem 1.1 (Proposition 4.1 in [17]). Let f : Mn → Rp (1 ≤ p < n) be a
special generic map. Then Mn is a homotopy sphere if and only if the Stein
factorization Wf is contractible.

In Section 3, we show the following homological version of Theorem 1.1
for any commutative coefficient ring R 	= 0 with identity.

Theorem 1.2. Let f : Mn → Rp (1 ≤ p < n) be a special generic map.
Suppose that Mn is R-orientable. If Mn is an R-homology n-sphere (see Def-
inition 2.2), then the Stein factorization Wf is an R-homology p-ball. The
converse implication holds under the additional assumption that R is a prin-
cipal ideal domain (for example, R = Z or R = k a field).

We observe that Theorem 1.1 is a consequence of Theorem 1.2 for R = Z.
In fact, since Mn is simply connected if and only if the Stein factorization
Wf is simply connected (see Proposition 3.9 in [17]), the homological version
of the Whitehead theorem (see Corollary 4.33 in [10, p. 367]) can be applied
to the constant map of Wf to a point and to a degree one map Mn → Sn.

As an application of our Theorem 1.2, we show in Proposition 4.2 that if
a rational homology sphere Mn of odd dimension n = 2k + 1 ≥ 5 admits a
special generic map into Rp for some 1 ≤ p < n, then the cardinality of the
finite abelian group Hk(M ;Z) is the square of an integer. However, this is in
general not a sufficient condition for the existence of special generic maps on
M (see Remark 4.3). Proposition 4.2 can be considered as a torsion analog
of the fact that a closed manifold which admits a special generic map into
Euclidean p-space for some 1 ≤ p < n has even Euler characteristic (see
Corollary 3.8 in [17]).

As shown in Proposition 4.5, the square of a positive integer can always
be realized as the cardinality of Hk(M ;Z) for some highly connected rational
homology sphere Mn of suitable odd dimension n = 2k + 1 ≥ 5 that admits
a special generic map into Rp for some 1 ≤ p < n. On the other hand,
there are plenty of rational homology n-spheres Mn for which the cardinality
of Hk(M ;Z) is not the square of an integer, so that Mn admits no special
generic maps into Rp for any 1 ≤ p < n (or, equivalently, S(Mn) ⊂ {n}). For
instance, we show that this is the case for many lens spaces whose dimension
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is congruent to 3 (mod 4) (see Example 4.7), and many total spaces of linear
S3-bundles over S4 (see Example 4.8).

Notation

The cardinality of a set X is denoted by |X|. The symbol ∼= either means
diffeomorphism of smooth manifolds or isomorphism of modules over a com-
mutative ring. Reduced singular homology and cohomology will be denoted
by H̃∗ and H̃∗. The singular locus of a smooth map f between smooth mani-
folds is denoted by S(f). Let Dp = {x = (x1, . . . , xp) ∈ Rp;x2

1 + · · ·+x2
p ≤ 1}

denote the closed unit ball in Euclidean p-space with boundary Sp−1 = ∂Dp

the standard (p− 1)-sphere.

2. Preliminaries

In this preparatory section, we collect several basic facts on homology spheres
and homology balls (see Section 2.1), and review the method of Stein factor-
ization of special generic maps (see Section 2.2).

2.1. Homology spheres and homology balls

Let R be a commutative ring with identity. Recall that an orientable manifold
is R-orientable for any R, whereas a nonorientable manifold is R-orientable
if and only if 2 = 0 in R (see e.g. [10, p. 235]). For later reference, we record
here the following

Lemma 2.1. If 2 = 0 in R, then for every pair (X,A) of topological spaces
we have an isomorphism

H∗(X,A;R) ∼= H∗(X,A;Z/2Z) ⊗Z/2Z R

of vector spaces over Z/2Z, where R is a vector space over Z/2Z by means of
the unique ring homomorphism Z/2Z → R.

Proof. The ring homomorphism Z/2Z → R is well-defined because 2 = 0 in R
by assumption. The claimed isomorphism follows from [10, p. 267] by taking
C to be the singular chain complex of the space pair (X,A) with coefficient
ring Z/2Z.

