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Noncommutative geometry of computational models
and uniformization for framed quiver varieties
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Abstract: We formulate a mathematical setup for computational
neural networks using noncommutative algebras and near-rings, in
motivation of quantum automata. We study the moduli space of
the corresponding framed quiver representations, and find moduli
of Euclidean and non-compact types in light of uniformization.
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1. Introduction

The connections between computer science and algebra are profound. In the
early 1900s, both were deeply tied to practical and philosophical develop-
ments towards understanding what it truly means to calculate something.
For example, there was Turing’s Halting problem and Gödel’s Incomplete-
ness theorem.

As modern abstract algebra was developed in the 50s and 60s, it was
fruitfully applied towards computer science with the creation of the theory of
finite automata. The first fundamental result in this development was Kleene’s
Theorem demonstrating that the class of recognizable languages is the class of
rational languages [21]. In 1956, Schützenberger defined the syntactic monoid,
a canonical monoid attached to each language [29]. Later, he proved that a
language is star-free exactly when its syntactic monoid is finite and aperiodic
[30]. At this point mathematicians started to consider the algebraic geometry
of these monoids as Birkhoff [4] and later Eilenberg [14] and Reiterman [27]
wrote about varieties of these monoids (infinite and finite respectively).

The theory of finite automata arose from an extremely widespread inter-
disciplinary effort to understand calculation. Modern science suggests that
the brain operates as a so-called neural network, the structure of which has
inspired the computational tool known as the artificial neural network. Neu-
ral network models heavily use graphs and their linear representations. This
gives rise to further relations between mathematics and computer science.
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In this paper, enlightened by the modern developments of quantum me-
chanics and the applications in computer science, we would like to further
study relationships between these subjects by constructing an algebraic ge-
ometric model for both neural networks and quantum automata. We hope
that this framework can partially reveal deep relations between these two
seemingly distant areas. Our study is just the tip of the iceberg of connec-
tions between these subjects. There are various deep topics that we have not
touched yet, such as analysis of the large N limit by taking the representing
dimensions to infinity, stochastic analysis for the geometry of quiver moduli,
dynamical systems in relation with recurrent neural networks, and so on.

Summary of results

This paper is theoretical in nature. The main outcome is a mathematical
framework using quiver near-algebras and metrics over moduli that can for-
mulate both quantum automata and deep learning algorithms. Definition 1.1
gives such an algebraic model. In particular, it provides a physical interpre-
tation of operations in a network model in terms of quantum measurement.

We make a systematic study of representations of near-rings and con-
struct quiver near-rings. We construct differential forms over a near-ring and
show that they induce differential forms over moduli of representations in all
dimensions with values in Map(F, F ), the space of maps on the framing (The-
orem 1.2). Zero-forms and one-forms are the basic building blocks. In a deep
learning model, they are used to encode the cost function and its differential.

Moreover, we construct an interpolation between metrics on the compact
framed moduli and the Euclidean space. As a result, the usual Euclidean for-
mulation of deep learning is included as a special instance in our framework.
We also constructed framed quiver moduli of hyperbolic type in Theorem 1.3.
In Section 4.5, we provide explicit formulas and simplifications for implement-
ing the model. There are many recent studies that investigate computational
efficiency and advantages for non-Euclidean learning. Our paper is mainly for
theoretical purpose and does not include experiments that test for efficiency.

More detailed descriptions

A finite automata consists of a set of states of a machine, a set of transitions
between the states, and an alphabet set that will form a machine language,
whose elements label the transitions of states. A quantum version of this
replaces the set of states by a collection of vector spaces whose elements are
known as state vectors. The set of transitions is replaced by a set of linear
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maps between the vector spaces. This forms a so-called quiver representation,
which is a linear representation of the directed graph Q (called a quiver) whose
vertices label the collection of vector spaces, and whose arrows label the set
of linear maps.
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Figure 1: Two artificial neural networks with similar graphs. The LHS is
known as an A3-quiver.

Paths in the quiver play the role of words of a machine language. The
path algebra

A = CQ

consists of complex linear combinations of paths, with concatenation of paths
serving as the product. Taking linear combinations can be interpreted as
forming superpositions of quantum states.

In summary, a quiver algebra and its modules provide an algebraic model
of a quantum automata.

One crucial component that one cannot miss is taking observation of the
quantum particles. Most mathematical physics literature concentrates on the
quantum propagation process, and have left away the mysterious observation
step, perhaps due to its probabilistic and singular nature. However, this step
is crucial in true understanding of quantum physics, and also in practical
applications. For modeling quantum propagations, operator algebras serve
as a very successful mathematical tool. However, to include the observation
process, we find that a near-ring, which is much less studied than an algebra,
is necessary.

To model the observation process in a quantum world, we need two more
ingredients: a Hermitian metric h of the state space V , and a framing linear
map e : F → V where F = C

n is called a framing vector space. Then we take

e∗h(v) =
n∑

j=1
h(e(εj), v)ε∗j ,

where εj denotes the standard basis of Cn (and ε∗j denotes the dual basis). The
coefficients h(e(εj), v) are interpreted as the quantum amplitudes of a state



734 George Jeffreys and Siu-Cheong Lau

v being e(εj). Then the quantum collapsing after observation is modeled by
composing this with a fixed non-linear activation function σ : F → F (for
instance a certain step function, or a smoothing of it). In the quantum world,
σ is indeed an F -valued probability distribution on F .

Thus, a quantum machine consists of not just linear transitions of states,
but also the framings and non-linear activation functions that correspond to
taking observations. We will make the following definition. See also Figure 3.

Definition 1.1 (Definition 3.5). An activation module consists of:

1. a (noncommutative) algebra A and vector spaces V, F = Fin⊕Fout⊕Fm;
(‘m’ stands for ‘memory’ or ‘middle’.)

2. A family of metrics h(w,e) on V over the space of framed A-modules

R = Homalg (A,End (V )) × Hom (F, V )

which is GL (V )-equivariant;
3. a collection of possibly non-linear functions

σF
j : Fm → Fm.

In above, R parametrizes computing machines that have the same under-
lying framed quiver, and hence is governed by the same language. Moreover,
framed A-modules that differ by a GL(V )-action have the same computa-
tional effect and hence should be identified. [R/GL(V )] forms a moduli stack
of computing machines.

In this formulation, a machine language is composed of not just linear
transitions of state spaces, but also non-linear (or probabilistic) operations σ
that models quantum observations. The set of operations generated by these
is no longer an algebra, since

σ ◦ (γ1 + γ2) �= σ ◦ γ1 + σ ◦ γ2

where γ1, γ2 are composed of linear operations in A and the dual framing map
e∗h . Rather, it generates a near-algebra Ã, which is almost a ring except that
the multiplication (which is realized by composition of maps in the current
setup) fails to be distributive on one side.

In our formulation, representations of Ã play a key role in computational
models. However, the space of representations of a near-ring was not studied
in previous literature. In this paper, we begin to investigate some aspects of
the representation theory for a near-ring. We construct quiver near-algebras
which are new mathematical objects to the authors’ knowledge. From the
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standpoint of machine learning, the near-algebra universally controls all the
machines with the same underlying network in all dimensions at the same
time. We are not claiming that the construction will directly lead to more
effective algorithms. Rather, it aims to provide a universal algebraic model
for both quantum automata and deep learning.

In noncommutative geometry, a noncommutative ring is understood as a
‘space’, in analogous to Spec(A) for a commutative ring A. For a noncommu-
tative ring A, differential forms and their cohomology theory found by Connes
[11], Cuntz-Quillen [12] and Ginzburg [18] classify the deformations of A. We
would like to extend the construction to the context of near-rings.

The main idea is that, every element in the near-ring Ã, which is in-
terpreted as a program written in the language of Ã, produces a family of
maps on the framing space F over the moduli of machines [R/G]. In other
words, each machine parametrized by a point in [R/G] performs a computa-
tion F → F specified by the program. We construct differential forms for a
near-ring Ã and extend this association from Ã to its space of representations
[R/G].

Theorem 1.2 (Theorem 3.42). There exists a degree-preserving map

DR•(Ã) → (Ω•(R,Map (F, F )))G

which commutes with d on the two sides. In above, Map (F, F ) denotes the
trivial bundle Map (F, F )×R where Map (F, F ) is the set of C-valued smooth
maps from F to itself, and the action of G = GL(V ) on fiber direction is
trivial.

The main difference from the case of rings is that the near-ring Ã is
framed, and it contains non-linear elements σ at the framing. As a conse-
quence, the right hand side of above takes values in the (infinite-dimensional)
space of maps on the framing.

For general differential forms, 0-forms and 1-forms are the basic build-
ing blocks. In machine learning, for a fixed algorithm γ̃ ∈ Ã, a learning
process attempts to find a machine p ∈ [R/G] that produces the best fit
computation φγ̃

p : F → F by minimizing a certain 0-form (for instance∫
K

∣∣∣ϕγ̃
p(x) − f (x)

∣∣∣2 dx for a given f : K → R and K ⊂ F in supervised
learning). Its differential, which is a 1-form in DR1(Ã), governs the gradient
flow on [R/G] with the help of a metric.

In general, [R/G] is a singular stack. Fortunately, when the dimension
vector is primitive, one can construct a fine moduli of framed quiver rep-
resentations by taking a GIT quotient (with respect to a suitably chosen
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stability condition) [20, 24]. Such moduli spaces M can be used in place of
[R/G]. When the quiver has no oriented cycle (called to be acyclic), the mod-
uli M is compact. The topology of framed quiver moduli is well studied by
[26].

In [19], we formulated learning by neural networks over a framed moduli
space M. Namely, the state space Vi over each vertex i ∈ Q0 patches up as
a universal bundle Vi over M. The transition arrows a ∈ Q1 correspond to
bundle maps over M. The framing linear maps ei : Fi → Vi correspond to
bundle maps from the trivial bundle Fi to Vi. Then data and states of the
family of machines are naturally modeled by sections over M; propagation of
signals is modeled by bundle maps. In this formulation, learning is a stochastic
gradient descent over the moduli M.

It is tempting to ask how this formulation relates to the most common
method of machine learning over an Euclidean space, rather than a moduli
space M. In this paper, we will answer this question in light of uniformization
of metrics.

The moduli space M is topologically a compactification of the Euclidean
space, now denoted as M0. The main observation is that, the Euclidean
space M0 can be interpreted as a moduli space of positive-definite quiver
representations with respect to a certain Hermitian form H0

i for the universal
bundles Vi. Thus, the most popular approach using Euclidean space indeed
also falls into our formulation of learning over the moduli space.

This uniformization picture naturally includes a hyperbolic version of
the moduli space. Namely, by changing the signature of the quadratic form
(see (23)), we obtain another type of moduli space M− of positive-definite
quiver representations with respect to H−

i . We show that M− comes with a
natural metric.

Theorem 1.3 (Theorem 4.15). Define H−
T to be H−

T := −i
∑
i
∂∂ log detH−

i

on M−. Then H−
T is a Kähler metric on M−.

In typical applications, one usually restrict to real coefficients. Corre-
spondingly, the formulae provided by this paper give bundle metrics for VR

i |MR

and Riemannian metrics on MR.
As a result, we can run machine learning over M,M0,M−, or an inter-

polation of them. We can also set learnable parameters that interpolate these
spaces, and let the machine learn which metric serves the best for a given
task. We discuss more in Section 4.5 for concrete implementation of these
moduli spaces in deep learning algorithms.
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Some related works

Recently, there is a rising interest in the connections between neural networks
and quiver representations. The paper [2] found a new way of encoding the
data flow as a quiver representation, which makes a crucial use of the assump-
tion of thin representations (where dimensions of representing vector spaces
over vertices are all 1). This was extended in [1] which used moduli spaces
of doubly framed quiver representations. On the other hand, the gradient de-
scent that they take is not directly carried out over the quiver moduli, and
hence is different from our approach in [19] and this paper. The paper [17]
studied the symmetries coming from the quiver approach to neural networks.

There are also newly invented approaches to apply modern mathematics
to machine learning. Most literature concerns about the input data set and
endows it with additional mathematical structures, for instance, Lie group
symmetry [10, 8, 7, 9, 6, 13], or categorical structures [31]. On the other
hand, in our current approach, we focus on the computing machine itself,
and formulate its algebro-geometric structure and makes use of its internal
symmetry.

For learning using hyperbolic spaces, there are several beautiful works,
see for instance [25], [15], [28], [16]. The non-compact dual of the moduli
space M− that we introduce in this paper can be understood as a higher
rank generalization of hyperbolic spaces in the sense of Hermitian symmetric
spaces. See more in Section 4.4.

Organization of this paper

In Section 2, we present the motivating example for the machine learning
applications in this paper. In Section 3, we will define computing machines
in the context of noncommutative geometry. In Section 4, we will apply the
idea of uniformization of metrics to construct non-compact duals to neural
network quiver moduli spaces.

2. A guiding example

Let’s first review the basic setup of deep learning via the following typical real-
life example. The MNIST dataset is a collection of 70,000 handwritten single
digit numbers, each one stored as a 28-pixel-by-28-pixel image, along with a
label in {0, . . . , 9}, namely the digit shown by the picture. It is a common
first experiment in machine learning to build a simple neural network and to
use the MNIST dataset to train it to recognize handwritten digits.
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Figure 2

Typically, the network will have three layers as in Figure 2. The first one
is the input layer which has d0 = 784 neurons, one for each pixel in the 28 x 28
image. The input for each neuron is the intensity of the corresponding pixel
(ranging from 0 (white) to 255 (black)). The second layer is the so called
“hidden layer,” the layer where the non-trivial calculations happen. Let d1
denote the number of neurons in the hidden layer. The third layer is the
output layer, which has d2 = 10 neurons corresponding to digits 0 to 9. The
network is trained to recognize an image of a handwritten digit and output
the vector corresponding to that digit. For example, an image of ‘5’ should
result in the column vector [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]T .

We will use the vector space V k
i (currently one-dimensional) to represent

the i-th neuron in layer k, where k = 0 is the input layer, k = 1 is the hidden
layer, and k = 2 is the output layer. The weight from the (k − 1, j)-neuron
to neuron (k, i) will be denoted wk

ij . The activation function and bias applied
to (1, i)-neuron will be denoted σ1

i and bi respectively. Typically, σ1
i is the

same for all i, and is denoted by σ in this case. (For the moment, we ignore
F k
i (called the framing) and put the activation functions directly on the state

spaces V k
i . Later on, we will explain why we introduce framing and put the

activation functions on F k
i instead.)
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The image is sent to the input layer as a vector z0 with d0 = 784 entries,
each corresponding to a neuron in the input layer. The signals in the input
layer are sent to the neurons in the hidden layer via the affine linear map
w1z0 + b, giving the pre-activation vector z1. Here, w1 = (w1

ij) is the d1 × 784
matrix and b = (bi) is the d1 × 1 vector of biases. The activation functions
convert the pre-activation vector z1 to the activation vector a1 via a1

i = σ(z1
i )

applied component-wise. Finally, the vector a1 is sent to the output neurons
by the linear map w2, which is a 10 × d1 matrix. This results in the output
vector z2.

