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Classical and Quantum mechanics on 3D contact
manifolds

Yves Colin de Verdière

Dedicated to Victor, teacher and friend

Abstract: In this survey paper, I describe some aspects of the
dynamics and the spectral theory of sub-Riemannian 3D contact
manifolds. We use Toeplitz quantization of the characteristic cone
as introduced by Louis Boutet de Monvel and Victor Guillemin.
We also discuss trace formulae following our work as well as the
Duistermaat-Guillemin trace formula.

1. Introduction

The goal of our work with Luc Hillairet and Emmanuel Trélat, in particular in
[C-H-T-18], was to see if we can extend what is known for spectral asymptotics
of the Laplace operator on a Riemannian manifold to sub-Riemannian (“sR”
in what follows) manifolds, in particular concerning

• Trace formulae relating the spectrum of the Laplace operator to the
lengths of periodic geodesics (see [CdV-73, D-G-75] and the survey
[CdV-07]).

• Quantum limits and quantum ergodicity (Schnirelman theorem, see
[CdV-85] and the excellent review [Dy-21]).

• Approximation of eigenfunctions by the construction of quasi-modes,
i.e. approximate solutions of the eigenvalue equation, supported by in-
variant sets of the geodesic flow (see [CdV-77, Ze-17]).

What I find nice with sR geometry is that we have to take into account a
topological set of data, namely the distribution (a sub-bundle of the tan-
gent bundle), and also the metric data which allow to define the distance,
the geodesics and the Laplace operator. In this review, we will only speak of
the case of 3D contact manifold going a little beyond the paper [C-H-T-18].
While starting our project, we discovered new things about the sR geodesic
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flow, namely the important role played by the Reeb vector field as a way
to “compactify” the geodesic flow on the unit cotangent bundle whose fibers
are not compact (in contrast with the Riemannian case). We tried also to
study interesting examples like magnetic Laplacians and the so-called Liou-
ville Laplacians where the sR manifold M is the unit cotangent bundle of a
Riemannian surface and the distribution is the kernel of the Liouville form
restricted to M . Special cases of these examples linked to surfaces of constant
curvature turn out to be “integrable” in a weak sense.

2. The setup

Let us consider a 3D smooth closed manifold M equipped with a smooth
contact distribution D ⊂ TM (assumed to be oriented), a smooth metric g
on D and a smooth density |dx|. Recall that D is contact if there exists a non
vanishing real 1-form α with D = kerα so that the 3-form α∧dα is a volume
form. Such a set of data (M,D, g, |dx|) defines an sR manifold with a volume
form. To such an sR manifold, we associate the following objects:

1. The cometric g� : T �M → R
+ is defined in local coordinates by

g�(x, ξ) = ‖ξ|Dx
‖2
g(x)

2. The geodesic flow which is the flow of the Hamiltonian vector field Xg

of 1
2g

�. When restricted to the unit cotangent bundle U�M := {(x, ξ) ∈
T �M | g�(x, ξ) = 1} the integral curves project onto M as geodesics
with unit speed and, conversely, any geodesic is the projection of such
an integral curve.

3. The Laplacian ΔsR which is the Friedrichs extension on L2(M, |dx|) of
the quadratic form q(f) =

∫
M g�(df)|dx|. The self-adjoint second order

differential operator ΔsR can be written locally as Δ = X�X + Y �Y =
−X2 − Y 2 + l.o.t where (X, Y ) is a local smooth orthonormal frame
of D and X� and Y � are the adjoints of X and Y with respect to
|dx|. The operator ΔsR is sub-elliptic (a well known result due to Lars
Hörmander) and hence has a discrete spectrum (λj), j ∈ N, with an
o.n.b. (φj), j ∈ N, of eigenfunctions (φj), j ∈ N of L2. The principal
symbol of this Laplacian is the co-metric.

4. The canonical contact 1-form αg which is defined by kerαg = D and
(dαg)|D = vg where vg is the volume form on D induced by the metric
and the orientation.