In the following definition, we recall the notions of R-homology sphere
and R-homology ball for R-orientable manifolds. In the case that R = Q

(which will be considered in Section 4) we replace the term “R-homology” by
“rational homology”.
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Definition 2.2. A closed R-orientable topological n-manifold P n is called an
R-homology n-sphere if H̃∗(P ;R) ∼= H̃∗(Sn;R) (where note that H̃n(Sn;R) ∼=
R and H̃i(Sn;R) = 0 for i 	= n). A compact R-orientable topological p-
manifold Qp with boundary is called an R-homology p-ball if H̃∗(Q;R) ∼=
H̃∗(Dp;R) (= 0).

Remark 2.3. If 2R 	= 0, then the assumption that P is R-orientable is
redundant in Definition 2.2. In fact, if P n is a closed topological manifold
that is not R-orientable, then it follows from Theorem 3.26(b) in [10] that
Hn(P ;R) ∼= {r ∈ R; 2r = 0}. But then, R ∼= H̃n(P ;R) ⊂ Hn(P ;R) implies
that all elements of R have order ≤ 2.

Proposition 2.4. Suppose that R is a principal ideal domain (for example,
R = Z or R = k a field). If Qp is an R-homology p-ball of dimension p ≥ 1,
then ∂Q is an R-homology (p− 1)-sphere.

Proof. As Qp is a compact R-orientable p-manifold, its boundary ∂Q is a
closed R-orientable (p − 1)-manifold. In order to show that H̃∗(∂Q;R) ∼=
H̃∗(Sp−1;R), we remove the interior of a p-disk Dp embedded in the interior
of Q to obtain a compact R-orientable p-manifold Q′ with boundary the
closed R-orientable (p−1)-manifold ∂Q′ = ∂Q
Sp−1. Using excision and the
homotopy axiom for homology, we note that H∗(Q′, Sp−1;R) ∼= H̃∗(Q;R) = 0
because Q is an R-homology p-ball. Since R is a principal ideal domain,
we can apply the universal coefficient theorem as stated on the bottom of
p. 196 in [10] to the R-module G = R and the chain complex C : · · · →
C1(Q′, Sp−1) ⊗Z R → C0(Q′, Sp−1) ⊗Z R → 0 of the pair (Q′, Sp−1) with R-
coefficients to conclude that H∗(Q′, Sp−1;R) = 0. Then, H∗(Q′, ∂Q;R) = 0
by Lefschetz duality (see Theorem 3.43 in [10, p. 254]). Finally, from the
reduced homology long exact sequences of the pairs (Q′, ∂Q) and (Q′, Sp−1)
we then see that H̃∗(∂Q;R) ∼= H̃∗(Q′;R) ∼= H̃∗(Sp−1;R).

Proposition 2.5. For R 	= 0 we have:

1. Let P n be an R-homology n-sphere. Then, H̃i(P ;Z) is a finite abelian
group for i < n. If P n is orientable, then P n is a rational homology
n-sphere.

2. Let Qp be an R-homology p-ball. Then, H̃i(Q;Z) is a finite abelian group
for all i ∈ Z. If Qp is orientable, then Qp is a rational homology p-ball.

Proof. Since P n and Qp are compact topological manifolds, their integral ho-
mology groups are finitely generated in every degree by Corollary A.8 and
Corollary A.9 in [10, p. 527]. Therefore, by applying the universal coefficient



718 Dominik J. Wrazidlo

theorem for homology as stated in Theorem 3A.3 in [10, p. 264] to the aug-
mented chain complex C : · · · → C1(P ) → C0(P ) → Z → 0 of P , we conclude
from Hi(C;R) = H̃i(P ;R) = 0 for i < n that rank H̃i(P ;Z) = rankHi(C) =
0 for i < n because R 	= 0. Similarly, we conclude from H̃i(Q;R) = 0 for
i ∈ Z that rank H̃i(Q;Z) = 0 for i ∈ Z. Thus, H̃i(P ;Z), i < n, and H̃i(Q;Z),
i ∈ Z, are finite abelian groups. Finally, if P n and Qp are in addition ori-
entable, then, using H∗(X;Q) ∼= H∗(X;Z) ⊗ Q for any topological space X
(see Corollary 3A.6(a) in [10, p. 266]), we conclude that P n is a rational
homology n-sphere, and Qp is a rational homology p-ball.

2.2. Stein factorization of special generic maps

First, let us recall the notion of Stein factorization of an arbitrary continuous
map.

