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Abstract: Let (Ω, g) be a compact, real analytic Riemannian man-
ifold with real analytic boundary ∂Ω = M . We give L2-lower
bounds for Steklov eigenfunctions and their restrictions to interior
hypersurfaces H ⊂ Ω◦ in a geometrically defined neighborhood
of M . Our results are optimal in the entire geometric neighbor-
hood and complement the results on eigenfunction upper bounds
in [GT19].
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1. Introduction

Let (Ω, g) be an n + 1-dimensional, compact C∞ Riemannian manifold with
boundary M and corresponding unit exterior normal ν. By some abuse of no-
tation, we also let ν denote a smooth vector field extension and γM : C0(Ω) →
C0(M) be the boundary restriction map. Let D : C∞(M) → C∞(M) be the
associated Dirichlet-to-Neumann (DtN) operator defined by

(1.1) Df := γM∂νu

where u solves the Dirichlet problem

Δgu(x) = 0, x ∈ Ω, u(q) = f(q), q ∈ M.(1.2)

The operator D is an ellptic, first order, self-adjoint pseudodifferential op-
erator (see for example [Tay11, Section 7.11]) with an L2-normalized basis of
eigenfunctions ϕj ; j = 1, 2, . . . . It is useful to work in the semiclasscial setting
from the outset. Choosing h−1 ∈ SpecD, the corresponding eigenfunction ϕh

then satisfies the semiclassical eigenfunction equation

hDϕh = ϕh.

The harmonic extension, uh ∈ C∞(Ω), of a DtN eigenfunction ϕh is called a
Steklov eigenfunction. Throughout the article, we will use the notation uh for
these Steklov eigenfunctions which have L2 normalized boundary restriction.
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There has been a substantial amount of recent work devoted to the study
of the asymptotic behaviour of the DtN eigenvalues and both DtN and Steklov
eigenfunctions, including the asymptotics of eigenfunction nodal sets (see for
example [BL15, GP17, GPPS14, HL01, PST15, Sha71, SWZ16, Zel15, Zhu15,
Zhu16] and references therein).

For large eigenvalues, Steklov eigenfunctions possess both high oscilla-
tion inherited from the boundary DtN eigenfunctions and very sharp decay
into the interior of Ω. As a consequence, even though Steklov eigenfunctions
decay rapidly, the oscillation implies that the nodal sets have intricate struc-
ture. It has been conjectured [GP17] that the analogue of Yau’s conjecture
[Yau82, Yau93] for nodal volumes holds in the Steklov case. This was recently
proved for real-analytic Riemann surfaces in [PST15]. In the case of smooth
manifolds, the recent work [Dec21b, Dec21a] gives the best available polyno-
mial upper and lower bounds on the nodal volume. Despite these bounds on
the nodal volume, it is likely that a typical high energy Steklov eigenfunc-
tion exhibits regions of fixed sign with inner radius uniformly bounded from
below [BG20].

The question of decay of Steklov eigenfunctions into the interior of M
when (M, g) is real analytic was first raised by Hislop–Lutzer [HL01] where
they conjecture that the Steklov eigenfunctions decay into the interior as
e−d(x,∂Ω)/h. In the special case where dim Ω = 2 and Ω is analytic, exponential
decay with respect to d(x, ∂Ω) was proved in [PST15]. The case of general
dimension and analytic Ω was handled in [GT19]. There, the authors prove
that

(1.3) sup
x∈Ω∂(ε0)

|∂α
xuh(x)|e[d(x,∂Ω)−Csup(Ω)d2(x,∂Ω)]/h ≤ Cα,

where Ω∂(ε0) is a tubular neighbourhood of the boundary of width ε0 =
ε0(Ω,M, g) > 0 and Csup is a constant depending on the second fundamental
form of the boundary. Here, ε0 > 0 is an h-independent positive constant
that depends on the analyticity properties of the boundary and is difficult to
quantify explicitly.

In this article, we consider the complementary question of lower bounds
on Steklov eigenfunctions. As in the case of [GT19], we restrict our attention
to the case of analytic Ω and M . Our first result is a lower bound for L2

restrictions of eigenfunctions in a small ε0-neighbourhood of the boundary.
In analogy with (1.3) we prove

Theorem 1. Let Ω be a real analytic manifold with real analytic boundary,
M = ∂Ω. There exist a neighbourhood, Ω∂(ε0) of M and constants Cj(ε0) >
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0; j = 1, 2 such that for any connected component, N , of the boundary and
any ε > 0 there are C > 0 and h0 > 0 such that for h ∈ (0, h0(ε)] and
0 ≤ t ≤ ε0, and Ht := {x : d(x,N) = t},

e[t+C1(ε0)t2]/h‖uh‖L2(Ht) ≥ Ce−C2(ε0) ε/h‖uh‖L2(N) − C1e
−1/(hC1)‖uh‖L2(M).

