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Abstract: Several geometric flows on symplectic manifolds are in-
troduced which are potentially of interest in symplectic geometry
and topology. They are motivated by the Type IIA flow and T-
duality between flows in symplectic geometry and flows in complex
geometry. Examples include the Hitchin gradient flow on symplec-
tic manifolds, and a new flow which is called the dual Ricci flow.

1. Introduction

Geometric flows are now well-recognized as a powerful tool for geometry and
topology. Major successes include the Eells-Sampson theorem on harmonic
maps [ES64], Hamilton’s Ricci flow [Ham82] and Perelman’s proof of the
Poincaré conjecture [Per02, Per03b, Per03a], Donaldson’s heat flow proof of
the Donaldson-Uhlenbeck-Yau theorem on Hermitian-Yang-Mills connections
[Don87], the Brendle-Schoen differentiable sphere theorem [BS09], and many
other results. However, these successes were mostly in the settings of Rieman-
nian and complex geometry, leaving the subject of symplectic geometric flows
underdeveloped. In recent years, a few geometric flows adapted to symplectic
geometry have been introduced, such as Lê-Wang’s anti-complexified Ricci
flow [LW01], Streets-Tian’s symplectic curvature flow [ST14], and He’s flow
of non-degenerate 2-forms [He21]. Although there has been much progress
on these flows, applications of geometric flows in symplectic geometry and
topology have remained relatively few.

In [FPPZa], in joint work with S. Picard and X.W. Zhang, we introduced
the Type IIA flow for symplectic Calabi-Yau 6-manifolds, motivated by the
Type IIA string equations proposed in e.g. [TY14]. This was further devel-
oped in [FPPZ23, FPPZb, Raf21]. In particular, in [FPPZb], we successfully
applied the Type IIA flow to prove the stability of the Kähler property for
Calabi-Yau 3-folds under symplectic deformations.
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The goal of this paper is to introduce some geometric flows which may
potentially be of interest in symplectic geometry and topology. They are
motivated by duality considerations as well as by the Type IIA flow. More
specifically, in [FP21], S. Picard and the first author had introduced the dual
Anomaly flow as the T-dual of the Type IIB flow.1 Both the Type IIB flow
and the dual Anomaly flow are flows in complex geometry, and they are only
dual to each other up to lower order terms. Here we introduce instead the idea
that by applying T-duality, we can derive a flow in symplectic geometry from
a flow in complex geometry. In particular, we show that the Type IIA flow and
the Type IIB flow are indeed related to each other by T-duality, as suggested
by mirror symmetry, and the duality is now exact without lower order terms.
We also derive the T-dual of the Kähler Ricci flow in the symplectic setting. In
Section 3, we propose the study of the gradient flow of Hitchin’s functional in
dimension six. Under the presence of a compatible symplectic form, this flow
takes a similar expression to that of the Type IIA flow. Moreover, it induces
a flow of a pair which can be viewed as the anti-complexified Ricci flow with
lower order corrections coupled with a scalar function. In Section 4 we present
a few explicit examples of the gradient flow of 6D-Hitchin’s functional, show-
ing that the flow can be used to find optimal almost complex structures on
certain locally homogeneous symplectic half-flat manifolds. These examples
naturally provide eternal and convergent solutions to the anti-complexified
Ricci flow.

2. The Type IIA and the Type IIB flows

In this section, we would like to formulate a general principle by which a
flow in symplectic geometry should arise by T-duality from a flow in complex
geometry. We illustrate this principle by establishing the duality of the Type
IIA and the Type IIB flows in the semi-flat case, which is the case when
T-duality can be implemented explicitly.