Definition 2.6. Let f : X → Y be a continuous map between topological
spaces. We define an equivalence relation ∼f on X as follows. Two points
x1, x2 ∈ X are called equivalent, x1 ∼f x2, if there is a point y ∈ Y such
that x1 and x2 are contained in the same connected component of the fiber
f−1(y). The equivalence relation ∼f on X gives rise to a unique factorization
of f of the form

(2.1)
X Y

Wf ,

qf

f

f

where Wf := X/ ∼f is the quotient space equipped with the quotient topol-
ogy, qf : X → Wf is the continuous quotient map, and the map f : Wf → Y
is continuous. The diagram (2.1), or sometimes the space Wf , is called the
Stein factorization of f .

Let f : Mn → Rp, 1 ≤ p < n, be a special generic map of a connected
closed smooth n-manifold M into Euclidean p-space. In the following, we
recall from [17] some important properties of the Stein factorization of f .

As explained in [17, p. 267], the Stein factorization Wf of f can be
equipped with the structure of a compact parallelizable smooth p-manifold
with boundary in such a way that the quotient map qf : M → Wf is a smooth
map which satisfies q−1

f (∂Wf ) = S(f), and restricts to a diffeomorphism
S(f) ∼= ∂Wf . Moreover, it is shown in the proof of Proposition 2.1 in [17]
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that M \ S(f) is the total space of a smooth (not necessarily linear) Sn−p-
bundle π : M \ S(f) → Wf \ ∂Wf over the interior of Wf . Furthermore, it is
shown there that M is homeomorphic to ∂Ẽ, where Ẽ is the total space of
the topological Dn−p+1-bundle ρ : Ẽ → W associated1 with the Sn−p-bundle
π| : π−1(W ) → W that is the restriction of π over the closure W = Wf \ C
of Wf \C in Wf for a sufficiently small collar neighborhood C ∼= ∂Wf × [0, 1]
of ∂Wf in Wf (compare Proposition 3.1 in [17]).

Let R be a commutative ring with identity. Since Ẽ is homotopy equiva-
lent to W , and W ∼= Wf by construction, we have

(2.2) H∗(Ẽ;R) ∼= H∗(W ;R) ∼= H∗(Wf ;R)

and

(2.3) H∗(Ẽ;R) ∼= H∗(W ;R) ∼= H∗(Wf ;R).

From now on, let us assume that the compact topological (n+1)-manifold
Ẽ is R-orientable. The smooth compact p-manifold Wf is R-orientable as well
because it is parallelizable and hence orientable. Thus, Poincaré-Lefschetz
duality (see Theorem 3.43 in [10, p. 254]) implies

(2.4) H∗(Ẽ, ∂Ẽ;R) ∼= Hn+1−∗(Ẽ;R),

(2.5) H∗(Wf , ∂Wf ;R) ∼= Hp−∗(Wf ;R),

and

(2.6) H∗(∂Wf ;R) ∼= Hp−1−∗(∂Wf ;R).

Analogously to Proposition 3.10 in [17], we have a long exact sequence of

1The transition functions Dn−p+1 → Dn−p+1 of ρ are obtained by extending the
transition functions Sn−p → Sn−p of π| radially.
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the form
(2.7)
. . . Hq+1(M ;R) Hq+1(Wf ;R) Hn−q(Wf ;R)

Hq(M ;R) Hq(Wf ;R) Hn−q+1(Wf ;R) . . .

. . .

. . . H1(M ;R) H1(Wf ;R) Hn(Wf ;R) 0.

(In order to derive (2.7), we start with the homology long exact sequence of
the pair (Ẽ, ∂Ẽ). Then, we make the replacements Hq(∂Ẽ;R) ∼= Hq(M ;R)
by using that M is homeomorphic to ∂Ẽ, Hq(Ẽ;R) ∼= Hq(Wf ;R) by (2.2),
and Hq(Ẽ, ∂Ẽ;R) ∼= Hn+1−q(Ẽ;R) ∼= Hn+1−q(Wf ;R) by using (2.4) and
(2.3). The right end of the sequence (2.7) has the claimed form because M
and Wf are both connected so that the map H0(∂Ẽ;R) → H0(Ẽ;R) is an
isomorphism.)