Here ε0 = ε0(M,Ω, g) > 0 is a possibly small constant (but independent
of h) that is the same in both the upper bounds (1.3) and lower bounds in
Theorem 1 and is difficult to quantify precisely.

Our second result extends eigenfunction lower bounds to an explicit ge-
ometric neighbourhood of the boundary. Specifically, we use Carleman es-
timates to “bootstrap” the local result in Theorem 1 to the full geometric
neighbourhood of the boundary.

To define the geometric tubular neighbourhood more precisely, let N be
a connected component of ∂Ω. We consider the map ϕN : N × [0, r) → Ω
given by

(1.4) ϕN (x, r) = expx(−rν), r ∈ [0, r0), x ∈ N,

where exp is the Riemannian exponential map induced by the metric g and
−ν is the unit interior normal to ∂Ω. By the collar neighbourhood theorem,
for sufficiently small r0 > 0. the map ϕN is a diffeomorphism onto its image
ϕN ([0, r0)). We let rmax,N be the maximal choice of r0 with this property and
set

(1.5) ΩN (rmax,N ) := ϕ([0, rmax,N )).

We refer to ΩN (rmax,N ) as the geometric neighbourhood of the boundary
component N . In the following, we sometimes abuse notation and just write
ΩN for ΩN (rmax,N ). See Figure 2 for a description of these domains for the
annulus.

Theorem 2. Let Ω be a real analytic manifold with real analytic boundary,
M = ∂Ω, and ΩN ⊂ Ω (as in (1.5)) be the g Fermi neighbourhood of the
connected component, N , of M and 0 < t < rmax,N . Then, for any tubular
neighbourhood, UHt , of Ht := ϕN (N, t) and ε > 0, there are h0 > 0 and C > 0
such that for h ∈ (0, h0],

‖eψN (t)/h uh‖L2(UHt ) ≥ Ce−ε/h(‖uh‖L2(N) − e−1/Ch‖uh‖L2(M)),

where

ψN (xn+1) =
∫ xn+1

0
e
∫ s

0
Qsup,N (t)dtds,
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Qsup,N (t) := sup{Q(t, x′, ξ′) : x′ ∈ N, |ξ′|gt(x′) = 1},

gt is the metric induced on Ht, and Q(t, x′, ξ′) is the second fundamental form
on Ht induced by the inward pointing normal.

The examples of the disk, cylinder, and annulus in Sections 2.1–2.3 show
that Theorem 2 is optimal.

Remark 1. Notice that, although the right hand sides of the estimates in
Theorems 1 and 2 have an error e−1/Ch with a constant C depending on the
analyticity properties of Ω and M , these do not cause losses in the estimates
when ‖uh‖L2(N) � e−1/Ch‖uh‖L2(M). Since there are finitely many boundary
components, there are always boundary components where this is the case.
Furthermore, we may replace N in Theorem 2 by a union of boundary com-
ponents, Ñ := ∪L

j=1Nj by applying Theorem 2 for each Nj if we replace ψN

by ψÑ .

By Taylor expansion at the boundary M = {xn+1 = 0},

(1.6) ψN (xn+1) = xn+1 + Qsup,N (0)
2 x2

n+1 + O(x3
n+1),

where Qsup,N (0) is the maximum of the second fundamental form along N ⊂
∂Ω. Thus, near the boundary, eigenfunction decay is given to first order by
xn+1 = d(x,M). However, when the boundary is strictly convex, the quadratic
correction in (1.6) is actually negative and so the rate of decay in our estimate
may be faster than e−d(x,M)/h. The simple example of the disc (see Section 2.1)
shows that this extra decay does occur. Likewise, when a boundary component
is strictly concave, the quadratic correction is positive, producing a sub-linear
rate of decay. This behavior can be seen in the example of the annulus (see
Section 2.3).

Our final results concerns lower bounds of the L2-restriction of eigenfunci-
ton Cauchy data along H ⊂ Ω∂(rmax,∂Ω). We recall that given a hypersurface
H ⊂ Ω, the Cauchy data along H is the pair

CDH(h) := (uh|H , h∂νuh|H).