Let us first recall the set-up of semi-flat geometry, in the notations from
[FP21]. Let B be a 3-dimensional compact special integral affine manifold. We
can cover B by local coordinates {x1, x2, x3} such that the transition functions
are valued in the group SL(3,Z) � R

3. Let TB be the tangent bundle of B,
with {y1, y2, y3} the natural coordinates of tangent directions. Clearly the
fiberwise lattice

Λ̌ = Z
∂

∂x1 + Z
∂

∂x2 + Z
∂

∂x3 = {(y1, y2, y3) : yj ∈ Z}

1This flow coincides with the special case of the Anomaly flow [PPZ18b, PPZ18a]
with slope parameter α′ = 0, and “Type IIB flow” is a more precise name [Pho20,
FPPZ22].
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is well-defined, and we may form the quotient X̌ = TB/Λ̌, which is a smooth
T 3-fibration over B. Moreover, X̌ is naturally equipped with a complex struc-
ture such that {zj = xj+iyj}3

j=1 forms a set of local holomorphic coordinates.
For our purpose, we shall also assume that B is equipped with a Hessian met-
ric g with local potential φ. In other words, there exists a local convex function
φ such that

gjk = ∂2φ

∂xj∂xk
.

We shall also consider the dual affine coordinates {xj = ∂φ
∂xj } on B under

Legendre transformation. Let {y1, y2, y3} be the natural coordinates for the
cotangent directions associated to the local chart {x1, x2, x3}. It is not hard
to check that the fiberwise lattice

Λ̂ = Zdx1 + Zdx2 + Zdx3 = {(y1, y2, y3) : yk ∈ Z}

is well-defined, and we may form the fiberwise quotient X̂ = T ∗B/Λ̂, which is
also a smooth T 3-fibration over B. The natural symplectic form on T ∗B de-
scends to a symplectic form on X̂, which in local coordinates can be expressed
as

ω = dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3.

Moreover, X̂ is equipped with a holomorphic volume form Ω = ϕ + iϕ̂ =
dz1 ∧ dz2 ∧ dz3 for zj = xj + iyj . In local coordinates we have

ϕ = dx1 ∧ dx2 ∧ dx3 − dx1 ∧ dy2 ∧ dy3 − dy1 ∧ dx2 ∧ dy3 − dy1 ∧ dy2 ∧ dx3,

ϕ̂ = dx1 ∧ dx2 ∧ dy3 + dx1 ∧ dy2 ∧ dx3 + dy1 ∧ dx2 ∧ dx3 − dy1 ∧ dy2 ∧ dy3.

Now we fix the affine structure on B associated to the local coordinate
{x1, x2, x3} and vary the Hessian metric g (or equivalently vary the poten-
tial φ). The symplectic form ω, coming from the canonical one on T ∗B, does
not change. However, the 3-forms ϕ and ϕ̂ are varying since the dual affine
structure associated to {x1, x2, x3} is changing.

In particular, if we run the Type IIB flow on X̌, by the calculation in
[FP21], the flow reduces to the real Monge-Ampère flow of Hessian metrics

(1) ∂tgjk = 1
4

∂2

∂xj∂xk
det g.

The goal in this section is to prove the following:
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Theorem 2.1. Under the Type IIB flow (1), the associated 3-form ϕ satisfies
the Type IIA flow [FPPZa]

(2) ∂tϕ = 1
16dΛωd(|ϕ|2ϕ̂).

Proof. By the definition of Legendre transform, we have

∂xj
∂xk

= ∂2φ

∂xj∂xk
= gjk,

hence
dx1 ∧ dx2 ∧ dx3 = det g · dx1 ∧ dx2 ∧ dx3.

On the other hand, as ϕ ∧ ϕ̂ = |ϕ|2 ω3

3! , we see that

|ϕ|2 = 4 det g.

Because Ω is holomorphic, both ϕ and ϕ̂ are closed. It follows that d(|ϕ|2ϕ̂) =
d|ϕ|2 ∧ ϕ̂, and that

Λωd(|ϕ|2ϕ̂) =
∑
j

∂|ϕ|2
∂xj

ι∂yj ϕ̂

= ∂|ϕ|2
∂x3 dx1 ∧ dx2 −

∂|ϕ|2
∂x2 dx1 ∧ dx3 + ∂|ϕ|2

∂x1 dx2 ∧ dx3

− ∂|ϕ|2
∂x3 dy1 ∧ dy2 + ∂|ϕ|2

∂x2 dy1 ∧ dy3 −
∂|ϕ|2
∂x1 dy2 ∧ dy3.