5. The characteristic manifold Σ := D⊥ = (g�)−1(0) which is a 4D sym-
plectic subcone of T �M \ 0.
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6. The Reeb vector field R of the form αg (ie αg(R) = 1, ι(R)dαg = 0)
which is the projection onto M of the Hamiltonian vector field of ρ :
Σ → R defined by ρ(sαg) = s.

The main object of this review is to describe asymptotic properties of the
geodesic flow and of the spectral data of the sR Laplacian. The geodesics
of large momenta spiral around the Reeb flow. This leads to the existence
of infinitely many periodic geodesics spiraling around a generic closed Reeb
orbit. Concerning the Laplace operator, most eigenfunctions concentrate mi-
crolocally on the characteristic manifold. Here a natural object is the quan-
tization of the Reeb Hamiltonian as a Toeplitz operator “à la Boutet de
Monvel/Guillemin” ([B-G-81]). We recover band spectra which we call “Lan-
dau bands”: they are indeed Landau levels in some magnetic examples. The
starting point of this presentation is works in collaboration with Luc Hillairet
(Orléans) and Emmanuel Trélat (Paris). There are no fundamentally new
results in the present paper, but some new definitions, examples and conjec-
tures. The conjecture that I propose (see Section 14) is the following one

Conjecture 2.1. The periods of the Reeb orbits are spectral invariants of the
sR Laplacian.

3. Example 0: Heisenberg quotients

This is the most basic example (see [C-H-T-18], sec. 3.1). We consider the
presentation of H3 as R

3 equipped with the group law (x, y, z) � (x′, y′, z′) =
(x+ x′, y + y′, z + z′ − xy′). We choose the subgroup Γ := {(x, y, z) | (x, y) ∈
(
√

2πZ)2, z ∈ 2πZ}. Our sR manifold is then R
3/Γ with the orthonormal

basis for D given by

X = ∂x, Y = ∂y − x∂z

The spectrum of Δ = −(X2 + Y 2) is then explicitly computable: one gets
the union of the eigenvalues of the flat torus R

2/
√

2πZ2 and the set of inte-
gers m(2l + 1), m = 1, . . . , l = 0, . . . with multiplicities 2m. Note that the
multiplicities are very high.

The lengths spectrum (the set of lengths of closed geodesics) is the set of
2π

√
2n, n ∈ N.
Note that αg = dz+xdy and the Reeb vector field is ∂z which is a Killing

vector field.
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4. Example 1: magnetic fields over a Riemannian surface

Let π : M → X be a principal S1
θ -bundle on an oriented Riemannian surface

(X, h). We assume that this bundle is equipped with an Hermitian connection
∇ whose horizontal distribution is our D. If the curvature of the connection
does not vanish, the distribution D is contact. We take for g the pull-back
on D of the metric h by π. The curvature of ∇ is a 2-form B (the magnetic
field) and one introduces the magnetic scalar b = B/dxh where dxh is the
Riemannian volume form of X. The sR metric is invariant by the S1 action,
this gives an invariant momentum e : T �M → R which is the principal
symbol of −i∂θ. The geodesics of (M,D, g) with momentum e project onto
the trajectories on X with the magnetic fields b and electric charge e.

The Reeb flow is
R = b∂θ −�b

where �b is the horizontal lift of the Hamiltonian vector field of b w.r. to the
symplectic form B on X. We define the Laplacian using the volume form
dxg = |dθ ∧ π�dxh|. Then Δ commutes with the S1-action and L2(M,dxg)
splits into a direct sum ⊕n∈ZHn where Hn is unitarily equivalent to the
Schrödinger operator on X with magnetic field nB.

5. Example 2: Liouville form on the unit cotangent bundle
of a Riemann surface

Again (X, h) is a Riemannian surface and M is the unit cotangent bundle
of X. The distribution D is D = kerλ where λ is the restriction to M of the
Liouville 1-form ξdx + ηdy. We take on D any metric so that αg = λ. Then
the Reeb vector field is the geodesic flow of h.

In particular, the case of hyperbolic surfaces is of special interest. This ex-
ample is studied in [C-H-W-?]. Using the representations of SL2(R), we reduce
the computation of the spectrum and periodic geodesics to 1D-problems.

