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Generalizing the Mukai Conjecture to the symplectic
category and the Kostant game
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Milena Pabiniak, and Silvia Sabatini

Abstract: In this paper we pose the question of whether the (gen-
eralized) Mukai inequalities hold for compact, positive monotone
symplectic manifolds. We first provide a method that enables one
to check whether the (generalized) Mukai inequalities hold true.
This only makes use of the almost complex structure of the mani-
fold and the analysis of the zeros of the so-called generalized Hilbert
polynomial, which takes into account the Atiyah-Singer indices of
all possible line bundles.

We apply this method to generalized flag varieties. In order to
find the zeros of the corresponding generalized Hilbert polynomial
we introduce a modified version of the Kostant game and study its
combinatorial properties.
Keywords: Symplectic geometry, combinatorics.

1. Introduction

In 1988 Mukai [19] conjectured that a Fano variety M of complex dimension
n with index k0 and Picard number b should satisfy the following inequality:

n ≥ b(k0 − 1),

with equality if and only if M is (CP k0−1)b. This conjecture was generalized
by Bonavero, Casagrande, Debarre and Druel in [4], where the index above is
replaced by the pseudoindex ρM , defined as the minimum of the evaluation
of the anticanonical divisor −KM on rational curves on M . There has been
extensive work towards proving these two inequalities in a variety of cases,
but general proofs of these conjectures are still missing.

In this paper we start investigating similar questions in a different cat-
egory. Namely, suppose that (M,ω) is a compact symplectic manifold with
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first Chern class of the tangent bundle given by c1. The index of (M,ω) can
be defined as the largest integer k0 satisfying c1 = k0η for some primitive
element η ∈ H2(M ;Z), modulo torsion elements. The symplectic analogues
of Fano varieties are known in the literature as positive monotone symplectic
manifolds, namely symplectic manifolds satisfying c1 = [ω]. As for Fano va-
rieties the Picard number is exactly the second Betti number, the following
question arises naturally:

Question 1. Let (M,ω) be a compact, positive monotone symplectic manifold
of dimension 2n with second Betti number b2 and index k0. Does the following
inequality hold?

(1.1) n ≥ b2(k0 − 1) Symplectic Mukai inequality

For positive monotone symplectic manifolds the concept of pseudoindex
can also be generalized, namely: Consider an embedded symplectic sphere
S2 and observe that, under the positive monotonicity assumption, c1[S2] is a
positive integer. Therefore one can define the pseudoindex ρ0 of (M,ω) as

ρ0 := min{c1[S2] | S2 symplectic sphere embedded in (M,ω)}.

In analogy with the generalized Mukai conjecture for Fano varieties we pose
the following:

Question 2. Let (M,ω) be a compact, positive monotone symplectic manifold
of dimension 2n with second Betti number b2 and pseudoindex ρ0. Does the
following inequality hold?

(1.2) n ≥ b2(ρ0 − 1) Generalized symplectic Mukai inequality

One of the reasons to believe that such inequalities should hold true for
positive monotone symplectic manifolds is that recent work has shown that,
at least under some mild symmetry assumptions, this category behaves very
similarly to that of Fano varieties, see for instance [7, 18, 24].

As Questions 1 and 2 have been so far investigated only for Fano varieties,
many of the tools used to answer them are, not surprisingly, algebraic geo-
metric. Therefore, the first step to tackle them is to generalize the methods
with which they can be proved to a category of spaces that includes that of
positive monotone symplectic manifolds.

In Section 2 we introduce the so-called generalized Hilbert polynomial H
for a compact almost complex manifold (M,J). This polynomial takes into
account the Atiyah-Singer indices of all the possible line bundles on (M,J).
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One of the main results of the section is Theorem 2.4, in which it is proved
that the presence of a so-called “pointed box of zeros” of H (see Definition 2.6)
implies an inequality that is related to the Mukai inequality and its gener-
alization. This relation is investigated in Corollary 2.8 and Corollary 2.11.
In particular the latter gives conditions under which a positive monotone
Hamiltonian GKM space satisfies an inequality that is indeed stronger than
the generalized Mukai inequality (see (2.13)).

One of the goals of Section 3 is to verify the hypotheses of Corollary 2.11
for generalized flag varieties, thus proving for them the existence of a “pointed
box of zeros” of the generalized Hilbert polynomial H, see Theorem 3.3. We
point out that the corresponding inequality (3.2) in Corollary 3.4 has already
been proved by Pasquier [21], where he checked it through explicit calculations
that depend on the type of the Dynkin diagram of the compact Lie group
and the parabolic subgroup. The proof that we present in this paper relies
on the combinatorics of the (modified) Kostant game, see Subsections 3.3 and
3.4. One of the main purposes of the already known Kostant game (see for
instance [22, 6]) is to enumerate the positive roots of a compact Lie group
from its Dynkin diagram. In Subsection 3.4 we explain a modified version
of the Kostant game, which allows us to index the linear factors of H, thus
finding its zeros.1 It turns out that the moves of the modified Kostant game
are in one to one correspondence with the reduced expressions of the minimal
length representatives in the posets of the quotient of a Weyl group with a
parabolic subgroup. This fact is purely combinatorial and can be generalized
to any Weyl group and any of its parabolic subgroups.

2. Zeros of the generalized Hilbert polynomial and Mukai
inequalities

Let (M,J) be a compact, connected, almost complex manifold of dimension
2n. Consider the cohomology group H2(M ;Z) and the following map

H̃ : H2(M ;Z) −→ Z

η �→ Ind(e2πiη),

where the first Chern class of the line bundle e2πiη is exactly η. We refer
to it as the index map, as it computes the indices of all the possible line
bundles on (M,J). Thanks to a simple observation (see for instance [23,
Lemma 4.1]), the map H̃ is well-defined on the lattice L given by the quo-
tient H2(M ;Z)/Tor(H2(M ;Z)), where Tor(H2(M ;Z)) denotes the torsion

1The referee let us know that the modified version of the Kostant game already
appeared in [20].
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subgroup of H2(M ;Z). By abuse of notation, let H̃ : L → Z be the induced
index map.

Let b2 denote the second Betti number of M , which is therefore exactly
the rank of L. Once a Z-basis τ1, . . . , τb2 of L is chosen, we can identify L
with Zb2

L −→ Zb2

η = k1τ1 + · · · + kb2τb2 �→ (k1, . . . , kb2)

and obtain a map H: Zb2 → Z given by

(2.1) H(k1, . . . , kb2) = Ind(e2πiη), where η = k1τ1 + · · · + kb2τb2 .

Lemma 2.1. The map H: Zb2 → Z defined in (2.1) is a polynomial in
k1, . . . , kb2 of degree at most n.

Proof. This lemma is a direct consequence of the Atiyah-Singer cohomological
formula for the index [2], as for η = k1τ1 + · · · kb2τb2 , the index of e2πiη is given
by

Ind(e2πiη) = Ch(e2πiη)T [M ] = Ch(e2πi(k1τ1+···+kb2τb2 ))T [M ]

=

⎛⎝∑
l≥0

(k1τ1 + · · · + kb2τb2)l

l!

⎞⎠ T [M ]

=
∑
I

aIk
l1
1 · · · · · klb2b2

,

where the sum runs over all the multi-indices I = (l1, . . . , lb2) satisfying lj ∈
Z≥0 for all j and l1 + · · · + lb2 ≤ n, T is the total Todd class of M and [M ]
is the orientation class of (M,J) in homology.

Observe that the coefficients aI above are rational numbers given by ra-
tional combinations of the evaluation on the homology class [M ] of products
of Chern classes of (M,J) and of the classes τ1, . . . , τb2 .

Lemma 2.1 allows us to define the following polynomial on Cb2 , which is
exactly the (unique) polynomial extension of H from Zb2 to Cb2 and, by abuse
of notation, is still denoted by H.

Definition 2.2. The generalized Hilbert polynomial is the polynomial
map

H: Cb2 −→ C

(z1, . . . , zb2) �→ ∑
I aIz

l1
1 · · · · · zlb2b2

,
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where the sum runs over all the multi-indices I = (l1, . . . , lb2) satisfying lj ∈
Z≥0 for all j and l1 + · · · + lb2 ≤ n, and the aI ’s are defined in the proof of
Lemma 2.1.