The lower bound in Theorem 2 combined with a potential layer formula
in the tube UH(ε) allows us prove goodness for CDH(h) for hypersurfaces H
potentially far inside Ω.
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Figure 1: Steklov eigenfunctions with σ ∼ 20 on the annulus with r0 = .4.
The black line shows the lower bound predicted by Theorem 2. The labels
σk,j are as in (2.3).

Theorem 3. Let Ω be a real analytic manifold with real analytic boundary,
M = ∂Ω and Ht := ϕ∂Ω(∂Ω, t). Then for 0 < t < rmax,∂Ω and ε > 0 there are
C(ε) > 0 and h0(ε) > 0 such that for h ∈ (0, h0(ε)],

eψ∂Ω(t)/h (‖uh‖L2(Ht) + ‖h∂νuh‖L2(Ht)
)
≥ C(ε)e−ε/h‖uh‖L2(M).

Theorems 2 and 3 are optimal in a sense made precise in the next section.

1.1. Organization of the paper

The proof of Theorem 1 follows first from the existence of a parametrix for the
Poisson kernel modulo analytic errors, and second, from the construction of an
approximate inverse for this operator valid at frequencies � h−1. However, the
parametrix construction is only valid in a collar of radius ε0 = ε0(M,Ω, g) that
while h-independent, is possibly smaller than rmax,N . The proof of Theorem 1
is taken up in Section 3.

The proof of Theorem 2 is given in Section 4. Here, we use the local result
in Theorem 1 as a control estimate and use Carleman estimates to extend the
lower bound in Ω∂(ε0) to the full geometric neighbourhood ΩN (rmax,N ) of the
boundary. Finally Section 5 applies a layer potential formula together with
Theorem 2 to prove Theorem 3.
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2. Examples

2.1. The disk

Let Ω = B(0, R) ⊂ R
2. Then the Steklov eigenvalues are precisely σ =

0, 1
R ,

2
R . . . with corresponding Steklov eigenfunctions given by

(2.1) u±k = 1√
2πRRk

rke±ikθ, σ = k

R
.

In particular, letting h = σ−1 = k−1R,

u±h = 1√
2πR

e[R log(1−(R−r)/R))]/he±iθR/h.

Now, we recall that the metric in Fermi normal coordinates relative to
∂B(0, R) (i.e. with x2 = R− r) is given by

ξ2
2 + 1

(R− x2)2
ξ2
θ ,

and hence, the metric induced on Ht and second fundamental form on Ht are
given by

|ξθ|2gt = ξ2
θ

(R− t)2 , Q(t, θ, ξθ) = ξ2
θ

(R− t)3 .

In particular,

Qsup(t) = 1
R− t

,

and therefore,

ψ(x2) =
∫ x2

0
e
∫ s

0
Qsup(t)dtds = R log(1 − x2

R ).

Undoing, the change of variables and applying Theorem 3 to obtain a
lower bound, we have that

C(ε)e−ε/h ≤ eR log(1−R−r0
R )/h[‖u±h ‖L2(r=r0)) + ‖h∂ru±h ‖L2(r=r0)] ≤ C.

In particular, the exponential weight in Theorems 2 and 3 is optimal.
The case of spheres in higher dimensions is nearly identical if we replace

e±ikθ by a spherical harmonic.
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2.2. Cylinders

Let (M, g) be a real analytic manifold of dimension n without boundary and
Ω = (−1, 1)s ×Mx with metric ds2 + g(x). Then

ΔΩ = ∂2
s + ΔM .

Let ϕk be an orthonormal basis for L2(M) with

(−ΔM − λ2
k)ϕk = 0.

Then the Steklov eigenfunctions are given by

uh(s, x) = cosh(λks)
cosh(λk)

ϕk(x), vh(x, s) = sinh(λkt)
sinh(λk)

ϕk(x)

with Steklov eigenvalues σk = λk tanh(λk) and σ′
k = λk coth(λk) respectively.

Notice that

cosh(x) = 1
2e

|x| + O(e−|x|), sinh(x) = sgn(x)
2 e|x| + O(e−|x|),

and
σk = λk(1 + O(e−λk)).

It is easy to see that Qsup(s) ≡ 0 and hence, taking NL = {s = −1},
we have ψNL(s) = 1 + s, and taking NR = {s = 1}, we have ψNR = 1 − s.
Combining the lower bounds from Theorem 2 applied with NL and NR, we
obtain optimal lower bounds on M . Similarly, we obtain optimal lower bounds
with an application of Theorem 3, but this time the hypersurface is given by
Ht = {s = −1 + t} 
 {s = 1 − t} and the Theorem is valid for 0 < t < 1.