6. Example 3: Jacobi metric for the sR Kepler problem

Following [Sh-21], we take the metric g = D− 1
2 g0 on R

3 \ 0 where g0 is the
Heisenberg metric and D = (x2 + y2)2 + 16z2. This metric is the Jacobi
metric for a sR Kepler problem at energy 0. The metric g is invariant by the
dilations δλ : (x, y, z) → (λx, λy, λ2z). It admits compact quotients by the
groups generated by δλ0 for some λ0 > 1. Hence the geodesic flow is complete
and the Laplacian is essentially self-adjoint.
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7. Example 4: boundary of complex domains

If Ω is a smooth domain in C
2, we consider, on M := ∂Ω, the distribution

D = TM ∩ iTM . If Ω is strictly pseudo-convex, (M,D) is a contact manifold.
We can take the metric induced by the Euclidean metric on C

2.
Another example after Louis Boutet de Monvel [BdM-80]: let Z ⊂ C

N be
a complex subcone of complex dimension 2 (for example defined as the zero
set of complex valued homogeneous polynomials), smooth outside 0, and B
the unit ball of CN . The 3D manifold M = ∂(Z∩B) is an S1-bundle over the
projective complex curve Z \ 0/C \ 0. The form α =

∑
j �(zjdz̄j) is contact

on M . The Reeb flow R of α is 2π periodic. A convenient choice of g has the
Reeb flow R. We call such a manifold a Zoll-Reeb sR manifold.

8. Classical Birkhoff normal forms

We will assume for simplicity that the fiber bundle D → M is topologically
trivial. This holds for the magnetic sR if X is a torus. This holds for the
Liouville sR if the surface X is orientable. This holds also if M is a neigh-
bourhood of a periodic Reeb orbit. Then

Theorem 8.1. There exists an homogeneous canonical transformation χ :
C → C ′ with C a conic neighbourhood of Σ in T �M \ 0 and C ′ a conic
neighbourhood of Σ×0 in Σ×R

2, with R
2
u,v equipped with the symplectic form

dv ∧ du and the cone structure λ.(u, v) = (
√
λu,

√
λv), so that χ|Σ = Id × 0

and

g� ◦ χ−1 =
∞∑
j=1

ρj(σ)Ij + O ((I/ρ)∞)

with ρj : Σ \ 0 → R homogeneous of degree 2 − j, ρ1 = |ρ| with ρ the Reeb
Hamiltonian and I = u2 + v2. The function ρ2 is uniquely defined modulo Lie
derivatives w.r. to Reeb.

This is proved in Section 5 of [C-H-T-18].

9. Spiraling of the sR geodesics around Reeb orbits

The goal of this section is to explain the following fact: given x0 ∈ M and
v0 ∈ D of length 1 for the metric g(x0), there exists a 1-parameter family
of geodesics with these Cauchy data at time 0. They are associated to initial
momenta whose component vanishing on D is not fixed. When this transverse
momentum tends to ∞, these geodesics will spiral more and more around a
Reeb orbit like helices with small radii. See [C-H-T-21] for more details.
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9.1. A simple Hamiltonian

Let us assume that our Hamiltonian is H0 = 1
2ρI on Σ×R

2 with ρ the Reeb
Hamiltonian. Then the Hamiltonian vector field is

�H0 = 1
2I�ρ + ρ∂θ

The Poisson bracket {ρ, I} vanishes, hence ρ and I are first integrals of the
motion. The dynamics can be integrated as follows:

Φt(σ0, u + iv) = (φIt/2(σ0), (u + iv)eiρ(σ0)t)

where Φt is the flow of H0, φt the flow of ρ (the Reeb flow). If we fix the
energy H0 = 1, we have

Φt(σ0, u + iv) = (φIt/2(σ0), (u + iv)eit/I)

As I is small, ρ is large and we get a spiraling flow around the Reeb orbits.
Note that this Hamiltonian is exactly the Heisenberg one. In particular, there
exists closed geodesics γk, k ∈ N, spiraling around any periodic Reeb orbit
of period T0 of lengths lk = 2

√
πkT0.