Example 2.3. Let (M,J) be a compact almost complex manifold of dimen-
sion 4 with Chern classes of (TM, J) given by c1 and c2. The total Todd class
is given in this case by T = 1 + c1

2 + c21+c2
12 . Assume that L has dimension

2 and let τ1, τ2 be one of its bases. Let c1 = α1τ1 + α2τ2, where α1, α2 ∈ Z.
Then

H(k1, k2) = e2πi(k1τ1+k2τ2)T [M ]

=
(

1 + k1τ1 + k2τ2 + (k1τ1 + k2τ2)2

2

)
(1 + c1

2 + c21 + c2
12 )[M ]

= k2
1
τ 2
1
2 [M ] + k2

2
τ 2
2
2 + k1k2τ1τ2[M ] + k1

α1τ
2
1 + α2τ1τ2

2 [M ]

+ k2
α1τ1τ2 + α2τ

2
2

2 [M ] + Todd(M),

where Todd(M) denotes the Todd genus of M and is given by c21+c2
12 [M ]. In

the notation introduced in Lemma 2.1 we obtain a(2,0) = τ2
1
2 [M ], a(0,2) = τ2

2
2 ,

a(1,1) = τ1τ2[M ] and so on.

The following theorem is one of the main results of this section.

Theorem 2.4. Let (M,J) be a compact, connected, almost complex manifold
of dimension 2n with second Betti number b2 and first Chern class c1. Let L̃
be a full rank sublattice of L = H2(M ;Z)/Tor(H2(M ;Z)) and {η1, . . . , ηb2}
be a Z-basis of L̃ such that c1 ∈ L̃ and

c1 =
b2∑
i=1

miηi

for some positive integers mi ∈ Z>0.
Let H̃ : L → Z be the index map and assume that

H̃(−c1) �= 0,

and

(2.2) H̃(−k1η1 − · · · − kb2ηb2) = 0,
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for all k1, . . . , kb2 ∈ Z such that 0 < ki ≤ mi for all i = 1, . . . , b2 and∑b2
i=1 ki <

∑b2
i=1 mi. Let H ∈ Q[z1, . . . , zb2 ] be the generalised Hilbert polyno-

mial. Then

(2.3) n ≥ deg(H) ≥
b2∑
i=1

(mi − 1).

Remark 2.5. It is easy to see that the first inequality in (2.3) is an equality
whenever cn1 [M ] �= 0. This holds for instance when M is a complex Fano
variety.

In order to have a better understanding of this theorem we introduce the
following terminology.

Definition 2.6. For m = (m1, . . . ,ml) ∈ Zl
≥0, we call the set

{(k1, . . . , kl) ∈ Zl
≥0 | (k1, . . . , kl) ≤ (m1, . . . ,ml)} \ {(m1, . . . ,ml)}

a pointed box at m. An affine transformation of a pointed box is also called
pointed box.

With this definition at hand, Theorem 2.4 means that the line bundles
corresponding to the integral points of L̃ inside the “pointed box” sketched
in Figure 2.1, namely the white circles, have index zero.

−η1

−η2

•−c1

◦◦◦

◦◦

Figure 2.1: pointed box.

The proof of Theorem 2.4 relies on the following algebraic fact. First of
all we set the following definitions.
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• Let ≤ be the partial order on Zl, defined as follows:

(s1, . . . , sl) ≤ (k1, . . . , kl) if and only if s1 ≤ k1, . . . , sl ≤ kl.

• Given the standard order on Z, we define the following order preserving
function

ht : Zl → Z

(k1, . . . , kl) �→ ht(k1, . . . , kl) := k1 + . . . + kl

and we call it height.

Lemma 2.7. Let P ∈Q[z1, . . . , zl] and assume that there exists (m1, . . . ,ml)∈
Z≥0 such that P (m1, . . . ,ml) �= 0 and P (k1, . . . , kl)=0 for every (k1, . . . , kl) ∈
Zl
≥0 such that (k1, . . . , kl) ≤ (m1, . . . ,ml) and (k1, . . . , kl) �= (m1, . . . ,ml).

Then

(2.4) degP ≥ ht(m1, . . . ,ml) = m1 + . . . + ml.

Proof. The idea of the proof is to write the polynomial P in terms of an
appropriate basis, show that one of the coefficients of P with respect to this
basis is non zero and that the degree of the corresponding basis element equals
ht(m1, . . . ,ml).

For s ∈ Z≥0, let

Ms+1(z) := 1 · z · (z − 1) · . . . · (z − s) =
s∏

j=0
(z − j)

and M0(z) := 1. The set {Ms(z)}s∈Z≥0 defines a basis of Q[z]. Note that for
an integer k ∈ Z≥0

(2.5) Ms(k) =
{
k! if k = s

0 if k < s.

It can be easily checked that a basis of Q[z1, . . . , zl] is the set

{M(s1,...,sl)(z1, . . . , zl) := Ms1(z1) · . . . ·Msl(zl)}(s1,...,sl)∈Zl
≥0
.

Therefore we can write any polynomial P ∈ Q[z1, . . . , zl] as a linear combi-
nation of the elements of this basis

(2.6) P (z1, . . . , zl) =
∑

(s1,...,sl)∈Zl
≥0

h(s1,...,sl) ·M(s1,...,sl)(z1, . . . , zl)
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for some rational numbers h(s1,...,sl), such that all except a finite number of
them are equal to zero.

We show the following

Claim. For a polynomial P satisfying the assumptions of the Lemma, the
coefficient h(k1,...,kl) equals zero for every

(0, . . . , 0) ≤ (k1, . . . , kl) ≤ (m1, . . . ,ml) and (k1, . . . , kl) �= (m1, . . . ,ml).

Moreover the coefficient h(m1,...,ml) is nonzero.

The claim implies that

deg(P ) ≥ deg(M(m1,...,ml)) = m1 + · · · + ml,

which is the desired inequality (2.4).
From (2.5), the definition of M(s1,...,sl) and (2.6) it follows that

(2.7) P (k1, . . . , kl) =
∑

(0,...,0)≤(s1,...,sl)≤(k1,...,kl)
h(s1,...,sl) ·M(s1,...,sl)(k1, . . . , kl)

for any (k1, . . . , kl) ∈ Zl
≥0. In particular P (0) = 0, unless (m1, . . . ,ml) =

(0, . . . , 0), in which case we are done. We prove the claim using finite induction
on the height function: assume that h(k1,...,kl) = 0 for all (k1, . . . , kl) ∈ Zl

≥0
with (k1, . . . , kl) ≤ (m1, . . . ,ml) and ht(k1, . . . , kl) ≤ k < ht(m1, . . . ,ml).
We show that for any (k1, . . . , kl) ∈ Zl

≥0 with (k1, . . . , kl) ≤ (m1, . . . ,ml)
and ht(k1, . . . , kl) = k + 1, either (k1, . . . , kl) �= (m1, . . . ,ml) and h(k1,...,kl) =
0 or (k1, . . . , kl) = (m1, . . . ,ml) and h(m1,...,ml) �= 0. The induction on the
height stops when we reach (k1, . . . , kl) = (m1, . . . ,ml), which is the only
maximal element in the set {(s1, . . . , sl) ∈ Zl

≥0 : (s1, . . . , sl) : (s1, . . . , sl) ≤
(m1, . . . ,ml)} with respect to the order that we defined above.

Let (k1, . . . , kl) ∈ Z≥0 be such that ht(k1, . . . , kl) = k+1. Then from (2.7)
and the induction hypothesis we obtain

P (k1, . . . , kl) = h(k1,...,kl)M(k1,...,kl)(k1, . . . , kl),

as any (s1, . . . , sl) satisfying

(0, . . . , 0) ≤ (s1, . . . , sl) ≤ (k1, . . . , kl) and (s1, . . . , sl) �= (k1, . . . , kl)

has height less than k + 1, and therefore by induction satisfies h(s1,...,sl) = 0.
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If

(k1, . . . , kl) ≤ (m1, . . . ,ml) and (k1, . . . , kl) �= (m1, . . . ,ml),

then h(k1,...,kl) = 0 as P (k1, . . . , kl) = 0 by the assumption of the Lemma and
M(k1,...,kl)(k1, . . . , kl) = k1!·. . .·kl! �= 0. Likewise, if (k1, . . . , kl) = (m1, . . . ,ml),
then P (m1, . . . ,ml) �= 0 implies h(m1,...,ml) �= 0. This finishes the proof of the
claim and hence of the Lemma.