Next, we note that

(2.8) Hq(Wf ;R)
(2.5)∼= Hp−q(Wf , ∂Wf ;R) = 0, q ≥ p,

where H0(Wf , ∂Wf ;R) = 0 holds because Wf is connected as the image of the
connected space M under the surjective quotient map qf : M → Wf . Thus,
using (2.8) and (2.7), we conclude that

(2.9) Hq(M ;R) ∼= Hq(Wf ;R), q ≤ n− p.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is very similar to the proof of Proposition 4.1 in
[17]. By a close examination we assure in the following that each step of
the argument is valid for our purely homological formulation that uses R-
coefficients instead of Z-coefficients, and does not involve any assumptions
about fundamental groups.

Let f : Mn → Rp (1 ≤ p < n) be a special generic map. Suppose that Mn

is R-orientable. Then, it follows that the compact topological (n+1)-manifold
Ẽ introduced in Section 2.2 is R-orientable as well. (In fact, we only need to
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consider the case that Ẽ is nonorientable because orientable manifolds are
R-orientable for any R. But then, M is nonorientable as well because ori-
entability of M implies orientability of Ẽ, as stated after the proof of Propo-
sition 3.1 in [17]. Now, recall from Section 2.1 that a nonorientable manifold
is R-orientable if and only if 2 = 0 in R. Consequently, R-orientability of M
implies R-orientability of Ẽ.)

Let us first suppose that the Stein factorization Wf of f is an R-homology
p-ball, with R being a principal ideal domain. Then, we have

H∗(Ẽ;R)
(2.2)∼= H∗(Wf ;R) ∼= H∗(Dp;R) ∼= H∗(Dn+1;R).

Since Ẽ is R-orientable as shown above, it follows that Ẽ is an R-homology
(n+1)-ball. Hence, using that R is a principal ideal domain, we conclude from
Proposition 2.4 that ∂Ẽ is an R-homology n-sphere. As M is homeomorphic
to ∂Ẽ, M is an R-homology n-sphere as well.

Conversely, we suppose that M is an R-homology n-sphere. In particular,

(3.1) H̃q(M ;R) ∼= H̃q(Sn;R) = 0, q < n.

Combining (3.1) with the long exact sequence (2.7) (where note that Ẽ is
R-orientable as shown above), we obtain

(3.2) Hq(Wf ;R) ∼= Hn−q+1(Wf ;R), 0 < q < n.

Next, we observe that

(3.3) H̃q(Wf ;R) = 0, q ≤ n− p + 1,

which follows for q ≤ n − p from (2.9) and (3.1), and for q = n − p + 1
(> 0) from (3.2) and (2.8) (where we may assume that q < n because Wf is
a p-manifold).

In the following, we show by induction on q that H̃q(Wf ;R) = 0 for
all q ≤ p. (Then, it follows immediately that the compact R-orientable p-
manifold Wf is an R-homology p-ball, where note that Wf is orientable as
a parallelizable manifold.) Taking (3.3) as the basis q = n − p + 2 of the
induction, we fix n− p+ 2 ≤ q ≤ p, and suppose that we have already shown

(3.4) H̃i(Wf ;R) = 0, i ≤ q − 1.
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The induction step consists of showing that Hq(Wf ;R) = 0. As 0 < q < n,
we have
(3.5)

Hq(Wf ;R)
(3.2)∼=Hn−q+1(Wf ;R)

(2.5)∼=Hp−n+q−1(Wf , ∂Wf ;R)∼=H̃p−n+q−2(∂Wf ;R),

where the last isomorphism is a connecting homomorphism in the reduced
homology long exact sequence of the pair (Wf , ∂Wf ), and is an isomorphism
because H̃p−n+q−1(Wf ;R) = 0 = H̃p−n+q−2(Wf ;R) by induction hypothesis
(3.4). If q = n− p + 2, then we obtain as desired

(3.6) Hq(Wf ;R)
(3.5)∼= H̃0(∂Wf ;R) = 0,

where the last equality holds because we have l = 1 for the number l > 0 of
connected components of ∂Wf = S(f) 	= ∅. (In fact, if M is orientable,
then we have l ≤ 1 + rankHp−1(M ;Z) by Proposition 3.15 in [17], and
rankHp−1(M ;Z) = 0 holds by Proposition 2.51 as 1 < p < n and R 	= 0
by assumption. On the other hand, if M is nonorientable, then a slight mod-
ification of the proof of Proposition 3.15 in [17] based on the intersection
product with Z/2Z coefficients yields l ≤ 1 + dimZ/2Z Hp−1(M ;Z/2Z) (for
the intersection product, see e.g. Theorem 11.9 in [2, p. 372], which ap-
plies also to Z/2Z coefficients as pointed out in Example 11.14 in [2, p.
376]). Note that we have 2 = 0 in R because M is nonorientable and R-
orientable. Therefore, Lemma 2.1 implies that Hp−1(M ;Z/2Z) = 0 because
0 = Hp−1(M ;R) ∼= Hp−1(M ;Z/2Z) ⊗Z/2Z R and R 	= 0.) If q > n − p + 2,
then

(3.7) Hq(Wf ;R)
(3.5)∼= Hp−n+q−2(∂Wf ;R)

(2.6)∼= Hn−q+1(∂Wf ;R).