At the start, the weight matrices w1, w2 and the bias vector b are initial-
ized as some random values. The goal is to optimize these parameters. This
is done with respect to an overall cost function which measures the distance
between the output vector and the correct vector for all sample images. Let
L be the domain of images. The cost function can be taken to be

C(w1, w2, b) =
∫
x∈L

‖fw1,w2,b(x) − yx‖2

where f(w1,w2,b) is the function produced by the network with parameters
w1, w2, b, and yx is the vector associated to the labeled digit for input x.

In practice, a stochastic gradient descent is performed where these quan-
tities are calculated and numerically optimized for some finite sample subset
K of L. This is done via forward propagation, which consists of evaluating
f(w1,w2,b)(x) at each x ∈ K and backpropagation, which consists of using these
values as well as the pre-determined derivative of σ to compute the relevant
derivatives.

3. An algebro-geometric formulation of computing machine

In this section, we give a mathematical formulation of a computing machine
based on algebra and geometry. First, we formulate a machine as a framed
module over an algebra, together with a metric on the module and a collec-
tion of non-linear functions. Second, we take into account of isomorphisms of
framed modules and make sure the construction is equivariant under the auto-
morphism group, and hence descends to the moduli stack of framed modules.
Finally, we extend the noncommutative geometry developed by [11, 12, 18]
to the context of near-rings, and show how it fits into this framework.

Our formulation uses framed modules. It has the theoretical advantage
of separating the basis-free state space, which receives linear actions that are
crucial in neural networks or quantum computations, from the framing vector
space, which is necessary for the action of non-linear activation functions or
quantum projections.
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3.1. Intuitive construction

In this section, we make the basic algebraic setup and recall some definitions.
Let A be an associative algebra over C with unit 1A. We use the algebra

to encode all possible linear operations of the machine. Later, in the context
of neural networks, we will take A to be the path algebra of a directed graph
(which is also called a quiver).

Let V be a finite-dimensional vector space. V is understood as the space
of abstract states of the machine prior to any physical observation. It is basis-
free, namely, we do not pick any preferred choice of basis.

We consider A-module structures on V , which are algebra homomor-
phisms w : A → gl (V ) (where gl (V ) denotes the algebra of all endomor-
phisms of V ). Each module structure w realizes a ∈ A as a linear operation
on the state space.

In reality, data are observed and recorded in fixed basis. For this, we define
a framing vector space F = Fin⊕Fout⊕Fm. Each component is a vector space
with a fixed basis. The spaces Fin and Fout are respectively the vector spaces
of all possible inputs and outputs. The space Fm can be understood as a
space for memory of the machine. We may simply write F = C

n with the
standard basis. The dimensions of Fin, Fout, Fm are denoted by nin, nout, nm
respectively. Moreover, we consider linear maps e : F → V , e = ein +eout +em
which are called the framing maps. The framing maps e are used to observe
and record the abstract states.

A triple (V,w, e) is called a framed A-module. We denote by

R := {(w, e) : w : A → End (V ) ; e : F → V }

the set of framed modules. It serves as the parameter space of the machine.
R is a subvariety in Hom(A,End(V )) × Hom(F, V ).

As explained above, A encodes the internal linear operations on the state
space V of the machine. In order to include the operations of exchanging data
between the internal space and memory, we enlarge A to Am, where Am is
the augmented algebra

(1) Am = A〈1m, em, e
∗
m〉/I

where I is the two-sided ideal generated by the relations

1m · em, em · 1m − em, 1A · em − em,

e∗m · 1m, 1m · e∗m − e∗m, e
∗
m · 1A − e∗m,
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e2m, (e∗m)2, a · e∗m, em · a, a · 1m, 1m · a

for all a ∈ A. (This means, for instance, 1m · em = 0 and em · 1m = em in the
algebra Am.) The unit of Am is 1A + 1m. em will be realized as a map from
memory to the state space; e∗m models saving results from the state space to
memory.

Let’s equip V with a Hermitian metric h. Then for each framing map
e = ein⊕eout⊕em, the element em ∈ Am is realized as the map em : Fm → V ,
and e∗m is realized as the metric adjoint (h(em,l, ·))nm

l=1 : V → Fm = C
nm .

To consider linear maps that have the state space V as both domain and
target, we can form the subalgebra

Am,0 := A · Am · A

which is simply the algebra generated by A and eme
∗
m. An element a ∈ Am,0

is understood as a linear algorithm. Fixing (w, e) ∈ R, each linear algorithm
a ∈ Am,0 is associated with a linear function fa : Fin → Fout,

fa (v) := e∗out (a · ein (v))

which is called a machine function. (e∗out : V → Fout is the metric adjoint
(h(eout,l, ·))nout

l=1 .) In other words, we have the map

R×Am,0 → Hom(Fin, Fout)

which is linear in the second component.
So far, this is just a linear model. In order to capture non-linearity, we

also need to incorporate non-linear operations σ1, . . . , σN . Let’s define these
as functions V → V for the moment. (In the next subsection, we shall see
that defining in this way is not good from the moduli point of view and will
thus need to modify this definition.)

Consider the C-near-ring Ã = A{ς1, . . . , ςN}. The elements ςj are alge-
braic symbols for recording the non-linear operations σj . See Definition 3.13
for the notion of a near-ring. Essentially, it is recording the compositions of
module maps and the non-linear operations. Similar to above, we take the
augmented near-ring

(2) Ãm = Ã〈1m, em, e
∗
m〉/Ĩ

where Ĩ is generated by the elements in I as in (1), together with the elements

ςl · 1m, 1m · ςl.
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(Including these two extra elements means we require ςl and 1m to compose
to be zero. We need these relations since σl is acting on V and 1m is acting
on Fm.) An element γ̃ ∈ Ãm,0 := A · Ãm · A is understood as a non-linear
algorithm.

Fixing (w, e) ∈ R, each algorithm γ̃ ∈ Ãm,0 is associated with a non-linear
machine function f γ̃

(w,e) : Fin → Fout,

(3) f γ̃
(w,e) (v) = e∗out

(
γ̃ ◦(w,e) ein (v)

)
.

That is, we have the map

R× Ãm,0 → Map(Fin, Fout).

Example 3.1. We will use the example of Section 2 to illustrate. In the
example, the input framing space is Fin = C

784 and the output framing space
is Fout = C

10. Fm = C
2d1 where d1 is the number of neurons in the hidden

layer of the network. The state space V decomposes as V = Vin ⊕ Vout ⊕ Vm
where Vin =

⊕784
i=1 C, Vout =

⊕10
i=1 C, and Vm =

⊕d1
i=1 C, with each factor of

C corresponding to a neuron. V is equipped with the standard metric.
The input framing maps ein and eout consist of linear functions (e0

i ) :
C → C for i = 1, . . . , d0 = 784 and (e2

k) : C → C for k = 1, . . . , d2 = 10
respectively. The map em consists of e1

j = (ej , bj) : C2 → C for j = 1, . . . , d1,
where bj is called the bias of the j-th neuron in the hidden layer.

For the moment, we take non-linear functions σ1
j : V 1

j → V 1
j , where

V 1
j = C for j = 1, . . . , d1. In the next subsection, we will modify this point in

order to make the construction well-defined over the moduli space.
The algebra A is the path algebra of the underlying directed graph of the

network with concatenation as multiplication. For example, the path a1
11 from

the (0, 1) neuron in the input layer to the (1, 1) neuron in the hidden layer
can be multiplied with the path a2

21 from the (1, 1) neuron to the (2, 2) neuron
to get a2

21a
1
11, which is a path from the (0, 1) neuron to the (2, 2) neuron. On

the other hand, a1
11a

2
21 is defined as zero since the concatenation is not valid.

In this example, the typical algorithm is

γ̃ =
10∑
k=1

((eout))∗
n∑

j=1
a1
kjς

1
j ◦

(784∑
i=1

a0
jie

0
i + bj

)

resulting in the non-linear machine function

(f γ̃
(w1,w2,b)(x))k =

n∑
j=1

w2
kjσ

1
j

(784∑
i=1

w1
ji · xi + bj

)
.
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3.2. Construction over moduli spaces

A guiding principle in mathematics and physics is that isomorphic objects
should produce the same result. In other words, we want to have f γ̃

(w,e) well-
defined over the moduli stack of framed A-modules M = [R/G] for G =
GL(V ). Let’s recall the following definition.

Definition 3.2. For two framed A-modules (V,w, e) and (V ′, w′, e′), where
both e and e′ have the same domain F , a morphism (or an isomorphism) from
(V,w, e) to (V ′, w′, e′) is a linear map (or a linear isomorphism) g : V → V ′

such that w′(a) ◦ g = g ◦ w(a) for all a ∈ A and e′ = g ◦ e.

Ideally, we would want to extend this definition of morphism to the C-
near-rings Ã we constructed in Section 3.1. Unfortunately, we cannot directly
do this due to the additional data of the non-linear functions σ : V → V . Any
useful non-linear function σ : V → V cannot satisfy GL (V )-equivariance:

(4) g · (σ (v)) = σ (g · v) for all g ∈ GL(V ).

It produces a crucial gap between the subject of machine learning and repre-
sentation theory.

Here is a simple solution to this problem. Let V be the universal bundle
over the moduli stack M, which is descended from the trivial bundle V ×R,
where G = GL(V ) acts diagonally.

Rather than defining σ as a single linear map V → V , let’s take σ to be a
fiber-bundle map V ×R → V ×R over R. Then σ descends as a fiber-bundle
map V → V over M if it satisfies the equivariance equation

(5) g ·
(
σ(w,e) (v)

)
= σ(g·w,g·e) (g · v) for all g ∈ GL(V ).

The difference between Equation (5) and (4) is that σ is now allowed to also
depend on (w, e) ∈ R.

Now suppose we have GL(V )-equivariant fiber-bundle maps σ1, . . . , σN :
V × R → V × R. As in the last subsection, we have the map R × Ãm,0 →
Map(Fin, Fout) by realizing ςi ∈ Ã as (σi)(w,e) : V → V.

Recall that we have used a Hermitian metric on V for taking the adjoint
of framing e∗. To make sure e∗ is also equivariant, we need to equip V with
a family of Hermitian metrics h(w,e) for (w, e) ∈ R, in a GL(V )-equivariant
way:

(6) h(g·w,g·e) (g · u, g · v) = h(w,e) (u, v) for all g ∈ GL(V ).
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That is, h descends to be a Hermitian metric on the universal bundle V over
M.

Note that we are NOT asking for GL(V )-invariance h (g · u, g · v) = h (u, v)
for a single metric h, which is impossible except for in the trivial case.

Later in Section 4 we will discuss these families of GL(V )-equivariant
Hermititian metrics in more detail. In particular, we will construct them for
the case that [R/GL(V )] is a framed quiver moduli space.

Proposition 3.3. In the above setting, the non-linear machine function de-
fined by Equation (3) satisfies the equivariance f γ̃

(w,e) = f γ̃
g·(w,e) for all g ∈

GL(V ).

Proof. The fiber-bundle map f γ̃
(w,e) : V × R → V × R defined by (3) is a

composition of e∗out = (h(w,e)(eout,l, ·))nout
l=1 , wa for a ∈ A, the fiber-bundle

maps (σi)(w,e) : V × R → V × R, and ein. Under the action of g ∈ GL(V ),
They change to

e∗out = (hg·(w,e)(g · eout,l, ·))nout
l=1 = (h(w,e)(eout,l, g

−1(·)))nout
l=1 = e∗out · g−1,

g · wa · g−1,
σ(g·w,g·e) = g · σ(w,e)(g−1(·))

and g · ein respectively, using Equation (5) and (6). The composition remains
the same.

In this way, we obtain the map M× Ãm,0 → Map(Fin, Fout).
In applications, we need concrete fiber bundle maps σ : V → V. They

can be constructed using the Hermitian metric h on V as follows. Given any
function σF : Fm → Fm, define σ(w,e) as

σ(w,e) (v) := e(m) · σF
(
h(w,e)

(
e
(m)
1 , v

)
, . . . , h(w,e)

(
e(m)
nm , v

))
.

In other words, we observe and record the state v to memory using e(m) and
h; then we perform the non-linear operation σF on the memory Fm; finally
we send it back as a state in V . Unlike the setting in the last subsection, the
non-linear operation σF is now defined on the framing space Fm instead of
on the basis-free state space V .

Proposition 3.4. The above σ(w,e) : V ×R → V ×R is GL (V )-equivariant.

Proof.

σ(g·w,g·e) (g · v)
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= g · e(m) · σF
(
h(g·w,g·e)

(
g · e(m)

1 , g · v
)
, . . . , h(g·w,g·e)

(
g · e(m)

nm , g · v
))

= g · e(m) · σF
(
h(w,e)

(
e
(m)
1 , v

)
, . . . , h(w,e)

(
e(m)
nm , v

))
= g · σ(w,e)(v)

using Equation (6).

The non-linear operations are called activation functions in machine learn-
ing. We conclude the current setting by the following definition.

Definition 3.5. An activation module consists of:

1. a (noncommutative) algebra A and vector spaces V, F = Fin⊕Fout⊕Fm;
2. A family of metrics h(w,e) on V over the space of framed A-modules

R = Homalg (A,End (V )) × Hom (F, V )

which is GL (V )-equivariant;
3. a collection of possibly non-linear functions

σF
j : Fm → Fm.

The data of (1) and (2) (without (3)) is called a Hermitian family of framed
modules.

Figure 3 shows a schematic picture of an activation module.
In this setting, σF

j is a function on Fm. We take the subalgebra

(7) L(Am) := e∗m · Am · em

Figure 3
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consisting of loops at Fm, the near-ring

(8) Ãm := (L(Am)){ς1, . . . , ςN},

and
(Ãm)0 := A · em · Ãm · e∗m · A.

Note that Ãm is different from Ãm in Equation (2), since we now have non-
linear functions defined on F instead of V .

Using Proposition 3.3 and 3.4, each algorithm γ̃ ∈ (Ãm)0 and [w, e] ∈ M
gives a machine function f γ̃

[w,e]. This gives a map

(Ãm)0 → Γ (M,Map (Fin, Fout)) .