Proof of Theorem 2.4. The first inequality, n ≥ deg H, comes from Lemma 2.1
and the definition of generalized Hilbert polynomial. In order to prove the sec-
ond inequality we introduce the following: In analogy with the definition of
the generalised Hilbert polynomial H(z1, . . . , zb2), we define the polynomial
H′(z1, . . . , zb2) that at integral values (k1, . . . , kb2) ∈ Zb2 satisfies

H′(k1, . . . , kb2) := H̃(k1η1 + · · · + kb2ηb2).

We observe that, as L̃ is a full rank sublattice of L, H(z1, . . . , zb2) and
H′(z1, . . . , zb2) differ only by a linear, invertible transformation of the co-
ordinates (z1, . . . , zb2), namely there exists a linear, invertible transforma-
tion A : Cb2 	 H2(M ;C) → Cb2 	 H2(M ;C) satisfying A(τj) = ηj for all
j = 1, . . . , b2, implying H′(z1, . . . , zb2) = H(A(z1, . . . , zb2)). From the fact that
A is linear and invertible we have deg(H′) = deg(H).

Consider now the polynomial

Q(z1, . . . , zb2) := H′(−z1 − 1, . . . ,−zb2 − 1),

whose degree is clearly the degree of H′, and hence the degree of H.
We recall that the first Chern class c1 satisfies c1 =

∑b2
j=1 miηi for some

positive integers m1, . . . ,mb2 and observe that the polynomial Q satisfies

Q(m1 − 1, . . . ,mb2 − 1) = H′(−m1, . . . ,−mb2) = H̃(−m1η1 − · · · −mb2ηb2),

the latter being nonzero by assumption. Moreover by (2.2) we have

Q(k1, . . . , kb2) = 0

for all (k1, . . . , kb2) ∈ Zb2
≥0 such that

(k1, . . . , kb2) ≤ (m1−1, . . . ,mb2−1) and (k1, . . . , kb2) �= (m1−1, . . . ,mb2−1).
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Therefore Lemma 2.1 implies that

deg(H) = deg(Q) ≥
b2∑
i=1

(mi − 1),

which concludes the proof.

We are now ready to derive the corollaries of this section that concern
the Mukai inequality. Suppose that {τ1, . . . , τb2} is a basis of L such that
c1 =

∑b2
i=1 niτi for some positive integers ni, for all i = 1, . . . , b2. Observe

that the index k0 of (M,J) satisfies k0 = gcd(n1, . . . , nb2).

Corollary 2.8. Let (M,J) be a compact, connected, almost complex mani-
fold of dimension 2n with second Betti number b2, first Chern class c1 and
index k0.

Let {τ1, . . . , τb2} be a basis of L = H2(M ;Z)/Tor(H2(M ;Z)) such that

c1 =
b2∑
i=1

niτi

for some positive integers ni ∈ Z>0. For i = 1, . . . , b2 define ηi := ni

k0
τi ∈ L

and assume that the index map H̃ : L → Z satisfies

H̃(−c1) �= 0,

and

(2.8) H̃(−k1η1 − · · · − kb2ηb2) = 0,

for all k1, . . . , kb2 ∈ Z such that 0 < ki ≤ k0 for all i = 1, . . . , b2 and
∑b2

i=1 ki <
k0b2.

Let H ∈ Q[z1, . . . , zb2 ] be the generalised Hilbert polynomial. Then (M,J)
satisfies the Mukai inequality, more precisely

(2.9) n ≥ deg(H) ≥ b2(k0 − 1).

Proof. The first inequality is a consequence of Lemma 2.1 and the definition of
Hilbert polynomial. The second inequality follows easily from Theorem 2.4, as
the set {η1, . . . , ηb2} is Z-independent and the lattice L′ given by Z〈η1, . . . , ηb2〉
is a full rank sublattice of L. Moreover c1 ∈ L′ and it is given by c1 =∑b2

i=1 k0ηi.
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The second corollary of Theorem 2.4 concerns the generalized Mukai in-
equality for a positive monotone symplectic manifold with pseudoindex ρ0.
Henceforth we focus on the following category of spaces, which is also that
appearing in the next section, and which enables us to find a special basis of
H2(M ;Z) such that the coefficients of the first Chern class in this basis are
symplectic volumes of some special embedded spheres.

Suppose that (M,ω) is a compact symplectic manifold endowed with a
Hamiltonian action of a compact torus T : We recall that the action of a com-
pact torus T on a symplectic manifold (M,ω) is called Hamiltonian if there
exists a T -invariant map ψ : M → Lie(T )∗, called moment map, satisfying

d〈ψ(·), ξ〉 = −ιξ#ω,

where 〈·, ·〉 denotes the natural pairing between Lie(T )∗ and Lie(T ), ξ# is
the vector field generated by the action and ιξ# · denotes the contraction op-
erator. The function ψξ : M → R defined as ψξ(·) = 〈ψ(·), ξ〉 is called the
ξ-component of the moment map. The triple (M,ω, ψ) is called a (com-
pact) Hamiltonian T -space. In this paper we consider Hamiltonian T -
spaces whose fixed point set – denoted by MT – is discrete and hence, by
compactness of M , finite. Moreover we assume that (M,ω, ψ) is a GKM
(Goresky-Kottwitz-MacPherson) space, namely, for every codimension
one subtorus H, the connected components of the set of points fixed by H is
of dimension at most 2. This condition can also be rephrased as follows. Con-
sider the isotropy action of T on the tangent space at a fixed point p ∈ MT

and its corresponding weights, called isotropy weights of p. Then the ac-
tion is GKM if and only if for every p ∈ MT the weights of the isotropy
action are pairwise linearly independent. (See [10] for the original reference
or for instance [12, Chapter 11].) Indeed the two-dimensional components
mentioned above are spheres corresponding exactly to the fixed points of the
codimension one subtorus exp{ξ ∈ Lie(T ) | 〈α, ξ〉 = 0}. Note that, as they
are fixed components of a subgroup of T , they are symplectic submanifolds of
M . The restriction of the T -action to any of those has exactly two fixed points
p, q ∈ MT , and the intersection properties of the set of these isotropy spheres
is encoded in a graph (V,EGKM ) called the GKM graph: the vertex set is
exactly the fixed point set MT , and every edge represents an isotropy sphere.
Henceforth we restrict to Hamiltonian T -spaces whose action is GKM.

The basis of H2(M ;Z) that allows us to translate Theorem 2.4 in terms
of the pseudoindex comes from a well-known basis in the equivariant coho-
mology ring of (M,ω, ψ), called the canonical basis. In order to introduce
it we need the following terminology: Consider a generic component ψξ of the
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moment map, where generic means that 〈α, ξ〉 �= 0 for every isotropy weight
α occurring at a fixed point p. Define λp to be the number of negative weights
at p, namely the number of isotropy weights α of p such that 〈α, ξ〉 < 0, and
let Λ−

p be the product of these weights. We say that a generic component ψ#

is index increasing if λp < λq for every edge connecting p to q in EGKM

such that ψξ(p) < ψψ(q).
Since the manifold is acted on upon a torus T , which we assume to have

dimension d, it is useful to consider the equivariant cohomology ring with Z-
coefficients H∗

T (M ;Z), which has the structure of a H∗
T ({p};Z)-module, where

{p} is simply a point. Once a basis {x1, . . . , xd} of the dual lattice of Lie(T )∗
is chosen, the latter can be identified with the polynomial ring Z[x1, . . . , xd].
Notice that Λ−

p ∈ Z[x1, . . . , xd]. More generally the restriction τ(p) to a fixed
point p of a class τ ∈ H∗

T (M ;Z) lives in this polynomial ring.
The theorem below was proved by Guillemin and Zara [13] over the ra-

tionals and then extended to the integers by Goldin and Tolman [9].