Since ∂Wf = S(f) is a closed subset of the closed n-manifold Mn, we
have

Hn−q+1(S(f);R) ∼= Hq−1(M,M \ S(f);R)

by Poincaré-Lefschetz duality as stated in Corollary 8.4 in [2, p. 352], where
note that the Čech cohomology can be replaced by singular cohomology be-
cause S(f) is a manifold. (For nonorientable M , we apply Poincaré-Lefschetz
duality with coefficient ring Z/2Z to obtain Hn−q+1(S(f);Z/2Z) ∼= Hq−1(M,
M \ S(f);Z/2Z), and then carry this isomorphism over to coefficient ring R
by means of Lemma 2.1. Here, we have 2 = 0 in R because M is nonori-
entable and R-orientable.) Next, we observe that Hq−1(M,M \ S(f);R) ∼=
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Hq−2(M \ S(f);R), which is a connecting homomorphism in the reduced ho-
mology long exact sequence of the pair (M,M \S(f)), and is an isomorphism
because H̃q−1(M ;R) = 0 = H̃q−2(M ;R) by (3.1), where q − 1 < n because
q ≤ p < n. Altogether, using ∂Wf

∼= S(f), we conclude that for q > n−p+2,
(3.8)

Hq(Wf ;R)
(3.7)∼= Hn−q+1(∂Wf ;R) ∼= Hq−1(M,M\S(f);R) ∼= Hq−2(M\S(f);R).

Now, assuming for the moment that the manifold M is orientable, we
recall from Section 2.2 that there is a smooth Sn−p-bundle π : M \ S(f) →
Wf \ ∂Wf whose total space M \ S(f) and base space Wf \ ∂Wf are ori-
entable manifolds. Hence, π is an orientable sphere bundle in the sense of
[10, p. 442] (i.e., for every loop in the base space the induced homeomor-
phism π−1(x) → π−1(x) over the basepoint x induces the identity map on
Hn−p(π−1(x);Z)). Let D(π) : E′ → Wf \ ∂Wf be the orientable topolog-
ical Dn−p+1-bundle associated with π. Then, the Thom isomorphism yields
H∗(Wf ;Z) ∼= H∗+(n−p+1)(E′,M \S(f);Z) (see Corollary 4D.9 in [10, p. 441]).
Consequently, H∗(Wf ;Z) ∼= H∗+(n−p+1)(E′,M \ S(f);Z) by Corollary 3.3 in
[10, p. 196]. Then, the universal coefficient theorem for homology (see Corol-
lary 3A.4 in [10, p. 264]) yields an isomorphism

(3.9) H∗(Wf ;R) ∼= H∗+(n−p+1)(E′,M \ S(f);R)

(of Z-modules, not of R-modules). On the other hand, if M is nonorientable,
then the disk bundle D(π) still has a Thom class with Z/2Z coefficients by
Theorem 4D.10 in [10], and the Thom isomorphism yields H∗(Wf ;Z/2Z) ∼=
H∗+(n−p+1)(E′,M \ S(f);Z/2Z). Then, Lemma 2.1 allows us to carry this
isomorphism over to coefficient ring R, which yields (3.9) also in the case
that M is nonorientable. (Here, note that we have 2 = 0 in R because M is
nonorientable and R-orientable.)

Let us consider the following part of the homology long exact sequence of
the pair (E′,M \ S(f)):

(3.10) Hq−1(E′,M \ S(f);R) → Hq−2(M \ S(f);R) → Hq−2(E′;R).