Consequently

dΛωd(|ϕ|2ϕ̂) =
(

∂2|ϕ|2
∂x1∂x1 + ∂2|ϕ|2

∂x2∂x2 + ∂2|ϕ|2
∂x3∂x3

)
dx1 ∧ dx2 ∧ dx3

−d
(
∂|ϕ|2
∂x1

)
∧ dy2 ∧ dy3 − dy1 ∧ d

(
∂|ϕ|2
∂x2

)
∧ dy3 − dy1 ∧ dy2 ∧ d

(
∂|ϕ|2
∂x3

)
.

Therefore, to prove the theorem, we only need to show that

∂t(dx1 ∧ dx2 ∧ dx3) = 1
16

(
∂2|ϕ|2
∂x1∂x1 + ∂2|ϕ|2

∂x2∂x2 + ∂2|ϕ|2
∂x3∂x3

)
dx1 ∧ dx2 ∧ dx3,

∂t(dxj) = 1
16d

(
∂|ϕ|2
∂xj

)
for j = 1, 2, 3.
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For the first identity above, we notice that

1
16

∑
j

∂

∂xj

(
∂|ϕ|2
∂xj

)
= 1

4
∑
j,k

∂xk

∂xj

∂2

∂xk∂xj
det g =

∑
j,k

gjk∂tgjk = ∂t det g
det g .

Therefore

∂t(dx1 ∧ dx2 ∧ dx3) = (∂t det g)dx1 ∧ dx2 ∧ dx3

= det g
16

(
∂2|ϕ|2
∂x1∂x1 + ∂2|ϕ|2

∂x2∂x2 + ∂2|ϕ|2
∂x3∂x3

)
dx1 ∧ dx2 ∧ dx3

= 1
16

(
∂2|ϕ|2
∂x1∂x1 + ∂2|ϕ|2

∂x2∂x2 + ∂2|ϕ|2
∂x3∂x3

)
dx1 ∧ dx2 ∧ dx3.

From the evolution equation of g, we know that there is an affine function l
such that

∂tφ = 1
4 det g + l,

hence

∂t(dxj) = d
(
∂t

∂φ

∂xj

)
= d

(
∂

∂xj
(∂tφ)

)
= 1

4d
(
∂ det g
∂xj

)
= 1

16d
(
∂|ϕ|2
∂xj

)
.

Remark 2.2. In [FP21], the dual Anomaly flow was defined as a flow of
Hermitian metrics on the dual manifold. Thus the setting for both the original
flow and its dual were in complex geometry, and the duality only holds up to
lower order terms. From this point of view, the symplectic and the geometric
settings are more naturally dual, as the duality is now exact.

Remark 2.3. In the above theorem, we made the choice of the phase angle so
that ϕ and ϕ̂ have the expressions we worked with. In fact, it is well legitimate
to choose ϕ′ = ϕ̂ and ϕ̂′ = −ϕ instead. By similar and straightforward
computation, one can show that ϕ′ also satisfies the Type IIA flow

∂tϕ
′ = 1

16dΛωd(|ϕ′|2ϕ̂′),

therefore Theorem 2.1 holds for arbitrary choice of the phase angle.

In Theorem 2.1, we showed that the Type IIA flow and Type IIB flow are
related to each other by T-duality in the semi-flat limit. Following this idea,
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once we have a geometric flow in the complex setting, by applying T-duality,
one may arrive at a natural flow in symplectic geometry. In particular, we
can find the T-dual of the Kähler-Ricci flow in the symplectic world.

In [FP21], we showed that the semi-flat reduction of the Kähler-Ricci flow
is given by

(3) ∂tgjk = 1
2

∂2

∂xj∂xk
log det g.

A similar calculation as in Theorem 2.1 yields the following theorem.

Theorem 2.4. Under the Kähler-Ricci flow (3), the associated 3-form ϕ
satisfies the flow

(4) ∂tϕ = 1
2dΛωd(log |ϕ|2 · ϕ̂).

