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Abstract: We construct a Lie-Rinehart algebra over an infinitesi-
mal extension of the space of initial value fields for Einstein’s equa-
tions. The bracket relations in this algebra are precisely those of
the constraints for the initial value problem. The Lie-Rinehart alge-
bra comes from a slight generalization of a Lie algebroid in which
the algebra consists of sections of a sheaf rather than a vector
bundle. (An actual Lie algebroid had been previously constructed
by Blohmann, Fernandes, and Weinstein over a much larger ex-
tension.) The construction uses the BV-BFV (Batalin-Fradkin-
Vilkovisky) approach to boundary value problems, starting with
the Einstein equations themselves, to construct an L∞-algebroid
over a graded manifold which extends the initial data. The Lie-
Rinehart algebra is then constructed by a change of variables. One
of the consequences of the BV-BFV approach is a proof that the
coisotropic property of the constraint set follows from the invari-
ance of the Einstein equations under space-time diffeomorphisms.
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1. Introduction

In [12], two of the present authors and Marco Fernandes found a Lie algebroid
whose bracket relations on constant sections agree precisely with the Poisson
bracket relations among the energy and momentum constraints for the initial
value problem of Einstein’s equations in general relativity. Whereas the phase
space for the initial value problem is the cotangent bundle of the space R of
riemannian metrics on a Cauchy hypersurface Σ, the base of the “Lie algebroid
of evolutions” in [12] is the much larger space of paths [0, 1] → R. It was
observed there that a natural idea for reducing the base to the cotangent
bundle1 T ∗R produced an object with bracket and anchor which failed to
satisfy the axioms of a Lie algebroid.

1We define the fibers of T ∗R as the space of smooth, density-valued, contravari-
ant symmetric 2-tensors on Σ.
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The original goal of [12] was to explain the well known coisotropic prop-
erty of the constraints’ zero set by an extension to Lie algebroids of the theory
of hamiltonian actions of Lie algebras on (pre)symplectic manifolds, for which
the zero set of the momentum map is coisotropic. Indeed, in [13], a suitable
notion of hamiltonian Lie algebroid was developed for which the zero set of
what was now a momentum section of the dual of the Lie algebroid was shown
to be coisotropic. It turns out, though, that the Lie algebroid of evolutions is
not hamiltonian, at least for the natural presymplectic structure on the paths
in R obtained by pulling back the canonical symplectic structure on T ∗R
by the map assigning to each path its initial value and normal derivative at
t = 0.2

In this paper, we arrive in Section 4 at an alternative realization of the
constraint Poisson brackets by a generalized version of a Lie algebroid called
a Lie-Rinehart algebra. The base B of this object is no longer a manifold as
was that of the Lie algebroid of evolutions, but rather the product of T ∗R
with a one-point ringed space which can be seen as the first infinitesimal
neighborhood of the origin in the product of vector fields and functions on
Σ. The Lie-Rinehart algebra itself is a module over an algebra B which plays
the role of the functions on B; this module carries a Lie algebra structure
(over R) for which the Leibniz rule for multiplication by elements of B is
specified by an “anchor” which is a map from the module into derivations of
B. The object of which this module are sections is not a vector bundle over
B, as it would be for a Lie algebroid, but rather a sheaf which is not locally
constant. The entire Lie-Rinehart structure is actually presented in terms of a
cohomological vector field on a graded manifold lying over B. Unfortunately,
although the base of our Lie-Rinehart algebra is much smaller than the space
of paths in R, this structure still does not have the hamiltonian property (as
generalized from Lie algebroids to Lie-Rinehart algebras); see Remark 4.4.
Nevertheless, we think that this construction is interesting because of its
close connection with the invariance under diffeomorphisms of the Einstein
equations.

The machinery for our construction is the BV-BFV theory of [20, 21], a
combination of the Batalin–Vilkovisky and Batalin–Fradkin–Vilkovisky for-
malisms on manifolds with boundary [7, 8, 6], which associates supermanifolds
carrying cohomological vector fields to boundary value problems for field the-
ories with symmetry. In Section 3, we review, and provide a new analysis
of the output of, the application of the BV-BFV machinery to general rel-
ativity, as was presented by one of the authors in [51, 23]. The result is an

2T ∗R is identified with TR via a natural riemannian metric on R.
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L∞-algebroid rather than Lie algebroid over a graded manifold which, de-
spite being structurally similar to those arising in standard gauge-theoretic
scenarios, is not associated to some (action) Lie algebroid.3

We review the general BV-BFV theory itself in Section 2. In particular, in
Remark 2.3 and Corollary 3.8 we argue that one can take the very existence
of a BV-BFV structure as an explanation of the coisotropic property of the
constraint set of general relativity without use of the formulas for the Poisson
brackets of the constraint functions.

In Section 4, we eliminate the higher order terms in the bracket and
anchor of the previously described L∞-algebroid by a change of variables
which replaces the odd variables in the (graded) base manifold by infinitesimal
variables. At the same time, the vector bundle carrying our L∞ structure
becomes a sheaf which is not locally trivial, thus necessitating the language
of Lie-Rinehart algebras.

Section 5.1 is independent of Section 4. In it, we try to construct a Lie
algebroid over T ∗R itself. This time, we begin with the BFV data of Section 3
and restrict and project the homological vector field QBFV found there to the
zero locus of the odd variables in the base of the L∞-algebroid constructed
there. The result is a vector field Q0 whose square is no longer zero; in fact, it
is zero only on the zero set C of the constraint functions. With the hindsight
of knowing from the Poisson brackets of these functions that C is coisotropic,
we see that the object restricted to C, which is a Lie algebroid, is precisely
the usual Lie algebroid attached to a coisotropic submanifold, essentially its
conormal bundle, or, equivalently, its characteristic distribution.

We end the section with a discussion of several unsuccessful attempts
(including by two of the present authors in [12]) to restrict the Lie algebroid
of evolutions to T ∗R.

Finally, in Section 6, we discuss some further possible ways to establish
directly from diffeomorphism symmetry the fact that the constraint set is
coisotropic.

2. BV and BFV constructions

In this section, we will outline two general frameworks for classical field theory
that go under the acronyms BV and BFV, after Batalin, Fradkin and Vilko-
visky in different collaborations [6, 9, 10]. Broadly speaking, one can think
of the BFV formalism as the hamiltonian counterpart of the lagrangian BV
formalism. They can be joined together when discussing field theory on man-
ifolds with boundary to obtain what is often called the BV-BFV framework,
following Cattaneo, Mnev and Reshetikhin [20].

3See Remark 5.1 to motivate this point of view.
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2.1. Preliminaries

The space of fields is given by the sections

F = Γ(M,F )

of a smooth fibre bundle πF : F → M . The space F has a convenient
smooth structure given by the functional diffeology for which smooth families,
i.e. plots in the language of diffeology, are smooth homotopies of sections.4
(F can also be equipped with a Fréchet structure, but we will not need this
here.) The diffeological structure suffices to define a notion of tangent bundle
[25]. For F it is given by

TF = Γ(M,V F )
where V F : kerTπF → M is the vertical tangent bundle, viewed as a bundle
over M .5 If F → M is a vector bundle, then F is a vector space and we have
the natural trivialization TF ∼= F × F.

The bundle projection TF → F maps a tangent vector given by a section
v : M → V F to the field φ : M → V F → F . The tangent space at the point
φ ∈ TF is then given by (see [44])

TφF = Γ(M,φ∗V F ),

where φ∗V F = M ×φ,πF

F V F is the pullback of V F → F along φ : M → F .
A vector field on F is a section v : F → TF of the bundle projection. It

is called local, if for every φ ∈ F the value of v(φ) ∈ Γ(M,V F ) at m ∈ M de-
pends only on the finite jet jkmφ for a fixed jet order k. A local vector field can
be identified with the infinite prolongation of an evolutionary “vector field”
(which is not a vector field) in the terminology of the calculus of variations
(see [27, 1, 2, 48]). The space of local vector fields will be denoted by Xloc(F).

There are two natural notions of differential forms on the diffeological
space F. The first is by the left Kan extension of the de Rham functor from
manifolds to diffeological spaces [36]. This comes with a differential but with-
out a natural notion of inner derivative. The second defines k-forms as fibre-
wise alternating multilinear smooth functions T (k)F → R on the fibre product
T (k)F

.= TF ×F · · · ×F TF of the tangent bundle. For such forms we have
an inner derivative but no differential. While these two notions are different
for general diffeological spaces, they do coincide for the space of fields F.

4We refer the reader to [36] as a general reference on diffeology.
5In [25] this was shown to hold for M compact, but the statement is also true

for non-compact M .
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Let Ω•,•(F ×M) denote the bicomplex of differential forms. The differ-
ential in the direction of F will be denoted by δ, that in the direction of
M by d. A (p, q)-form can be viewed as a smooth fibre-wise multilinear map
TpF → Ωq(M), i.e. a p-form on F with values in q-forms on M . Both the do-
main and codomain of this map are spaces of smooth sections of fibre-bundles
over M . It then makes sense to call the form local if this map is local, i.e. a
differential operator. Local forms are a sub-bicomplex

Ω•,•
loc(F ×M) ⊂ Ω•,•(F ×M).

Let j∞ : F×M → J∞F be the infinite jet evaluation and let Ω•,•(J∞F )
be the variational bicomplex with vertical differential δ and horizontal dif-
ferential d. It can be shown that the operation of pullback along j∞ is a
morphism of bicomplexes with image

Ω•,•
loc(F ×M) = (j∞)∗Ω•,•(J∞F ).

In this sense, the variational bicomplex can be viewed as the bicomplex of
local forms on F ×M .6

A form in Ωp,top
loc (F × M) can be viewed as map TpF → Ωtop(M). If

M is oriented and compact, we can compose this map with the integration
over M , which yields a map TpF → R. If M is not compact, we can replace
the integration with taking the d-cohomology class instead, which we denote
suggestively by

Ωp∫ (F) := Ωp,top
loc (F ×M)/dΩp,top−1

loc (F ×M).