Since E′ is homotopy equivalent to Wf , we have Hq−2(E′;R)∼=Hq−2(Wf ;R) =
0 by induction hypothesis (3.4), where note that q − 2 > 0 because q >
n− p + 2 > 2. Furthermore, we have

Hq−1(E′,M \ S(f);R)
(3.9)∼= Hp−n+q−2(Wf ;R) (3.4)= 0,
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where we can apply the induction hypothesis because 0 < p− n + q − 2 < q.
Finally, in view of (3.10), we obtain

Hq(Wf ;R)
(3.8)∼= Hq−2(M \ S(f);R) = 0.

This completes the proof of Theorem 1.2.

4. An application in odd dimensions

In order to derive Proposition 4.2 below from Theorem 1.2 we need the fol-
lowing

Lemma 4.1. Let · · · → Ai−1 → Ai → Ai+1 → . . . be a long exact sequence
of finite abelian groups such that |Ai| = 1 for all but a finite number of i ∈ Z.
If |A−i| = |Ai| for all i ∈ Z, then |A0| = k2 for some integer k.

Proof. Every map αi : Ai → Ai+1 of the given long exact sequence gives rise
to a short exact sequence

0 → ker(αi) → Ai → im(αi) → 0

of finite abelian groups. Since Ai and Ai+1 are finite, we obtain

(4.1) |Ai| = | ker(αi)| · | im(αi)|, i ∈ Z.

Using that ker(αi) = im(αi−1) by exactness of the given sequence, we have

∏
i odd

|Ai|
(4.1)=

∏
i odd

| im(αi−1)|·| ker(αi+1)| =
∏

i even
| im(αi)|·| ker(αi)|

(4.1)=
∏

i even
|Ai|,

where note that the products are finite because |Ai| = 1 for almost all i ∈ Z.
If |A−i| = |Ai| for all i ∈ Z, then we can write

|A0| =
∏

i odd |Ai|∏
0�=i even |Ai|

=
(
∏

j≥0 |A2j+1|)2
(
∏

j≥1 |A2j |)2
.

Thus, the positive integers a = |A0|, x =
∏

j≥0 |A2j+1| and y =
∏

j≥1 |A2j |
satisfy ay2 = x2. By comparing the exponents of prime numbers in the prime
factorizations of a, x, and y, we conclude that |A0| = k2 for some integer
k.

The main result of this section is the following
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Proposition 4.2. Let f : Mn → Rp (1 ≤ p < n) be a special generic map on
a smooth rational homology n-sphere Mn of odd dimension n = 2k + 1 ≥ 5.
Then the cardinality of the finite abelian group Hk(M ;Z) is the square of an
integer.

Proof. We conclude from Theorem 1.2 that the Stein factorization Wf is a ra-
tional homology p-ball. By Proposition 2.5, H̃i(M ;Z), i < n, and H̃i(Wf ;Z),
i ∈ Z, are finite abelian groups. Hence, taking C to be the augmented chain
complexes of M and Wf in Corollary 3.3 in [10, p. 196], we obtain

(4.2) H̃ i(M ;Z) ∼= H̃i−1(M ;Z), i < n,

and

(4.3) H̃ i(Wf ;Z) ∼= H̃i−1(Wf ;Z), i ∈ Z,

respectively. Poincaré duality for Mn yields

(4.4) Hi(M ;Z) ∼= Hn−i(M ;Z)
(4.2)∼= Hn−i−1(M ;Z), 1 ≤ i ≤ n− 2.

In view of Hn−1(Wf ;Z) = 0 (see (2.8) applied for q = n − 1 ≥ p) and
(4.3), the long exact sequence (2.7) takes for n ≥ 5 and R = Z the form
(4.5)

0 = Hn−2(Wf ;Z) H2(Wf ;Z)

Hn−3(M ;Z) Hn−3(Wf ;Z) H3(Wf ;Z) . . .

. . .

. . . Hq+1(M ;Z) Hq+1(Wf ;Z) Hn−q−1(Wf ;Z)

Hq(M ;Z) Hq(Wf ;Z) Hn−q(Wf ;Z) . . .

. . .

. . . H2(M ;Z) H2(Wf ;Z) Hn−2(Wf ;Z) = 0.