By dropping the non-essential factor of 1
2 , we shall call the flow

(5)
{
∂tϕ = dΛωd(log |ϕ|2 · ϕ̂)
ϕt=0 = ϕ0 is a closed, primitive, and positive 3-form

the dual Ricci flow.
Due to the presence of the factor log |ϕ|2 in (5), one can imagine that

the short-time existence and uniqueness of (5) would be very challenging to
establish, if there is such a theorem.

3. The Hitchin gradient flow on a symplectic manifold

We begin by recalling the functional introduced by Hitchin [Hit00]. Let M be
an oriented compact 6-manifold. Following [Hit00, Fei15], given any positive
3-form ϕ on M , or equivalently any reduction of the structure group of M
to SL(3,C), there is a naturally associated almost complex structure Jϕ, and
another 3-form ϕ̂ = Jϕϕ, such that the form Ω = ϕ +

√
−1ϕ̂ is a nowhere

vanishing (3,0)-form with respect to the almost complex structure Jϕ.
The Hitchin functional is defined as

H(ϕ) = 1
2

∫
M

ϕ ∧ ϕ̂.

Assume now that ϕ is closed. Hitchin proposed the variational problem
of finding the critical points of H(ϕ), subject to the constraint of ϕ being in
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a given de Rham cohomology class. In particular, he showed in [Hit00] that

δH =
∫
M

δϕ ∧ ϕ̂.

Hence the critical points of H(ϕ) are exactly those ϕ such that dϕ̂ = 0, or
equivalently, such that Jϕ is integrable.

We would like to approach this problem by considering a gradient flow
for the Hitchin functional. For this, we need to introduce a metric on M .
A natural way to do so is to put a symplectic form ω on M . As shown in
[FPPZa], the almost complex structure Jϕ is compatible with ω if and only
if ϕ is primitive with respect to ω. In this way, we can rewrite Hitchin’s
variational formula as

δH =
∫
M

(δϕ, ϕ)ω
3

3! .

Since the cohomology class of ϕ is not changing, we may write δϕ = dδβ, so

δH =
∫
M
〈dδβ, ϕ〉ω

3

3! =
∫
M
〈δβ, d†ϕ〉ω

3

3! .

Consequently the gradient flow of Hitchin’s functional is ∂tβ = d†ϕ, or

∂tϕ = ∂tdβ = dd†ϕ.

In this form, the gradient flow of the Hitchin functional on a compact 6-
dimensional symplectic manifold can be viewed as the 6-dimensional version
of Bryant’s Laplacian flow on 7-manifolds, whose stationary points are given
by manifolds with G2-holonomy [Bry06].

Our first observation is that the symplectic version of the gradient flow
for the Hitchin functional is actually a degenerate version of the Type IIA
flow introduced in [FPPZa]:

Theorem 3.1. Let M be a compact 6-dimensional manifold equipped with
a symplectic form ω. Then the gradient flow of the Hitchin functional with a
closed, primitive, and positive initial 3-form can be equivalently expressed as

(6) ∂tϕ = dΛωdϕ̂

Proof. Note that, formally, the flow (6) preserves the closedness and primi-
tiveness of ϕ. It suffices to prove the following identity

dd†ϕ = dΛωdϕ̂.



1860 Teng Fei and Duong H. Phong

for any closed primitive positive 3-form ϕ. Since d†ϕ = −∗d∗ϕ = −∗dϕ̂, we
only need to show that −∗dϕ̂ = Λωdϕ̂. But it follows from [FPPZa, Lemma
18] that dϕ̂ is the product of ω with a primitive (1, 1)-form.

We observe that, just as the gradient flow of the 6-dimensional Hitchin
functional is related to the Type IIA flow by Theorem 3.1, there is also a
7-dimensional version of Hitchin’s functional, whose gradient flow is exactly
Bryant’s Laplacian flow for closed G2-structures, as explained in [Lot20].