Theorem 2.9. Let (M,ω, ψ) be a compact Hamiltonian T -space such that
the T -action is GKM. Suppose that there exists a ξ ∈ Lie(T ) such that ψξ

is index increasing. Then for every p ∈ MT there exists a unique element
τ̃p ∈ H

2λp

T (M ;Z) satisfying the following properties:

(i) τ̃p(p) = Λ−
p ;

(ii) τ̃p(q) = 0 for all q ∈ MT \ {p} such that λq ≤ λp.

Moreover the set {τ̃p}p∈MT of these elements is a basis of H∗
T (M ;Z) as a

module over Z[x1, . . . , xd] and is called the canonical basis of (M,ω, ψ)
w.r.t. the component ψξ.

Consider the natural restriction r : H∗
T (M ;Z) → H∗(M ;Z). Another vir-

tue of this basis is that it restricts to a basis of H∗(M ;Z) (regarded as a
Z-module). Therefore the elements {τp := r(τ̃p), λp = 1} form a basis of
H2(M ;Z). By abuse of notation we refer to these elements as the canonical
basis of H2(M ;Z).

Before proving the main property of this canonical basis, which allows
us to link Theorem 2.4 to the generalized Mukai conjecture, we observe the
following:

• Since (M,ω) is compact and symplectic, H2(M ;Z) �= 0, therefore there
must be fixed points p with λp = 1;

• For every fixed point p with λp = 1 there exists a unique symplectic,
invariant sphere containing the (unique) minimum p0 of ψξ and p as
respectively “south” and “north pole”. Let S2

1 , . . . , S
2
b2

be the collection
of these spheres.
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We are ready for the following

Proposition 2.10. Let (M,ω, ψ) be a compact Hamiltonian T -space such
that the T -action is GKM. Suppose that there exists a ξ ∈ Lie(T ) such that
ψξ is index increasing and consider the canonical basis {τ1, . . . , τb2} described
above.

Let α ∈ H2(M ;Z) and write it as α =
∑b2

i=1 miτi, where mi ∈ Z for all
i = 1, . . . , b2. Let S2

1 , . . . , S
2
b2

be the collection of symplectic spheres connecting
p0 to the fixed points p with λp = 1. Then, modulo reordering the elements τi,

mi =
∫
S2
i

α, for all i = 1, . . . , b2.

Proof. By the Kirwan surjectivity theorem [16], every cohomology class τ ∈
H∗(M ;Z) admits an equivariant extension τ̃ ∈ H∗

T (M ;Z), namely there ex-
ists τ̃ such that r(τ̃) = τ . This extension is not unique, but for degree 2 ele-
ments any two extensions differ by a degree one polynomial in Z[x1, . . . , xd]
without constant term. Therefore, for the given α ∈ H2(M ;Z) there exists
α̃ ∈ H2

T (M ;Z) such that

(2.10) α̃ =
b2∑
i=1

miτ̃i + P,

for some degree one polynomial P ∈ Z[x1, . . . , xd] without constant term.
By evaluating (2.10) at the minimum p0 of ψξ and using property (ii) in
Theorem 2.9 we obtain that α̃(p0) = P . Let pj be a point with λpj = 1. Then,
evaluating (2.10) at pj , using property (ii) in Theorem 2.9 and the previous
computation, we have

α̃(pj) = mj τ̃j(pj) + α̃(p0) = mjαj + α̃(p0),

where αj is the unique negative weight at pj . Therefore mj , thought as a
rational function in x1, . . . , xd, is exactly given by

(2.11) mj = α̃(pj) − α̃(p0)
αj

.

Let S2
j be the unique invariant symplectic sphere stabilized pointwise by

exp{ξ ∈ Lie(T ) | 〈αj , ξ〉 = 0} and containing p0 and pj . Then the weight
of the isotropy T -action on the tangent space Tp0S

2
pj is exactly −αj . There-

fore, by the Atiyah-Bott [1] and Berline-Vergne [3] localization formula in
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equivariant cohomology, mj is exactly
∫
S2
j
α̃ which, by degree reasons, is equal

to
∫
S2
j
α.

Corollary 2.11. Let (M,ω) be a positive monotone compact symplectic man-
ifold, therefore c1 = [ω], with pseudoindex ρ0. Assume that (M,ω) can be en-
dowed with a Hamiltonian T -action which is also GKM. Suppose that there
exists a ξ ∈ Lie(T ) such that ψξ is index increasing and consider the canonical
basis {τ1, . . . , τb2} ⊂ H2(M ;Z) described above. Let

c1 =
b2∑
i=1

miτi

for some integers mi ∈ Z. Then mi > 0 for all i = 1, . . . , b2.
Moreover, if H̃ : L → Z denotes the index map and

(2.12) H̃(−k1τ1 − · · · − kb2τb2) = 0,

for all k1, . . . , kb2 ∈ Z such that 0 < ki ≤ mi for all i = 1, . . . , b2 and∑b2
i=1 ki <

∑b2
i=1 mi, then

(2.13) n ≥
b2∑
i=1

(mi − 1) ≥ b2(ρ0 − 1),

and therefore (M,ω) satisfies the generalized Mukai inequality.

Proof. Let S2
1 , . . . , S

2
b2

be the collection of symplectic spheres connecting p0,
the minimum of ψξ, to the fixed points pj with λpj = 1, for j = 1, . . . , b2.
Then by Proposition 2.10 and the monotonicity condition c1 = [ω] we have
that

mj =
∫
S2
j

c1 =
∫
S2
j

ω > 0,

thus proving the first claim.
Now we observe that for the class of spaces described in the hypotheses,

H̃(−c1) �= 0 (this holds indeed for all compact Hamiltonian T -spaces with
discrete fixed point set). Indeed, by [23, Proposition 41], H̃(−c1) = (−1)nN0,
where N0 is the number of fixed points with zero negative weights which,
for connected, compact Hamiltonian T -spaces is exactly 1. Therefore, the
inequality

n ≥
b2∑
i=1

(mi − 1)
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in (2.13) is a direct consequence of Theorem 2.4, where we can take ηi = τi
for all i = 1, . . . , b2.

The last inequality in (2.13) follows from Proposition 2.10, because mj =∫
S2
j
c1 ≥ ρ0, where the last inequality follows directly by the definition of

pseudoindex.

In the next section we apply these results, in particular Corollary 2.11, to
generalized flag varieties. Indeed these are Hamiltonian T -spaces whose action
is GKM (see [11]), they admit an index increasing component of the moment
map (see [25, Lemma 6.4]) and a symplectic form with respect to which
they are positive monotone (see [8, Proposition 5.24]). In order to obtain the
inequalities in (2.13) it is then sufficient to find the “pointed box” of zeros of
the generalized Hilbert polynomial, which is the content of Theorem 3.3.

3. Mukai Conjecture for coadjoint orbits and the Kostant
game

3.1. Set up and reformulation of our main claim

Let G be a compact Lie group. We denote by GC the complexification of G.
Let P ⊂ GC be a parabolic subgroup of GC.

Let g be the Lie algebra of G and g∗ be the dual of g. We denote by (·, ·)
an Ad-invariant inner product defined on g and identify the Lie algebra g and
its dual g∗ via this inner product.

Let T ⊂ G be a maximal torus and let B ⊂ GC be a Borel subgroup
with TC ⊂ B ⊂ P , where TC denotes the complexification of T . Let R ⊂ t∗

denote the set of roots and R+ be the system of positive roots compatible
with the choice of the Borel subgroup B ⊂ GC with simple roots S ⊂ R+. Let
W := NG(T )/T be the Weyl group of G. For every root α ∈ R, let sα ∈ W
be the reflection associated to it. For the parabolic subgroup P ⊂ GC, let
WP := NP (T )/T be the Weyl group of P , SP ⊂ S be the subset of simple
roots whose corresponding reflections are in WP and R+

P be the set of positive
roots generated by the simple roots SP .

We say that a simple root α is adjacent to P if α ∈ S \ SP and if in the
Dynkin diagram of G, the simple root α is adjacent to the Dynkin diagram
of SP .