For p = 0 and M non-compact, an element of Ω0∫ (F) can generally not be
viewed as a function on F. For p > 0 the elements of Ωp∫ (F) can be identified
with special classes of forms in Ωp,top(F), called source forms for p = 1 and
functional forms for p > 1. A source is given in local coordinates by

ω = ωβ(x1, uα, uαi1 , . . . , u
α
i1,...,ik

)δuβ ∧ dx1 ∧ · · · ∧ dxtop,

where ωβ is a function of the local bundle coordinates x1, uα and a finite
number of the associated jet coordinates uαi1 , u

α
i1,i2 , . . .. The salient feature of

6When j∞ is not surjective the pullback is not injective, so that we cannot simply
identify the bicomplex with the complex of local forms. But this will not matter
here.
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a source forms is that it contains the vertical differential δuα of the fibre
coordinate, but not of higher jet coordinates. We denote the space of local
forms of source type by Ω1,top

src (F ×M).
In order to avoid the technical problems that arise from the non-com-

pactness of M , we will from now on assume that M is compact. Then the
cotangent bundle T ∗F can be defined as follows. Let V ∗F denote the dual of
the vertical vector bundle, viewed as a bundle over M . Let

T ∗F := Γ
(
M,V ∗F ⊗ Dens(M)

)
,

where Dens(M) denotes the density bundle on M . This is a bundle over F

in the same way as the tangent bundle, the fibre over φ ∈ F being given by

T ∗
φF = Γ

(
M,φ∗V ∗F ⊗ Dens(M)

)
.

The dual pairing between v ∈ TφF and α ∈ T ∗
φF is given by the dual pairing

of V F and V ∗F , which yields a density on M , followed by integration over M .
For general considerations of dual vector spaces in field theory see for instance
Sec. 3.5.5 and Appendix B of [26].

2.2. Lagrangian field theories and their boundary data

A lagrangian field theory (LFT) is specified by a space of fields F together
with a lagrangian (i.e. a local 0, top-form) L ∈ Ω0,top

loc (F × M). We will be
interested in the case of manifolds with boundary. For simplicity we will
assume that M is a cylinder of the form M = Σ × [0, 1], where Σ is a closed
manifold. We also introduce the action function by integration S =

∫
M L ∈

Ω0∫ (F).7

The physical fields of an LFT are those in the zero locus Z(el) of the Euler–
Lagrange one form, i.e. the set of solutions of the Euler–Lagrange equations
of the variational problem associated to S. Since S is represented by a local
lagrangian L ∈ Ω0,top

loc (F ×M), its variation can be decomposed as

δL = el + dγ

where el ∈ Ω1,top
src (F × M) is a source form and γ ∈ Ω1,top−1(F × M). We

denote by IEL ⊂ C∞(F) the vanishing ideal associated to Z(el).
We can induce boundary data for a lagrangian field theory on a manifold

with boundary (M,∂M). In order to do this, one first considers the space
7Recall that we assume M to be compact.
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of germs of fields at the incoming boundary Σ0 = Σ × {0}, denoted by F̌∂
Σ ,

which comes equipped with the surjective submersion π̌0 : F → F̌∂
Σ given

by restriction, and a presymplectic structure ω̌ induced by the variational
problem

δS = EL + π̌∗
0α̌; ω̌ = δα̌

where EL =
∫
M el, and α̌ is a 1-form on F̌∂

Σ obtained by integration of dγ (see
e.g. [58, Theorem 3] or [39]).

When the (pre-)symplectic reduction by the kernel of ω̌� is smooth,8 it
yields the surjective submersion

πred : F̌∂
Σ −→ F∂

Σ

and, assuming that α̌ is basic with respect to this fibration, i.e. α̌ = π∗
redα

∂

for some α∂ ∈ Ω1
loc(F∂

∂M ), we have the improved bulk-boundary relation

(1) δS = EL + π∗
0α

∂ ,

where π0 = πred ◦ π̌0 : F → F∂
∂M .

The space (F∂
Σ , ω

∂ = δα∂) is an exact symplectic manifold, modeled on
the space of sections of some (induced) fibre bundle on Σ0.

Remark 2.1. Observe that since M has the structure of a finite cylinder
Σ × [0, 1], we can extend the procedure above to define the space of pre-
boundary fields F̌∂

∂M as follows. Since ∂M = Σ0	Σ1 splits into incoming and
outgoing boundary, the outcome of the restriction procedure is diffeomorphic
to two copies of F̌∂

Σ . Performing presymplectic reduction for F̌∂
∂M returns two

copies of the presymplectic reduction of F̌∂
Σ , with the sign of the symplectic

structure on the second one reversed; i.e. we have πM : F → F∂
∂M 
 F∂

Σ ×F∂
Σ .

The space F∂
Σ is called the geometric phase space,9 or the space of ini-

tial data of the system. It is different from the physical, or reduced phase
space, which will be defined in Section 2.3 as the coisotropic reduction of a
submanifold defined by “constraints”.

Example 2.2. Looking ahead to Section 3, we begin here our discussion of
the example of general relativity. In that case, the space of fields is F =
LorΣ(M): the space of lorentzian metrics on M = Σ× [0, 1] whose restriction

8This is not guaranteed. It turns out to be the case for most theories of interest
including general relativity [23, Proposition 3.2].

9We follow here [39] for the general construction, although the terminology might
differ.
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to ∂M = Σ0
⊔

Σ1 is positive definite. The space of pre-boundary fields (for
each boundary component) is

F̌∂
Σ 
 TR(Σ) × C∞(Σ) × X(Σ),

where R(Σ) is the space of riemannian metrics on Σ. The manifold F̌∂
Σ is

parametrized by a riemannian metric h on Σ, the boundary value of its normal
jet ḣ, as well as a function η ∈ C∞(Σ) and a vector field β ∈ X(Σ), usually
denoted by lapse and shift. It can then be shown that the form ω̌, constructed
as above, is pre-symplectic, and that the space of boundary fields is given by
F∂

Σ = T ∗R(Σ). For the explicit details of this calculation, see [23, Section B].

We will focus on variational problems for which the initial-value problem
is well-posed. However, generally, not all points in F∂

Σ can be extended to
local solutions of the Euler–Lagrange equations in some neighborhood of Σ
in M . The subset C ⊂ F∂

Σ consists of those initial data that can be extended
to a solution for some thin, finite cylinder Σ× [0, ε]. Typically, a good ansatz
for C, which plays the role of Cauchy data for an initial value problem, is
given through a vanishing ideal IC , derived from the Euler–Lagrange 1-form
EL. Indeed, on a cylinder it is frequently possible to split equations of motion
into evolution equations and auxiliary relations among the fields.10 The equa-
tions of motion that are not evolution equations are then seen as constraint
functions {φi ∈ C∞(F∂

Σ )} for the configurations in F∂
Σ , so that the vanishing

ideal IC is generated by the functions φi. The subset of Cauchy data often
turns out to be coisotropic, which may be expressed by the statement that
the constraints are first class, i.e. IC is a Poisson subalgebra.

In standard gauge theories, the coisotropic property of C can be related
to the existence of a hamiltonian action of the (gauge) symmetry group on
initial data, for which C is the preimage of zero under the associated (equiv-
ariant) momentum map. More generally, we will argue that this can be con-
cluded from the existence of a BV-BFV field theory (see Def. 2.9). See also
Remark 2.3.

In Section 6, we will discuss other possible approaches to the problem
that are promising, but outside of the scope of the present paper.

10One can always look at the equations of motion in a tubular neighborhood of
some “initial” surface, and thus obtain a reasonable ansatz for C by splitting the
equations of motion there. This makes sense because C contains information only
on local extendability of initial data.
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2.3. BFV data and coisotropic submanifolds

Consider the submanifold C ⊂ F∂ of “Cauchy data” discussed in Section 2.2,
and assume that it is coisotropic. The reduced phase space of the system is
defined as the reduction C, i.e. the leaf space of the characteristic foliation
integrating the kernel TCω of the induced 2-form. Typically, C is not smooth
(and in the example of GR, C is not smooth either [3]), and we resort to a
cohomological replacement.

The BFV construction provides a cohomological resolution of the reduc-
tion C, namely a complex (C•

BFV, QBFV) that is both positively and negatively
graded,11 such that

(2) H0
BFV 
 C∞(C) 
 (C∞(M)/IC)IC ,

where IC ⊂ C∞(M) is the vanishing ideal of C, and the superscript IC

means the Poisson bracket commutant of IC (see [7, 6, 53, 54, 49]). This
construction is often taken as a definition for the space of functions on C that
are invariant with respect to the characteristic foliation. The cohomology of
the BFV complex is isomorphic to the Lie algebroid cohomology associated
to the coisotropic submanifold [49, Corollary 3]. For a practical procedure to
construct BFV data given a coisotropic submanifold we refer to [53] and [49].
Then, given an LFT on a manifold with boundary, we can construct a BFV
complex to resolve C, where C is the submanifold of constraints/Cauchy data
defined in Section 2.2.

Remark 2.3. In what follows, instead of constructing the BFV complex
starting from the knowledge of coisotropic Cauchy data, we will reverse the
logic. We will induce the BFV data as structural boundary information from
“bulk” cohomological data for an LFT on a manifold with boundary, as out-
lined in Section 2.5. This allows us to conclude that the space of initial data
F∂

Σ is endowed with a coisotropic submanifold of Cauchy data, the reduction
of which is resolved by the BFV complex we induced from bulk data. See
Corollary 3.8 for the particular example of general relativity.

To this aim, it is convenient to introduce the following notion, which is
close to that of [21, Definition 2.2]:

Definition 2.4. A BFV theory is a quadruple (FBFV,ΩBFV, SBFV, QBFV),
where:

11For C•
BFV to be an actual resolution one should assume that its cohomology

groups in negative degree vanish. In field theory, a less restrictive requirement is
that they be finite dimensional.



A Lie-Rinehart algebra in general relativity 1743

• FBFV is a graded manifold called the space of BFV fields,
• ΩBFV is a weak (0)-symplectic structure,
• SBFV ∈ Ω0

loc[1](FBFV) is a local function of degree 1,
• QBFV ∈ Xloc[1](FBFV) is a local vector field which is cohomological in

the sense that [QBFV, QBFV] = 0, called the BFV operator.

such that ιQBFVΩBFV = δSBFV, i.e. QBFV is a hamiltonian vector field with
hamiltonian function SBFV. The BFV theory is said to be exact if ΩBFV is an
exact symplectic form.

The BFV complex is obtained as the space of smooth functions over the
graded manifold: C•

BFV
.= C∞(FBFV), endowed with the cohomological vector

field QBFV, seen as a differential.

Given a BFV theory we can extract the information of a coisotropic sub-
manifold12 C ⊂ M

.= Body(FBFV), the body of the graded BFV space of
fields, by defining C as the vanishing locus of the coefficients of the degree
1-homogeneous part in the degree 1 variables (or the degree 0 homogeneous
part in the variables of negative degree; i.e. the part independent of those
variables, see below) of SBFV.