In applications, an activation module may consist of several linear sub-
modules, which are connected by possibly non-linear transitions σF

i . This
means the algebra A is a direct sum

⊕
k∈K A(k) where each A(k) is under-

stood as a linear component of the activation module (and K is an index set).
Similarly, we have V =

⊕
k∈K V (k) and F =

⊕
k∈K F (k). We take the mod-

uli stack
∏

k∈K [R(k)/GL(V (k))] (where R(k) = Homalg
(
A(k),End

(
V (k)

))
×

Hom
(
F (k), V (k)

)
) instead of [R/GL(V )]. Each F (k) has three components

F (k) = F
(k)
in ⊕ F

(k)
out ⊕ F

(k)
m (where some of the components can simply be

{0}). Furthermore, the non-linear functions σF
j : Fm → Fm is a composi-

tion ι ◦ sFj ◦ π, where sFj : F (pj,1)
m × . . . × F

(pj,mj )
m → F

(qj,1)
m × . . . × F

(qj,nj )
m

for some fixed {pj,1, . . . , pj,mj} and {qj,1, . . . , qj,nj}; π is the projection Fm →
F

(pj,1)
m ⊕. . .⊕F

(pj,mj )
m and ι is the inclusion (or extension by zero) F (qj,1)

m ⊕. . .⊕
F

(qj,nj )
m → Fm. Finally, h is a direct sum h(w,e) =

⊕
k∈K h(w(k),e(k)) where each

h(w(k),e(k)) is a family of metrics h(w(k),e(k)) on V (k) over the space of framed

A(k)-modules R(k) which is GL
(
V (k)

)
-equivariant.

We can also define a closely related setting that uses unitary framed
modules, which takes the unitary group U(V, h) in place of GL(V ), and takes
a single Hermitian metric h in place of a family of Hermitian metrics.

Definition 3.6. A unitary activation module consists of:

1. A Hermitian vector space (V, h), a framing vector space F = Fin⊕Fout⊕
Fm = C

n (equipped with the standard metric), and unitary framing maps
e• : F• → V , where • = in, out,m.
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2. A group ring A = C[G] where G is a subgroup of the unitary group
U(V, h). C[G] consists of linear combinations

∑
g∈G cgg for cg ∈ C.

3. a collection of possibly non-linear functions

σF
j : Fm → Fm.

Such a setting is well suited for quantum computing. Namely, (V, h) can be
taken to be the state space of a quantum system of particles. G is a subgroup
of unitary operators on (V, h). Fm can be taken to have the same dimension
as V , and em : Fm → V maps the standard basis of Fm to an assigned unitary
basis of V . (For instance, the assigned basis can be {|00〉, |01〉, |10〉, |11〉} for
a 2-qubit system). There is a probabilistic projection σ0 : Fm → Fm that
corresponds to wave-function collapse following each observation. We also
have other non-linear classical operations σF

j on Fm.
In application, we are given input data v ∈ Fin. This v (normalized to

have length 1) is sent to the Hermitian state space V by ein, and operated
under a prescribed linear algorithm a ∈ C[G]. Then the system is observed
and recorded using the basis em. This gives σ0 ·

∑
l h(em,l, a · ein · v)em,l. The

recorded memory can be operated by a non-linear algorithm consisting of σF
j .

The process can be iterated and give a function Fin → Fout.
In this paper, we focus on Definition 3.5, for the purpose of neural net-

works and deep learning which works with GL(V ) rather than U(V ).

3.3. Noncommutative geometry and machine learning

We have formulated a computing machine by a Hermitian family of framed
A-modules and a collection of non-linear functions. If we ignore the non-linear
functions for the moment, and merely consider the augmented algebra Am, it
fits well to the framework of noncommutative geometry developed by Connes
[11], Cuntz-Quillen [12], Ginzburg [18]. Below we give a quick review and
apply to our situation. [32] gives a beautiful survey on this theory. We will
extend it to near-ring in the next subsection.

3.3.1. A quick review The theory develops an analog of the de Rham
complex of differential forms for an associative algebra A over a field K (that
we take to be C in this paper). This is a crucial step to develop the no-
tions of cohomology, connection and curvature for the noncommutative space
associated to A and its associated vector bundles.

The noncommutative differential forms can be described as follows. Con-
sider the quotient vector space A = A/K (which is no longer an algebra). We
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think of elements in A as differentials. Define

D(A) :=
⊕

n∈Z≥0

D(A)n, D(A)n := A⊗ A⊗ . . .⊗ A

where n copies of A appear in D(A)n, and the tensor product is over the
ground field K. We should think of elements in A as matrix-valued differential
one-forms. Note that X∧X may not be zero, and X∧Y �= −Y ∧X in general
for matrix-valued differential forms X, Y .

The differential dn : D(A)n → D(A)n+1 is defined as

dn(a0 ⊗ a1 ⊗ . . .⊗ an) := 1 ⊗ a0 ⊗ . . .⊗ an.

The product D(A)n ⊗D(A)m−1−n → D(A)m−1 is more tricky:

(a0 ⊗ a1 ⊗ . . .⊗ an) · (an+1 ⊗ an+2 ⊗ . . .⊗ am)

:=(−1)na0a1 ⊗ a2 ⊗ . . .⊗ am +
n∑

i=1
(−1)n−ia0 ⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ am

(9)

which can be understood by applying the Leibniz rule on the terms aiai+1.
Note that we have chosen representatives ai ∈ A for i = 1, . . . , n + 1 on
the RHS, but the sum is independent of choice of representatives (while the
product aiai+1 itself depends on representatives).

The above product in particular gives a bimodule structure on D(A) over
A = D(A)0. For instance, D(A)1 has the bimodule structure

a · (a0 ⊗ a1) = aa0 ⊗ a1, (a0 ⊗ a1) · a = −a0a1 ⊗ a + a0 ⊗ a1a.

(If a1 is replaced by a1 + k for k ∈ K, then RHS = −a0a1 ⊗ a − ka0 ⊗ a +
a0 ⊗ a1a + ka0 ⊗ a = −a0a1 ⊗ a + a0 ⊗ a1a remains unchanged.)

By [12],
d2 = 0.

The above differential d and product defines a dg-algebra structure on D(A);
indeed this is the unique one that satisfies a0 ·da1 · . . . ·dan = a0⊗a1⊗ . . .⊗an.
Moreover, (D(A), i), where i : A → D(A)0 = A is the identity map, has
the following universal property: for every (Γ, ψ) where Γ is a dg algebra
and ψ : A → Γ0 is an algebra homomorphism, there exists an extension as
a dg-algebra map uψ : D(A) → Γ such that the degree-zero part satisfies
(uψ)0 ◦ i = ψ.
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Here is another realization of differential forms for A. First, define the
A-bimodule Ω1(A) := Ker (μ) where μ : A⊗A → A is the multiplication map
for A. Moreover, define d : A → Ω1(A) by da := 1⊗ a− a⊗ 1. Thus

∑
i aida

′
i

for ai, a
′
i ∈ A is an element in Ω1(A). Conversely, any element in Ω1(A) is of

the form
∑

i ai ⊗ a′i with
∑

i ai · a′i = 0, and this is equal to∑
i

aida
′
i = −

∑
i

(dai)a′i.

Then we take the tensor algebra

Ω•(A) := TA(Ω1(A)) =
⊕
i∈Z≥0

Ω1(A) ⊗A . . .⊗A Ω1(A)

where there are i copies of Ω1(A) for the summands on the right. An element
in Ω•(A) takes the form a1db1 ⊗A a2db2 ⊗A . . . ⊗A akdbk · ak+1. Recall that
tensoring over A means the identification db1 · a⊗A db2 = db1 ⊗A adb2.

The two defined graded algebras Ω•(A) and D(A) are isomorphic. For
one forms, we have the A-bimodule map ψ : Ω1(A) → D(A)1 defined by
da → 1 ⊗ a. It has the inverse a0 ⊗ a1 → a0 ⊗ a1 − a0a1 ⊗ 1 (which is again
independent of choice of representative a1). For higher forms, Ωn → D(A)n is
given by α1 ⊗A . . .⊗A αn → ψ(α1) · . . . ·ψ(αn) (where the non-trivial product
on D(A) is given in Equation (9)), whose inverse is a0 ⊗ a1 ⊗ . . . ⊗ an =
(a0⊗a1)·(1⊗a2) . . . (1⊗an) → ψ−1(a0⊗a1)⊗Aψ

−1(1⊗a2)⊗A. . .⊗Aψ
−1(1⊗an).

The Karoubi-de Rham complex is defined as

(10) DR•(A) := Ω•(A)/[Ω•(A),Ω•(A)]

where [a, b] := ab− (−1)ijba is the graded commutator for a graded algebra.
d descends to be a well-defined differential on DR•(A). Note that DR•(A)
is not an algebra since [Ω•(A),Ω•(A)] is not an ideal. DR•(A) is the non-
commutative analog for the space of de Rham forms. Moreover, there is a
natural map by taking trace to the space of G-invariant differential forms on
the space of representations R(A):

(11) DR• (A) → Ω• (R (A))G .

The subspaces DR0(A) and DR1(A) will be the most relevant to us. We
have DR0(A) = A/[A,A] and DR1(A) = Ω1(A)/[A,Ω1(A)].

Dually, derivations θ ∈ Der(A) play the role of vector fields. A derivation
δ : A → A is a linear map satisfying δ(ab) = δ(a) · b + a · δ(b). Der(A) is the
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vector space of all derivations. We have the A-bimodule map ιθ : Ω1(A) → A,
ιθ(da) := θ(a) called contraction. ιθ extends to Ω•(A) → Ω•−1(A) by using
graded Leibniz rule, and descends to DR•(A) → DR•−1(A).

The following version of differential forms relative to a subalgebra [12] will
be useful for framings and quivers. Let B ⊂ A be a commutative subalgebra.
We take

D(A/B)n := A⊗B Ā⊗B . . .⊗B Ā

where Ā is the vector space
Ā := A/B.

Then we repeat the same definitions as above for DR•(A/B). Note that zero-
th forms are the same as before: DR0•(A/B) = DR0•(A). There is a natural
map [18, 3]

DR•(A/B) → Ω• (RB (A))GB

where RB(A) is the set of A-modules whose restriction to B is equal to a
prescribed B-module, and GB is the subgroup in GL(V ) that preserves the
prescribed B-bimodule structure.

In the context of A being the path algebra of a quiver, we shall take B
to be the subalgebra generated by the trivial paths 1i at all vertices i ∈ Q0.
Then a differential form

a0(da1)(da2) . . . (dak) ∈ DR•(A/B)

is non-zero only if the paths ai can be concatenated: t(aj) = h(aj+1) for all
j ∈ Z/(k+1). In this case, a prescribed B-module structure on V is given by
a decomposition V =

⊕
i∈Q0 Vi and 1i acts as the projection V → Vi. Then

GB =
∏

i∈Q0 GL(Vi).

3.3.2. Connection to linear machine learning Now we come back to
the context of the last subsection. The additional ingredient we need to take
care of is the equivariant family of Hermitian metrics h on the A-modules.

To precisely match the language, first let’s modify the definition for Am
(Equation (1)) as follows. Recall that the framing vector space F = Fin ⊕
Fout ⊕ Fm = C

nin ⊕C
nout ⊕C

nm , where dimF = n. Then a framing e can be
written as (e1 . . . en) where ej ∈ V , and e∗ is the column vector (e∗1, . . . , e∗n)
where e∗j ∈ V ∗.

First, we take the augmentation

Ae := A〈1F , ej : j = 1, . . . , n〉/I



NC geometry in computational models 751

where I is the two-sided ideal generated by 1F · ej , ej · 1F − ej , 1A · ej −
ej , ejek, ej · a, a · 1F , 1F · a for all a ∈ A, j, k = 1, . . . , n.

Then we take its doubling Â, which is generated by two copies of Ae

(whose generators are denoted by a, 1F , ej and a∗, 1∗F , e∗j respectively), quo-
tient out the ideal of relations 1A − 1∗A, 1F − 1∗F . The unit of Â is

1Â = 1F + 1A.

We also use the rule (ab)∗ := b∗a∗ to define the formal adjoint of a general
element in Â.

Remark 3.7. This doubling procedure is standard in the construction of
Nakajima quiver varieties, which is an algebraic analog of taking the cotan-
gent bundle (or complexification) of a variety. We will restrict to a section to
go back to [R/G].

In the notation of the last subsection, we take A = Â and the commutative
subalgebra

B = SpanC{1F , 1A} ⊂ Â.

Consider V ⊕C. We fix its B-module structure in the way that 1A and 1F act
as (IdV , 0) and (0, IdC) respectively. V ⊕C can be equipped with an Â-module
structure that restricts to be this fixed B-module structure.

Lemma 3.8. Given a Hermitian family of framed modules (A, V, F, h), there
is a one-to-one correspondence between elements in

R = Homalg (A,End (V )) × Hom (F, V )

and Â-modules of the form V ⊕ C that respect the B-module structure and
have e∗j , a

∗ acting as the adjoints of ej and w(a) respectively with respect to
h.

Proof. Given (w, e) ∈ R, the Â-module structure on V ⊕ C is defined as
follows. The action of A on V is given by w, and A acts on the component
C by zero. The element ej acts as the linear map ej : C → V where ej is the
j-th column of e, and acts on V trivially. e∗j and a∗ act on the component C

by zero, and act as the adjoint maps of ej and w(a) with respect to h. The
adjoint maps are

e∗hj : V → C, e∗hj (v) = h(ej , v)

and
w(a)∗h = h−1

(w,e)w(a)∗h(w,e)
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in matrix form.
Conversely, since the Â-module is required to restrict as the given B-

module structure, we must have A acting trivially on the component C, ej
acting trivially on V , and e∗j acting trivially on C. (For instance, a = a · 1A
acts as (a, 0) on V ⊕ C.) Then the action of A and (ej : j = 1, . . . , n) gives
an element in R.

Similar to (11), we have the following map for Â. The only difference is
that for the forms de∗j and da∗, the corresponding forms on

R = Homalg (A,End (V )) × Hom (F, V )

are defined using the metrics h.

Proposition 3.9. Given a Hermitian family of framed modules (A, V, F, h),
there is a (degree-preserving) map

DR•(Â/B) → Ω• (R)GB

that commutes with the differential, and is equal to the trace of the correspond-
ing representations given in Lemma 3.8 when restricted to DR0(Â/B) →
Ω0 (R)GB .

Proof. DR•(Â/B) is generated by the one forms da, da∗, dej and de∗j over Â.
For da and dej , the corresponding matrix-valued one-forms on R are obvious
(by substituting a and ej by the corresponding representing matrices w(a)
and ej). For de∗j and da∗, the corresponding matrix-valued one-forms over R
are

(∂̄e∗j ) · h + e∗j · dh = (∂̄e∗j ) · h + e∗j · (∂̄h + ∂h)

and

(12) − h−1 · dh · h−1w∗
ah + h−1(∂̄w∗

a)h + h−1w∗
adh

respectively, where h is now represented by a square matrix in a basis of
V , and e∗j (a row vector) and w∗

a are the conjugate transpose of ej and wa

respectively. Note that h(w,e) is a function on (w, e) ∈ R and so it has a
non-trivial differential dh. More intrinsically, de∗j corresponds to h(∇ej , ·) +
h(ej ,∇·), where ∇ is the Chern connection of h on the trivial vector bundle
V ×R (and ej is a section).