The set of fundamental weights of G will be denoted by {�α | α ∈ S}.
Recall that they are defined as the dual basis to the basis of coroots Š :=
{α∨ = 2α

(α,α) | α ∈ S}. Just as before, we define ŠP := {α̌ ∈ Š | α ∈ SP} and
let Ř+

P be the set of positive coroots generated by the simple coroots ŠP .
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If � ∈ Z{�α | α ∈ S} is a weight that vanishes on all β in SP , it
determines a character on P , and so a line bundle L	 = GC ×P C(�) on
GC/P . We identify the Chern class c1(L	) ∈ H2(GC/P,Z) with the weight
� and we obtain an isomorphism

Z{λα | α ∈ S � SP} → H2(GC/P,Z)(3.1)
� �→ c1(L	)

(see for instance [26]).
We denote by HP the index map of GC/P . More precisely, for � ∈ Z{�α |

α ∈ S � SP} ∼= H2(GC/P ;Z), the value of HP (�) is the index Ind(L	) of
the line bundle L	. If we write � =

∑
α∈S�SP

kα�α, Lemma 2.1 allows
us to view HP (�) as a complex polynomial of degree at most the complex
dimension of GC/P in kα’s over α ∈ S � SP . We will call this polynomial
the Hilbert polynomial of GC/P . The Bott-Borel-Weil Theorem gives us an
explicit formula for the Hilbert polynomial HP . We provide this formula and
a short explanation of from where it follows in the next statement.

Theorem 3.1. For

� =
∑

α∈S�SP

kα�α ∈ Z{�α | α ∈ S � SP} ∼= H2(GC/P ;Z),

HP (�) = Ind(L	) =
∏

α∈R+\R+
P

〈� + ρ, α∨〉
〈ρ, α∨〉 ,

where ρ = 1
2
∑

α∈R+ α =
∑

α∈S �α is half of the sum of positive roots which
is also equal to the sum of all fundamental weights.

Proof. It follows from the Hirzebruch-Riemann-Roch Thereom that the index
of the bundle L	 is the Euler characteristic of L	 in sheaf cohomology, namely
the alternating sum

Ind(L	) =
∑
j

(−1)j dim Hj(GC/P ;L	).

The Bott-Borel-Weil Theorem implies that for � a dominant weight, i.e.
� =

∑
α∈S�SP

kα�α with kα ∈ Z>0, higher cohomology vanishes and thus

HP (�) = Ind(L	) = dim H0(GC/P ;L	)

holds for a dominant weight (see for instance [5, 17]). The Borel-Weil Theorem
states that for � a dominant weight, the action of G on H0(GC/B;L	) is the
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irreducible representation of GC with highest weight � (see e.g. [26]). The
dimension of H0(GC/P ;L	) for a dominant weight � follows from the Weyl
character formula and equals

∏
α∈R+

〈� + ρ, α∨〉
〈ρ, α∨〉 =

∏
α∈R+\R+

P

〈� + ρ, α∨〉
〈ρ, α∨〉

where ρ is half of the sum of positive roots and we are done.

The first Chern class c1(T (GC/P )) corresponds to∑
α∈R+�R+

P

α =
∑

α∈R+

α−
∑

α∈R+
P

α =
∑
α∈S

2�α −
∑

α∈R+
P

α

via the identification in (3.1) and can be written as a linear combination of
fundamental weights as ∑

β∈S
nβ�β ,

where
nβ :=

∑
α∈R�R+

P

〈α, β∨〉 = 2 −
〈 ∑

α∈R+
P

α, β∨
〉
.

Note for instance that in type A, nβ = 0 if β ∈ SP and nβ = 2 + l if
β ∈ S \SP , where l denotes the sum of the sizes of the connected components
of the Dynkin diagram of SP adjacent to β. In particular, if β ∈ S \ SP is
not adjacent to P , then nβ = 2. We generalise some of these remarks for any
type in the following lemma.

Lemma 3.2. If β ∈ SP , then nβ = 0. If β ∈ S \ SP is a simple root not
adjacent to P , then nβ = 2.

Proof. If β ∈ SP , then
〈∑

α∈R+
P
α, β∨

〉
= 2 and nβ = 0. Indeed, if we look

at the Dynkin diagram for G, and let ΓP be the subgraph corresponding to
P , i.e. the subgraph containing all the simple roots that are in P and all
the edges between them. We call by ΓPβ

the connected component of ΓP

containing β and by Pβ the parabolic subgroup associated to the simple roots
with Dynkin diagram ΓPβ

. The connected component Γβ
P is either a point or

a Dynkin diagram of some classical group. Only the roots α generated by the
simple roots contained in ΓPβ

contribute to 〈∑α∈R+
P
α, β∨〉. For other roots
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α ∈ R+
P we have that 〈α, β∨〉 = 0. Therefore, for such β, one has that〈 ∑

α∈R+
P

α, β∨
〉

=
〈 ∑

α∈R+
Pβ

α, β∨
〉

= 2
〈 ∑

α∈SPβ

�α, β
∨
〉

= 2.

If β /∈ SP and β is not adjacent to any simple root in ΓP , then 〈α, β∨〉 = 0
for all α ∈ R+

P and nβ = 2.

Theorem 3.3. Let {�α | α ∈ S} be the set of fundamental weights. If we
write

c1(T (GC/P )) =
∑

α∈R+�R+
P

α =
∑

β∈S�SP

nβ�β

where nβ is the positive integer
∑

α∈R�R+
P
〈α, β∨〉, then for each

� = −
∑

β∈S\SP

ñβ�β

with
0 < ñβ ≤ nβ but

∑
β∈S\SP

ñβ <
∑

β∈S\SP

nβ,

we have that
HP (�) = Ind(L	) = 0.

Note that the last Theorem together with Theorem 2.4 imply the Mukai
conjecture for coadjoint orbits and indeed an stronger inequality.

Corollary 3.4. The following inequality

(3.2)
∑

β∈S�SP

( ∑
α∈R�R+

P

nβ−1
)

=
∑

β∈S�SP

( ∑
α∈R�R+

P

〈α, β∨〉−1
)
≤ (R+�R+

P )

holds for a parabolic subgroup P of GC and it implies the Mukai inequality
for GC/P

(S � SP ) ·
(

gcd
β∈S�SP

(nβ) − 1
)
≤ (R+ �R+

P )

as the complex dimension, the second Betti number and the index of GC/P
equal (R+ �R+

P ), (S � SP ) and gcdβ∈S�SP
nβ, respectively.

Remark 3.5. The inequality in 3.2 was already proved by B. Pasquier in [21,
Lemma 4.8]. In Pasquier’s proof the inequality is proven by first reducing its
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verification to a list of cases that depend on the type of the Dynkin diagram
of the parabolic subgroup and the position of the simple roots adjacent to
the subgroup and then by checking directly the resulting inequalities through
explicit calculations. The proof that we present in this paper of the inequality
will rely on the combinatorics of the Kostant game and we hope that it will
contribute to its understanding.

If we view the Hilbert polynomial HP (�) = HP

(∑
β∈S�SP

kβ�β

)
as a

polynomial in variables kβ over β ∈ S�SP , Theorem 3.3 will follow from the
following.

Theorem 3.6. For each β ∈ S � SP and each j = 1, . . . , nβ − 1 the Hilbert
polynomial HP

(∑
β∈S�SP

kβ�β

)
vanishes at kβ = −j.

This is the theorem we are going to prove. As part of this theorem, it is
not hard to prove that the statement holds when kβ = −1. We present this
proof already here.

Lemma 3.7. For each β ∈ S�SP the Hilbert polynomial HP

(∑
β∈S�SP

kβ�β

)
vanishes at kβ = −1.

Proof. By Theorem 3.1, 〈� + ρ, β∨〉 = kβ + 1 is a factor of HP .

Corollary 3.8. Theorem 3.6 holds for a simple root β not adjacent to P .