Proposition 2.5. Given a BFV theory, the ideal generated by ∂SBFV
∂c |c=0,

where c denotes a coordinate in degree 1, is a Poisson subalgebra of the Pois-
son algebra defined by ΩBFV.

Proof. Assume, for simplicity, that FBFV = M×V [1]⊕V ∗[−1], where M is a
symplectic manifold and V is a vector space. Denote by (m, b, c) the variables
on M, V ∗[−1] and V [1] respectively, where b and c are dual to one another.

As a function of (total) degree 1, we can decompose SBFV with respect to
its components of a given degree in b as follows:

SBFV(x, b, c) = S(0)(x, c) + S(1)(x, b, c) + . . .

where the sum is finite and S(i) is homogeneous of degree i in b and of degree
i+ 1 in c, so that S(0) is independent of b and linear in c, while S(1) is linear
in b and quadratic in c.

Denoting by {·, ·} the Poisson bracket on FBFV and by {·, ·}0 the Poisson
bracket on M, we have that the master equation {SBFV, SBFV} = 0, decom-
poses into equations for the parts of the bracket {SBFV, SBFV} of homogeneous

12In fact, there is a correspondence between coisotropic submanifolds of a Poisson
manifold and “BFV charges” SBFV in a neighborhood of such a submanifold. This
is presented in [50, Proposition 2.5], which is based on the constructions of [54].
What we give here is an explicit argument, valid for our case of interest.
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degree in b. The vanishing of the b-independent part of the bracket (which is
homogeneous of degree 2 in c), reads:

{S(0), S(0)}0 = 2∂S
(1)

∂b

∂S(0)

∂c
= 2∂S

(1)

∂b
S(0)

by virtue of the linearity of S(0).
Hence, the b-independent part of the classical master equation implies

that the ideal generated by S(0) is a Poisson subalgebra; this means that
the clean zero locus13 of S(0), which is by definition the constraint set, is
coisotropic.

The resolution of the reduction C is then given by the associated BFV
complex. Furthermore, if the BFV theory came from the resolution of the
Cauchy data for an LFT, the data extracted from this procedure will be equiv-
alent to the boundary data associated to the field theory14 (as constructed in
Section 2.2).

The BFV algebra associated to the reduction C is related to the notion
of resolution by homotopy Lie–Rinehart algebras15 of the Lie–Rinehart al-
gebra

(
C∞(F∂

Σ )/IC ,IC/I2
C

)
(see [40, Theorem 4.1]). Oh and Park defined

another possible resolution of the Poisson algebra C∞(C, {, }C) associated
to a coisotropic submanifold of a Poisson manifold, by means of a strong-
homotopy Lie algebroid in [46]. The relation between these two constructions
has been discussed in [49, Theorem 5].

2.4. BV data for lagrangian field theories

Lagrangian field theories often enjoy local (or “gauge”) symmetries. In what
follows, symmetries will be specified by a Lie algebroid

πA : A → F; ρ : A → TF,

whose sections are mapped by the anchor ρ to (local) vector fields that pre-
serve the action functional.16 The prototypical example is given by a Lie alge-
bra action on F, where A is the action Lie algebroid. Denoting by Im(ρ) = D

13By the clean zero locus we mean the smooth points of the zero locus where a
vector is tangent to S(0) = 0 if and only if it annihilates the differential of S(0).

14This means that one might end up with quasi-isomorphic complexes. Observe
furthermore that the form of the generators of IC is arbitrary.

15In [34] the notion of strong homotopy Lie–Rinehart algebra is discussed. This
relates to work of Kjeseth on homotopy Lie-Rinehart pairs [41].

16More generally one can look at vector bundles E → F, anchored by ρ : E →
TF such that the image of ρ is involutive (as a distribution) at least on EL.
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the distribution of local symmetries, the space of physically inequivalent con-
figurations is given by the moduli space of solutions EL/D, where the quotient
denotes that two solutions are identified if they can be related by a path of
solutions integrating a path of infinitesimal symmetries. This space is often
hard to describe, and we look for a cohomological replacement.

Such a replacement can be found within the Batalin–Vilkovisky formal-
ism. Given the data (F, S,A) for an LFT with local symmetries, one con-
structs a cochain complex in both positive and negative degrees,17 whose co-
homology in degree zero is taken as a replacement for the space of functions
over EL that are invariant under the “action” of the symmetries. Indeed, the
BV complex is a combination of the Koszul–Tate complex, which resolves the
quotient C∞(F)/IEL by the vanishing ideal IEL of EL, and the Chevalley–
Eilenberg Lie algebroid complex to describe invariant functions [55, 45].

Definition 2.6 ([20]). A BV theory is specified by a 4-tuple

(FBV,ΩBV, SBV, QBV)

where

• FBV is a graded manifold called the space of BV fields,
• ΩBV is a (weak) (−1)-symplectic structure on FBV,
• SBV is a local function of degree zero called the BV action,
• QBV ∈ Xloc[1](FBV) is a local vector field, called the BV operator, which

is cohomological in the sense that [QBV, QBV] = 0,

such that

(3) ιQBVΩBV = δSBV,

which implies that SBV satisfies the classical master equation

{SBV, SBV} = 0.

Remark 2.7. Recall that, on weak-symplectic manifolds, a Poisson bracket
can be defined only on functions that admit a hamiltonian vector field. On
such hamiltonian functions we can define a Poisson bracket by means of their
hamiltonian vector fields: {f, g} .= ιXf

ιXgΩBV.

17Coordinate functions in positive degree are often called “ghost fields” in physics
terminology, while those in negative degree are called “antifields” or “antighosts”,
depending on their degree.
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In order to make sure that a BV theory represents the classical data
(F, S,A), one requires that F be the body of the graded manifold FBV and
that SBV|F = S. Then, the BV complex is given by the functions C•

BV =
C∞(FBV), with differential QBV seen as a derivation of the algebra of smooth
functions. Its cohomology in degree zero is

H•
BV = (C∞(F)/IEL)D 
 C∞(EL)D

the space of functions on the critical locus which are invariant with respect to
the action of the symmetry distribution D, which is the image of the anchor
of the Lie algebroid A over F.

In order to construct a BV theory from the data of a LFT (F, S,A), one
looks at FBV = T ∗[−1]A[1] and the BV action function SBV = π∗

AS + Q̃CE ,
where Q̃CE is the Chevalley–Eilenberg differential associated with A, seen as
a function in C∞(T ∗[−1]A[1]). The BV differential is then given by the local,
cohomological, vector field

QBV = Q̂CE + QK ,

where Q̂CE is the cotangent lift of the Chevalley–Eilenberg differential, seen
as a cohomological vector field on T ∗[−1]A[1], while QK is the Koszul differ-
ential18 for the vanishing ideal IEL. Then (QBV, SBV) is a hamiltonian pair.

Remark 2.8. Crucial to our discussion is the observation that the construc-
tion above works well whenever the field theory is defined on a compact
manifold without boundary, or else for fields with appropriate asymptotic or
boundary conditions. On manifolds with boundary, instead, Equation (3) is
spoiled by boundary terms. As we will see, this is a first step towards con-
necting bulk and boundary data.

2.5. Connecting bulk to boundary: the BV-BFV framework

If we are given the data of a BV theory in the interior of a manifold with
boundary, this will generally fail to extend to the closure as a BV theory,
because boundary terms will spoil Equation (3). In this situation, the data
can at times be complemented with a BFV theory to give rise to what we
call a BV-BFV theory. This will turn out to be a good model for a LFT on
a manifold with boundary.

18Up to boundary terms, QK coincides with the hamiltonian vector field Xπ∗
AS

of the action function pulled back to the shifted cotangent bundle.
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Definition 2.9 ([20]). We define a BV-BFV theory over the exact BFV the-
ory (FBFV,ΩBFV = δαBFV, SBFV, QBFV) to be the quadruple (FBV, ΩBV, SBV,
QBV), where19

• FBV is a graded manifold,
• ΩBV is a (weakly) (−1)-symplectic structure on FBV,
• SBV is a local function of degree zero called the BV action,
• QBV ∈ Xloc[1](FBV) is a local vector field which is cohomological in the

sense that [QBV, QBV] = 0, called the BV operator,

together with a surjective submersion πBV : FBV → FBFV such that:

• The vector field QBV is projectable along the surjective submersion πBV
and QBFV is its projection, i.e. πBV ◦QBV = QBFV ◦ πBV,

• We have the compatibility:

(4) δSBV = ιQBVΩBV + π∗
BVαBFV.

Remark 2.10. A consequence of this is that the BV action SBV now satisfies
the modified classical master equation:

{SBV, SBV} .= ιQBVιQBVΩBV = π∗
BVSBFV,

which tells us that the BFV action controls the anomaly in the classical master
equation induced by the presence of a boundary.

Remark 2.11 (Inducing a BV-BFV theory from a BV theory). On a man-
ifold with boundary we can interpret the obstruction to (QBV, SBV) being a
hamiltonian pair as a 1-form α̌BV on F̌∂

BV, the space of germs of sections in
a thin neighborhood of the boundary (compare with Equation (1)); i.e. we
have:

(5) δSBV = ιQBVΩBV + π̌∗
BVα̌BFV.

The induced 2-form Ω̌BFV = δα̌BFV is degenerate and, analogously to the
procedure outlined20 in Section 2.2, if its kernel is regular, one constructs the
space of BFV fields as

FBFV
.= F̌∂

BV/ker(Ω̌	
BV).

19We allow ourselves to abuse notation by using the same symbols we used for
BV theories.

20This means that we can replace F̌∂
∂M with F̌∂

BFV and α̌ with α̌BFV everywhere.
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If this quotient is smooth, one can assign a BFV theory to the boundary
submanifold and obtain a BV-BFV theory. Moreover, if α̌BFV = π∗

redαBFV is
basic, the induced BFV theory is exact, and Equation (5) becomes Equa-
tion (4). The BFV theory obtained in this way is symplectomorphic to the
one obtained from the coisotropic submanifold C ⊂ F∂

Σ induced from the
lagrangian field theory. In other words we can summarize:

(F, S,A)

π

BV (FBV,ΩBV, SBV, QBV)

πBV

(F∂
Σ , C) BFV (FBFV,ΩBFV, SBFV, QBFV)

where the undulating arrows indicate the BV and BFV constructions.