9.2. Spiraling

Let us choose an orthonormal frame (X, Y ) of D in some tubular neigh-
bourhood of a Reeb orbit Γ defined on some interval t ∈ [0, T ]. Denote by
Z = [X, Y ]. Moreover, we can deduce from the Birkhoff normal form the
existence of a well defined parallel transport of vectors in D along the Reeb
flow.

Theorem 9.1. Let q0 ∈ M be arbitrary, and let (q0, p0) ∈ T �
q0M be the

Cauchy data of a geodesic t �→ γ(t) starting at q0 with unit speed γ̇(0) =
X0 ∈ D(q0). We assume that p0 → ∞ (large initial momentum) and denote
by h0 = p0(Z) → ∞.

Then, there exists a point Q0 = Q0(q0, p0) ∈ M close to q0, and a vector
Y0 ∈ D(Q0) close to X0, such that, denoting by Γ(τ) = Rτ (Q0) the Reeb orbit
of Q0, and by Y (t) the parallel transport of Y0 along Γ, we have, using the
complex structure on D, for t = O(h0),

γ(t) = Γ(J0t/2) − iJ0e
it/J0Y (J0t/2)) + O(J2

0 )

with J0 = h−1
0 + O(h−3

0 ).
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In words, the sR geodesic γ spirals along a Reeb orbit with a slow speed
∼ 1/2h0 along that orbit and a fast angular speed ∼ h0 transversally.

9.3. Periodic geodesics around a generic periodic Reeb orbit

In the paper [CdV-22a], I proved the following

Theorem 9.2. If Γ is a non degenerate periodic orbit of the Reeb flow of
period T0 > 0, there exist infinitely many periodic sR geodesics (γk), k ≥
k0, accumulating on Γ as k → +∞, whose lengths admit a full asymptotic
expansion

Lk = 2
√
πT0k

1
2 +

∞∑
j=1

ajk
−j/2 + O

(
k−∞)

as k → +∞.

9.4. Periodic geodesics in the weakly integrable case

We say that the geodesic flow is weakly integrable if the BNF converges, ie we
can write g� = F (σ, I) in some conic neighbourhood of Σ with F admitting
an expansion in powers of I as given in Theorem 8.1. Let us sketch a proof
of Theorem 9.2 in this case.

First, if I is small enough, there exists a closed orbit ΓI , of the Hamilto-
nian ρ + ρ2I + · · · of period T (I) = T0 −AI + · · · contained in H(σ, I) = 1.
One then consider at the return map of the angles. This gives

∫ T (I)

0
(ρ + 2Iρ2 + · · · ) dt = 2kπ

One then use the fact that H = 1 and concludes by eliminating I.
Note that this asymptotic formula is exact in the examples of Heisenberg

(T0 = 2π) and S3 (T0 = π) (see [K-V-19]).

10. Weyl measures, QL and QE for the sR Laplacian

10.1. Weyl

The Weyl formula is given by:

Theorem 10.1. If N(λ) = #{j | λj ≤ λ}, we have, as λ → +∞,

N(λ) ∼
∫
M |αg ∧ dαg|

32 λ2
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Note that the exponent 2 of λ is larger than the exponent 3/2 of the
Riemannian case. The smooth measure |αg∧dαg| is called the Popp measure.
Note that the measure μ which is used in order to define the Laplacian does
not need to be the Popp measure. The measure μ plays a very minor role in
the spectral asymptotics. This is because, for any pair μ, μ0 of densities, Δg,μ

is unitary equivalent to Δg,μ0 + V for some smooth potential V . Hence, one
gets, for example, by using the minimax principle, that

∃C > 0 so that,∀j ∈ N, |λj(Δg,μ) − λj(Δg,μ0)| ≤ C

The volume
∫
M |αg ∧dαg| which is a spectral invariant corresponds to the

inverse of Arnold’s asymptotic linking number for the Reeb flow if M = S3

[Ar-86].
There is a microlocal version of the Weyl law, namely

Theorem 10.2. If A is self-adjoint pseudo-differential operator of degree 0
whose principal symbol a : T �M \ 0 → R is homogeneous of degree 0 and is
identified with a function on the sphere bundle S(T �M), we have

lim
λ→+∞

1
N(λ)

∑
λj≤λ

〈Aφj |φj〉 =
∫
S(Σ)

adL

where dL is the unique probability measure on S(Σ) which is invariant by
antipody and whose direct image by the projection onto M is the probability
measure |αg ∧ dαg|/

∫
M |αg ∧ dαg|.