3.2. String of coroots

In order to prove Theorem 3.6, we want to show that kβ + j is a linear factor
of the Hilbert polynomial

HP

( ∑
β∈S�SP

kβ�β

)
= Ind(L	) =

∏
α∈R+\R+

P

〈� + ρ, α∨〉
〈ρ, α∨〉

for β ∈ S�SP and j ∈ {1, . . . , nβ−1}. That means that for every β ∈ S�SP

we want to find a string of roots α1, . . . , αnβ−1 ∈ R+ �R+
P such that

〈� + ρ, α̌j〉 =
〈 ∑

β∈S�SP

kβ�β + ρ, α̌j

〉
= kβ + j

for every j = 1, . . . , nβ − 1. Note that it follows from Corollary 3.8 that this
task is already accomplished when β is a simple root not adjacent to P .

The previous analysis motivates the definitions of strings of coroots for a
parabolic subgroup and a simple root adjacent to it that we define below in
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this section. Before defining them formally we set up some notation. Let P be
a parabolic subgroup of GC and β ∈ S � SP be a simple root adjacent to P .
We denote by P ∪ {β} the parabolic subgroup corresponding to SP ∪ {β}.
Let Γ be the Dynkin diagram of G. Let ΓP and ΓP ∪ β be the subgraphs of
Γ corresponding to the sets of simple roots SP and SP ∪ {β}, respectively.

Definition 3.9. A string of coroots (for P and β) is a string of positive
coroots of the form

β̌, β̌ + γ1, . . . , β̌ + γl ∈ Ř+
P∪β,

such that every γj can be written as a positive integer linear combination of
coroots in Ř+

P and
ht(β̌ + γj) < ht(β̌ + γj+1)

for every 1 ≤ j < l, where ht stands for the height function defined on the set
of positive coroots. The integer ht(β̌ + γl) will be called the length of the
string. A string of coroots is called maximal if its length is exactly equal
to

nβ − 1 =
∑

α∈R+�R+
P

〈α, β̌〉 − 1 = 1 −
∑

α∈R+
P

〈α, β̌〉.

A string of coroots is called good if

ht(β̌ + γj) = j + 1

for every 1 ≤ j ≤ l. A string of coroots that is not good is called a string
with a jump. A gap of a string with a jump is an integer j such that
ht(β̌ + γj) + 1 < ht(β̌ + γj+1).

Proposition 3.10. If β̌, β̌ + γ1, . . . , β̌ + γl is a good string of coroots for P

and β, then the Hilbert polynomial HP (�) = HP

(∑
β∈S�SP

kβ�β

)
vanishes

at kβ = −1, . . . ,−(l + 1).

Proof. For each j = 1, . . . , l there is a factor 〈� + ρ, β̌ + γj〉 in HP which, by
the conditions satisfied by good strings, is equal to

〈� + ρ, β̌ + γj〉 = kβ + (j + 1)

thus HP vanishes at kβ = −(j + 1).

In order to prove Theorem 3.6, our aim now is to find for every simple
root adjacent to a parabolic subgroup a maximal good string of coroots for
the parabolic subgroup and the simple root. Maximal good strings of coroots
can be obtained via Kostant games which we define in the following section.
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3.3. The Kostant game

Let Γ be the Dynkin diagram of G and S = {α1, . . . , αn} be the set of simple
roots.

A configuration is a vector c =
∑n

i=1 ciαi where ci ∈ Z≥0. The height
ht(c) of c is the sum

∑n
i=1 ci. We can think of a configuration as placing ci

chips on the i-vertex of the Dynkin diagram. The height of the configuration
is the total number of chips placed on the diagram.

For i ∈ V , let N(i) denote the neighbors of i. For j ∈ N(i), we denote
by ni,j the number of arrows coming to the i-vertex from the j-vertex. In
our convention, when the simple roots αi and αj have the same length, then
ni,j = 1 = nj,i. Also in our convention, for instance in Figure 3.1 ni,j = 2 and
nj,i = 1. Note that ni,j = −〈αj , α̌i〉.

j i

Figure 3.1

Let c =
∑n

i=1 ciαi be a configuration. We say that the i-th entry of the
configuration is:

• Happy if ci = 1
2
∑

j∈N(i) ni,jcj .
• Unhappy if ci < 1

2
∑

j∈N(i) ni,jcj .
• Excited if ci > 1

2
∑

j∈N(i) ni,jcj .

We play the Kostant game by first placing a chip at a vertex of the Dynkin
diagram. The goal of the Kostant game is to make every vertex of the Dynkin
diagram either happy or excited. The game is played as follows. Given a
configuration c, we pick any unhappy vertex i, and replace the number of
chips ci at i by

ci �→ −ci +
∑

j∈N(i)
ni,jcj .

Equivalently, we replace c by

sαi(c) := c− 〈c, α̌i〉αi =
n∑

j=1
cjαj −

〈
n∑

j=1
cjαj , α̌i

〉
αi

=
∑
j 	=i

cjαj +
(
− ci +

∑
j∈N(i)

ni,jcj
)
αi.
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Note that if the vertex i is unhappy, then ht(sαi(c)) > ht(c). It follows from
this remark that we play the Kostant game by consecutively replacing one
positive root by another of greatest height. Indeed, the set of all the possible
configurations of the Kostant game played by initially placing a chip on a
vertex of the Dynkin diagram corresponds to the set of positive roots R+.
When we start playing the game by placing one chip at one of the vertices,
the game will reach the same terminating configuration regardless of the se-
quence of moves. If the Dynkin diagram is simply laced, the game always
leads to a unique terminating configuration regardless of the vertex where
we place the first chip. This unique terminating configuration corresponds
to the highest positive root. If the Dynkin diagram is not simply-laced, any
sequence of moves of the Kostant game will lead to two possible terminating
configurations, and one of them corresponds to the highest positive root. For
these and other facts concerning the combinatorics of the Kostant game we
suggest the reader to check the class notes written by E. Chen of the course
“Topics on Combinatorics” taught by A. Postnikov in 2017 at MIT [22] and
B. Elek’s notes on Reflection Groups [6, Section 5.4].

Example 3.11. In Figure 3.2 we play the Kostant game on the Dynkin
diagram A4 starting from its simple roots until we reach the configuration of
the highest positive root.

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

Figure 3.2: Kostant game on A4.

3.4. The modified Kostant game

We modify the Kostant game on Dynkin diagrams of compact Lie groups in
order to construct maximal good strings. We modify the graph of Γ by adding
an extra vertex adjacent only to a vertex j of the graph. We denote the new
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vertex by j̃. We also draw k-arrows pointing from the new vertex j̃ to j. We
denote the new graph by Γk

j . When k = 1, we just denote it by Γj . We play a
modified version of the Kostant game on Γk

j by placing one chip at the vertex
j̃, with the same rules as before but with a new rule in which the vertex j̃
is always happy. We call the resulting game on Γk

j the modified Kostant
game at the vertex j with k-arrows. When k = 1, we just call the resulting
game the modified Kostant game at the vertex j. We define configurations
and their heights as we did for the standard Kostant game.

The proofs of the two theorems below will be given in the later section.

Theorem 3.12. The modified Kostant game at a vertex of a Dynkin diagram
of a compact Lie groups leads to a unique terminating configuration.

Remark 3.13. Note that given a Dynkin diagram, if we denote by h+1 the
height of the final configuration of the modified Kostant game on the Dynkin
diagram at a fixed vertex, then the height of the terminating configuration
of the modified Kostant game at the same vertex but with k-arrows equals
kh + 1.

Theorem 3.14. Given a Dynkin diagram Γ of a compact Lie group G, if
we denote by hj + 1 the height of the unique terminating configuration of
the modified Kostant game on the Dynkin diagram of simple coroots Γ̌ at the
vertex j, then ∑

α∈R+

α =
∑
αj∈S

hjαj .

Example 3.15. We illustrate Theorem 3.14 with one example. Let Γ = A4.
We enumerate the vertices of A4 from the left to the right in increasing order.
We denote by hi + 1, i = 1, . . . , 4, the height of the unique terminating
configuration of the modified Kostant game on Γ = Γ̌ at the vertex i. By
symmetry, h1 = h4 and h2 = h3. We play the modified Kostant game at
the first and second vertex and illustrate all its possible configurations in the
Figure 3.3.