3. General relativity

This section is mostly a review of [23, 51]. Corollary 3.8 clarifies how one
can use the BFV structure induced from the bulk BV theory to prove that
the vanishing locus of the energy and momentum constraints (Definition 3.1)
forms a coisotrope. Moreover, in Section 3.3 we expand on previous work by
making the L∞ structure underlying the BFV data explicit.

In what follows we will work with cylindrical space-time manifolds with
boundary; e.g. M = Σ × [0, 1]. We wish to have both boundary components
Σ be spacelike (hence Cauchy) surfaces, i.e., the induced metrics there are
riemannian. In addition, for simplicity, we assume Σ to be compact and with-
out boundary. Consider the space of such lorentzian metrics on M , denoted
LorΣ(M).

The Lie algebra X(M) of vector fields on M (with no restriction on the
boundary values) acts on LorΣ(M) by Lie derivatives, which we describe by
an action algebroid πdiff : Adiff → LorΣ(M) with fibres given by X(M) and
anchor map

ρdiff : (g,X) �−→ (g, LXg)

where (g, LXg) is a tangent vector in TgLorΣ(M). The bracket on constant
sections of Adiff is induced by the bracket of vector fields on M :

[(g,X), (g, Y )]Adiff = (g, [X, Y ]X(M)),

extended to general sections by the Leibniz rule.
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3.1. BV structure for general relativity

The formulation of general relativity that we will consider in this paper relies
on the Einstein–Hilbert (EH) lagrangian field theory, specified by LorΣ(M),
the action

(6) SEH =
∫
M

R(g)volg

and Adiff.
To construct the (standard21) BV theory for EH gravity we apply the

general construction outlined in Section 2.4 to the Einstein–Hilbert theory
(LorΣ(M), SEH ,Adiff). The space of BV fields will then be

FEH
BV = T ∗[−1]Adiff[1] = T ∗[−1] (LorΣ(M) × X[1](M)) .

If we let ξ ∈ X[1](M) denote an odd coordinate (of degree 1), we can
write down the Chevalley–Eilenberg part of QEH

BV as:

QEH
CE g = Lξg QEH

CE ξ = 1
2[ξ, ξ].(7)

We can think of the vector field QEH
CE either as a section of the tangent

bundle of LorΣ(M)× X[1](M) or as a derivation of the algebra of functions
of g and ξ. From the first viewpoint, we think of the space LorΣ(M) as an
open subset of the vector space S2(T ∗M) of all symmetric covariant 2-tensors
on M , so that all of its tangent spaces may be identified with S2(T ∗M). The
first equation in (7) can then be taken as a formula for the component of the
vector field QEH

CE in the LorΣ(M) direction as a function of (g, ξ). Similarly
for the second equation, which gives the component in the direction of the
vector space X[1](M).

From the second viewpoint, we think of g as standing for the vector-valued
function on LorΣ(M) × X[1](M) given by projection onto the first factor
followed by the inclusion into S2(T ∗M), in which case the first equation in (7)
gives the result of applying the derivation QEH

CE to this function. Similarly, the
second equation gives the result of applying the derivation to the projection
onto the second factor. Note that, since ξ is a variable of degree 1, the bilinear
expression [ξ, ξ] is to be understood as an element of the space

Sym2(X[1](M),X[1](M))
21A non-standard, equivalent, BV formulation for Einstein–Hilbert theory was

presented in [17, Theorem 37 and Remark 40].
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of graded-symmetric bilinear maps from X[1](M) to itself, namely the ele-
ment of

Hom(∧2X(M),X(M))

with input a pair (X, Y ) of vector fields and output [X, Y ]. Note that this is
a (quadratic) function on X[1](M) with values in the vector space X[1](M).

We can construct a BV action as prescribed in Section 2.4:

SEH
BV = π∗

Adiff
SEH + Q̃EH

CE =
∫
M

R(g)volg + 〈g†, Lξg〉 + ι[ξ,ξ]ξ
†,

where g† ∈ S2(TM)⊗Dens(M) and ξ† ∈ Ω1(M)⊗Dens(M) denote fields in
the cotangent fibres of FBV. Up to boundary terms, the BV operator QEH

BV =
Q̂EH

CE + QEH
K is the hamiltonian vector field of SEH

BV .

3.2. BFV structure for general relativity

In this section we will present the BFV structure for Einstein–Hilbert theory.
This has been obtained from the BV data constructed above by one of the
authors together with Cattaneo in [23].

Let us denote the space of riemannian metrics on Σ by R(Σ). We will
denote by D(Σ) the space of densities on Σ, i.e. the sections of the density
bundle Dens(Σ) → Σ. The tangent bundle TR(Σ) may be identified with the
trivial bundle whose fibre ThR(Σ) over the metric h is the vector space of
(smooth) sections of the bundle S2(T ∗Σ) of symmetric covariant 2-tensors.
By the cotangent bundle T ∗R(Σ) we will mean the trivial bundle whose fibre
over h is the vector space of smooth sections Π of S2(TΣ) ⊗ Dens(Σ).

Notation

A metric h on Σ induces “musical” isomorphisms � and � between TΣ and
T ∗Σ. These lift to isomorphisms between their spaces of sections. With the
aid of the natural density attached to each metric h, we obtain isomorphisms
between the tangent and cotangent spaces of R(Σ). This induces, in turn, a
map between bilinear forms and endomorphisms, so that

Π� : Γ(Σ, TΣ) → Γ(Σ, TΣ) ⊗ D(Σ)

is a density-valued endomorphism of the tangent space for each cotangent
vector Π. We denote its square by Π2 .= Π� ◦ Π�, which we may think of as a
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2-density-valued endomorphism. Occasionally it will be useful to raise/lower
indices twice, so we use the notation Π�� to denote the section of S2(T ∗Σ) ⊗
Dens(Σ) obtained from Π by precomposition with h⊗h, so that in a coordinate
chart we have (summing over repeated indices)

[Π��] = hacΠcdhdbdx
a � dxb = volh ⊗ hacπ

cdhdbdx
a � dxb,

[Π2]	 = ΠabhbcΠcd∂a � ∂d = volh ⊗ volh ⊗ πabhbcπ
cd∂a � ∂d

for some symmetric tensor π ∈ Γ(Σ, S2(TΣ)).
With a slight abuse of notation, we denote the contraction of an element

of S2(T ∗M) with a metric h as a trace operation Trh
.= 〈h, ·〉, where the

angular brackets 〈·, ·〉 will generically denote the pairings

〈·, ·〉 : Sk(TΣ) ⊗ Dens(Σ) × Sk(T ∗Σ) → Dens(Σ).

We will then use the notation Ric(h) for the Ricci curvature and R(h) =
Trh(Ric(h)) for the scalar curvature, while the Einstein tensor will be de-
noted by G(h) = Ric(h) − 1

2hR(h). Finally, given a function φ ∈ C∞(Σ),
and denoting by ∇ the covariant derivative with respect to the Levi-Civita
connection associated with h, we define

Dh(φ) .= −∇∇φ + hTrh[∇∇φ] = −1
2Lgradhφh + 1

2hTrh[Lgradhφh].

Observe that ∇∇φ ∈ S2(T ∗Σ).
In general relativity, the variation of the Einstein–Hilbert action (6) can

be split in two parts, using the global space-time splitting on the cylinder.
By choosing the appropriate parametrization of a metric on the cylinder,
for example using the Arnowitt–Deser–Misner (ADM) decomposition [4], we
divide Einstein’s equations into evolution equations and constraints. Since the
constraints only depend on a metric h, its first jet ḣ and the lapse and shift
components of a 4-metric, they restrict to equations on F̌∂

Σ (cf. Example 2.2).
These can be formulated as the vanishing of functions on F̌∂

Σ that are basic
with respect to the pre-symplectic reduction πred : F̌∂

Σ → F∂
Σ . Hence, the

constraints are given as the vanishing locus of functions on F∂
Σ , as follows:

Definition 3.1. The energy and momentum constraints

Hn : C∞(Σ) −→ C∞(T ∗R)
H∂ : X(Σ) −→ C∞(T ∗R)
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are defined by

Hn(φ) =
∫
Σ

Hn(φ) .=
∫
Σ

{ 1
volh

(
Trh[Π2] − 1

d− 1[TrhΠ]2
)

+ volhR(h)
}
φ

H∂(X) =
∫
Σ

H∂(X) .=
∫
Σ

〈Π,LXh〉,

where LXh denotes the Lie derivative of the metric h w.r.t. the vector field
X. We call Hn(φ) and H∂(X) the constraint functions, Hn(φ) and H∂(X)
the constraint densities22, respectively, and denote their associated vanishing
ideal by IEH .

Remark 3.2. The constraint densities Hn(φ) and H∂(X) are linear in φ, X
and local in φ, X, h, and Π. The constraint functions Hn(φ) and H∂(X) are
still linear but, due to the integration, no longer local.

Theorem 3.3 ([38, 28]). The Poisson brackets of the constraint functions
are given by:

{H∂(X),H∂(Y )} = H∂([X, Y ])(9a)
{H∂(X),Hn(φ)} = Hn(LX(φ))(9b)
{Hn(φ),Hn(ψ)} = H∂(φ gradhψ − ψ gradhφ).(9c)

Remark 3.4 (Warning). The right hand side of Eq. (9c) is a customary
abuse of notation, since the argument φ gradhψ − ψ gradhφ is not a vector
field but a vector field valued function on T ∗R. This means that (9c) is not
in the image of the momentum constraint of Definition 3.1. The upshot is
that the constraint functions are not closed under the Poisson brackets, but
generate a large Lie subalgebra.

It is shown in [12] that the Poisson brackets (9) can be seen as the brackets
of the constant sections of a Lie algebroid constructed on a much larger space
than T ∗R. One could try to view the pairs (φ,X) as constant sections of a
trivial vector bundle over T ∗R with fibre C∞(Σ) × X(Σ), and attempt to
endow it with a Lie algebroid structure whose brackets of constant sections
are given by Equations (9). Unfortunately this approach does not work, as
we will see in Section 5.

Remark 3.5. The constraint set CEH ⊂ F∂
Σ = T ∗R(Σ) is the vanishing locus

IEH of the energy and momentum constraint functions of Definition 3.1, and
22Observe that H∂ ∈ Ω1(Σ) ⊗ D(Σ).
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it determines the field configurations (h,Π) that can be extended to a solution
of Einstein’s equations in a thin neighborhood of Σ. It can be derived from
the Einstein–Hilbert lagrangian field theory following the procedure outlined
in Section 2.5.