Remark 2. Notice that a cylinder has the unusual feature that there are
Steklov eigenfunctions with non-negligible mass on multiple boundary com-
ponents. This is why one must apply Theorem 2 twice (once from the left
hypersurface and once from the right) to obtain the correct lower bounds.

2.3. The annulus

Now, consider B(0, 1)\B(0, r0) ⊂ R
2. Then a simple computation shows that

the Steklov eigenvalues are the roots of

pk(σ) = σ2 − σk

(1 + r0

r0

)(
1 + r2k

0
1 − r2k

0

)
+ k2

r0
, k = 0, 1, . . .
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Figure 2: Regions of applicability for Theorems 1, 2, and 3 for Ω = B(0, 1) \
B(0, r0). The relevant regions are shaded in gray with dashed lines not in-
cluded in the region.

with corresponding eigenfunctions

(2.2) u±σ (r, θ) = Ck,σe
±ikθ

(
rk + k − σ

k + σ
r−k

)
.

See Figure 1 for graphs of two such eigenfunctions.
It is easy to show that the roots of pn(σ) have

(2.3) σk,1 = k + O(kr2k
0 ), σk,2 = k

r0
+ O(kr2k

0 ).

Then,

u±σk,1
= 1√

2π
e±ikθ(rk + O(r2k

0 )r−k), u±σk,2
= 1√

2πr0
rk0e

±ikθ(r−k + O(1)rk).

The case of uσk,1 is identical to that for the disk when r > r0 + ε, so we focus
on uσk,2 . Let h = σ−1

k,2 = r0k
−1 + O(e−ck). Then, for r < 1 − ε,

|u±σk,2
(r, θ)| ≥ 1√

2πr0
e−r0 log[1+(r−r0)/r0]/h(1 + O(e−c/h)).

Using exactly the same computation as for the interior of the disk, one
again sees that the lower bound in Theorem 2 is optimal for uσk,2 . Indeed,
‖uσk,2‖L2(∂B(0,r0)) = 1 + e−c/h and ψ(r) = r0 log(1 + (r − r0)/r0).

3. Lower bounds sufficiently close to the boundary

The main goal of this section is the proof of Theorem 1. As we already in-
dicated in the introduction, here ε0 = ε0(M,Ω, g) > 0 is a possibly small
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constant that depends on the analyticity properties of M . As such, it is dif-
ficult to quantify.

3.1. Notation for pseudodifferential operators

Below, we will need notation for semiclassical pseudodifferential operators. We
say that a ∈ C∞(T ∗M) is a symbol of order k, and write ah = ah(x, ξ;h) ∈
Sk(T ∗M), if

|∂α
x ∂

β
ξ ah(x, ξ)| ≤ Cαβ〈ξ〉k−|β|, 〈ξ〉 = (1 + |ξ|2)1/2.

Note that, ah depends on the small parameter h. We also define the set of
semiclassical pseudodifferential operators of order k, Ψk(M) as in [Zwo12,
Chapter 14] or [DZ19, Appendix E]. Note, in particular, that semiclassical
pseudodifferential operators of order −∞ are smoothing, but their norms do
not vanish as h → 0. We also define the elliptic set of a pseudodifferential
operator as in [DZ19, Definition E.31].

3.2. Analytic symbols

In this section, we will need the notion of a classical analytic symbol, which
we recall from [Sjö82] (see also [SU16]). We say that a is classical analytic
of order k and write a= a(x, ξ) ∈ Sk

cl,a if there exist C0 > 0 and functions
aj analytic on a fixed neighbourhood of T ∗M \ {0}, homogeneous degree j,
satisfying ∣∣∣aj(x, ξ

|ξ|
)∣∣∣ ≤ Cj+1

0 (j + 1)!,

and for every C1 > 0 large enough, there is C2 > 0 such that
∣∣∣a(x, ξ) − ∑

0≤j≤|ξ|/C1

ak−j(x, ξ)
∣∣∣ ≤ C2e

−|ξ|/C2 , |ξ| ≥ 1.

The key fact that we will use about such symbols is that, after rescaling
ξ → ξ/h, it is possible to deform contours away from |ξ| = 0 modulo errors
of order e−1/Ch.