Note that non-zero elements in DR•(Â/B) are represented by loops (mean-
ing that the source and target are the same), due to the defining equation (10).
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The corresponding forms on R are obtained by composing the above matri-
ces and taking trace. In particular, it is the trace of the corresponding rep-
resenting matrix when restricted to DR0(Â/B). Since trace is independent
of cyclic permutations of the composition, the map DR•(Â/B) → Ω•(R) is
well-defined. Moreover, it commutes with the differential by definition.

Under the action of g ∈ GL(V ), d(w(a)) → g ·d(w(a)) ·g−1, dej → g ·dej ,

(∂̄e∗j ) · h + e∗j · dh → (∂̄e∗j )g∗ · (g∗)−1hg−1 + e∗jg
∗ · (g∗)−1dh g−1

= ((∂̄e∗j ) · h + e∗j · dh) · g−1

and (12) transforms by g (·) g−1, using the GL(V )-equivariance of the family
of metrics h. Since trace is invariant under conjugation, the corresponding
forms on R are GB-invariant. Here GB = C

× × GL(V ), where C
× is Abelian

and acts trivially on R.

Remark 3.10. Since the above uses the family of Hermitian metrics h, the
resulting forms in Ω•(R)GB are no longer holomorphic. In the usual alge-
braic construction, we have a map ρ from DRp(Â/B) to GL(V )-invariant
holomorphic (p, 0)-forms on

(Homalg (A,End (V )))2 × Hom (F, V ) × Hom (V, F ) .

The above can be understood as a composition of the usual map

ρ : DR•(Â/B) → Ω•(R× (Homalg (A,End (V )) × Hom (V, F )))

together with pulling back by the smooth section of R×(Homalg (A,End (V ))×
Hom (V, F )) → R defined by

e′j = h(w,e)(ej , ·) = e∗j · h(w,e), w′
a = h−1

(w,e)w
∗
ah(w,e).

On the LHS, (e′j : j = 1, . . . , n) ∈ Hom (V, F ) and w′
a ∈ End(V ) denotes fiber

coordinates; on the RHS, e∗j is the conjugate transpose of the column vector
ej in (e1 . . . en) ∈ Hom(F, V ). Note that the action of GL(V ) on both sides of
the first and second equations are right multiplication by g−1 and conjugation
g (·) g−1 respectively.

Now define the subalgebra

L(Â) :=
n⊕

j,k=1
e∗j · Â · ek.
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Recall that elements in L(Â) are understood as linear algorithms.
In DR0(Â/B) = Â/(B + [Â, Â]) (vector-space quotient), note that ele-

ments that do not form loops (for instance, a · ej and e∗j · a) are in the zero
class. Moreover, loops that are cyclic permutation of each other are identified
as the same class.

In our context, elements in L(Â) are loops, and they descend to non-trivial
elements in DR0(Â/B). As a consequence:

Corollary 3.11. An element in L(Â) induces a G-invariant function f on
R where G = GL(V ). Its differential lies in DR1(Â/B) and induces the
corresponding differential df ∈ Ω1(R)G.

Note that the target of e∗j and the domain of ej are the one-dimensional
vector space C. Thus the matrix corresponding to e∗j · a · ek ∈ L(Â) is a
one-by-one matrix whose trace just equals itself.

An (n×n)-matrix whose entries lie in L(Â) gives a linear function F → F
over each point in [R/G]. We can also restrict it to

f[w,e] : Fin → Fout

by taking an (nout × nin)-matrix whose entries γjk belong to e∗out,k · Â · ein,j
where (ein,j : j = 1, . . . , nin) denotes the part of (ej : j = 1, . . . , n) that has
source in Fin (and similar for eout,k). This produces a linear machine function
fγ
[w,e] corresponding to a linear algorithm γ.

Example 3.12. We can carry out linear machine learning for Example 3.1
by simply dropping the non-linear activation functions σ1

i . Then the machine
function is well-defined on the moduli space [R/G] and we have a dimension
reduction from R to [R/G].

However, keeping the non-linear activation functions is crucial for deep
learning. We will make a non-linear algorithm well-defined on [R/G] in the
following subsections.

The cost function can also be defined algebraically as an element in
DR0(Â/B). Namely, given a function f : Fin → Fout and fixing v ∈ Fin =
C

nin , the expression

E =
∫
K

∣∣∣∣∣∣
⎛⎝∑

j

γjk vj : k = 1, . . . , nout

⎞⎠− f (v)

∣∣∣∣∣∣
2

Fout

dv

=
∫
K

∑
k

⎛⎝∑
j

γjk vj − fk(v)

⎞⎠⎛⎝∑
j

γ∗jk vj − fk(v)

⎞⎠ dv
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lies in DR0(Â/B). Its differential in DR1(Â/B) induces a one-form on [R/G],
which plays a central role in machine learning.

Suppose A is finitely generated, and so is Â. Let {xj : j = 1, . . . ,M} be
the generators of Â. Then the algebraic Jacobian ring

DR0(Â/B)/〈∂xjE : j = 1, . . . ,M〉,

where ∂xjE is the cyclic differential, is useful in capturing the critical locus
of E.

3.4. Differential forms for near-ring

The associative algebra A in the last subsection captures linear operations
of a computing machine, and has rich noncommutative geometries. In this
subsection, we incorporate non-linear operations and extend the geometric
construction to a near-ring.

3.4.1. Near-rings and their representations

Definition 3.13. A near-ring is a set Ã with two binary operations +, ◦
called addition and multiplication such that

1. Ã is a group under addition.
2. Multiplication is associative.
3. Right multiplication is distributive over addition:

(x + y) ◦ z = x ◦ z + y ◦ z

for all x, y, z ∈ Ã.

In this paper, the near-ring we use will be required to satisfy that:

(4) (Ã,+) is a vector space over F = C, with c · (x ◦ y) = (c · x) ◦ y for all
c ∈ C and x, y ∈ Ã.

(5) There exists 1 ∈ Ã such that 1 ◦ x = x = x ◦ 1.

We call it a near-ring over C with identity, or a C-near-ring with identity.
Note that x ◦ (c · y) �= c · x ◦ y in general. The following gives a prototype

example.

Example 3.14. The set Map(V, V ) of C-valued smooth functions f : V → V
on a vector space V forms a near-ring over C with identity, with + being the
addition on the vector space, ◦ being the composition of functions, and 1 being
the identity function on V .
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Definition 3.15. Given a C-near-ring with identity Ã, a C-sub-near-ring is
a C-subspace Ã′ ⊂ Ã which is closed under the multiplication ◦. Ã′ is called
a C-sub-near-ring with identity if in addition, 1 ∈ Ã′.

Given an algebra A and a set S, we have the C-near-ring A{S} defined
as follows.

Definition 3.16. Let A be a C-algebra with identity and S be a set. we define
the C-near-ring with identity A{S} as follows. As a vector space,

A{S} :=
∞⊕
p=0

A{S}p

where:

1. A{S}0 = A;
2. Given A{S}p defined, A{S}p+1 is spanned by the elements aς ◦α, where

a ∈ A, ς ∈ S, and α ∈ A{S}p, subject to the relation (a1ς1+ca2ς2)◦α =
a1ς1 ◦ α + ca2ς2 ◦ α for all c ∈ C, a1, a2 ∈ A.

Moreover, we define 1A ◦ ς = ς ◦ 1A = ς. Thus 1A is also the identity for
A{S}.

In the application to neural network, the elements ς ∈ S are symbols for
the activation functions. Each element of A{S} can be recorded by a rooted
tree (oriented towards the root) defined as follows.

Definition 3.17. Given Ã = A{S}, an activation tree is a rooted tree with
the following labels.

1. Leaves and the root are labeled by 1Ã;
2. Edges are labeled by a ∈ A;
3. Nodes that are neither leaves nor the root are labeled by ς ∈ S.

Each node gives the output

(13)
∑
k

akςk ◦ αk,

where ak are the labels of the incoming edges, ςk and αk are the labels of the
tails of the incoming edges and their outputs respectively. (At a leaf, the label
is 1Ã and the output is 1Ã.) The element in A{S} corresponding to the tree
is the output of its root.
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Figure 4

Remark 3.18. The expression (13) takes the pre-activation value as the
output of a node. One can also slightly modify the definition of an activation
tree and use the other convention that takes the activation value as the output.

Example 3.19. Figure 4 shows examples of activation trees that represent
elements in A{S}. The expression corresponding to the rightmost tree is

a0 + a1ς1 ◦ (a1,0 + a1,1ς1,1 ◦ a1,1,0) + a2ς2 ◦ a2,0

for some a0, a1, a1,0, a1,1, a1,1,0, a2,0 ∈ A, ς1, ς1,1, ς2 ∈ S.
Note that the tree here is not the digraph (quiver) that we will consider

in the later part of this paper. The labels a for the edges will be taken to be
elements in the double of a quiver algebra Â later, and required to be loops
from the framing of the quiver back to itself.

The above definition goes from a C-algebra to a C-near-ring. In the reverse
direction, we can define the following.

Definition 3.20. The canonical subalgebra of a C-near-ring Ã with identity
is defined as

A := {x ∈ Ã : x ◦ (cy + z) = cx ◦ y + x ◦ z for all y, z ∈ Ã and c ∈ C}.

It is easy to check that

Lemma 3.21. A is a C-algebra with identity.

Example 3.22. For the above example that Ã = Map(V, V ), the canonical
subalgebra is the subset End(V ) of linear endomorphisms of V . This can be
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seen by taking y, z ∈ Map(V, V ) to be constant maps in the above definition
of A.

Given a subset S of Ã, we have the sub-near-ring generated by S defined
as follows.

Definition 3.23. The sub-near-ring of Ã generated by S, which is denoted
as 〈S〉Ã, is defined inductively as follows. As a vector space,

〈S〉Ã :=
∞∑
p=0

〈S〉Ã,p ⊂ Ã

where:

1. 〈S〉Ã,0 = A;
2. Given 〈S〉Ã,p defined, 〈S〉Ã,p+1 is spanned by the elements a◦ς◦α, where

a ∈ A, ς ∈ S, and α ∈ 〈S〉Ã,p.

Ã is said to be finitely generated if Ã = 〈S〉Ã for a finite subset S ⊂ Ã.
S ⊂ Ã is said to be a free generating subset if 〈S〉Ã = A{S}.

It is easy to check that:

Proposition 3.24. 〈S〉Ã defined above is a sub-near-ring.

Example 3.25. Let’s continue the example of the set of functions Map(V, V ).
Fix a collection of non-linear functions σ1, . . . , σN : V → V . This corresponds
to a finitely generated sub-near-ring A{σ1, . . . , σN} ⊂ Ã. σ1, . . . , σN can be
chosen such that they are not related by iterated compositions and linear com-
binations. Then they form a free generating subset.

Definition 3.26. A morphism of C-near-rings with identities is a map Ψ :
Ã1 → Ã2 that satisfies:

1. Ψ(x + y) = Ψ(x) + Ψ(y);
2. Ψ(x ◦ y) = Ψ(x) ◦ Ψ(y);
3. Ψ(1Ã1

) = 1Ã2
.

Ψ is said to be a strong morphism if in addition, it satisfies:

(4) Ψ maps the canonical subalgebra of Ã1 to that of Ã2.

It easily follows from the definition that a surjective morphism of C-near-
rings is automatically strong.

Now we consider modules of a C-near ring.
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Definition 3.27. For a C-near ring Ã with identity, an Ã-module is a C-
vector space V together with a strong C-near-ring morphism Ã → Map(V, V ).

For two Ã-modules V,W , a morphism from V to W is a map
φ ∈ Map(V,W ) that commutes with the actions of Ã:

φ ◦ V (α)(v) = W (α) ◦ φ(v)

for all α ∈ Ã.

It follows from the above definition that an Ã-module is automatically an
A-module (where A denotes the canonical subalgebra).

Essentially, the method of deep learning is performing a (stochastic)
gradient descent on a certain subvariety of the space of Ã-modules for a
fixed near-ring Ã. However, such a space of Ã-modules is typically infinite-
dimensional (since the choice of non-linear maps is infinite-dimensional). We
would like to systematically construct explicit Ã-modules. A useful construc-
tion for Ã = A{ς1, . . . , ςN} is the following. Given an algebra and an A-module
V , a choice of σ1, . . . , σN ∈ Map(V, V ) enhances V to be an A{ς1, . . . , ςN}-
module. (Here, ςl are the formal symbols corresponding to σl.)

Unfortunately, such a correspondence between A-modules and Ã-modules
does not behave well in the morphism level. Namely, an A-module endomor-
phism φ ∈ Hom(V, V ) typically does not satisfy φ ◦ σl = σl ◦ φ for non-linear
functions σl ∈ Map(V, V ), and hence cannot be lifted as an Ã-module mor-
phism. So we do not have a map from the space of A-modules to the space of
Ã-modules that descends to isomorphism classes.

Below, we use our setting of an activation module to remedy this corre-
spondence between A and Ã. See Proposition 3.29.

3.4.2. Forms over near-ring Let A be an algebra, and fix a framing
vector space F = C

n. In Section 3.3, we have taken the doubled augmented
algebra Â. Now, we consider the set MatF (Â) of n×n matrices whose (k, j)-th
entries lie in e∗k · Â · ej .

It is easy to check that:

Lemma 3.28. A := MatF (Â) forms an algebra under matrix addition and
multiplication (where multiplication between entries is given by Â).

This is essentially the algebra L(A) defined in Equation (7), adapted
to the current setting by identifying e = (ej : j = 1, . . . , n). As explained
previously right after Corollary 3.11, each element of MatF (Â) induces a
section of the trivial bundle End(F ) over [R/G], where R is the space of
framed representations of A.
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Similar to (8), we take the C-near-ring

Ã := MatF (Â){ς1, . . . , ςN}

where each ςl represents a non-linear function σl : F → F .
As in Definition 3.16, we have a natural grading on Ã. Recall that the

elements of Ã can be recorded by rooted trees. The generation of rooted trees
gives a grading on Ã:

Ã =
⊕
k

Ãk.

Ã0 = MatF (Â); Ãp consists of linear combinations of a·ςj◦α for a ∈ MatF (Â),
α ∈ Ãp−1, and j = 1, . . . , N .

In the last subsection, we have explained a correspondence between A-
modules and A{ς1, . . . , ςN}-modules, by choosing maps σ1, . . . , σN

∈ Map(V, V ). However, such a correspondence does not descend to iso-
morphism classes. The advantage of the construction here (after fixing a fram-
ing vector space F ) is that the correspondence is well-defined on the moduli
space.