Theorem 3.6 ([51, 23]). The data (FEH
BV ,ΩEH

BV , SEH
BV , QEH

BV ) define a BV-
BFV theory over the exact BFV theory (FEH

BFV, ω
EH
BFV, S

EH
BFV, Q

EH
BFV) defined by

the following data. We introduce the shorthand notation

V(Σ) .= C∞(Σ) ⊕ X(Σ).

The graded (0)-symplectic space of BFV fields is given by:

FEH
BFV

.= T ∗ (R(Σ) × V[1](Σ)) ,(10a)

ωEH
BFV

.=
∫
Σ

(
〈δh, δΠ〉 + 〈δχ∂ , δξ

∂〉 + δχn δξ
n),(10b)

where ξn, ξ∂ are respectively a degree-one function and a degree-one vector
field on Σ, while

(χn, χ∂) ∈
(
C∞[−1](Σ) ⊕ Ω1[−1](Σ)

)
⊗ D(Σ) .= Φ[−1](Σ)

denote variables in the cotangent fibre of T ∗V(Σ), and 〈·, ·〉 denotes the canon-
ical fibrewise pairing. The BFV action function on FBFV reads:

SEH
BFV = Hn(ξn) + H∂(ξ∂) +

∫
Σ

(
χnLξ∂ξ

n + 〈χ∂ , ξ
n gradhξ

n〉 + 1
2〈χ∂ , [ξ∂ , ξ∂ ]〉

)
,

and the local, cohomological, vector field QEH
BFV, hamiltonian23 with respect to

SEH
BFV, is described by its action on fields (we drop all sub- and superscripts)

as

Q(ξn) = Lξ∂ξ
n(12a)

Q(ξ∂) = ξn gradhξ
n + 1

2[ξ∂ , ξ∂ ](12b)

Q(h) = h̃ξn − Lξ∂h = −2Kξn − Lξ∂h(12c)

23Note: the sign convention we adopt uses the total degree, summing internal
grading and vertical form degree. With this convention δ has degree 1, ιQ is an even
derivation, and LQ is odd.
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Q(Π) = Π̃ξn + volh
(
G		(h)ξn + D		

h (ξn)
)
− Lξ∂Π − (χ∂ ⊗s dξ

n)		ξn(12d)

Q(χ∂) = H∂ + Lξ∂χ∂ − χndξ
n(12e)

Q(χn) = Hn + Lξ∂χn − 2Lχ�
∂
(ξnvol−

1
2

h )vol
1
2
h ,(12f)

where

Π̃ .= δ

δh

( 1
volh

(
Trh[Π2] − 1

d− 1Trh[Π]2
))

= − 1
2volh

h−1
(

Trh[Π2] − 1
d− 1Trh[Π]2

)
+ 2

volh

(
[Π2]	 − 1

d− 1ΠTrh[Π]
)

h̃
.= δ

δΠHn = 2
volh

(Π�� − h

d− 1TrhΠ) = −2K.

and χ	
∂ is the densitized vector field obtained by applying the musical isomor-

phism to the 1-form-density χ∂. For an explicit expression of the BV-BFV
map πBV : FEH

BV → FEH
BFV we refer to [23, Theorem 3.6].

Remark 3.7. Notice that in [51, 23] a slightly different parametrization is
used. In the original references the coordinate in the cotangent fibre is taken
to be Πorig =

√
hπ for some symmetric 2-tensor π, whereas we use here the

combination Π =
√
hπvol = πvolh = Πorigvol, where vol is the Euclidean

volume form. Notice that LX(Π) = LXΠorig + div(X), where div(X) is the
divergence of X w.r.t. the Euclidean volume form. Given a 1-form η with
associated vector field η	, and denoting the associated 1-form density and
densitized vector field respectively by χ∂ = η ⊗ volh and χ	

∂ = η	 ⊗ volh, we
compute

Lη�(ξnvol−
1
2

h )vol
3
2
h = Lη�ξ

nvolh + 1
2ξ

n divh(η	)volh =: Lχ�ξn + 1
2d̃ivh(χ	

∂)ξ
n,

(14)

where the second equality defines d̃ivh(χ	
∂) as the density obtained from the

1-form density χ∂ = η ⊗ volh by

d̃ivh : χ∂ �→ divh(η	) ⊗ volh.

Hence, recalling that χ	 = volhη	, we have

(15) Lη�(ξnvol−
1
2

h )vol
3
2
h ≡ Lχ�

∂
(ξnvol−

1
2

h )vol
1
2
h .
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Observe that Equation (15) should be taken as a definition of the r.h.s., i.e.
of the Lie derivative of a (half-)density along a densitized vector field. The
BFV data presented in [23] uses the unfolded expression in Equation (14),
with the original parametrization (h,Πorig).

Corollary 3.8 (of Theorem 3.6). The vanishing ideal generated by the energy
and momentum constraints is a Poisson subalgebra of the Poisson algebra on
(hamiltonian functions on) T ∗R(Σ). Hence, the constraint set, given by the
vanishing of the constraint functions of Definition 3.1, is coisotropic.

Proof. The BV structure for GR given in Section 3.2 induces a BFV structure
on Σ by means of Theorem 3.6. The terms in SEH

BFV that are linear in the
degree 1 variables ξn, ξ∂ are Hn(ξn),H∂(ξ∂). The BFV action SEH

BFV satisfies
the classical master equation{

SEH
BFV, S

EH
BFV

}
ωEH

BFV
= 0,

where {·, ·}ωEH
BFV

is the Poisson bracket induced (on hamiltonian functions) by
ωEH

BFV. Following Proposition 2.5, we have that the vanishing of the part of{
SEH

BFV, S
EH
BFV

}
ωEH

BFV
that is independent of χ∂ , χn implies equations (9).

Remark 3.9. The data of Theorem 3.6 have been obtained from the bulk
Einstein–Hilbert BV theory in [51, 23], and the fact that they satisfy the ax-
ioms of a BFV theory is a consequence of the BV-BFV induction procedure
of [20] (see Remark 2.11). This, in turn, allowed us to conclude in Corol-
lary 3.8 that the constraint set is coisotropic, without prior knowledge of the
brackets (9).

Remark 3.10. Notice as well that the BFV data of Theorem 3.6 yield a res-
olution of the coisotropic vanishing locus of the constraints of Definition 3.1,
and thus coincide with the BFV data one would obtain directly by means of
the construction outlined in Section 2.3 (see [30]). However, since the bracket
of constraints (9c) showcases a point-dependent “structure constant” (or bet-
ter said, a structure function), it is a nontrivial statement that the correct
BFV action can be taken to be linear in the degree −1 variables24 χn, χ∂ .
A proof of this statement is however given by the BV-BFV induction proce-
dure itself. A similar linearity statement holds for the coframe formulation
of gravity, where the BFV data has instead been computed directly from the
constraint functions in [16], due to the lack of a viable BV-BFV induction
procedure in this case [24].

24These are commonly referred to as “ghost momenta”.
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3.3. Analysis of the BFV L∞ structure

The BFV data for general relativity are encoded by a (0)-symplectic graded
manifold (Equation 10a), endowed with a cohomological vector field. Graded
manifolds endowed with a cohomological vector field correspond to “higher”
Lie algebroid structures if the grading is concentrated in nonnegative degrees
(see [56] for the correspondence with Lie algebroids and [57] for the “higher”
generalization). However, the manifold FBFV is concentrated in both positive
and negative degrees (more precisely, in degrees {−1, 0, 1}). In this case, the
correct notion is that of a strong homotopy Lie algebroid (or L∞-algebroid).

Definition 3.11 ([56, 15, 5]). A (strict) L∞-algebroid is a vector bundle of
Z-graded manifolds A → B endowed with a cohomological vector field Q ∈
X(A[1]) that is tangent to the zero section 0: B ↪→ A[1].

Remark 3.12. Notice that while in [15] a non-strict notion of a Lie algebroid
is given (as a vector bundle E → M with a Q-structure on E[1]), the strict
notion requires tangency of Q to the 0-section. In [5] the strict requirement
is used implicitly, and the object is simply called an L∞-algebroid.

It is easy to check that the Q-manifold (FEH
BFV, Q

EH
BFV) indeed defines a

(strict) L∞-algebroid25 given by the vector bundle

ABFV → BBFV,

where the total space and base are defined by:

ABFV
.= V(Σ) × T ∗R(Σ) × Φ[−1](Σ)

BBFV
.= T ∗R(Σ) × Φ[−1](Σ)

so that the base is parametrized by (h,Π, χn, χ∂) and the fibres are parame-
trized by a function and vector field (φ,X) (both even). We parametrize the
shifted fibres by ξn, ξ∂ , and we can directly see that FEH

BFV = ABFV[1].
The restriction to the zero section 0: BBFV ↪→ ABFV is the cohomological

vector field defined by:

Q(h) = Q(Π) = 0; Q(χ∂) = H∂(h,Π); Q(χn) = Hn(h,Π),

which represents the Koszul differential encoding the resolution of the van-
ishing ideal IEH (Def. 3.1). Equations (12a) and (12b) define the bracket of

25This is to be expected from the general theory of BFV resolutions, see [49].
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constant sections:

[(f1, X1), (f2, X2)]ABFV =
(
LX2f1 − LX1f2,

[X1, X2]X(Σ) + f1gradh f2 − f2gradh f1
)
,

where X1, X2 ∈ X(Σ) and f1, f2 ∈ C∞(Σ). The anchor and multi-anchor
map are encoded in the remainder of equations (12). Indeed, Equation (12d)
reveals a quadratic dependency in the fibres due to the term (χ∂ ⊗s dξ

n)		ξn,
which is then interpreted as a multi-anchor map, which on constant sections
yields the vector field:

ρ(2)((f1, X1), (f2, X2))(Π) = χ	
∂ ⊗s (f1gradhf2 − f2gradhf1),(16a)

ρ(2)((f1, X1), (f2, X2))(h) = 0(16b)
ρ(2)((f1, X1), (f2, X2))(χ∂) = 0,(16c)
ρ(2)((f1, X1), (f2, X2))(χn) = 0.(16d)

Observe that equations (12e) and (12f) instead contain constant terms in
the fibre variables (respectively H∂ and Hn), which are then interpreted as
anchors of arity26 zero. In particular, we stress that the L∞ structure defined
by Q is not that of a Lie algebroid, owing to the presence of anchors of arity
0 and 2.