We show next that the symplectic flow (6) is weakly parabolic. For this
we need to determine the eigenvalues of its principal symbol. We follow the
procedure developed in [FPPZa] for the Type IIA flow. We start from the
following formula derived in [FPPZa]

(7) δϕ̂ = −Jϕ(δϕ) − 2〈δϕ, ϕ̂〉|ϕ|2 ϕ + 2〈δϕ, ϕ〉|ϕ|2 ϕ̂.

Since the symbol of the exterior differential is ξ∧ ·, it follows that the symbol
of the operator ϕ → dΛωd(ϕ̂) is given by

(8) δϕ → ξ ∧
{

Λω

[
ξ ∧ (−Jϕδϕ− 2〈δϕ, ϕ̂〉|ϕ|2 ϕ + 2〈δϕ, ϕ〉|ϕ|2 ϕ̂)

]}
.

It is no loss of generality to assume that

(9) ξ = e1, |ϕ| = 1,

to write Jϕ = J , Λω = Λ, and to work on an adapted frame for ϕ, where we
have, as shown in [FPPZa]

ω = e12 + e34 + e56

ϕ = 1
2(e135 − e146 − e245 − e236), ϕ̂ = 1

2(e136 + e145 + e235 − e246).

Note that in the frame {ej} of vectors, we have Je2k−1 = e2k, J(e2k) =
−e2k−1, so in this co-frame, we have J(e2k−1) = −e2k, J(e2k) = e2k−1. We
need to identify the eigenvalues of this operator, restricted to the subspace
W of 3-forms δϕ satisfying the constraints resulting from ϕ being closed and
primitive

(10) W = {δϕ; ξ ∧ δϕ = 0, Λ(δϕ) = 0},
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which can be worked out to be

(11) W = e1 ∧W ′

where W ′ is the space of 2-forms γ on the vector space V ′ spanned by {ej}6
j=3,

which satisfies the constraint Λ′γ = 0, where Λ′ is the Hodge contraction
operator on V ′ with respect to the symplectic form ω′ = e34 + e56. Next we
compute

Λ[e1 ∧ (Jδϕ)] = Λ[e1 ∧ (−e2 ∧ Jγ)] = −Jγ

Λ[e1 ∧ ϕ̂] = 1
2(e35 − e46)

Λ[e1 ∧ ϕ] = −1
2(e45 + e36).

We also work out the inner products 〈δϕ, ϕ〉 and 〈δϕ, ϕ̂〉,

〈δϕ, ϕ〉 = 1
2〈e

1 ∧ γ, e135 − e146〉 = 1
2〈γ, e

35 − e46〉

〈δϕ, ϕ̂〉 = 1
2〈e

1 ∧ γ, e136 + e145〉 = 1
2〈γ, e

36 + e45〉.

Thus the symbol map on W ′ becomes

(12) γ → Jγ + 〈δϕ, ϕ̂〉(e45 + e36) + 〈δϕ, ϕ〉(e35 − e46)

It is convenient to use the following basis for the 5-dimensional space W ′,

(13) κ = e34 − e56, μ±
1 = e45 ± e36, μ±

2 = e35 ± e46

which are all eigenvectors of J ,

J(e34 − e56) = (e34 − e56)
J(e45 + e36) = −(e45 + e36), J(e45 − e36) = e45 − e36

J(e35 − e46) = −(e35 − e46), J(e35 + e46) = e35 + e46.

The symbol becomes the following operator

(14) γ → Jγ + 1
2〈γ, μ

−
2 〉μ−

2 + 1
2〈γ, μ

+
1 〉μ+

1

This implies readily
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Lemma 3.2. The above basis turns out to be all eigenvectors of the symbol
map

κ → κ, μ+
1 → 0, μ+

2 → μ+
2

μ−
1 → μ−

1 , μ−
2 → 0.

Thus the Hitchin gradient flow is more degenerate than the Type IIA
flow, whose principal symbol only has one zero eigenvalue. This additional
degeneracy prevents a proof of short-time existence for general symplectic
manifolds and general data along the lines of [FPPZa]. Nevertheless, as we
shall see in the next section, the Hitchin gradient flow exists on many in-
teresting manifolds and exhibits a variety of interesting phenomena. For the
remaining part of this section, we shall just assume that the Hitchin gradient
flow exists on a symplectic manifold, and derive the corresponding evolution
equations for geometric quantities of interest, such as the metric gij and |ϕ|2.