By assumption, n = 2k + 1 is odd. Writing · · · → Ai−1 → Ai → Ai+1 →
. . . with A0 = Hk(M ;Z) for the above exact sequence (4.5), our claim will
follow from Lemma 4.1 once we show that |A−i| = |Ai| for all integers i > 0.
If i ≡ 1 (mod 3), say i = 3s + 1, then we see that Ai = Hk−s(Wf ;Z) = A−i
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for k−s ≥ 2, and Ai = 0 = A−i for k−s < 2. If i ≡ 2 (mod 3), say i = 3s+2,
then we see that Ai = Hk+1+s(Wf ;Z) = A−i for k + 1 + s ≤ n − 2, and
Ai = 0 = A−i for k + 1 + s > n− 2. If i ≡ 0 (mod 3), say i = 3s, then we see
by means of (4.4) that Ai = Hk−s(M ;Z) ∼= Hk+s(M ;Z) = A−i for k− s ≥ 2,
and Ai = 0 = A−i for k − s < 2. All in all, we have shown that |A−i| = |Ai|
for all integers i > 0, which completes the proof of Proposition 4.2.

Remark 4.3. Our homological condition in Proposition 4.2 is in general not
sufficient for a smooth rational homology sphere M of odd dimension n ≥ 5
to admit a special generic map into Rp for some 1 ≤ p < n. In fact, the
real projective space RP 5 satisfies H2(RP 5;Z) = 0, but there does not exist
a special generic map f : RP 5 → Rp for any 1 ≤ p < 5. (Otherwise, the
universal cover π : S5 → RP 5 would induce a 2-sheeted covering Wf◦π → Wf

of Stein factorizations of the special generic maps f ◦ π and f by Proposi-
tion 2.6 in [9]. Thus, the space Wf◦π would have even Euler characteristic
χ(Wf◦π) = 2χ(Wf ) while being contractible by Theorem 1.1.)

Remark 4.4. Suppose that n = 4l + 1 for some integer l ≥ 1. After Seifert
[21], the linking form b : TH2l(N ;Z) × TH2l(N ;Z) → Q/Z on the torsion
subgroup of the homology group H2l(N ;Z) of a closed oriented topological n-
manifold N is a nondegenerate skew-symmetric bilinear form. Wall has shown
(see Theorem 3 in [22]) that

TH2l(N ;Z) ∼=
{
H ⊕H, if b(x, x) = 0 for all x ∈ TH2l(N ;Z),
H ⊕H ⊕ Z/2Z, else,

(4.6)

for a suitable finite abelian group H. Thus, if M is a smooth rational homology
n-sphere that admits a special generic map into Rp for some 1 ≤ p < n, then
Proposition 4.2 implies that the first alternative holds for H2l(M ;Z) in (4.6).

Next, we show that the homological condition in Proposition 4.2 is gen-
erally optimal.

Proposition 4.5. Let m > 0 be an integer. There exist an integer k > 1
and a (k − 1)-connected smooth rational homology (2k + 1)-sphere M with
|Hk(M ;Z)| = m2 which admits a special generic map into Rp for some 1 ≤
p < 2k + 1.

Proof. Let W p be a compact parallelizable smooth p-manifold with boundary.
If n > p > 0, then by Proposition 2.1 in [17], there exists a special generic
map f : Mn → Rp, where the closed smooth n-manifold M is diffeomorphic
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to the boundary of the product W ×Dn−p+1 (after smoothing the corners),
and the Stein factorization of f is diffeomorphic to W .

Now, we suppose in addition that n = 2k + 1 for some integer k > 1,
and that W is a simply connected rational homology p-ball whose only non-
vanishing integral homology group in positive degree is Hk(W ;Z) ∼= Z/mZ.
Then, it follows from Theorem 1.2 that M is a smooth rational homology
n-sphere, and M is simply connected by Proposition 3.9 in [17]. Moreover,
using the assumptions on the homology of W in the long exact sequence (4.5)
from the proof of Proposition 4.2, we see that Hq(M ;Z) = 0 for 2 ≤ q ≤ k−1,
and that there is a short exact sequence

0 → Hk(W ;Z) → Hk(M ;Z) → Hk(W ;Z) → 0.

Thus, M is (k− 1)-connected by the Hurewicz theorem, and we have |Hk(M ;
Z)| = |Hk(W ;Z)|2 = m2. This shows that M will have all the desired prop-
erties.