Proposition 3.29. Fix σF
l ∈ Map(F, F ) for l = 1, . . . , N . A framed A-

module (V,w, e) with a Hermitian metric h on V induces an Ã-module struc-
ture on F . Moreover, if two such modules with metrics are isomorphic

(V,w, e, h) ∼= (V ′, w′, e′, h′), then the induced Ã-module structures on F

are the same. Thus, fixing an equivariant family of metrics on V , we have the
map

[R(A)/G] → RF

(
Ã
)

where RF (Ã) denotes the space of Ã-module structures on F .

Proof. As explained below Corollary 3.11, by using the framed A-module
structure and metric, each element in MatF (Â) induces a linear endomor-
phism of F , which is invariant under GL(V ). Thus two isomorphic framed
modules with metrics produce the same linear endomorphism of F . More-
over, σF

l are maps on F which receive no action by GL(V ). As a result, this
gives an Ã-module structure on F which remains the same for isomorphic
(V,w, e, h).

The above proposition explains why we want Definition 3.5 for an activa-
tion module.
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Remark 3.30. In Definition 3.5, we have a splitting F = Fm ⊕ Fin ⊕ Fout.
It is easy to restrict to the component Fm (or other components). We have
the projection p : F → Fm and inclusion ι : Fm → F . The functions σF

j :
Fm → Fm can also be understood as functions on F . From now on, we will
simply work with the whole framing vector space F , keeping in mind that we
can restrict to the components if we want.

We are going to define differential forms on Ã. Under the setting of Defini-
tion 3.5, they will induce Map (F, F )-valued forms on [R/G] (Theorem 3.42).

First, recall that we have the Karoubi-de Rham complex DR•(Â/B). It
contains the subspace of forms over loops at the framing vertex. These forms
are linear combinations of elements

e∗k . . . ej , (de∗k) . . . ej , e∗k . . . (dej), (de∗k) . . . (dej)

for some j, k = 1, . . . , n. In other words, the subspace is
∑n

j,k=1 DR•(Â/B)j,k,
where DR•(Â/B)j,k is defined as

e∗k·DR•(Â/B)·ej+de∗k·DR•(Â/B)·ej+e∗k·DR•(Â/B)·dej+de∗k·DR•(Â/B)·dej .

We define the linear part as follows.

Definition 3.31. DR•(MatF (Â)) is defined to be the space of n×n matrices
whose (k, j)-th entries lie in DR•(Â/B)j,k.

Like DR•(Â/B), this space is graded by the degree of forms.
From Proposition 3.9, we have the map

(14) DR•(MatF (Â)) → (Ω•(R,End (F )))G.

(F , and hence End(F ), are treated as a trivial bundle over [R/G].)
To define differential forms on Ã, we need to use the symbols
D(p)ςl

∣∣∣
α

(a1, . . . , ap), which represent the p-th order symmetric differen-
tials of the non-linear functions σl. For instance, D(1)ςl represents the usual
differential dσl; D(2)ςl represents the Hessian of σl, which is a symmetric
bilinear two-form. D(p)ςl is supersymmetric about its p inputs:

D(p)ςl |α(a1, . . . , ak, ak+1, . . . , ap)
= (−1)deg ak·deg ak+1D(p)ςl |α(a1, . . . , ak+1, ak, . . . , ap)

(15)

where deg a denotes the degree of a. The inputs ai are again differential forms
on Ã. The point of evaluation α is an element of Ã.
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Definition 3.32. A form-valued tree is a rooted tree (oriented towards the
root) whose edges are labeled by φ ∈ DR•(MatF (Â)); leaves are labeled by
α ∈ Ã; the root (if not being a leaf) is labeled by 1; nodes which are neither
leaves nor the root are labeled by D(p)ςl

∣∣∣
α

for some l = 1, . . . , N , α ∈ Ã, and
p > 0 is the number of incoming edges.

The trivial rooted tree, which has a single node with no edge, corresponds
to a zero-form. The node is attached with an element α ∈ Ã.

For a non-trivial rooted tree, the output of each node which is neither a
leaf nor the root is

D(p)ςl
∣∣∣
α

(φ1 · η1, . . . , φp · ηp)

where φk ∈ DR•(MatF (Â)) are attached to the incoming edges, and ηk are
the outputs of the nodes adjacent to the incoming edges. The input edges to
the node are read clockwisely. Its degree is defined as the sum of deg(φk ·ηk) =
deg φk + deg ηk. The output of each leaf is simply its label α ∈ Ã which has
degree 0. The output of the root, which is the sum of φk · ηk for the incoming
edges φk and outputs of incoming nodes ηk, is taken to be the differential
form associated to the form-valued tree.

Remark 3.33. Now we have introduced two different kinds of rooted trees.
The activation tree represents an element in Ã (which is identified as a zero-
form); the form-valued tree represents a p-form. For p = 0, the form-valued
tree is trivial consisting of a single root, which is labeled by α ∈ Ã. α is
represented by an activation tree, which is more useful in this situation.

Definition 3.34. A differential zero-form over Ã is simply an element in Ã.
Denote

DR0(Ã) := Ã.

A differential p-form (for p ≥ 1) is a sum of forms associated to form-
valued trees with at most p leaves, with total of degrees of forms attached to
edges being p. The space of p-forms is denoted by DRp(Ã).

Remark 3.35. Since we require the trees contributing to a p-form to have at
most p leaves, D(k)ςl that appear at the nodes must have k ≤ p.

Example 3.36. Figure 5 shows examples of one-forms and two-forms. They
correspond to a1da2 · D(1) ςl|α1

(a3 · α2), a1da2 · D(1) ςl|α1
((a3da4) · α2) and

a1da2 ·D(2) ςl|α1
(a3 · α2, (a4da5) · α3) respectively.
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Figure 5

Definition 3.37. The differential of a form over Ã is defined as follows.
A zero-form in the 0-th graded piece α ∈ Ã0 is simply an element in

MatF (Â), and its differential is given by entrywise differential in DR•(Â/B).
A zero-form in the p-th graded piece α ∈ Ãp can be written as

α = a0 +
m∑
k=1

ak ◦ ςl(k) ◦ αk ∈ DR0(Ã)

where ak ∈ MatF (Â) for k = 0, . . . ,m, αk ∈ Ãp−1, and l(k) = 1, . . . , N .
Then

dα := da0 +
∑
k

dak · (ςl(k) ◦ αk) +
∑
k

ak · D(1)ςl(k)

∣∣∣
αk

(dαk) ∈ DR1(Ã)

where dαk has already been defined by the inductive assumption since αk ∈
Ãp−1.

For p-forms with p > 0, it suffices to define differential of a p-form at-
tached to a form-valued tree. For a leaf, the output is simply its label α ∈ Ã,
whose differential has been defined above. For a node which is neither a leaf
nor the root, its output is of the form D(p)ςl

∣∣∣
α

(φ1 · η1, . . . , φp · ηp), where
φk ∈ DR•(MatF (Â)) are attached to the incoming edges, and ηk are the out-
puts of the nodes adjacent to the incoming edges. Its differential is defined
as

d
(
D(p)ςl

∣∣∣
α

(φ1 · η1, . . . , φp · ηp)
)
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:= D(p+1)ςl
∣∣∣
α

(dα, φ1 · η1, . . . , φp · ηp)

+
p∑

k=1
(−1)deg(φ1η1)+...+deg(φk−1ηk−1) D(p)ςl

∣∣∣
α

(φ1 · η1, . . . , (dφk) · ηk

+ (−1)degφkφk · dηk, . . . , φp · ηp)

where the differential dηk is already known by induction assumption on the
generation of the tree. The p-form attached to the tree is the output of the
root, which is of the form

∑
k φk · ηk. Its differential is defined as

∑
k

(
dφk · ηk + (−1)degφkφk · dηk

)
where dηk has been defined by inductive assumption.

The differential of a zero-form has a nice expression in terms of a sum
over sub-trees of the activation tree as follows.

Proposition 3.38. Consider α ∈ Ã represented by an activation tree T .
Then dα ∈ DR1(Ã) is a sum over all the nodes of T , and the terms are given
as follows. For each node, there is a unique path γ1 . . . γr in T connecting
from that node to the root, where γk denotes the (oriented) edges. (When the
node is the root, the path is trivial and the corresponding term is simply 0.)
The corresponding term is equal to

(16) aγ1 D
(1)ςl(t(γ1))

∣∣∣
αt(γ1)

. . . aγr−1 D
(1)ςl(t(γr−1))

∣∣∣
αt(γr−1)

daγr · (ςl(t(γr)) ◦αt(γr))

where αi for a node i of T denotes the output at the node i.

Proof. The statement easily holds for the zeroth generation: the tree only has
the root and leaves as nodes, and the zeroth form has an expression

∑
i ai for

ai ∈ DR•(MatF (Â)), whose differential is simply
∑

i dai, which is a sum over
the leaves.

Suppose the statement holds for all elements in the p-th generation. For
α = a0 +

∑m
k=1 ak ◦ ςl(k) ◦αk in the (p+1)-th generation, dα = da0 +

∑
k dak ·

(ςl(k) ◦ αk) +
∑

k ak · D(1)ςl(k)

∣∣∣
αk

(dαk) ∈ DR1(Ã), where dαk is a sum over
the nodes of the activation tree of αk as given in Equation (16). The first
term da0 and second term dak · (ςl(k) ◦αk) correspond to the tail nodes of the
edges of ak for k = 0, . . . ,m. Thus dα is a sum over all the nodes with the
summands given by (16).
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Figure 6

Example 3.39. Consider the 0-form

α = a0 + a1ς1 ◦ (a1,0 + a1,1ς1,1 ◦ a1,1,0).

Its differential is equal to

dα = da0 + da1 · α1

+ a1 D(1)ς1
∣∣∣
a1,0+a1,1ς1,1◦a1,1,0

(da1,0 + da1,1 · α1,1 + a1,1 D(1)ς1,1
∣∣∣
a1,1,0

da1,1,0)

where α1 = ς1 ◦ (a1,0 + a1,1ς1,1 ◦ a1,1,0) and α1,1 = ς1,1 ◦ a1,1,0. It is equal to the
sum over the nodes of the activation tree of α as shown in Figure 6.

Remark 3.40. The output at a node of an activation tree representing α ∈ Ã
can be computed by the algorithm called forward propagation. Namely, the
previous results αk (pre-activation values) have been stored in memory, and
the current output is computed as

∑
k ak·ςl(k)◦αk (where ςl(k) are the activation

functions at previous nodes and ak are labeling the incoming edges) and stored
to memory for later steps.

For the differential dα, the computation (16) uses the stored outputs αi

in the forward propagation. Moreover, the expression

aγ1 D
(1)ςl(t(γ1))

∣∣∣
αt(γ1)

. . . aγr−1 D
(1)ςl(t(γr−1))

∣∣∣
αt(γr−1)

appears in every term of dα corresponding to a path in T that contains
γr−1 . . . γ1. Thus it is good to start with the root to compute and store the
values of aγ1 D

(1)ςl(t(γ1))

∣∣∣
αt(γ1)

. . . aγr−1 D
(1)ςl(t(γr−1))

∣∣∣
αt(γr−1)

, and move back-

ward with respect to the orientation of the tree T . This is well known as the
backward propagation algorithm.
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Proposition 3.41. d2 = 0.

Proof. First consider a zero-form, that is, α ∈ Ã. α is represented by an
activation tree. Recall that d2a = 0 for a ∈ A = MatF (Â) as these elements
are zero-forms defined over the associative algebra A in the standard Karoubi-
de Rham sense.

We can write

α = a0 +
m∑
k=1

ak ◦ ςl(k) ◦ αk ∈ DR0(Ã)

where ak ∈ MatF (Â) for k = 0, . . . ,m, αk ∈ Ã has one less generation than
α, and l(k) = 1, . . . , N . Then

d2α =d

(
da0 + dak · (ςl(k) ◦ αk) + ak · D(1)ςl(k)

∣∣∣
αk

(dαk)
)

= − dak · d(ςl(k) ◦ αk) + dak · D(1)ςl(k)

∣∣∣
αk

(dαk)

+ ak · D(2)ςl(k)

∣∣∣
αk

(dαk, dαk).

The first two terms cancel since d(ςl(k) ◦ αk) = D(1)ςl(k)

∣∣∣
αk

(dαk). The third
term vanishes since D(2)ςl(k) is supersymmetric about its input (Equation (15)).

For a general p-form, it suffices to prove dψ = 0 for ψ represented by
a form-valued tree. We will do induction on the generation of the tree. We
already know the statement when the tree is trivial (which is the case of a zero-
form). The p-form ψ is given as ψ =

∑
k φk ·ηk for some φk ∈ DR•(MatF (Â))

and ηk has a smaller generation than ψ. Then

d2ψ =
∑
k

(
(−1)degφkdφk · dηk + (−1)degφk+1dφk · dηk

+(−1)2 deg φkφk · d2ηk
)
.

The first two terms cancel. The last term vanishes by inductive assumption.

Finally, we show that differential forms on the near-ring Ã induce G-
invariant Map (F, F )-valued differential forms over the space of framed A-
modules R.

Theorem 3.42. There exists a degree-preserving map

DR•(Ã) → (Ω•(R,Map (F, F )))G
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which commutes with d on the two sides, and is equal to the map (14):
DR•(MatF (Â)) → (Ω•(R,End (F )))G when restricted to DR•(MatF (Â)).
Here, Map (F, F ) denotes the trivial bundle Map (F, F ) × R, and the action
of G = GL(V ) on fiber direction is trivial.

Proof. First consider the case of a zero-form. We associate α ∈ DR0(Ã) to a
G-invariant Map(F, F )-valued function over R inductively on its generation
as an element in Ã. In the zeroth generation, it is just an element in MatF (Â),
which induces a matrix whose entries lie in Ω0(R)G by Proposition 3.9. This
gives a self-map F → F over [R/G]. If α is in the p-th generation, then it is
written as α = a0 +

∑m
k=1 ak ◦ ςl(k) ◦αk ∈ DR0(Ã), where αk is in the (p− 1)-

th generation and induces a self-map F → F over [R/G]. By composing
with the corresponding functions σl(k) : F → F and the induced functions of
ak ∈ MatF (Â), we obtain a self-map F → F over [R/G] corresponding to α.

For a k-form ψ ∈ DR•(Ã), we do an induction on the generation of its
corresponding form-valued tree to associate it with a G-invariant Map (F, F )-
valued k-form over R. In th zeroth generation it must be a zero-form (where
the associated form-valued tree is simply a single node), which is done by the
previous paragraph. In general ψ =

∑
k φk · ηk for some φk ∈ DR•(MatF (Â))

and ηk has a smaller generation than ψ. Both φk and ηk have been associated
with G-invariant Map (F, F )-valued k-forms. Then their matrix products (and
by wedge product entrywise) give the required k-form associated to ψ.