The key point in this derivation is that the Type IIA structure is pre-
served under the flow (6), hence we are free to use various identities in Type
IIA geometry developed in [FPPZa, FPPZ23]. Otherwise, in [FPPZa] and
[FPPZ23], two different methods were given for deriving the evolution equa-
tions for the metric and the term |ϕ|2 in the Type IIA flow. Both methods
can be readily adapted to the present case of the Hitchin gradient flow. How-
ever, since the Hitchin gradient flow is given by a Laplacian, and the method
of [FPPZ23] gives explicit Bochner-Kodaira formulas for the Laplacian on
3-forms, it is easiest to just extract from [FPPZ23] what we need.

Recall that the metric gϕ is defined by gϕ(X, Y ) = ω(X, JϕY ). We denote
it by just gij for simplicity, and also consider the metric g̃ij defined by

g̃ij = |ϕ|2gij = g̃ij = −ϕjkpϕiabω
kaωpb.

We consider first the flow of the metric g̃ij , which is then given by

∂tg̃ij = −∂tϕjkpϕiabω
kaωpb + (i ↔ j)

= −(dd†ϕ)jkpϕiabω
kaωpb + (i ↔ j)

The contribution of dd† has been worked out in [FPPZ23], Lemma 14. It is
given by

− (dd†ϕ)jkpϕiabω
kaωpb + (i ↔ j)

= |ϕ|2
{
Rgij−2(DkNij

k + DkNji
k) + (∇μα

μ + N2)gij − 2(Ni
k
j + Nj

k
i)αk

− 4(N2
−)ij + 8(N2

+)ij
}
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where αj was defined as

(15) αj = −∂j log |ϕ|2

and the quadratic expressions N2
− and N2

+ in the Nijenhuis tensor are defined
by

(N2
+)ij = Npk

iNpkj , (N2
−)ij = Nkp

iNpkj .

We can now make use of the following identities for the Nijenhuis tensor and
the scalar curvature R in Type IIA geometry established in [FPPZa]

(N2
−)ij = 2(N2

+)ij −
1
4 |N |2gij ,

R = Δu− |N |2 = −∇μα
μ − |N |2

and arrive at the following result:

Lemma 3.3. The flow of the metric g̃ij is given by

∂tg̃ij = −|ϕ|2
{
2(DkNij

k + DkNji
k) + 2αp(Nj

p
i + Ni

p
j) −N2gij

}
Here the covariant derivatives and scalar curvature are with respect to the
metric gij .

Next, we derive the flow of u = log |ϕ|2 and of gij = |ϕ|−2g̃ij . We have

∂t log det g̃ = g̃ij∂tg̃ij = |ϕ|−2gij∂tg̃ij = −(6R + 6∇μα
μ) = −6(R− Δu)

since αμ = −∂μ log |ϕ|2 = −∂μu. Thus we obtain

(16) ∂t log det g̃ = 6|N |2.

Since we also have

∂t log |ϕ|2 = 1
6∂t log det g̃

we obtain the flow for u = log |ϕ|2,

(17) ∂t log |ϕ|2 = |N |2.

The flow of gij readily follows

∂tgij = ∂t(|ϕ|−2g̃ij) = |ϕ|−2∂tg̃ij − (∂t log |ϕ|2)|ϕ|−2g̃ij

= |ϕ|−2∂tg̃ij − (∂t log |ϕ|2)gij .
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We summarize the formulas in the following lemma:

Lemma 3.4. The flows of the metric gij and of the norm |ϕ|2 in the Hitchin
gradient flow are given by

∂tgij = −
{
2(DkNij

k + DkNji
k) + 2αp(Nj

p
i + Ni

p
j)
}

∂t log |ϕ|2 = |N |2.