Thus, it remains to construct a manifold W having all of the above prop-
erties. For this purpose, we consider a finite connected simplicial complex
K embedded in some Ra, and whose only non-vanishing integral homology
group in positive degree is H1(K;Z) = Z/mZ. (Such a simplicial complex K
can be obtained by an embedded 3-dimensional lens space L(m, l) = Lm(1, l)
(compare Example 4.7 below) with a small open 3-disk removed.) Then, by
taking r-fold suspension, we obtain a finite connected simplicial complex L
embedded in Ra+r whose only non-vanishing integral homology group in posi-
tive degree is Hr+1(L;Z) = Z/mZ. It is well-known that L is the deformation
retract of a regular neighborhood V in Ra+r that is a compact smoothly
embedded (a + r)-manifold (which is in particular parallelizable). Then, by
choosing r > 0 so large that n = 2k+1 > p with k = r+1 and p = a+ r, the
manifold W = V will have all of the desired properties. (In particular, note
that W is simply connected by the Freudenthal suspension theorem.)

This completes the proof of Proposition 4.5.

Remark 4.6. Concerning the choice of an embedded simplicial complex K ⊂
Ra in the proof of Proposition 4.5, we note that a = 5 is sufficient because
any orientable closed 3-manifold can be embedded in R5 according to a result
of Hirsch [11]. Moreover, by results of Zeeman [25] and Epstein [6], the 3-
dimensional punctured lens space L(m, l) \ pt can be embedded into R4 if
and only if m is odd. Consequently, in Proposition 4.5 we can realize all
values k ≥ 4, and also k = 3 when m is odd. We do not know if there exists
a special generic map M7 → Rp, 1 ≤ p < 7, where M is a smooth rational
homology 7-sphere such that |H3(M ;Z)| is even.
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We conclude with applications of Proposition 4.2 to determine the dimen-
sion sets of some rational homology spheres.

Example 4.7 (Lens spaces). For an integer m > 1 and integers l1, . . . , lk+1
(k ≥ 0) relatively prime to m, the lens space Lm(l1, . . . , lk+1) (see e.g. Exam-
ple 2.43 in [10, p. 144]) is a closed smooth (2k + 1)-manifold whose integral
homology groups are given by

Hi(Lm(l1, . . . , lk+1);Z) =

⎧⎪⎪⎨⎪⎪⎩
Z for i = 0, 2k + 1,
Z/mZ for i odd, 0 < i < 2k + 1,
0 otherwise.

If k ≥ 3 is odd, and m = |Hk(Lm(l1, . . . , lk+1);Z)| is not the square of an
integer, then Proposition 4.2 implies that Lm(l1, . . . , lk+1) does not admit
a special generic map into Rp for any 1 ≤ p < 2k + 1. Furthermore, Èli-
ašberg [7] has shown that there is a special generic map Lm(l1, . . . , lk+1) →
R2k+1 if and only if Lm(l1, . . . , lk+1) is stably parallelizable. Hence, we have
S(Lm(l1, . . . , lk+1)) = {2k+1} if Lm(l1, . . . , lk+1) is stably parallelizable, and
S(Lm(l1, . . . , lk+1)) = ∅ else. If m is an odd prime and 1 ≤ li ≤ m− 1 for all
i, then it follows from [8] that S(Lm(l1, . . . , lk+1)) = {2k + 1} if and only if
k < m and l2j1 + · · · + l2jk+1 is divisible by m for j = 1, . . . , �k/2�, where �x�
denotes the biggest integer ≤ x for a real number x.

Example 4.8 (Linear S3-bundles over S4). As explained in [5], fiber bundles
over S4 with fiber S3 and structure group SO(4) are classified by elements of
π3(SO(4)) ∼= Z⊕Z. Moreover, the nontrivial integral homology groups of the
total space Mm,n corresponding to (m,n) ∈ π3(SO(4)) are H0(Mm,n;Z) ∼=
H7(Mm,n;Z) ∼= Z and H3(Mm,n;Z) ∼= Z/nZ. We note that Mm,n is a rational
homology 7-sphere for n 	= 0. Hence, by Proposition 4.2, Mm,n does not
admit a special generic map into Rp for any 1 ≤ p < 7 whenever |n| is not
the square of an integer. Moreover, Èliašberg [7] has shown that there is a
special generic map Mm,n → R7 if and only if Mm,n is stably parallelizable.
According to Wilkens [23], this is equivalent to the vanishing of an obstruction
β̂ ∈ H4(Mm,n;π3(SO)) ∼= Z/nZ. This obstruction has been determined to be
β̂ = p1

2 (Mm,n) ≡ 2m (modn) in [5, p. 365]. All in all, if |n| is not the square
of an integer, then

S(Mm,n) =
{
{n}, n|2m,

∅, else.
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