Both theorems are proved in [C-H-T-18]. The first one is classical, but we
provided a new proof in that paper.

10.2. QL and QE

Let us recall what are quantum limits (in short QL’s): a QL is a probabil-
ity measure dm on S�M := S(T �M) such that there exists a sequence of
eigenfunctions φjk , k ∈ N, of our Laplacian such that for any self-adjoint
pseudo-differential operator A of degree 0 with homogeneous principal sym-
bol a ∈ C∞(S�M), on has

lim
k→+∞

〈Aφjk |φjk〉 =
∫
S�M

adm

The eigenbasis φj , j ∈ N, is said to satisfy Quantum Ergodicity (in short
QE) with a probability measure dE on S�M if there exists a subsequence
(jk), k ∈ N, of density one w.r. to the Weyl law, admitting dL as QL.
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We have the following results which shows the prominent role of the Reeb
vector field in the spectral asymptotics ([C-H-T-18], Theorems A and B):

Theorem 10.3. Let us decompose the sphere bundle S(T �M \ 0) as the dis-
joint union of the unit bundle U�M := {g� = 1} and the sphere bundle of the
characteristic manifold SΣ.

1. Any QL μ (a probability measure on S(T �M \0)), can be uniquely writ-
ten as the sum μ = μ0 + μ∞ where μ∞ is supported by SΣ and is
invariant under the Reeb flow, while μ0(SΣ) = 0 and μ0 is invariant
under the geodesic flow.

2. If (φj) is an ONB of eigenfunctions, there exists a subsequence (φjk)
of density 1, so that all corresponding QL’s are supported on SΣ (and
hence invariant by Reeb).

3. If the Reeb flow is ergodic, then we have QE for any real eigenbasis with
the limit measure the measure dL on SΣ.

11. Toeplitz quantization of the Reeb Hamiltonian and
Landau levels

Recall that, if Σ is a symplectic sub-cone of T �M , one can associate to it an
Hilbert space H ⊂ L2 of functions whose wavefront set is included in Σ and an
algebra of operators which obey to the usual rules of the pseudo-differential
calculus where the symbols are functions on Σ (see [B-G-81]). In particular in
the case of boundaries of complex domains, one recovers the original definition
of Toeplitz operators.

We have the following normal form:

Theorem 11.1. Assuming that D is a trivial bundle, we can use a FIO
associated to the canonical transform χ defined in Section 8 to transform Δ
into

Δ0 =
∞∑
j=1

Rj ⊗ Ωj + R∞

where the Rj are Toeplitz operators on Σ of degree 1 − j, R0 is elliptic with
symbol |ρ|, Ω is an harmonic oscillator on R

2 and R∞ is smoothing along Σ.

The proof is a standard extension of the classical Birkhoff normal form
using Fourier integral operators.

It follows that we have, for each value of l ∈ N a sequence of eigenvalues
of Δ which are the eigenvalues of the Toeplitz operator

Δl :=
∞∑
j=1

(2l + 1)jRj
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modulo a fast decaying sequence.
We call the spectrum of Δl a “Landau band” because in the case of

constant magnetic field on surfaces (see Section 4) it is the union of the l-th
Landau clusters for all magnetic field kB, k ∈ Z \ 0.

Note that the approximate eigenvalues given by the normal form are “al-
most all” eigenvalues: we have

Nl(λ) ∼ λ2

(2π(2l + 1))2
∫
|ρ|≤1

dLΣ

with dLΣ the Liouville measure on Σ. This gives

∑
l

Nl(λ) ∼ λ2

32

∫
M

|αg ∧ dαg|

which fits with the Weyl formula.