We note that the Hitchin functional certainly increases along its gradi-
ent flow. But the lemma implies a much stronger property, namely that the
integrand in the functional is pointwise monotone increasing. Now the Ricci
curvature in Type IIA geometry is given by

(18) DkNij
k + DkNji

k = Rij + 2(N2
−)ij − (∇i∇ju)J

so that the above flows can also be rewritten as, with the notation (∇i∇ju)J =
1
2(∇i∇ju + Ji

pJj
q∇p∇qu) from [FPPZa],

Lemma 3.5. The flows of the metric gij and |ϕ|2 in terms of the Ricci
curvature are given by

∂tgij = −
{
2Rij + 4(N2

−)ij − 2(∇i∇ju)J + 2αp(Nj
p
i + Ni

p
j)
}

∂t log |ϕ|2 = |N |2.

There is yet another natural way of rewriting this flow, using the Ricci
curvature formula [FPPZa, Eq. (6.53), Eq. (6.59)]. Thus we get

Lemma 3.6. The flows of the metric gij and of the function u = log |ϕ|2 in
the Hitchin gradient flow can also be written as

∂tgij = −Rij + RJi,Jj + 2us(Ni
s
j + Nj

s
i)

∂tu = |N |2
(19)

Remark 3.7. Formally the coupled system (19) makes sense for any compact
symplectic manifold, therefore it can be viewed as a generalization of the
gradient flow of Hitchin’s functional (6) for arbitrary symplectic manifolds.

Remark 3.8. The system (19) also shows that the gradient flow of the
Hitchin functional can be viewed as a perturbation of the anti-complexified
Ricci flow of Lê-Wang [LW01]. This is the gradient flow of the Blair-Ianus
functional [BI86], and can expressed as

∂tgij = −Rij + RJi,Jj .
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We see that the first equation in (19) only differs from the anti-complexified
Ricci flow by a first order term.

Remark 3.9. If we run the flow (6) on locally homogeneous half-flat sym-
plectic manifolds (as in the case of [FPPZa, Section 9.3.2]), the induced flow
of g is exactly Lê-Wang’s anti-complexified Ricci flow because that u is a con-
stant in space. In particular, this flow can be used to find optimal compatible
almost complex structures.

4. Examples

In this section, we present a few explicit examples of the gradient flow of 6D-
Hitchin’s functional on locally homogeneous symplectic half-flat manifolds.
These manifolds have been studied in [FPPZa] from the perspective of the
Type IIA flow.

Example 4.1. Let M be the nilmanifold constructed by de Bartolomeis-
Tomassini [dBT06, Example 5.2]. The Lie algebra of the nilpotent Lie group
is characterized by invariant 1-forms {e1, . . . , e6} satisfying

de1 = de2 = de3 = de5 = 0,
de4 = e15, de6 = e13.

Clearly ω = e12+e34+e56 defines an invariant symplectic structure. Moreover,
this nilpotent Lie group admits co-compact lattices so all the constructions
descend to compact nilmanifolds. Consider the ansatze

(20) ϕ = ϕa,b = (1 + a)e135 − e146 − e245 − e236 + b(e134 − e156),

it is easy to check that ϕa,b is primitive and closed for any a, b. The posi-
tivity condition for ϕa,b is that 1

16 |ϕ|4 = 1 + a − b2 > 0. By straightforward
calculations, we get

|ϕ|2ϕ̂ = 4((1 + a− b2)e1∧(e36 + e45) + e2 ∧ (be34 + (1 + a)e35−e46−be56)).

It follows that

d(|ϕ|2ϕ̂) = 4e12(e34 + 2be35 − e56),
Λωd(|ϕ|2ϕ̂) = 4(e34 + 2be35 − e56),
dΛωd(|ϕ|2ϕ̂) = 8e135.
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So the gradient flow of 6D-Hitchin’s functional reduces to the ODE system⎧⎨
⎩ȧ = 2√

1+a−b2
,

ḃ = 0,

which can be solved explicitly
{

(1 + a− b20)3/2 = (1 + a0 − b20)3/2 + 3t,
b = b0.