It follows from the chain rule that the differential for DR•(Ã) given in
Definition 3.37 agrees with that for Map (F, F )-valued forms over R. More-
over, for φ ∈ DR•(MatF (Â)), it is in the first generation written as φ · 1. By
the above definition, the association is given by the map (14).

So far, this gives matrix-valued differential forms on [R/G]. To produce
C-valued forms, that is, to remove the component Map (F, F ) in the above
theorem, we proceed as follows. The near-ring Ã can be augmented with the
inclusion and projection symbols ιi and pj , where ιi represents the inclusion
C → F of the i-th coordinate axis, and pj represents the projection F → C

in the i-th direction. This forms an augmented near-ring
∞⊕
k=1

(
{p1, . . . , pn} ◦ Ã ◦ (C · {ι1, . . . , ιn})

)k

consisting of linear combinations of elements
(
pi ◦ α ◦

(∑
j xjιj

))k
for α ∈ Ã,

with the relations pi ◦ ιj = δij · 1 and ιj ◦ 1Ã ◦ pi = δij · 1. Then differential
forms in this augmented near-ring induces G-invariant differential forms in
(Ω•(R))G. The proof is similar and we shall not repeat.
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In application, we fix an algorithm γ̃ ∈ Ã and consider

ϕγ̃(x) =

⎛⎝pi ◦ γ̃ ◦

⎛⎝∑
j

xjιj

⎞⎠⎞⎠n

i=1

for each element x = (x1, . . . , xn) ∈ F . ϕγ̃(x) is a vector whose entries are
elements inside the above augmented near-ring. Given f : K → F , we have∫

K

∣∣∣ϕγ̃(x) − f (x)
∣∣∣2 dx

which is a 0-form on the augmented near-ring. This 0-form and its differential
induces the cost function and its differential on [R/G] respectively, which are
the central objects in machine learning.

Example 3.43. Continuing Example 3.1, we now define an algorithm γ̃ over
the moduli space [R/G].

em consists of two parts em,1 and em,2 that correspond to the weights and
biases. γ̃ is taken to be

γ̃ = â2ς ◦ â1

where â1 = (em,1)∗(a1ein+em,2) and â2 = (eout)∗a2em,1. Note that both â1 and
â2 involve em. We have

ϕγ̃(x) =

⎛⎝pk ◦ â2ς ◦ â1 ◦

⎛⎝784∑
j

xjιj

⎞⎠⎞⎠10

k=1

.

From the 0-form
∫
K

∣∣ϕγ̃(x) − f (x)
∣∣2 dx, we calculate the differential as

d

(∫
K

∣∣∣ϕγ̃(x) − f (x)
∣∣∣2 dx) = 2

(
ϕγ̃(x) − f (x)

)
· dϕγ̃

where

(dϕγ̃(x))i = dpi · â2ς ◦ â1 ◦

⎛⎝784∑
j

xjιj

⎞⎠ + pi(dâ2)ς ◦ â1 ◦

⎛⎝784∑
j

xjιj

⎞⎠
+ pi ◦ â2D

(1)ς
â1◦

(∑784
j

xjιj
) ⎛⎝dâ1 ·

⎛⎝784∑
j

xjιj

⎞⎠ + â1

⎛⎝784∑
j

xjdιj

⎞⎠⎞⎠ .(17)

Over each point [w1, w2, b] in [R/G], ϕγ̃(x) and the 1-form dϕγ̃(x) induce a
machine function and its differential respectively.
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4. Uniformization

In this section, we apply the idea of uniformization of metrics on framed quiver
moduli spaces, which are interpreted as moduli of computing machines as in
the previous section.

The uniformization theorem for Riemann surfaces was a big discovery of
Klein, Poincaré and Koebe in the 19th century. It asserts that every simply
connected Riemann surface is conformally equivalent to either the complex
plane, the Riemann sphere, or the hyperbolic disc.

Such a classification also holds for Riemannian symmetric spaces. Namely,
any irreducible simply connected symmetric space is either of Euclidean type,
compact type, or non-compact type, depending on whether its sectional cur-
vature is identically zero, non-negative, or non-positive.

As a key example, Gr(n, d) is a compact Hermitian symmetric space. It
has a non-compact dual which embeds as an open subset of Gr(n, d). This
is the celebrated Borel embedding, and was uniformly studied for symmet-
ric R-spaces and generalized Grassmannians in [5]. The non-compact dual
to Gr(n, d) is the “space-like Grassmannian” which can be thought of as a
generalization of hyperbolic space.

We generalize this to framed quiver varieties. The key idea is that different
types of quiver varieties will arise by considering space-like representations
with respect to different choices of quadratic forms on the framing. As ex-
plained in the Introduction, our motivation is to find a relation between our
formulation of neural networks and the original Euclidean formulation. Using
this construction, we not only get an interpolation between these two differ-
ent formulations, but also find non-compact type quiver varieties which can
also be used in machine learning. Such a family of quiver varieties of differ-
ent types is what we are referring to as the uniformization of framed quiver
varieties mentioned in the title.

4.1. A quick review

Let Q be a directed graph. Denote by Q0, Q1 the set of vertices and arrows
respectively. A quiver representation w with dimension vector d ∈ Z

Q0
≥0 as-

sociates each arrow a with a matrix wa of size dh(a) × dt(a) (where h(a), t(a)
denote the head and tail vertices of a respectively). The set of complex quiver
representations with dimension �d form a vector space denoted by R
d(Q).
GL(d) :=

∏
i∈Q0 GL(di,C) acts on R
d(Q) via

(18) g · (wa : a ∈ Q1) = (gh(a) · wa · g−1
t(a) : a ∈ Q1).



770 George Jeffreys and Siu-Cheong Lau

Let d, n ∈ Z
Q0
≥0. n will be the dimension vector for the framing, which is

a linear map e(i) : Cni → Vi at each i ∈ Q0 (where Vi = C
di).

Theorem 4.1 ([23]). The vector space of framed representations is given by

Rn,d = Rd ×
⊕
i∈Q0

Hom(Cni ,Cdi).

It carries a natural action of GL(d) given by g ·(w, e) = (g ·w, (ge(i) : i ∈ Q0)),
where g · V is given by Equation (18). (w, e) ∈ Rn,d is called stable if there is
no proper subrepresentation U of w which contains Im e. The set of all stable
points of Rn,d is denoted by Rs

n,d. Then the quotient Mn,d := Rs
n,d/GL(d) is

a smooth variety, which is called a framed quiver moduli.

The topology of Mn,d is well-understood. Let’s make an ordering of the
vertices. Namely the vertices are labeled by {1, . . . , N}, such that i < j
implies there is no arrow going from j to i. Such a labeling exists if Q has no
oriented cycle.

Theorem 4.2 (Reineke [26]). Assume Q has no oriented cycle. Consider the
chain of iterated Grassmannian bundles M (N) pN→ M (N−1) pN−1→ . . .

p2→ M (1) p1→
pt (where pt denotes a singleton) defined by induction:

M (i) = GrM (i−1)

⎛⎝C
ni ⊕

⊕
j→i

p∗i−1 . . . p
∗
j+1(Sj), di

⎞⎠ → M (i−1),

where Si denotes the tautological bundle on Mi (as a Grassmannian bundle
over Mi−1). (The direct sum is over each arrow j → i.) Then M
n,
d

∼= M (N),
with universal bundles Vi

∼= p∗N . . . p∗i+1Si for all i ∈ Q0.

In the previous paper [19] we introduced a Hermitian metric Hi for each
of these Vi and showed that its Ricci curvature induces a Kähler metric on
M. Let’s quickly review this construction.

Theorem 4.3 ([19]). Let Q be a finite quiver. Let Rn,d be the space of framed
quiver representations of Q with representing dimension d and framing dimen-
sion n. For any path γ in Q, let et(γ) be the framing map associated to the
vertex t(γ) and let wγ be the matrix representation of γ.

For a fixed vertex (i), let ρi be the row vector whose entries are all the
elements of the form wγe

t(γ) : Rn,d → Hom(Cnt(γ) ,Cdi) such that h(γ) = i.
Consider

(19) ρiρ
∗
i =

∑
h(γ)=i

(
wγe

t(γ)
) (

wγe
t(γ)

)∗
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as a map ρiρ
∗
i : Rn,d → End(Cdi).

Then (ρiρ∗i )−1 is GL(d)-equivariant and descends to a Hermitian metric
on Vi over M. We denote this resulting metric as Hi.

Suppose Q has no oriented cycle. Then
(20)
HT :=

∑
i

∂∂̄ log detHi =
∑
i

(tr(∂ρi)∗Hi∂ρi − tr (Hiρi(∂ρi)∗Hi(∂ρi)ρ∗i ))

defines a Kähler metric on M.

Consider the simplest possible example, a quiver with a single vertex.

Example 4.4. Let Q consist of a single vertex (1) with no arrows. Let the
representing dimension and the framing dimension be d and n respectively
where d < n. The framed quiver moduli is simply Gr(n, d), the (dual) Grass-
mannian of surjective linear maps Cn → C

d. Equation 19 becomes H = ee∗ on
the universal bundle over the dual Grassmannian. If we take the chart where
the first d-many components of e form an invertible map, we can rewrite e as
e = (Idd, b) due to the Gd-equivalence. Then H becomes (Idd+b)−1, the stan-
dard metric on the universal bundle over Gr(n, d). In particular, for d = 1,
Gr(n, 1) is the projective space P

n−1, and the Ricci curvature of H is the
Fubini-Study metric.

4.2. The non-compact dual of framed quiver moduli

Assume that ni ≥ di ∀i. We write the framing map as e(i) = (εi bi) where εi
and bi are respectively the “basis part” and “bias part of our framing map
e(i). Then Equation 19 can be modified to be:

(21) Hα
i =

⎛⎝εiε
∗
i + αbib

∗
i +

∑
γ:h(γ)=i,γ 	=1

αγwγe
t(γ)

(
wγe

t(γ)
)∗⎞⎠−1

.

Here, γ �= 1 means γ not equal to the trivial path, as the first two terms
already account for that option.

It is this generalization of the metric which we use for the uniformization.
By varying α and αγ , we get different quadratic forms. For example, in Equa-
tion 19, α and all αγ are simply 1. The zero curvature case will elaborated
on later in Section 4.3.

Remark 4.5. The application of hyperbolic geometry has mostly focused on
fiber direction in existing literature, namely the representation spaces (and
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their corresponding universal bundles over the moduli). Here, we are con-
cerned about metrics on the moduli space (playing the role of the weight
space). This is general for all quiver moduli, not just restricted to specific
models. Thus, in this moduli approach, the method of varying metrics (with
positive, zero or negative curvatures) can be applied to any model of machine
learning.

For now we will set the α and αγ to −1 to consider the negative curvature
case. Namely,

(22) H−
i :=

⎛⎝εiε
∗
i − bib

∗
i −

∑
γ:h(γ)=i,γ 	=1

wγe
t(γ)

(
wγe

t(γ)
)∗⎞⎠−1

.

It must be emphasized that this quadratic form is not positive-definite on Vi

and thus cannot serve as a metric.
The main idea here is that we restrict to the subset of the moduli space

where this quadratic form is positive-definite and thus gives a metric. This
restriction gives the non-compact dual of the framed quiver moduli. As before,
let’s consider the A1-quiver and what this metric looks like on that quiver in
particular.

Example 4.6. Let Q consist of a single vertex with no arrows. Let the fram-
ing dimension of the representation space be n, and suppose the representing
dimension at the single vertex is 1. Equation 22 becomes

H− = (|ε|2 − |b|2)−1.

Since we restrict to the subset where H− is positive-definite, ε needs to
be nonzero. By applying the quiver automorphism, ε can be rescaled to be 1.
Thus H− = (1−|b|2)−1, and |b|2 < 1. This gives the hyperbolic moduli, which
is the open unit ball in C

n−1. The Ricci curvature of H− gives the Poincaré
metric.

Thus from Examples 4.4 and 4.6 we can see the motivating duality men-
tioned at the start of the section.

Definition 4.7. Assume Q has no oriented cycle. Let ρi be as in Theorem 4.3
so that ρi is a row vector with entries of the form wγe

t(γ) where γ is some
path in Q ending at vertex (i), wγ is the representing matrix of this path, and
et(γ) is the framing map at t(γ), the starting vertex of γ. Arrange the entries
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of ρi so that the first ni-many entries correspond to the framing arrows at
vertex (i). Then let H−

i be the quadratic form defined by:

(23) H−
i =

(
ρi

(
Idi 0
0 −INi−di

)
ρ∗i

)−1

Here, Ni =
∑

γ:h(γ)=i

nt(γ). We define R−
n,d to be the subset of Rn,d where

H−
i is positive-definite for all i.

In particular, nj gets counted once for each distinct path from (j) to (i).
Note that Ni ≥ di for all i when M �= ∅, which we always assume to be the
case. Unlike the intuition given at the start of the subsection, this definition
does not require that ni ≥ di for all i.

Proposition 4.8.
R−

n,d ⊂ Rs
n,d.

Proof. Consider a point in R−
n,d. Write ρi = (εi R) evaluated at this point as

a (di×Ni)-matrix, where εi is a (di×di)-matrix and R is the remaining part.
Then H−

i = (εiε∗i − RR∗)−1. We claim that εi must be invertible, and hence
ρi is surjective. This is true for all i, and hence the point is stable.

Suppose εi is not invertible. Then there exists v such that ε∗i ·v = 0. Then
v∗H−

i v = −v∗RR∗v ≤ 0, contradicting that H−
i evaluated at each point in

R−
n,d is positive-definite.

Lemma 4.9. H−
i is Gd-equivariant and R−

n,d is Gd-invariant.

Proof. H−
i is GL(d)-equivariant because(

(g · wγe
t(γ))(g · wγe

t(γ))∗
)−1

= g−1
(
(wγe

t(γ))(wγe
t(γ))∗

)−1
(g∗)−1.

The reason that R−
n,d is GL(d)-invariant is because if

x∗
(
(wγe

t(γ))(wγe
t(γ))∗

)−1
x > 0,

then

(g ·x)∗
(
(g · wγe

t(γ))(g · wγe
t(γ))∗

)−1
(g ·x) = x∗

(
(wγe

t(γ))(wγe
t(γ))∗

)−1
x > 0

by the GL(d)-equivariance of H−
i . Thus, action by GL(d) sends R−

n,d to itself.
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Definition 4.10. If ni ≥ di, then e(i) can be written as e(i) = (εi, bi) where
εi is the di-many components of e(i) and bi is the remaining (ni − di)-many
components. We call εi to be the basis part of e(i) and bi to be the bias part of
e(i).