Remark 3.13. Notice that the brackets on constant sections of ABFV, which
we extract from equations (12a) and (12b), match the brackets of constant
sections of the Lie algebroid of evolutions that two of the authors introduced
with Fernandes in [12, section 2.6]. In that case, the base of the Lie algebroid is
given by Σ-universes, i.e. isometry classes of (connected, lorentzian) manifolds
M together with an embedding of Σ as a spackelike hypersurface. Moreover,
observe that Equation (12c) can be taken as defining an “action” of a section of
ABFV on R(Σ), which coincides with the anchor of the algebroid of evolutions,
i.e. the action of gaussian vector fields on gaussian metrics, after restricting
to Σ (compare (12c) with [12, Equations 14 and 16]).

At first glance, the L∞ structure defined by QEH
BFV appears to be lacking

one piece of data: there is an anchor of arity two, but no higher brackets, a
consequence of the absence of cubic terms in the ξ variables in QEH

BFV. In fact,
though, from the defining Leibniz rule for three-brackets in L∞-algebroids,

26We recall that the arity of an operation is the number of arguments upon which
it depends, see [52] for the origin of the term.
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denoting constant sections by si, we get that

[s1, s2, fs3](3) = ρ(2)(s1, s2)(f)s3 + f [s1, s2, s3] = ρ(2)(s1, s2)(f)s3.

This implies that while three-brackets of constant sections are indeed vanish-
ing, there is a nontrivial three-bracket on nonconstant sections.

The situation is akin to that in the more familiar example of the action
algebroid M × g → M for an abelian Lie algebra g. Here, the bracket of
constant sections is zero. On the other hand, unless the action is trivial, the
bracket is not identically zero on nonconstant sections.

4. The Lie-Rinehart algebra

In the previous section, we constructed, over a graded manifold whose body
is the cotangent bundle T ∗R of the space of riemannian metrics on Σ, an
L∞-algebroid whose bracket on constant sections coincides with the Poisson
bracket on constraints for the initial value problem of general relativity.

We would like to manipulate this data to try to obtain a structure that
is more closely related to that of a Lie algebroid, motivated by existence of
the Lie algebroid of evolutions, introduced by two of the authors in [12], on
the (larger) space of Σ-universes (presentable in terms of paths of metrics
R(Σ)I). In order to do this, in this section we will eliminate the higher order
terms in the L∞ structure by replacing the variables with nonzero grading in
the base with degree zero variables which are infinitesimal. The price we will
pay is that the object on whose sections the bracket is defined is no longer
a vector bundle. Thus, the resulting object is a Lie-Rinehart algebra slightly
more general than that arising from a Lie algebroid.

Recall that the space of BFV fields is given by the graded manifold
(Eq. (10a))

FBFV = T ∗R(Σ) × V[1](Σ) × Φ[−1](Σ),(17)

and we have used variables (h,Π, ξ∂ , ξn, χ∂ , χn) to generate the algebra of
smooth functions over FBFV. Consider the new (degree 0) variables27

(18) ψn
.= χnξ

n ψ∂
.= χ∂ξ

n.

27The χ variables are often referred to as “antifields” in physics terminology,
while the ξ variables are called “ghosts”. Notice that here we are using only the
“ghosts for transversal diffeomorphisms” ξn to redefine the antifields.
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They satisfy ψ2
n = 0 and ψ2

∂ = 0, even though these are not odd variables,
as well as ψnψ∂ = 0. In addition, we should have ψnξ

n = ψ∂ξ
n = 0, since

(ξn)2 = 0.
More precisely, then, we consider as the algebra playing the role of func-

tions on the base

B
.= C∞ (T ∗R(Σ) × Φ(Σ)) /〈ψ2

•〉,

by which we mean the (commutative) algebra over C∞ (T ∗R(Σ)), freely
generated by ψ• ∈ {ψ∂ , ψn}, modulo the relations ψ2

n = 0, ψ2
∂ = 0, and

ψnψ∂ = 0. (Note that the ψ’s are “infinitesimal” variables, but they are not
odd.) Thus, we may think of B as the algebra of smooth functions on a
ringed space B which is the product of the phase space T ∗R(Σ) with the
“one point” space which is the first infinitesimal neighborhood of the origin
in Φ(Σ) = (Ω1 ⊗ D)(Σ)× D(Σ). What will play the role of our Lie algebroid
is a sheaf rather than a vector bundle over B (see Remark 4.3 for details).
This means that we will have what is called a Lie-Rinehart algebra28 [47] over
B. We recall the definition:

Definition 4.1. A Lie-Rinehart algebra is a pair (A,m) consisting of a com-
mutative algebra A, a Lie algebra (m, [·, ·]) over R, and a Lie algebra homo-
morphism ρm : m → Der(A), such that:

1. m is an A-module, and ρg is a module homomorphism;
2. for every pair of elements X, Y ∈ m and a ∈ A, we have

[X, aY ] = a[X, Y ] + ρ(X)(a)Y.

We also call m a Lie-Rinehart algebra over A.

Examples of Lie-Rinehart algebras over the algebra A = C∞(M) of
smooth functions on a manifold M come from Lie algebroids. Here, the Lie
algebra m is the space of smooth sections of a vector bundle E → M car-
rying a Lie algebroid structure, with its anchor map ρ : E → TM inducing
the required module homomorphism. In Remark 4.3, we will explain a slight
generalization of this picture which covers our construction in general rela-
tivity.

In the case at hand, then, the algebra is B, and the module is the quotient
L of the B module V(Σ)⊗B by the relations ψnξ

n = 0 and ψ∂ξ
n = 0, where

28The term Lie-Rinehart algebra was introduced by Hübschmann in [32]. See
also [33, 35] and the historical remarks therein.
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we have added generators ξn, ξ∂ for the components in the summands C∞(Σ)
and X(Σ) of V(Σ) respectively; i.e.

L
.= (V(Σ) ⊗B)/〈ψ•ξ

n〉.

This makes our module the sections of a sheaf over the ringed space B, where
the component in C∞(Σ) is supported along the vanishing locus of ψn and ψ∂ .

The Lie-Rinehart structure itself is encoded by a differential Q̃ which is
an odd derivation, squaring to zero, of the graded algebra:

Agr .= C∞ (V[1](Σ)) ⊗B/〈ψ•ξ
n〉.

Writing the BFV differential QEH
BFV in our new variables, we obtain (c.f. Equa-

tion (12))

Q̃(ξn) = Lξ∂ξ
n(19a)

Q̃(ξ∂) = ξn gradhξ
n + 1

2[ξ∂ , ξ∂ ](19b)

Q̃(h) = h̃ξn − Lξ∂h = −2Kξn − Lξ∂h(19c)

Q̃(Π) = Π̃ξn + volh
(
G		(h)ξn + D		

h (ξn)
)
− Lξ∂Π + (ψ∂ ⊗s dξ

n)		(19d)

Q̃(ψ∂) = H∂ξ
n + Lξ∂ψ∂ − ψndξ

n(19e)
Q̃(ψn) = Hnξ

n + Lξ∂ψn − 2Lψ�
∂
ξn.(19f)

We prove below that Q̃ is a derivation Q̃ of Agr that squares to zero.
Observe that Equation (19f) is a slight simplification of (12f), as we com-

pute

Q̃(ψn) = Q(χn)ξn + χnQ(ξn)

= Hnξ
n + Lξ∂ψn − 2Lχ�

∂
(ξnvol−

1
2

h )vol
1
2
h ξ

n

= Hnξ
n + Lξ∂ψn − 2(Lη�ξ

nvolh + 1
2ξ

n divh(η	)volh)ξn

= Hnξ
n + Lξ∂ψn − 2Lη�ξ

nvolhξn

=: Hnξ
n + Lξ∂ψn − 2Lψ�

∂
ξn,

where we used the same notation as in Remark 3.7.
We summarize the previous discussion with the following

Theorem 4.2. (Agr, Q̃) is a differential, graded algebra, and the data (B,L)
define a Lie-Rinehart algebra.
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Proof. Consider the following diagram

Agr π∗

f∗

C∞ (V[1](Σ)) ⊗B
f∗

C∞(FEH
BFV),

where f∗ is the (injective) map on functions induced by the (surjective) change
of variables

(h,Π, ξ•, χ•) �→ (h,Π, ξ•, ψ• = χ•ξ
n),

and π∗ is induced by the quotient by the ideal 〈ψ•ξ
n〉. By definition of Q̃, we

have that Q ◦ f∗ = f∗ ◦ Q̃, where, here and below, we abbreviate QEH
BFV by Q

as in (12). It follows that Q̃ is a derivation of C∞(V[1]) ⊗B, which we need
to prove preserves the ideal 〈ψ•ξ

n〉:

Q̃(ψ∂ξ
n) = Q̃(ψ∂)ξn + ψ∂Q̃(ξn)

=
(
H∂ξ

n + Lξ∂ψ∂ − ψndξ
n) ξn + ψ∂Lξ∂ξ

n

= Lξ∂ (ψ∂ξ
n) − ψnξ

ndξn = 0 (mod ψ•ξ
n)

Q̃(ψnξ
n) = Q̃(ψn)ξn + ψnQ̃(ξn)

=
(
Hnξ

n + Lξ∂ψn − 2Lψ�
∂
ξn

)
ξn + ψnLξ∂ξ

n

= Lξ∂ (ψnξ
n) − 2Lψ�

∂
ξnξ

n = 0 (mod ψ•ξ
n),

where we used that ξn squares to zero, combined (Lξ∂ψ•)ξn + ψ•(Lξ∂ξ
n) =

Lξ∂ (ψ•ξ
n) (recall that ψ• has degree 0), and used that ψ	

∂ξ
n = 0 (mod ψ∂ξ

n).
The generators ψ•, ξn are to be thought as vector-valued coordinate functions,
so that the expression Lξ∂ (ψ•ξ

n) denotes the Lie derivative on the values of the
function ψ•ξ

n on B. Modulo the ideal, that value and thus its Lie derivative
vanishes.

Q̃ then descends to a derivation on Agr, which we denote by another
symbol Q̃ for clarity, and we have Q ◦ f∗ = f∗ ◦ Q̃.