In particular the flow exists for all time and

|N |2 = (1 + a− b2)−3/2 = 1
(1 + a0 − b20)3/2 + 3t

→ 0,

as t goes to infinity.

Example 4.2. Consider the symplectic half-flat structure on the solvmani-
fold M constructed by Tomassini and Vezzoni in [TV08, Theorem 3.5]. The
geometry of this solvmanifold is characterized by invariant 1-forms {ej}6

j=1
satisfying

de1 = −λe15, de2 = λe25, de3 = −λe36,

de4 = λe46, de5 = 0, de6 = 0,

where λ = log 3+
√

5
2 . One can easily check that ω = e12 + e34 + e56 is an

invariant symplectic form on M . Consider the ansatze

(21) ϕ = α(e135 + e136) + β(e145 − e146) + γ(e235 − e236) − δ(e245 + e246).

A direct calculation gives

|ϕ|2ϕ̂ = 8(−αβγ(e135 − e136) + αβδ(e145 + e146)
+ αγδ(e235 + e236) + βγδ(e245 − e246)).

The nondegenerate condition is that |ϕ|4 = 64αβγδ > 0. It follows that

d(|ϕ|2ϕ̂) = 16λ(αβγe1356 + αβδe1456 − αγδe2356 + βγδe2456),
Λωd(|ϕ|2ϕ̂) = 16λ(αβγe13 + αβδe14 − αγδe23 + βγδe24),

dΛωd(|ϕ|2ϕ̂) = 16λ2(αβγ(e135 + e136) + αβδ(e145 − e146)
+ αγδ(e235 − e236) − βγδ(e245 + e246)).
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After linear time rescaling, the gradient flow of Hitchin’s functional under our
ansatze reduces to

α̇ = αβγ√
αβγδ

, β̇ = αβδ√
αβγδ

,

γ̇ = αγδ√
αβγδ

, δ̇ = βγδ√
αβγδ

.

For simplicity, let us assume that all of α, β, γ, δ are positive. It is easy to see
that there exist positive constants C1 and C2 such that α(t) = C1δ(t) and
β(t) = C2γ(t). The ODE system simplifies to

γ̇ =
√

C1

C2
δ, δ̇ =

√
C2

C1
γ.

Again this system can be solve explicitly as

α =
√
C1(Aet + Be−t), β =

√
C2(Aet −Be−t),

γ = 1√
C2

(Aet −Be−t), δ = 1√
C1

(Aet + Be−t),

where A > 0, B are constants determined by initial data. In particular the flow
exists for all time and limt→∞ |ϕ|2 = ∞. However, the limit limt→∞ Jt = J∞
does exist. This is because

ϕ∞ := lim
t→∞

ϕ

|ϕ| =

√
C1

8 (e135 + e136) +

√
C2

8 (e145 − e146)

+
√

1
8C2

(e235 − e236) −
√

1
8C1

(e245 + e246)

exists. In fact, J∞ is a harmonic almost complex structure in the sense of
[LW01], namely the Ricci curvature is J∞-invariant. In addition, ϕ∞ satisfies

dΛωdϕ̂∞ = 2λ2ϕ∞.

This case also provides an example of convergence of anti-complexified Ricci
flow to a non-Kähler metric.

Remark 4.3. When |ϕ| is a constant over space, the Hitchin gradient flow
is simply a time-rescaled version of the Type IIA flow. Therefore we can use
Raffero’s technique [Raf21] to produce many special solutions to the Hitchin
gradient flow (6) as well.
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5. Additional remarks

It may be worth considering the following ε-regularization of the Hitchin
gradient flow

(22) ∂tϕ = dΛωd(|ϕ|εϕ̂)

for each ε > 0. The same arguments for the Type IIA flow show that the
flow preserves primitiveness and should be a well-defined flow of Type IIA
geometries. While we do not expect that the corresponding solutions will have
a limit as ε → 0, it is conceivable that certain important notions may have a
limit. A model situation may be Landau-Ginzburg models and renormalized
energies. It is also intriguing that the dual Ricci flow can be interpreted as
another limit of this regularization.
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