We also recall the notion of a semiclassical, classical analytic symbol
from [Sjö96]. We say that ah = ah(x, ξ;h) ∈ Sk

h,cl,a provided there are aj ∈
Sk−j(T ∗M), h independent and analytic in a conic neighbourhood of T ∗M ,
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and C0, C > 0 such that

∂l1
x ∂

l2
ξ ∂̄(x,ξ)ah(x, ξ;h) = Ol1,l2(e−〈ξ〉/Ch),∣∣∣ah(x, ξ;h) −

∑
0≤j≤〈ξ〉/Ch

hjaj(x, ξ)
∣∣∣ ≤ Ce−〈ξ〉/Ch, |aj | ≤ C0C

jj!〈ξ〉k−j .

Contours can, again modulo errors of the form e−1/Ch, be readily deformed
when this type of symbol is involved.

3.3. A geometric FBI transform

We also recall a particular Fourier-Bros-Iagolnltzer (FBI) transform on M .
Define the operator T : C∞(M) → C∞(T ∗M) by

(3.1) Tu(x, ξ) = 1
(2πh)3n/4

∫
ei(〈exp−1

y (x),ξ〉+i
〈ξ〉
2 d(x,y)2)/hah(x, ξ, y)u(y)dy,

where ah ∈ S
n/4
h,cla, which is uniformly bounded from L2(M) → L2(T ∗M), and

has a left parametrix S : L2(T ∗M) → L2(M) given by

(3.2) Sv(x) = 1
(2πh)3n/4

∫
e−i(〈exp−1

x (y),ξ〉−i
〈ξ〉
2 d(x,y)2)/hbh(x, ξ, y)v(x, ξ)dxdξ,

for some bh ∈ S
n/4
h,cla, which is also uniformly bounded with the property that

ST = I + R, |∂α
x ∂

β
yR(x, y, h)| = Oα,β(e−C/h), C > 0.

As in [GT19, Theorem 2], the FBI transform and its left parametrix play a key
role in localization of symbols and associated operators modulo exponential
errors.

3.4. Preliminaries on the Poisson operator

Let P : C∞(∂Ω) → Cω(Ω) be a parametrix for the Poisson operator modulo
analytic errors of the form

(3.3) [Pf ](x) = 1
(2π)n

∫
ei(ψ(xn+1,x′,ξ′)−〈y′,ξ′〉)p(xn+1, x

′, ξ′)f(y′)dy′dξ′.

That is, there is an operator K : C∞(∂Ω) → Cω(Ω) with an analytic kernel
such that

Δg(P + K) = 0 in Ω (P + K)|∂Ω = f.
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Such an operator exists by [SU16] (see also [Leb18, Ste14, Zel12, Gui97]). In
addition, p∈ S0

cl,a is classical analytic of order 0 and ψ ∈ C∞([0, ε) × T ∗M \
{0}) satisfies,

(3.4) ∂xn+1ψ − i
√
r(x, ∂x′ψ) = 0, ψ(0, x′, ξ′) = 〈x′, ξ′〉,

where, in Fermi normal coordinates, the symbol of −Δg is ξ2
n + r(x, ξ′).

Let t > 0 and define the smooth hypersurface

Ht := {(x′, t) | x′ ∈ ∂Ω}

In the following, we identify C∞(∂Ω) with C∞(Ht) under the diffeomorphism
∂Ω � x′ �→ (x′, t) ∈ Ht.

Let ϕ ∈ C∞
c (0,∞) with ϕ(x) ≡ 1 near {x ≡ 1}. We define the family of

operators Eh : L2(∂Ω) → L2(∂Ω) by

(3.5) [Ehu](x′) := 1
(2πh)n

∫
ei(〈x

′,ξ′〉−ψ(t,y′,ξ′))/hϕ(|ξ′|g(x′))u(y′)dy′dξ′.

Let also γH denote the restriction operator from Ω to {Ht}.

Remark 3. Note that, because we include the compactly supported cutoff ϕ
in the amplitude of the integral defining Eh, Eh is well-defined as an operator
on L2(∂Ω). It would, however, be possible to define a left inverse for P acting
on sufficiently analytic functions as in e.g. [Gui97], but this is not necessary
here.

Lemma 3.1. Let T and S be the FBI transform and its left parametrix
from (3.1) and (3.2).There is ε0 > 0 such that for 0 < t < ε0, AH :=
EhγHPSϕ(|ξ′|g)T ∈ Ψ0(∂Ω). Moreover, A is elliptic on

S∗∂Ω = {(x′, ξ′) : |ξ′|g(0,x′) = 1}.