We now prove that Q̃ squares to zero, and is thus a differential. First we
see that, on the generators ξn, ξ∂ , h, we have Q̃2 = 0 because Q ≡ Q̃ on these
generators, and Q2 = 0. Moreover, on the new variables ψ•, we have

(20) Q̃2(ψ•) = Q(Q(χ•ξ
n)) = Q(Q(χ•)ξn − χ•Q(ξn))

= Q2(χ•)ξn + (−1)|Q|+|χ•|Q(χ•)Q(ξn) −Q(χ•)Q(ξn) + χ•Q
2(ξn) = 0,
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where we used that Q2 = 0 on FEH
BFV, and |χ•| = −|Q| = −1. Then, we are

left to check that Q̃2(Π) = 0. This follows from the fact that Q(f∗(Π)) =
f∗(Q̃(Π)), and Q2(f∗(Π)) = Q(f∗(Q̃(Π))) = f∗(Q̃2(Π)), in virtue of the injec-
tivity of f∗.

This, together with the fact that Q descends to the quotient by the ideal
〈ψ•ξ

n〉, allows us to show that Q̃ also squares to zero on all generators, and f∗

is a chain map. Hence, from now on, we shall no longer distinguish between
Q̃ and Q̃.

Using the outputs of the differential Q̃, we define the anchor ρ : L →
Der(B) on generators by

ρ(φ,X)(h) = h̃φ− LXh

ρ(φ,X)(Π) = Π̃φ + volh
(
G		 + D		

h (φ)
)
− LXΠ + (ψ∂ ⊗s dφ)		

ρ(φ,X)(ψ∂) = H∂φ + LXψ∂ − ψndφ

ρ(φ,X)(ψn) = Hnφ + LXψn − 2Lψ�
∂
φ,

where we used the shorthand notation introduced at the beginning of Sec-
tion 3.2 as well as Equations (13). The bracket structure on L is given by

[(φ1, X1), (φ2, X2)]L =
(
LX1φ2 − LX2φ1,

[X1, X2]X(Σ) + φ1gradhφ2 − φ2gradhφ1
)
,

which is precisely that of the constraints for the initial value problem. That
these operations satisfy the properties of a Lie-Rinehart algebra, as defined
in Definition 4.1, follows from the fact that Q̃2 = 0, using a direct extension
from Lie algebroids to Lie-Rinehart algebras of the argument in [56].

Remark 4.3. We may think of B, defined above, as the product of the
smooth manifold T ∗R and an “infinitesimally thickened point”. The Lie-
Rinehart algebra L may then be thought of as sections of a geometric object
L over B, but this object is not a vector bundle, since, as a module over
B, it is not locally free (with respect to the topology coming from the body,
T ∗R), thanks to the relations ψ•ξ

n = 0. Rather, this object is a more general
“sheaf”, since its sections, the elements of L, can be localized, again with
respect to the topology coming from T ∗R.

In order to make this notion more precise, one could work in the category
of smooth loci, or C∞ schemes, or synthetic differential geometry [29, 42, 43,
37]. We will not detail such a description, as it lies outside the scope of the
present paper.
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Remark 4.4. Our generalized Lie algebroid structure is not hamiltonian,
nor even presymplectically anchored in the sense of [13], with respect to the
pre-symplectic structure given by the canonical form on T ∗R(Σ) pulled back
to the base B of our “algebroid”. One way to see this is that the leaves of
the foliation given by the projection to T ∗R(Σ) are the characteristics of the
pre-symplectic form. If the structure were presymplectically anchored, the
anchor would descend to the symplectic quotient (at least when evaluated on
constant sections). However, looking at the term dependent on ψ∂ in (19d),
we see that the fibres with h and Π constant are not preserved.

5. Alternative approaches

This section is independent of Section 4. In Section 5.1 we will pursue an
alternative investigation, aimed at constructing an algebroid on T ∗R whose
bracket of constant sections reproduces Equation (9), starting again from the
BFV data of Theorem 3.6. In Section 5.2 we will analyze the limitations of
two attempts to construct a Lie algebroid on any symplectic manifold given
a coisotropic submanifold.

5.1. Reducing the BFV structure to T ∗R(Σ)

Following the observations in Remark 3.13, since equations (12a) through (12c)
are closely related to the algebroid of evolutions of [12], it would seem reason-
able to attempt to get rid of the problematic terms involving the χ variables.

Remark 5.1. This point of view makes sense if we recall that the L∞
structure given by the BFV theory arises as the combination of Koszul and
Chevalley–Eilenberg resolutions. In the standard scenario of gauge theory,
this combination is simple, i.e. we have a decomposition QBFV = dg + dK ,
where ďg is the Chevalley–Eilenberg differential associated with a Lie algebra
action on the body of the BFV space of fields. An observation that hints at a
possible structural similarity between gauge theories and GR is that the BFV
action is linear in the degree −1 variables χn, χ∂ (see also [30]). We can thus
hope that an analogous decomposition holds here as well. Unfortunately, as
we will see, this is not the case.

The fact that equations (12f) and (12e) contain terms that are inhomo-
geneous in χn and χ∂ means that QBFV is not tangent to the zero section of
the vector bundle29

(22) FBFV → F0
.= T ∗R(Σ) × V[1](Σ),

29Observe that this is to be expected even in standard gauge-theory scenarios.
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defined by χn = χ∂ = 0. Hence, the BFV data of Section 3, Theorem 3.6 do
not restrict to F0, and we will need to project onto it.

As is the case for any vector bundle, the tangent space at the zero section
of (22) splits naturally into a vertical and a horizontal part. The vertical part
of QBFV is given by Q(χn) and Q(χ∂) in (12). The horizontal part at the zero
section is the degree 1 vector field on F0 given by

Q0(ξn) = Lξ∂ξ
n(23a)

Q0(ξ∂) = ξn gradhξ
n + 1

2[ξ∂ , ξ∂ ](23b)

Q0(h) = h̃ξn + Lξ∂h = −2Kξn + Lξ∂h(23c)
Q0(Π) = Π̃ξn +

√
hG		(h)ξn +

√
hD		

h (ξn) + Lξ∂Π.(23d)

We want to think of F0 itself as the shifted, trivial, vector bundle:

F0 ≡ A0[1] .= T ∗R(Σ) × V[1](Σ) → T ∗R(Σ),

and establish whether the vector field Q0 endowes the vector bundle A0 with
a Lie algebroid structure. As we did earlier, we can extract information on the
bracket of (constant) sections from equations (23a) and (23b), while we can
define an anchor for the vector bundle A0 using equations (23c) and (23d).
However, this defines a Lie algebroid structure if and only if Q2

0 = 0.

Proposition 5.2. With the definitions above we have [Q0, Q0] �= 0, in par-
ticular:

Q2
0(ξn) = Q2

0(ξ∂) = Q2
0(h) = 0; Q2

0(Π) = H∂ ⊗ dξn ξn �= 0.

Proof. We abbreviate QEH
BFV by Q for ease of notation. It is immediate to check

that30 Q(ξn) = Q0(ξn), and similarly for ξ∂ and h. On the other hand, we
have that, expanding functions as polynomials in χ∂ ,

Q(Π) = Q(Π)0 + Q(Π)1 = Q0(Π) − χ∂ ⊗s dξ
n ξn,

where Q(Π)0 = Q0(Π) and Q(Π)1 = −χ∂ ⊗s dξ
n ξn are, respectively, inhomo-

geneous and linear in χ∂ . For any function f on F0, we have that

Q(f) = Q(f)0 + Q(f)1 = Q0(f) + Q(f)1
30We omit an obvious pullback along FBFV → F0.
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It is easy to gather that Q2
0(ξ∂) = 0 = Q2

0(ξn) follows from directly from
the vanishing of Q2. To show that Q2

0(h) = 0 we first observe that, since
Q0(h) is a function on F0 we can apply the formula above to yield:

0 = Q2(h) = Q(Q0(h)) = Q(Q0(h))1 + Q2
0(h)

However, Q2
0(h) is the only χ∂-inhomogeneous term in Q2(h), and therefore

both terms vanish independently if Q2(h) = 0. More explicitly,

Q(Q0(h))1 = δQ0(h)
δΠ Q(Π)1 = −2δ(Kξn)

δΠ χ∂ ⊗s dξ
n ξn ∝ ξn2 = 0,

so that Q2
0(h) = 0.

Finally, let us decompose Q(χ∂), given by Equation (12e), as a polynomial
in χ∂

Q(χ∂) = H∂ + Lξ∂χ∂ − χndξ
n = H∂ + Q(χ∂)1.

Since we know that Q is cohomological, we have (Q0(Π) is a function on F0):

0 = Q(Q(Π))
= Q(Q0(Π)) −Q(χ∂ ⊗s dξ

n ξn)
= Q0(Q0(Π)) + Q(Q0(Π))1 −H∂ ⊗s dξ

n ξn

−Q(χ∂)1 ⊗s dξ
n ξn + χ∂ ⊗s Q0(dξn ξn).

Thus, collecting terms in the polynomial expansion in χ we have

Q2(Π) = 0 ⇐⇒
{
Q2

0(Π) = H∂ ⊗ dξn ξn

Q(Q0(Π))1 −Q(χ∂)1 ⊗s dξ
n ξn + χ∂Q0(dξn ξn) = 0

so that Q2
0(Π) �= 0, since H∂ ⊗ dξn ξn is not zero.

Remark 5.3. The geometric interpretation of Q0 is simple: Q0(h) and Q0(Π)
represent the action of the hamiltonian vector fields of the constraint functions
Hn(ξn) and H∂(ξ∂) on the base variables (h,Π). There is a close relation
between Q0 and the Lie algebroid of evolutions of [12]. In the latter case, one
obtains the data specified by Q0, i.e. a bracket of sections for A0 and a vector
bundle morphism A0 → TT ∗R(Σ) by “projecting” the algebroid of evolutions
to initial data. As mentioned without proof in [12], this projection does not
give a Lie algebroid structure; this fact is testified to by the fact that Q0 is
not cohomological.
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In physical terms, the fact that Q2
0 �= 0 means that the gauge transforma-

tions generated by the “charges” Hn(ξn) and H∂(ξ∂) only form an algebroid
on-shell, i.e. on the zero locus CEH . Outside of CEH we have that the Jacobi-
ator of three (non-constant) sections will not vanish, but it will be Q-closed.
Notice, though, that the vector field QBFV restricts (i.e. is tangent) instead
to the submanifold of F0 defined by the vanishing locus IEH , i.e.

Asmall[1] .= CEH × V[1](Σ).