12. Γ\PSL2(R)

Here Γ is a lattice in G = PSL2(R). We will look at operators invariant under
left translations. Their symbols are functions on the dual of the Lie algebra.
The Lie algebra is the 3D space of trace free 2 × 2 matrices

M(x, y, z) :=
(
z x
y −z

)

We write M = zA+ xX + yY . The Casimir operator is � = −A2 − 2(XY +
Y X). The Liouville Laplacian is

ΔL = −(X2 + Y 2)

The magnetic Laplacian is

ΔB = −A2 − (X + Y )2

Their principal symbols are c = ζ2 + 4ξη, l = ξ2 + η2 and b = ζ2 + (ξ + η)2
respectively. The characteristic cones are Σl = {ξ = η = 0} ⊂ {c > 0} and
Σb = {ζ = 0, ξ + η = 0} ⊂ {c < 0}. The co-adjoint orbits lying in c > 0
support the principal series of irreducible representations (H1 hyperboloïds),
while the orbits lying in c < 0 support the discrete series of irreps (H2
hyperboloïds).
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The calculation of the action of these operators on irreducible representa-
tions is the subject of [C-H-W-?]. The spectrum of ΔB is described in [Ch-20].
Note that the magnetic Hamiltonian is Liouville integrable while the Liouville
one is only weakly integrable (see Section 9.4) thanks to the Euler equations.

13. Traces

13.1. Wave traces

Richard Melrose proved in the paper [Me-84] that the Duistermaat-Guillemin
trace formula applies for the singularities of Trace(exp(−it

√
Δ)) outside t = 0.

I gave in [CdV-22b] a simpler proof of this result.
The wave traces of the Δl’s: the Δl’s are self-adjoint elliptic Toeplitz op-

erators of degree 1 to which the Theorems 9 and 10 of [B-G-81] apply. The
corresponding closed orbits are the Reeb orbits. These theorems say in partic-
ular that the singular support of the distributions Zl(t) := trace(exp(it

√
Δl))

is contained in the set of periods of the Reeb flow divided by (2l+1). In fact,
under some genericity assumption on the Reeb flow the two sets are the same.
Summing with respect to l gives a dense set of singularities. It would be nice
to say more on the precise structure of these singularities.

13.2. Schrödinger trace

The Heisenberg case: for �(z) > 0, one defines Z(z) :=
∑∞

j=1 e
−zλj For the

flat Heisenberg, one gets

Zo(z) =
∞∑

m=1
2m

∞∑
n=0

e−(2n+1)mz = 1
2

∞∑
m=1

m

sinhmz

= 1
2z

∑
m∈Z

mz

sinhmz
− 1

We will apply the Poisson summation formula. The Fourier transform of
z/ sinh z is π2

1+coshπz . We get

Zo(z) = π2

4z2 − 1
2z + π2

z2

∞∑
l=1

1
1 + cosh(2π2l/z)

One recovers the Weyl law, Zo(t) ∼ π2/8t2.
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As z → 0+, one gets exponential corrections as in [CdV-73]

π2
∞∑
l=1

e−2π2l/z

Each exponent identifies with L2/4, hence one gets also the lengths of periodic
geodesics, namely the set of 2π

√
2l, l ∈ N.

Let us look at the boundary values as �(z) → 0+. There are infinitely
many “poles”, namely the zeroes of 1+cosh 2π2l/iτ . The poles are zl = 2πil

2k+1 .
This corresponds to the periodic orbits of (2k + 1)-times Reeb as expected.
This is a dense set in the boundary, there exist no meromorphic extensions.

14. A conjecture

From what we know, I propose the following conjecture:

“the periods of the Reeb flow are generically spectral invariants
of the sR Laplacian”.

There are two heuristic arguments for that:

1. Using Theorem 9.2, one recover the lengths of the periodic geodesics.
Then the asymptotics of the lengths of closed geodesics accumulat-
ing around a Reeb periodic orbit involve the Reeb periods (see Theo-
rem 9.2).

2. The second argument follows from the Boutet de Monvel-Guillemin
trace formula appplied to each of the Δl’s (see Section 13.1) whose
righthandsides involve the Reeb periods.
Of course, it would be even nicer to extend the Schrödinger trace for-
mula from Section 13.2 to a more general case.
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