We call εi the basis part because we think of it as imposing a basis on Vi.
Similarly, bi is the bias part because in the standard case where ni = di + 1,
it encodes the translation bias parameter in the neural network sense.

From now on, we will assume ni ≥ di, which is the case in applications.
This assumption also ensures that the choices of negative signs in defining
H−

i for different vertices i are compatible, so that R−
n,d �= ∅.

Proposition 4.11. Assume that ni ≥ di for all i.

∅ �= R−
n,d ⊂ {εi is invertible for all i} ⊂ Rs

n,d.

Proof. From the proof of Proposition 4.8, it is clear that εi is invertible over
R−

n,d and these points belong to Rs
n,d. To see that R−

n,d �= ∅, we can take εi = Id
and bi = 0 for all i ∈ Q0, and all the representing matrices for the arrows of Q
to be 0. This gives a point in Rn,d at which H−

i = Id is positive-definite.

Suppose a Lie group G acts on a vector bundle V
π→ M equivariantly

fiberwise linearly, and the action of G on M is free and proper. A metric H
on V is G-equivariant if

Hx(v, w) = Hg·x(g · v, g · w).

It is possible that V may not descend to a vector bundle over M/G if Gp ⊂ G
acts on V non-trivially at a point p ∈ M . In the case that the corresponding
bundle does exist, H will descend to that bundle if and only if H is G-
equivariant.

Since we know that R−
n,d is a GL(d)-invariant non-compact open subset,

we can quotient by GL(d) in the same way we do for Rs
n,d.

Definition 4.12. We define the dual of M as the quotient M− = R−
n,d/GL(d)

with universal bundles V−
i := (R−

n,d × C
di)/GL(di). Since H−

i is Hermitian
and Gd-equivariant, it descends to a metric on V−

i over M−.

Remark 4.13. As a result of Proposition 4.11 and the fact that GL(d) acts
only on the left on the framing space, e(i) = (εi, bi) = (Idi , b̃i) where b̃i = ε−1

i bi
and is itself a generic bias vector for each i. Thus, from this point forward
we will be assuming both that ni ≥ di for all i and that all framing maps are
of the form e(i) = (Id, bi). Thus M− ⊂ Rn−d,d.
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Example 4.14. Consider the framed A1 quiver (the quiver with one vertex
and zero arrows). Let d ≤ n = N . Then M is Gr(n, d). As a Hermitian
symmetric space, this is dual to the space-like Grassmannian Gr−(n, d). Here,
we define Gr−(n, d) to be the open subset of Gr(n, d) consisting of d-planes
in C

n where the quadratic form

Q(x, y) =
d∑

i=1
xiyi −

n∑
j=d+1

xjyj

is positive-definite.
Similar to Remark 4.13, we can take elements of Gr−(n, d) to be of the

form (Id, b) where the first d-many columns are the d× d identity matrix and
b is the remaining d × (n − d) columns. Then we can say that Gr−(n, d) is
the set {b ∈ C

d×(n−d) : Id − bb∗ ≥ 0}.
Going back to the quiver, since there are no other arrows, we see that

H−
1 = (Id − bb∗)−1. Thus, M− is going to be the set {b : Id − bb∗ ≥ 0}.

In particular, when d = 1, Gr(n, 1)− is complex hyperbolic space and the
Ricci curvature of H−

1 = 1
1−|b|2 is the standard metric for the Poincare disk

model of complex hyperbolic space, just like in Example 4.6.

Now we define an explicit metric on M−, using (23) written in terms of
paths in Q, in an analogous way as the one given in Theorem 4.3.

Theorem 4.15. Assume Q is acyclic. Define H−
T := −i

∑
i
∂∂ log detH−

i on

M−. Then H−
T is a Kähler metric on M−.

Proof. This proof is similar to that of Theorem 3.15 in [19]. We include the
details for the reader’s convenience.

Let’s denote ρ = ρ(i) =
(
wγe

(t(γ)
)
γ:h(γ)=i

which is a matrix-valued func-
tion on R−

n,d. At each point of R−
n,d, we have that ρ is a linear map from

Ŵi :=
⊕

γ:h(γ)=i

C
nt(γ) to Vi. The Ricci curvature of the metric H−

i is given by

i∂∂ log det ρAρ∗ where A is the matrix diag(1,−1,−1, . . . ,−1). Let B be the
matrix diag(1,

√
−1, . . . ,

√
−1) and define ρ̂ := ρB so that ρ̂ρ̂∗ = ρAρ∗. Thus

we have that H−
i = (ρ̂ρ̂∗)−1.

We can take the singular valued decomposition of ρ̂ to write it as

ρ̂ = U · (diag(λ1, . . . , λdi) 0) · V ∗

where U ∈ U(di), V ∈ U(dim Ŵi), and the λi are all positive real numbers.
We know that none of the λi are zero since that would make corresponding
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quiver representations non-surjective and thus unstable. Then

ρ̂ = U · (diag(λ1, λ2, . . . , λdi) 0) · V ∗,

ρ̂ρ̂∗ = U
(
diag(λ2

1, λ
2
2, . . . , λ

2
di)

)
U∗,

ρ̂∗(ρ̂ρ̂∗)−
1
2 = V

(
diag(λ1, . . . , λdi)

0

)
(diag(λ−1

1 , . . . , λ−1
di

)U∗ = V

(
Idi
0

)
U∗.

Let us consider the decomposition Ŵi = (Im ρ̂∗)⊕(Im ρ̂∗)⊥. In particular,
this shows that ρ̂∗(ρ̂ρ̂∗)− 1

2 is the orthogonal embedding of Vi to Im ρ̂∗ ⊂ Ŵi.
Then

∂∂ log det ρ̂ρ̂∗ = ∂
(
tr

(
(ρ̂ρ̂∗)−1∂(ρ̂ρ̂∗)

))
= tr

(
∂
(
(ρ̂ρ̂∗)−1(ρ̂)(∂ρ̂)∗

))
= tr

(
(ρ̂ρ̂∗)−1(∂ρ̂)(∂ρ̂)∗ +

(
∂(ρ̂ρ̂∗)−1

)
ρ̂(∂ρ̂)∗

)
= tr

(
(∂ρ̂)∗(ρ̂ρ̂∗)−1(∂ρ̂)

)
− tr

(
(ρ̂ρ̂∗)−1(∂(ρ̂ρ̂∗))(ρ̂ρ̂∗)−1ρ̂(∂ρ̂)∗

)
= tr

(
(∂ρ̂)∗(ρ̂ρ̂∗)−1(∂ρ̂)

)
− tr

(
(ρ̂ρ̂∗)−1ρ̂(∂ρ̂)∗(ρ̂ρ̂∗)−1(∂ρ̂)ρ̂∗

)
= tr

(
(∂ρ̂)∗(ρ̂ρ̂∗)−1(∂ρ̂)

)
−tr

((
(∂ρ̂) ·

(
ρ̂∗(ρ̂ρ̂∗)−

1
2

))∗
(ρρ∗)−1

(
(∂ρ̂) ·

(
ρ̂∗(ρ̂ρ̂∗)−

1
2

)))
.

Consider a vector v ∈ T 1,0R−
n,d

∼= TR−
n,d. We can see that the term

tr
(
(∂vρ̂)∗(ρ̂ρ̂∗)−1(∂vρ̂)

)
is in fact the square norm of the linear map ∂vρ̂ with

respect to the metric H−
i . Using the decomposition of Ŵi above, let’s write

∂vρ̂ as the decomposition ∂vρ̂ = ((∂vρ̂)1, (∂vρ̂)2) where (∂vρ̂)1 : Im ρ̂∗ → Vi

and (∂vρ̂)2 : (Im ρ̂∗)⊥ → Vi. In particular, given the previous discussion, we
see that (∂vρ̂)1 is actually ∂vρ̂ composed with ρ̂∗(ρ̂ρ̂∗)− 1

2 . Thus, we can see
that the other term

tr
((

(∂vρ̂) ·
(
(ρ̂)∗(ρ̂ρ̂∗)−

1
2

))∗
(ρ̂ρ̂∗)−1

(
(∂vρ̂) ·

(
(ρ̂)∗(ρ̂ρ̂∗)−

1
2

)))
is actually the square norm of ∂ρ̂1 (with respect to the H−

i metric). Then we
have

i∂∂ log detH−
i = |∂ρ̂|H−

i
− |∂ρ̂1|H−

i
= |∂ρ̂2|H−

i
.
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Thus, the Ricci curvature is semi-positive definite.
Now suppose

(
∂vρ̂

(i)
)

2
= 0 for all i. Then the image of

(
∂vρ̂

(i)
)∗

=
∂v(ρ̂(i))∗ is in the image of (ρ̂(i))∗. Thus ∂v does not alter the subspaces given
by (ρ̂(i))∗ : Vi → Ŵi. ((ρ̂(i))∗)i∈I gives an embedding of M− to the product of
Grassmannians of subspaces in Ŵi. Since ∂v does not change the subspaces, it
must be the zero tangent vector. As a result, the curvature is positive definite
and defines a Kähler metric.

Example 4.16. Consider the framed A2 quiver. This quiver has vertices
(1) and (2) and has one arrow a going from (1) to (2). Then

H−
1 = (Idd1 − b1b

∗
1)

−1

and

H−
2 = (Idd2 − b2b

∗
2 − waw

∗
a − wab1b

∗
1w

∗
a)

−1 = (Idd2 − b2b
∗
2 − waH

−1
1 w∗

a)−1

where H1 = (Idd1 + b1b
∗
1)−1 is the Hermitian metric on V1 in Definition 4.3.

Using Gram-Schmidt orthonormalization, we can write H−1
1 = g(b1)g(b1)∗

for some g(b1) ∈ GL(d1). Thus

H−
2 = (Idd2 − (wag(b1))(wag(b1))∗ − b2b

∗
2)−1.

M− = {(b1, wa, b2) : H−
1 and H−

2 are positive definite}. Then we have
the map

M− → Gr(n1, d1)− × Gr(n2 + d1, d2)−

by (b1, wa, b2) → (b1, (wag(b1), b2)), which is invertible. We have identifica-
tions of the universal bundles (Vi, H

−
i ) with the pullback of tautological bun-

dles over Gr(n1, d1)− and Gr(n2 + d1, d2)− respectively, which are compatible
with this diffeomorphism.

We can go much further than this. In fact, for general acyclic quivers
there exists an identification between (V−

i , H
−
i ) over M− and the tautological

bundles over space-like Grassmannians as in the above example, if we ignore
complex structures.

Theorem 4.17. Assume that the underlying quiver Q is acyclic. Then there
exists a symplectomorphism

φ : (M−, H−
TM−)

∼=→
∏
i

(Gr−(mi, di), H−
(mi,di))
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that restricts to a diffeomorphism between the real loci, and a bundle isomor-
phism

(V−
i , H

−
i )

∼=→ (φ∗Ui, H
−
(mi,di))

that restricts to a bundle isomorphism between the corresponding real vector
bundles over the real loci. Here Ui is the tautological bundle over Gr−(mi, di),
mi = ni +

∑
a:h(a)=i dt(a), and H−

(mi,di) is the standard metric of Gr−(mi, di).

First, we make the following lemma.

Lemma 4.18. H−
i =

(
Id − bib

∗
i −

∑
a:h(a)=i

waH
−1
t(a)w

∗
a

)−1

.

Proof. Consider vertex (i) in quiver Q. Let’s denote Γi := {γ : h(γ) = i}, the
paths ending at (i).

Aside from the trivial path, every γ in Γi must be of the form a·γ for some
arrow a with h(a) = i. Thus, we can decompose Γi = {(i)} ∪ ⋃

a:h(a)=i

a · Γt(a)

where (i) denotes the trivial path. Because of this, we can write

H−
i =

⎛⎝Id − bib
∗
i −

∑
a:h(a)=i

∑
γ∈Γt(a)

wa·γe
t(a·γ)

(
wa·γe

t(a·γ)
)∗⎞⎠−1

.

We have wa·γ = wa · wγ where wa is the linear map associated to the arrow
a. Moreover, t(aγ) = t(γ). Thus

H−
i =

⎛⎝Id − bib
∗
i −

∑
a:h(a)=i

∑
γ∈Γt(a)

wawγe
t(γ)

(
wawγe

t(γ)
)∗⎞⎠−1

=

⎛⎝Id − bib
∗
i −

∑
a:h(a)=i

wa

⎛⎝ ∑
γ∈Γt(a)

wγe
t(γ)

(
wγe

t(γ)
)∗⎞⎠w∗

a

⎞⎠−1

=

⎛⎝Id − bib
∗
i −

∑
a:h(a)=i

waH
−1
j w∗

a

⎞⎠−1

.

Proof of Theorem 4.17. Let (i) be a vertex. By Lemma 4.18, we can write
H−

i as
Id − bib

∗
i −

∑
a:h(a)=i

waH
−1
t(a)w

∗
a.
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By Gram-Schmidt normalization, we can write H−1
t(a) = gt(a)g

∗
t(a) for some

gt(a) ∈ GL(dt(a)). Then

H−
i =

⎛⎝Id − bib
∗
i −

∑
a:h(a)=i

wagt(a)g
∗
t(a)w

∗
a

⎞⎠−1

= (Id − ww∗)−1

where
w = bi ⊕

⊕
a:h(a)=i

wagt(a).

Thus, we define φ : (M−, H−
TM−) → ∏

i
(Gr−(mi, di), H−

(mi,di)) by sending

(bi, wa)i∈Q0,a∈Q1 to (bi, (wagt(a))a:h(a)=i)i∈Q0 .
The map φ is invertible: for each i ∈ Q0, gi only depends on bj for j ∈ Q

(i)
0

and wa for a ∈ Q
(i)
1 , where Q(i) is the sub-quiver containing those arrows that

can be a part of a path heading to i. We can invert φ inductively as follows.
For fixed vertex i, if Q(i)

0 is empty, then Q
(i)
1 is also empty, so φ acts trivially

by sending bi to itself. If Q(i)
0 is not empty, then for fixed arrow a ∈ Q

(i)
1 , φ

sends (bi, wa) to (bi, wφ) where wφ = wagt(a). By construction,

(wφ)(wφ)∗ = (wagt(a))(wagt(a))∗ = waH
−
t(a)w

∗
a.

If we know H−
t(a), then we can calculate gt(a) and thus recover wa. This reduces

the problem to a calculation on Qt(a). Since Q is acyclic, repeating this process
inductively is guaranteed to eventually reduce down to source vertices (mean-
ing vertices k such that Q(k)

0 is empty). In particular, H−
k = (Id − bkb

∗
k)

−1 for
all source vertices k.

Since φ identifies H−
i with the standard metric on the tautological bundle

of Gr−(mi, di), and the symplectic form is H−
T = −i

∑
i
∂∂ log detH−

i , φ is

a symplectomorphism. Written in these coordinates, the map (V−
i , H

−
i )

∼=→
(φ∗Ui, H(mi,di)) is simply given by identity.