Proposition 5.2 then tells us that the restriction of QBFV to Asmall is cohomo-
logical. This defines the algebroid

(24) Asmall
ρsmall

TCEH

CEH

whose image under the anchor is given by the characteristic distribution of
CEH . Compare this construction with those analyzed in Section 5.2, below.

Remark 5.4. We defined the submanifold Asmall = CEH × (0, 0)×V[1](Σ) ⊂
FBFV by setting χ∂ = χn = 0 (i.e. restricting to F0) and imposing all con-
straints. If we defined A′

small without requiring Hn = 0, as naively suggested
from the fact that only H∂ = 0 is needed to make Q0 cohomological, Equa-
tion (12f) would tells us that Q is not tangent to A′

small, due to the term Hn,
since we should have Q(χn)|A′

small
= 0.

5.2. Other approaches for coisotropic submanifolds

We explain in this section how two attempts to construct Lie algebroids over
a symplectic manifold with a coisotropic submanifold, without adding extra
variables, do not actually work and cannot be applied to the case at hand.31

Consider a symplectic manifold M = T ∗N (for simplicity) and let {Hi}ni=1
denote a set of n functions in involution: {Hi, Hj} = fk

ij(x)Hk with fk
ij(x) ∈

C∞(M) the structure functions (we understand summation over repeated
indices). Denote by Xi the hamiltonian vector field associated to Hi, i.e.
Xi = {·, Hi}. Observe, en-passant, that the hamiltonian vector fields are in

31We found examples of these approaches in remarks in [14] and an early version
of [22].
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involution only “on-shell”, i.e. on the vanising locus of the Hi’s, unless the
structure functions are constant; i.e. for any function g ∈ C∞(M):

(25) [Xi, Xj ](g) = fk
ijXk(g) + {fk

ij , g}Hk

Consider now a rank-n trivial vector bundle A → M , and decompose
sections s ∈ Γ(A) as s = siui for {ui}ni=1 a basis of constant sections. We try
to endow this vector bundle with a Lie algebroid structure.

5.2.1. Alternative 1 (see [22, Sect. 4.3]) We define the anchor map as
a vector bundle morphism ρ : A → TM as follows:

s �−→ ρ1(s)
.= siXi = si{·, Hi},

and we declare a bracket on sections to be given by

�s1, s2�1
.=
(
fk
ijs

i
1s

j
2 + si1Xi(sk2) − si2Xi(sk1)

)
uk.

It is easy to check that with these definitions we have the Leibniz rule:

�s1, g s2�1 = g�s1, s2�1 + ρ1(s1)(g)s2,

however, with a simple calculation we see that

ρ1(�s1, s2�1) − [ρ1(s1), ρ1(s2)] = · · · = fk
ijs

i
1s

j
2Xk − si1s

j
2XiXj + si2s

j
1XiXj

applying the above vector field to any function g, thanks to Equation (25) we
get

(ρ1(�s1, s2�1) − [ρ1(s1), ρ1(s2)]) (g) = −si1s
j
2{fk

ij , g}Hk

which vanishes if and only if either

1. fk
ij constant, or

2. we restrict to the locus Hk = 0, i.e. on shell.

Conclusion The prescription above yields an algebroid structure on A only
on shell, unless the structure functions are constant, in which case we have
the usual action algebroid for a Lie algebra action.
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5.2.2. Q-manifold reformulation of Alternative 1 The data above can
be encoded by a degree 1 vector field Q on A[1], as follows:

Qci = f i
jkc

jck = [c, c]i, Qxμ = Xμ
i c

i = Xi(xμ)ci.

This defines an algebroid iff Q2 = 0 [56, 57]. However, applying Q2 to any
function g = g(x) gives

Q2g = Xμ
j ∂μXi(g)cjci−

1
2Xi(g)f i

jkc
jck = {{g,Hi}, Hi}cjci−

1
2{g,Hk}fk

jic
jci,

which due to the antisymmetry of the product cicj of odd variables yields
Q2(g) = {g, fk

ji}Hkc
jci, which, as above, does not vanish off shell for all g

unless the structure functions fk
ji are constant. Moreover, we also have that

Q2ci = [c, [c, c]]i − 1
2X

μ
i ∂μf

i
jkc

jck = {f i
jk, Hi}cjck

which again does not vanish in general.

Remark 5.5. Observe that this is the scenario we outlined when looking at
Q0 in the first part of Section 5.1, which can be interpreted as a particular
example of a general fact. Notice that, in the specific example of GR, the com-
bination {f i

jk, Hi}cjck = 0 ought to vanish as a result of the first statement
in Proposition 5.2, i.e. Q2

0(ξn) = Q2
0(ξ∂) = 0.

5.2.3. Alternative 2, (see [14, Section II.B]) With a similar starting
point as above32 we define an “anchor” map ρ2 : Γ(A) → X(M) as

s �−→ ρ2(s)
.= {siHi, ·}.

One immediately sees that this map does not arise from a vector bundle
morphism, as it is not C∞-linear (i.e. ρ(gs) �= gρ(s)), and hence the vector
bundle A → M cannot be a Lie algebroid with anchor ρ2. For the same
reason, this map also fails to be a module homomorphism, so this is not the
anchor map of a Lie–Rinehart algebra either (cf. Def. 4.1). However, as shown
in the paper, with the bracket given as

�s1, s2�2
.= {si1Hi, s

j
2Hj}

32In [14] a nontrivial bundle A is considered, in principle, but this will have no
bearing on our observations.
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one can check that both Leibniz and a (formal) homomorphism property are
satisfied:

�s1, gs2�2 = g�s1, s2�2 + ρ2(s1)(g)s2

ρ2(�s1, s2�2) = [ρ2(s1), ρ2(s2)]..

Conclusion This structure is not that of a Lie algebroid, nor that of a
Lie-Rinehart algebra. It might be given some other interpretation, once the
appropriate notion is found, but we are not aware of any. Notice that our
conclusions are independent of the constancy of the structure functions fk

ij ,
so the construction in [14] fails to yield a Lie algebroid even in the case
of a hamiltonian action of a Lie algebra on M , where the functions Hi are
interpreted as the components of a momentum map.

6. Outlook

We conclude with a few observations on possible developments and further
investigations aimed at a better understanding of the hamiltonian structure
of general relativity.

Cauchy data as composition of coisotropic relations

Recall the construction of initial data for a lagrangian field theory outlined in
Section 2.2. If we now assume that the equations admit solutions for a small
cylinder Mε = Σ× [0, ε], the projection LMε = πMε(EL) ⊂ F∂

∂Mε
= F∂

Σ ×F∂
Σ is

expected to be a lagrangian submanifold,33 which can be seen as the boundary
values of a solution of the equations of motion in Mε (think of the graph of
the hamiltonian flow). A solution is found by intersecting LMε with another
lagrangian submanifold transversal to it: a boundary condition34 (see [19,
Section 2.1] and also [39, Chapter III.16]).

One can look at the subset C ⊂ F∂
Σ of points that can be completed to

a pair in LMε ⊂ F∂
Σ × F∂

Σ for some ε. Let us assume that, for said ε, the
33Note that LMε is always isotropic.
34Isotropicity of LM is generally insufficient to hope for the existence of a bound-

ary condition transversal to it. For equations of motion that admit unique solutions
in a short cylinder Mε, we expect LMε to be lagrangian, in the sense of being
isotropic with an isotropic complement. More generally, LMε might still be la-
grangian in some weaker sense, and generally it might not be given by the graph of
a hamiltonian flow. See [18, Theorem 4.2] for an in-depth analysis of the example
of wave equations.
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submanifold LMε is lagrangian as expected. If we think of F∂
Σ as a relation

from the point to F∂
Σ itself—hence coisotropic—and LMε as a lagrangian

relation in F∂
Σ ×F∂

Σ (in particular coisotropic), following [19, Section 3.4], this
leads us to conclude that C must be coisotropic. Indeed C is the composition
of coisotropic relations C =

⋃
ε∈[0,∞) LΣ×[0,ε] ◦ F∂

Σ .
In order to have a proof of the coisotropic property of CEH that does not

explicit rely on diffeomorphism symmetry, one could attempt to prove that,
for a sufficiently small cylinder Σ× [0, ε], the subset LMε is actually a (locally)
lagrangian submanifold.35 One route to this goal, compatible to the discus-
sions contained in this paper, follows the reduction procedure culminating in
Corollary 3.21 of [20].

Another interesting approach to an abstract proof of the coisotropic prop-
erty, unrelated to the present discussion, was recently proposed in [31]. For
the author, this property is a consequence of the requirement that the canon-
ical and covariant approaches to the phase space for general relativity be
physically equivalent.

The homotopy momentum map

In recent work of one of the authors [11], it was shown that the non-integrated
constraints of general relativity can be interpreted as a momentum map in
the setting of multisymplectic geometry.

The multipresymplectic form of a lagrangian field theory such as general
relativity is the (n+1)-form ω = el+ δγ, the sum of the Euler-Lagrange form
and the variation of the boundary form, which is the total derivative of the
Lepage form L+γ. From ω we can construct an L∞-algebra L∞(J∞LorM , ω)
consisting of forms in the variational bicomplex, which can be interpreted
as the L∞-algebra of conserved currents [11, Prop. 2.4]. The homotopy mo-
mentum map of a Lie algebra action ρ : g → X(J∞LorM ) is a morphism of
L∞-algebras,

μ : g → L∞(J∞LorM , ω),

such that the first component maps every a ∈ g on M to a form μ1(a) ∈
Ωn−1(J∞LorM ) satisfying

ιρ(a)ω = −dμ1(a),

where d is the total differential of the variational bicomplex.
35This means that it is would be lagrangian at smooth points.
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The action of diffeomorphisms on Lorentz metrics is local, so that it in-
duces an action of the Lie algebra of vector fields ρ : X(M) → X(J∞LorM ).
It is shown in [11, Thm. 4.1] that the Lepage form L + γ is invariant under
this action. Since the Lepage form is the primitive of the multipresymplectic
form, it follows in analogy to symplectic geometry that the maps

μk : ∧kX(M) −→ L∞(J∞Lor, ω)
μk(v1 ∧ · · · ∧ vk) := ιρ(v1) · · · ιρ(vk)(L + γ),

where 1 ≤ k ≤ n− 1, define a homotopy momentum map [11, Theorem 4.2].
The higher momentum map does not depend on the choice of the Cauchy

hypersurface Σ. It is an open question, how the L∞-algebra of conserved
currents is related by integration over Σ to the Poisson algebra of the corre-
sponding “charges”, i.e. the constraint functions.
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