From Figure 3.3 we conclude that h1 = h4 = 4, h2 = h3 = 6 and Theo-
rem 3.14 states that the sum of the positive roots of A4 equals∑

α∈R+

α = 4α1 + 6α2 + 6α3 + 4α4.

We would like to prove the existence of maximal good strings for a
parabolic group and a root adjacent to it from Theorem 3.12 and Theo-
rem 3.14. Before doing so we review the following two lemmas on roots whose
proofs can be found for instance in [14, Section 9.4].
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1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1

1

1

1

1

1 1 1

1

1 1

1

1 1 1 1

1

2 1

1

1 1 1 1

1

1

2 1 1

1

1

2 2 1

1

1

Figure 3.3: Modified Kostant game on A4.

Lemma 3.16. Let α, β be non-proportional roots. If (α, β) > 0, then α − β

is a root. If (α, β) < 0, then α + β is a root.

Lemma 3.17. Let α and β be non-proportional roots. Let r, q ∈ Z≥0 be the
largest integers for which β − rα ∈ R, β + qα ∈ R. Then β + iα ∈ R for all
−r ≤ i ≤ q. We call the set of roots β + iα (i ∈ Z) the α-string through
β.

Theorem 3.18. Let Γ be a Dynkin diagram and ΓP be a connected subgraph.
Let β be a simple root adjacent to ΓP and let αj be the root in ΓP adjacent
to β. Let us assume that there are k-arrows pointing from αj to β.

When we play the modified Kostant game on the Dynkin diagram of co-
roots of ΓP at the j-vertex with k-arrows until it reaches its terminating con-
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figuration, we obtain a maximal string of coroots

β̌, β̌ + γ1, . . . , β̌ + γl.

for P and β. This string of coroots can always be completed into a good string
of coroots for P and β.

Proof. The string of coroots

β̌, β̌ + γ1, . . . , β̌ + γl.

is indeed a string of coroots for P and β because the string is obtained by
playing the standard Kostant game on the coroots of ΓP ∪β by leaving always
one chip at the β-vertex.

We write ∑
α∈R+

P

α = hjαj + · · · .

The coroot β̌ is orthogonal to every root in SP except αj , thus〈 ∑
α∈R+

P

α, β̌

〉
= 〈hjαj + · · · , β̌〉 = hj〈αj , β̌〉 = −khj .

The string of coroots is maximal because Theorem 3.14 implies that

ht(β̌ + γl) = khj + 1 = 1 −
〈 ∑
α∈Γ+

P

α, β̌

〉
.

Let us suppose that
β̌, β̌ + γ1, . . . , β̌ + γl

is a string with a jump. That means that there exist r such that

ht(β̌ + γr) + 1 < ht(β̌ + γr+1).

As we have obtained the string by playing the Kostant game, there exist a
simple root α ∈ SP and a positive integer n such that

β̌ + γr+1 = β̌ + γr + nα̌.

Lemma 3.17 implies that
β̌ + γr + mα̌
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is a coroot for every 0 ≤ m ≤ n (a α̌-string through β̌ + γr is unbroken). We
can always fill all the gaps of the maximal string in this way to get a good
string of coroots for P and β, and we are done.

Proof of Theorem 3.6. Let Γ be the Dynkin diagram of G and ΓP be the
subgraph corresponding to P (not necessarily connected). Assume that β is a
simple root adjacent to P . We show that there exists a maximal good string
of coroots for P and β and the Theorem will follow from Proposition 3.10.

We consider the connected components ΓPj = ΓPj (β) of ΓP which are
adjacent to β. Note that there are at most three such components. Let

β̌, β̌ + γj1, . . . , β̌ + γjlj .

be a maximal string of coroots for Pj and β. We know from the previous
Theorem that they exist. The mechanics of the standard Kostant game and
Lemma 3.17 imply that we can glue the strings to obtain a good string of
coroots, for instance the following is a good string of coroots for P and β

β̌, β̌ + γ1
1 , . . . , β̌ + γ1

l1 , β̌ + γ1
l1 + γ2

1 , . . . , β̌ + γ1
l1 + γ2

l2 , . . . , β̌ +
∑
j

γjlj .

Now we verify that it is maximal:

nβ − 1 = 1 −
∑

α∈R+
P

〈α, β̌〉 = 1 −
∑
j

∑
α∈R+

Pj

〈α, β̌〉

= 1 +
∑
j

(
ht(β̌ + γjlj ) − 1

)
= ht

(
β̌ +

∑
j

γjlj

)
.

The Theorem now follows from Proposition 3.10.

3.5. Proofs of Theorem 3.12 and Theorem 3.14

In this section we give the proofs of Theorem 3.12 and Theorem 3.14. It turns
out that the configurations of a modified Kostant game correspond to mini-
mal length representatives of the quotient of the Weyl group of a compact Lie
group with a parabolic subgroup. We show Theorem 3.12 and Theorem 3.14
using this fact together with the fact that the set of minimal length repre-
sentatives of the quotient contains a unique maximal length representative
whose set of inversions is the set of positive roots not belonging to the set
of positive roots spanned by the simple roots in the parabolic. Before giving
formal explanations and proofs of our claims, we recall some notation.
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Let G be a compact Lie group and T be a maximal torus. Let R be the
root system defined by G and T with a choice of positive roots R+ and simple
roots S = {αi}ni=1. We denote by Γ the corresponding Dynkin diagram. We
identify the Lie algebra t of T with its dual t∗ via an invariant inner product
(·, ·) on the Lie algebra g of G. For every α ∈ R, we denote by sα the reflection
defined by α:

sα : t → t

x �→ x− 〈x, α〉 α̌

= x− 2 (x, α)
(α, α)α.

We denote by W the Weyl group generated by the set of simple reflections
{sα | α ∈ S}. When α = αi is a simple root, we denote the corresponding
reflection just by sαi = si.

We define the length l(w) of an element w ∈ W as the smallest positive
integer such that w can be written as a product of simple reflections

w = sit · . . . · sik · . . . · si1

and call such an expression reduced.
The length of an element in the Weyl group can be characterized in an-

other way. Let
I(w) = {α ∈ R+ | w(α) ∈ −R+}

be the inversion set of w. Then l(w) = Car(I(w)). A reduced expression
sit . . . · sik · . . . si1 of w allows us to enumerate all the positive roots in I(w)
as follows: define

α̃k = si1 . . . sik(αik+1) with α̃t = αi1 ,

then I(w) = {α̃k}tk=1, with all α̃k different (see for instance [15, Section 1.7]).
For j ∈ {1, . . . , n}, we will denote by Wj the parabolic subgroup of W

spanned by the set of simple reflections {si}i	=j . Likewise, we denote by Rj

the set of roots spanned by the set of simple roots {αi}i	=j . We denote the set
of minimal length representatives of the quotient W/Wj by

W j : = {w ∈ W | I(w) ⊂ R+\R+
j }.

Theorem 3.19. A sequence of moves of the modified Kostant game on the
Dynkin diagram of coroots of Γ at the vertex j encodes the reduced expression
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of some element in W j. Conversely, any reduced expression of an element in
W j can be obtained in this way.

Proof. We encode a sequence of moves of the modified Kostant game with an
ordered arrangement of integers which indicates the position of the vertices
where we place the chips every time that we play the modified Kostant game.
So for instance the arrangement (i1, i2, . . . , it) indicates that in our first move
we place chips on the i1-vertex, then in our second move we place chips on
the i2-vertex, and we end by placing chips on the it-vertex. Note that at every
step we have not encoded the number of chips that we place on each vertex
but we explain now how to obtain this number.

Given an arrangement (i1, i2, . . . , it) that codifies a sequence of moves of
the modified Kostant game, we define a sequence {w1, . . . , wt} of elements in
the Weyl group by

wl := sil . . . si2si1

and a set of roots {α̃1, α̃2, . . . , α̃t} by

(3.3) α̃l = w−1
l (αil+1) = si1si2 . . . sil(αil+1)

for 1 ≤ l < t and α̃t = αj . Note that w1 = sj .
We write

α̃l = klαj + · · ·
as a linear combination of simple roots. We claim that kl is the number of
chips that we locate at the il+1-vertex when we play the modified Kostant
game.