Restricting to bi and wa having real coordinates, gi produced from the
Gram-Schmidt process is a real matrix. Thus φ restricts as a diffeomorphism
between the real loci.

Remark 4.19. This correspondence between M− and Gr−(mi, di), H−
(mi,di)

is only a symplectomorphism, since the Gram-Schmidt process is not holo-
morphic.
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4.3. Euclidean signature

In addition to the non-compact dual, we can use Equation 21 to get other
moduli spaces in the same vein. The most straightforward variant is achieved
by setting α and all of the αγ to zero. This means throwing out the contri-
bution coming from anything other than the first di-many framing arrows.

Definition 4.20. Assume Q has no oriented cycle. Let ρi be as in defini-
tion 4.3 so that ρi is a row vector with entries of the form wγe

t(γ) where γ
is some path in Q ending at vertex (i), wγ is the representing matrix of this
path, and et(γ) is the framing map at t(γ), the starting vertex of γ. Arrange
the entries of ρi so that the first ni-many entries correspond to the framing
arrows at vertex (i). Then let H0

i be the quadratic form defined by:

(24) H0
i =

(
ρi

(
Idi 0
0 0

)
ρ∗i

)−1

Here, Ni =
∑

γ:h(γ)=i

nt(γ). We define R0
n,d to be the subset of Rn,d where

H0
i is positive-definite for all i.

Note that we still need Ni ≥ di∀i to have M �= ∅, thus we will still be
assuming that to be the case. Indeed, most of the following statements are
copied or follow from analogous statements in Section 4.2.

Proposition 4.21. R0
n,d ⊂ Rs

n,d.

Proof. As in Proposition 4.8, consider a point in R0
n,d. Write ρi = (εi R)

evaluated at this point as a (di × Ni)-matrix, where εi is a (di × di)-matrix
and R is the remaining part. Then H0

i = (εiε∗i )−1. If εi is not invertible,
then εiε

∗
i is not positive-definite. Thus, for a point in R0

n,d, we have that εi is
invertible for all i which means that ρi is surjective for all i. Thus the point
is stable.

Lemma 4.22. H0
i is Gd-equivariant and R0

n,d is Gd-invariant.

Proof. This follows directly from Lemma 4.9.

Similar to Section 4.2, we will assume ni ≥ di from this point forward.
Thus, we can talk about the framing part εi of e(i) corresponding to the
first di-many components, and the bias part bi of e(i) corresponding to the
remaining (ni − di)-many components. With this, H0

i can be written simply
as

H0
i = (εiε∗i )−1
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Proposition 4.23. Assume that ni ≥ di for all i.

∅ �= R0
n,d = {εi is invertible for all i} ⊂ Rs

n,d.

Proof. From the proof of Proposition 4.21, it is clear that εi is invertible over
R0

n,d and these points belong to Rs
n,d. Moreover, let w be any point of Rs

n,d

such that the framing parts εi of the framing maps e(i) are all invertible. Since
H0

i is only defined using εi, we can see that w ∈ R0
n,d. Thus, R0

n,d is the subset
of Rs

n,d of points where the framing part is invertible. To see that R0
n,d �= ∅,

we can take εi = Id for all i ∈ Q0 and set the remaining arrows to be zero.
This gives a point in Rn,d at which H0

i = Id is positive-definite.

Similar to R−
n,d, since we know that R0

n,d is a GL(d)-invariant non-compact
open subset of Rs

n,d, we can directly quotient by GL(d).

Definition 4.24. We define the Euclidean restriction of M as the quotient
M0 = R0

n,d/GL(d) with universal bundles V0
i := (R0

n,d × C
di)/GL(di). Since

H0
i is Hermitian and Gd-equivariant, it descends to a metric on V0

i over M0.

As a result of Proposition 4.23 and the fact that GL(d) acts only on the
left on the framing space, e(i) = (εi, bi) = (Idi , b̃i) where b̃i = ε−1

i bi and is
itself a generic bias vector for each i. Thus, from this point forward we will
be assuming both that ni ≥ di for all i and that all framing maps are of the
form e(i) = (Id, bi). Thus M0 ∼= Rn−d,d and H0

i can be taken to be the trivial
metric on C

di for each i.
Over M0, activation functions have the simplest possible definition:
smooth (or piece-wise smooth) maps from C

di to itself. Any of the stan-
dard activation functions used in machine learning (sigmoid, ReLu, softmax,
etc.) fit directly into this Euclidean restriction setting without any further
modification.

Corollary 4.25. H0
i is the trivial metric on C

di . Thus, H0
T :=

∑
i
∂∂ log detH0

i

is a Ricci-flat Kähler-Einstein metric and R−
n,d ⊂ R0

n,d.

Remark 4.26. Consider an acyclic quiver Q with dimension vector (n, d)
such that ni = di for all source and sink vertices i, and ni = di+1 for all oth-
ers. If Q with dimension vector (n, d) gives the underlying neuron structure
for a neural network, then M0 is the training space for this network. In par-
ticular, the standard backward propagation algorithm for a feed-forward neural
network is standard gradient descent in the relevant vector space, matching
up exactly with the gradient descent on M0 induced by H0

i .
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4.4. Hyperbolic activation functions

This point of view of uniformization provides a learning model over hyperbolic
moduli, or more generally, interpolations of spherical, Euclidean and hyper-
bolic moduli. (One can add learnable parameters in the Hermitian metrics
Hi, interpolating the metrics of different types.) This is hyperbolic learning
in the base (that is, the parameter space). There is another direction that we
can consider hyperbolic learning, namely the fiber bundle direction.

Recall that we have the universal vector bundles Vi. In [19], we constructed
activation function (as a fiber bundle map of Vi) by composing the following:

Vi

Hi∼= V∗
i

(e(i))∗→ C
ni σ→ C

ni e(i)→ Vi

where σ : Cni → C
ni is a continuous function. We can do the same thing

uniformly for M,M0 and M−.
Additionally, in [19], we constructed a specific activation function as a

symplectomorphism (Cn, ωPn |Cn) ∼= (B,ωstd), where B ⊂ C
n is the ball

{‖�z‖2 < 1}, ωPn is the Fubini-Study metric on P
n, and ωstd is the standard

symplectic form of Cn. This symplectomorphism σ has the expression

(z1, . . . , zn) →
(

z1√
1 +

∑n
i=1 |zi|2

, . . . ,
zn√

1 +
∑n

i=1 |zi|2

)
.

In view of hyperbolic metrics, we provide an alternative interpretation of
the same function here.

Proposition 4.27. σ gives a symplectomorphism (Cn, ωstd) → (CHn, ωCHn)
where CH

n denotes the hyperbolic ball.

Proof. By definition, ωCHn is equal to −∂∂ log(1−|w|2) up to a simple scaling.
Here, we will be thinking of w as the row vector (w1, . . . , wn). Then

−∂∂ log(1 − |w|2) = ∂
wdw∗

1 − |w|2

= (1 − |w|2)dw ∧ dw∗ + (dw · w∗)wdw∗

(1 − |w|2)2 = (1 − |w|2)dw ∧ dw∗ + wdwtdwwt

(1 − |w|2)2

Now, let’s similarly write z as the row vector (z1, . . . , zn). We compute
the pullback as

σ∗(dz ∧ dz∗) = d
z√

1 − |z|2
∧ d

z∗√
1 − |z|2
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=
(1 − zz∗)dz + 1

2(zdz∗ + zdz∗)z
(1 − zz∗)3/2

∧ (1 − zz∗)dz∗ + 1
2(zdz∗ + zdz∗)z∗

(1 − zz∗)3/2

= 1
(1 − zz∗)3

(
(1 − zz∗)2dz ∧ dz∗ + 1

4(zdz∗ + zdz∗)2zz∗
)

+ 1
(1 − zz∗)3

(1
2(1 − zz∗)

(
(zdz∗ + zdz∗)z ∧ dz∗ + dz ∧ (zdz∗ + zdz∗)z∗

))
At this point, zdz∗ ∧ zdz∗ + dzz∗ ∧ zdz∗ can be rewritten as 2dztdzzt.

This gives us

= (1 − zz∗)dz ∧ dz∗ + zdztdzzt

(1 − zz∗)2

which equals the above.

In other words, σ gives an identification between C
n and CH

n. Then signal
propagation between hyperbolic spaces can be modeled simply as linear maps
between C

n, and the composition ι ◦ σ : Cn → C
n, where ι : CHn → C

n is
the inclusion of a ball in the space, gives an activation function.

4.5. Concrete implementation

In this subsection, we explain concrete formulas that can be directly coded
in computer programs as well as some practical simplifications.

Let’s first focus on a vertex i (a neuron). Equation (21) gives a family of
metrics Hi(αi) on the bundle Vi. We take the chart in which εi is simply the
identity matrix.

We can make the simplification that the representing dimensions over all
vertices are one so that Hi(αi) is just a (1 × 1)-matrix. There is a simple
procedure called Abelianization which constructs a quiver with representing
dimensions di = 1 from a quiver with a general dimension vector. Namely, if
the representing dimension over vertex i is di > 1, we can split the vertex i
into di-many vertices {(i, 1), . . . , (i, di)} and set the representing dimension at
each vertex (i, j) to be 1. For instance, Abelianization changes the A3-quiver
on the left of Figure 1 with general representing dimensions to the quiver in
Figure 2.

To further simplify, the parameters αγ in Equation 21 can be set to zero
for long paths γ. For instance, we can set αγ = 0 for paths that consist of
more than one arrows, and simplify Equation 21 to

(25) Hi(αi) =
(
1 + αi(|�wi|2 + |bi|2)

)−1
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where the αi are (possibly learnable) parameters, �wi are the weights of the
arrows heading to the vertex i, and bi is the bias. In our algorithm, the
activation at the i-th neuron is

(26) σi (Hi(αi) (�wi · vin + bi)) = σi

(
�wi · vin + bi

1 + αi(|�wi|2 + |bi|2)

)
.

We can understand Hi as filters depending on the parameters αi that are
concerned with the importance of the i-neuron. Setting αi = 0 reduces to the
original algorithm without Hi. Moreover, the expressions �wi/(1 + αi(|�wi|2 +
|bi|2)) and b/(1+αi(|�wi|2 + |bi|2)) provide normalizations for the weights and
biases. Namely, if we fix αi > 0, the norm of 
wi·vin+bi

1+αi(|
wi|2+|bi|2) is bounded for
arbitrary �wi, bi and bounded vin. This means even if the gradient for (�wi, bi),
and hence the updated (�wi, bi), is large during the learning process, the above
operation is still bounded (even if an unbounded function σi is used, such as
ReLu).

The following computer code implements (26) in Python using TEN-
SORFLOW. It appears in the definition of call for the dense layer that will
be followed by an activation layer. A similar change can also be made to a
convolution layer.
norm_w = tf.math.reduce_sum(tf.math.square(self.w),axis=0,keepdims=True)
norm_b = tf.math.square(self.b)
H = tf.math.reciprocal(1 + self.alpha * (norm_w + norm_b))
y = tf.matmul(inputs, self.w) + self.b
return H * y

Applying Theorem 4.15, we have the metric

HT (�α) =
∑
i

tr (Hi(αi) · ∂ρi · Ii · (∂ρi)∗

−Hi(αi) · ρi · Ii · (∂ρi)∗ ·Hi(αi) · (∂ρi) · Ii · ρ∗i )

that can be used in the gradient descent, where Ii denotes the matrix(
Idi 0
0 diag(αγ)

)
and diag(αγ) denotes the diagonal matrix with en-

tries αγ (see also (23)). With the simplifying assumptions above as in (25),
HT (�α) =

⊕
i(HT )i(αi) is equal to

(HT )i(αi) = Hi(αi) (Idi+1 − (αiHi(αi))w̃∗
i · w̃i)

= Hi(αi)
(
Idi+1 −

w̃∗
i · w̃i

α−1
i + |w̃i|2

)
> 0
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where w̃i denotes the row vector (�wi bi). We remark that it is valid to use dif-
ferent parameters �α and �α′ for the bundle metric Hi(αi) and the Riemannian
metric HT (�α′) respectively, if we take �α > 0 and �α′ ≥ 0. (Here a vector is
said to be > 0 or ≥ 0 if each of its entries is). For instance, the bundle metric
Hi(αi) with αi > 0 is well-defined for Vi over the Euclidean space M0.

Composing the operations (26) at different neurons allows us to obtain a
machine function fw̃. This composition is known as the forward propagation.
To do machine learning, we minimize various quantities concerning fw̃, for
instance the distance

E(w̃) = d(fw̃, f)

with a given function f . (w̃ denotes the tuples of all w̃i for all vertices i.)
In the Riemannian metric HT (�α), the gradient descent of E over M is

given by the matrix multiplication

−(∂w̃iE) · ((HT )i(αi))−1

where the differential ∂w̃iE = (∂
wiE ∂biE) is a row vector. The inverse matrix
(Idi − (αiHi(αi))w̃∗

i · w̃i)−1 can be approximated by Idi + (αiHi(αi))w̃∗
i · w̃i.

Thus, the gradient descent can be approximated by

(27) −Hi(αi)−1 ∂w̃iE − αi(∂w̃iE · w̃∗
i )w̃i

which is the update to the current weights w̃i. The partial derivatives ∂w̃iE

can be efficiently computed by the chain rule for the composition function E,
which is well-known as the backward propagation algorithm. Note that for
αi = 0, (27) reduces back to the Euclidean gradient descent −∂w̃iE.

The following code implements the gradient descent (27) in the definition
of train_step in Keras Model class. It is placed after taking gradient tape
of TENSORFLOW which records the partial derivatives by grads[i]. Let the
i-th and (i + 1)-th trainable variables be weights and biases.

w = trainable_vars[i]
b = trainable_vars[i+1]
norm_w = tf.math.reduce_sum(tf.math.square(w),axis=0)
norm_b = tf.math.square(b)
H_inverse = 1 + alpha * (norm_b + norm_w)
dotprod = tf.math.reduce_sum(tf.multiply(grads[i],w),axis=0)+\

tf.multiply(grads[i+1],b)
grads[i] = H_inverse * grads[i] + alpha * tf.multiply(dotprod,w)
grads[i+1] = H_inverse * grads[i+1] + alpha * tf.multiply(dotprod,b)
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As explained above, we expect from the theory side that the bundle metric
Hi(αi) can be used as a weight normalization in (26) to handle gradient
explosion, with the parameters αi encoding the significance of the i-neuron.
Moreover, the gradient descent over a compact moduli M with the global
metric HT (�α) for �α > 0 must converge mathematically, although we may
need to take a change of coordinates and perform the gradient descent in
other charts of M as well. We will leave further experiments as a part of
future work.
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