We construct an auxiliary vector space by adding an element β̃ to the
basis of simple coroots {α̌1, . . . , α̌n} and extend the invariant inner product
defined on t to a bilinear product on t⊕ 〈β̃〉 by saying that

(β̃, β̃) = 2, (αi, β̃) = −δij

for j = 1, . . . , n. We also extend the action of the Weyl group W defined on
t to t⊕ 〈β̃〉 by

sαi(β̃) = β̃ − (αi, β̃)α̌i = β̃ + δijα̌j

for every simple root αi. The bilinear product that we define for t ⊕ 〈β̃〉 is
invariant with respect to the action of W that we just defined on it.

The elements

wl+1(β̃) := sil+1(wl(β̃)) = wl(β̃) − (αil+1 , wl(β̃))α̌il+1



Generalizing the Mukai Conjecture 1831

follow the same recursion formula defined by the sequence of moves (i1, . . . , it)
of the modified Kostant game at the vertex j, i.e., if

wl(β̃) =
n∑

i=1
ciα̌i + β̃,

and N(il+1) is the set of vertices in the Dynkin diagram that are adjacent to
il+1 and ňi,j := −(αi, α̌j) is the number of arrows coming to i from j in the
Dynkin diagram of simple coroots (that is the same as the number of arrows
nj,i from i to j in the Dynkin diagram of simple roots), then

wl+1(β̃) =
n∑

i=1
ciα̌i + β̃ −

(
αil+1 ,

n∑
i=1

ciα̌i + β̃
)
α̌il+1

=
∑

i	=il+1

ciα̌i + β̃ +
(
−cil+1 −

∑
k∈N(il+1)

ck(αil+1 , α̌k) + δjil+1

)
α̌il+1

=
∑

i	=il+1

ciα̌i + β̃ +
(
−cil+1 +

∑
k∈N(il+1)

ňil+1,kck + δjil+1

)
α̌il+1 .

As the bilinear form that we define for t⊕〈β̃〉 is invariant with respect to the
action of W , we get

kl = −(β̃, α̃l) = −(β̃, w−1
l (αil+1)) = −(wl(β̃), αil+1) = wl+1(β̃) − wl(β̃)

α̌il+1

and the claim follows.
The Theorem now follows from the fact that kl > 0 for all 1 ≤ l ≤ t if and

only if {α̃1, . . . , α̃t} ⊂ R+\R+
j . The latter is equivalent to say that wl ∈ W j

and wl = sil . . . si2si1 is a reduced expression for all 1 ≤ l ≤ t.

Now we are ready to give the proofs of Theorem 3.12 and Theorem 3.14:

Proof of Theorem 3.12 and Theorem 3.14. We keep the notation of the proof
of the previous Theorem. We show first that the modified Kostant game at
the vertex j terminates. Let w0 be the longest element in W j , i.e, the unique
element in W j that sends all positive roots in R+ �R+

j to negative roots.
Let (i1, i2, . . . , it) be an arrangement that encodes a sequence of moves of

the modified Kostant game. The previous Theorem implies that

sit . . . si2si1
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is a reduced expression of an element in W j . We can always complete the
reduced expression into a reduced expression of w0, i.e., there exist simple
roots αit+1 , . . . , αim such that

w0 = sim . . . sit+1sit . . . si2si1

is a reduced expression.
The previous statement implies that the arrangement

(i1, i2, . . . , it, it+1, . . . , im)

encodes a sequence of moves of the modified Kostant game. In particular,
the modified Kostant game terminates. To end the proof of Theorem 3.12,
we need to show that the game ends in a unique terminating state. But this
follow from the fact the longest element in W j is unique.

We are done with the proof of Theorem 3.12 and now we continue with
the proof of Theorem 3.14. Let us assume now that

w0 = sim · . . . · si2si1

is a reduced expression, and let {α̃1, α̃2, . . . , α̃m} be the set of roots defined
in Equation 3.3. We know that this sets equals to R+\R+

j and also from the
proof of the previous Proposition that if we write

α̃l = klαj + · · · ,

then kl is the number of chips that we locate at the il-vertex when we play
the Kostant game. Thus

hj =
∑
l

kl = −
∑
l

(α̃l, β̃) = −
∑

α∈R+\R+
j

(α, β̃) = −
∑

α∈R+

(α, β̃),

and we are done.

We illustrate the overall idea of the proof of Theorem 3.6 with the follow-
ing Example.

Example 3.20. Let S = {α1, α2, α3, α4} be the set of simple roots of F4
with Dynkin diagram shown below: Assume that SP = {α1, α2, α3}.

α1 α2 α3 α4
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1. First we select the simple roots adjacent to SP in the Dynkin diagram.
In this case the only one is β = α4 and it is adjacent to α3 in SP .

2. We play the modified Kostant game on the Dynkin diagram of coroots
{α̌1, α̌2, α̌3} at the 3-vertex until it terminates to produce a string of
coroots for P and β:

α̌1 α̌2 α̌3 β̌ = α̌4

1

1 1

2 1 1

2 2 1 1 2 2 1

2 2 2 1

2 4 2 1

2 4 3 1

In this case we obtain two arrangements that encode the moves of the
Kostant game until it ends: (3, 2, 1, 3, 2, 3) and (3, 2, 3, 1, 2, 3). The cor-
responding strings of coroots are {β̌, α̌3 + β̌, 2α̌2 + α̌3 + β̌, 2α̌1 + 2α̌2 +
α̌3 + β̌, 2α̌1 + 2α̌2 + 2α̌3 + β̌, 2α̌1 + 4α̌2 + 2α̌3 + β̌, 2α̌1 + 4α̌2 + 3α̌3 + β̌}
and {β̌, α̌3 + β̌, 2α̌2 + α̌3 + β̌, 2α̌2 + 2α̌3 + β̌, 2α̌1 + 2α̌2 + 2α̌3 + β̌, 2α̌1 +
4α̌2 + 2α̌3 + β̌, 2α̌1 + 4α̌2 + 3α̌3 + β̌}, respectively.

3. It is possible that the strings have gaps, but whenever there is a gap
between two coroots, we can always fill the gaps. For instance, we fill
the gaps for the string of coroots encoded by (3, 2, 3, 1, 2, 3) and obtain
the following good string {β̌, α̌3 + β̌, α̌2 + α̌3 + β̌, 2α̌2 + α̌3 + β̌, 2α̌2 +
2α̌3 + β̌, α̌1 + 2α̌2 + 2α̌3 + β̌, 2α̌1 + 2α̌2 + 2α̌3 + β̌, 2α̌1 + 3α̌2 + 2α̌3 +
β̌, 2α̌1 + 4α̌2 + 2α̌3 + β̌, 2α̌1 + 4α̌2 + 3α̌3 + β̌}.
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4. The sequence of moves of the modified Kostant game at the 3-vertex
gives a reduced expression of the longest element of the set of minimal
length representatives of the quotient

Wα1,α2,α3/Wα1,α2 .

With this reduced expression, we obtain all the positive roots spanned
by {α1, α2, α3} that pair non-trivial with β, i.e., the roots of the form

k1α1 + k2α2 + k3α3

where k1, k2, k3 are non-negative integers and k3 > 0. For instance, the
arrangement of moves (3, 2, 3, 1, 2, 3) gives us the reduced expression

s3s2s1s3s2s3

and we obtain the following roots
• α̃1 = α3

• α̃2 = s3(α2) = α2 + 2α3

• α̃3 = s3s2(α3) = α2 + α3

• α̃4 = s3s2s3(α1) = α1 + α2 + 2α3

• α̃5 = s3s2s3s1(α2) = α1 + 2α2 + 2α3

• α̃6 = s3s2s3s1s2(α3) = α1 + α2 + α3

Note that the coefficient kl of α3 in α̃l equals the number of chips that
we place at the Dynkin diagram every time we play the Kostant game.
The resulting good string is maximal because

ht(2α̌1 + 4α̌2 + 3α̌3 + β̌) =
6∑

l=1
kl + 1

= −
∑

α∈R+
P

(α, β̌) + 1 = 10

and the Hilbert polynomial HP (k4) is divided by
∏10

l=1(k4 + l).
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