Proof. The kernel of EhγHPSϕ(|η′|g) is:

[EhγHPSϕ(|η′|g)](x′, y′, η′)

= 1
(2πh)2n+3n/4

∫
ei(〈x

′,ξ′〉−ψ(t,z′,ξ′)+ψ(t,z′,ω′)−〈s′,ω′〉−〈exp−1
s′ (y′),η′〉+ i〈η′〉

2 d(y′,s′)2)/h

p(t, z′, ω′/h)ϕ(|ξ′|g(x′))bh(y′, η′, s′)ϕ(|η′|g(y′))ds′dω′dz′dξ′.
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We start by formally computing the critical points of the phase in z′, ω′, s′.
Let

Φ = 〈x′, ξ′〉−ψ(t, z′, ξ′)+ψ(t, z′, ω′)−〈s′, ω′〉−〈exp−1
s′ (y′), η′〉+ i〈η′〉

2 d(y′, s′)2.

Then, using Fermi normal coordinates centered around y′ in the s′-variables
to compute

∂z′Φ = ∂z′(ψ(t, z′, ω′) − ψ(t, z′, ξ′)), ∂ω′Φ = ∂ω′ψ(t, z′, ω′) − s′,

∂s′Φ = η′ − ω′ + i〈η′〉(s′ − y′).

Now, observe that (3.4) implies that

(3.6) ∂2
(z′,ω′,s′)Φ =

⎛
⎜⎝0 I 0
I 0 −I
0 −I i〈η′〉

⎞
⎟⎠ +

⎛
⎜⎝O(t) O(t) 0
O(t) O(t) 0

0 0 0

⎞
⎟⎠

and hence that the phase is non-degenerate for t small. Moreover, by Taylor
expansion,

∂z′Φ = (I + t A(t, z′, ω′, ξ′))(ω′ − ξ′),

for some A ∈ C∞. In particular, denoting the critical points of Φ by (ω′
c, z

′
c, s

′
c),

for t small, we have

ω′
c = ξ′, s′c = y′ + i〈η′〉−1(η′ − ξ′), z′c = s′c + O(t).

Thus,

Φ(x, ξ′, z′c, ω′
c, s

′
c, y

′, η′) = 〈x′, ξ′〉 + 〈s′c, η′ − ξ′〉 − 〈y′, η′〉 + i〈η′〉
2 d(y′, s′c)2

= 〈x′ − y′, ξ′〉 + i

2〈η′〉(ξ
′ − η′)2.

We will need to deform the contour to a good contour in order to perform
complex stationary phase [Sjö82, Theorem 2.8]. However, before doing this, we
must show that the region near ω′ = 0 can be neglected. Since the integrand
is supported on |η′| > c > 0, this can be done by deforming the contour in s′

alone by s′ �→ s′ + iδ〈η′〉−1(ω′ − η′).
Next, we need to find a good contour for the phase. That is, we want

to find a contour, Γ, such that the critical point, ρc = (ω′
c, z

′
c, s

′
c) ∈ Γ and
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Im Φ|Γ(ρ) ≥ c|ρ−ρc|2. To do this, we use the Hessian (3.6) to choose a contour
such that

(3.7) Im〈∂2
(z′,ω′,s′)Φ|ρc v, v〉 ≥ c|v|2, v = ρ− ρc, ρ ∈ Γ.

Using formula (3.6), we observe that if the tangent space to Γ at ρc is
spanned by ⎧⎪⎨

⎪⎩
⎛
⎜⎝z′ + iδω′

ω′ + iδz′

s′

⎞
⎟⎠

∣∣∣∣∣ (z′, ω′, s′) ∈ R
n × R

n × R
n

⎫⎪⎬
⎪⎭

then (3.7) holds when t is small enough. In addition to (3.7), we need to
make sure that the contour remains in the domain of analyticity for the
integrand. Thus, imaginary parts of the deformation must remain small even
away from the critical point, ρc. Motivated by this, we let χ ∈ C∞

c (R; [0, 1])
with χ ≡ 1 near 0 and consider the one-parameter family of contours Γr

defined for r ∈ [0, 1] by

Γr : (z′, ω′, s′) �→(
z′+r

(
zc+

iδω′

〈ω′〉

)
, ω′+ξ′+irδz′, s′+y′+ir〈η′〉−1(η′−ξ′)χ(δ−1〈η′〉−1|η′−ξ′|)

+ irδ( η′ − ξ′

|η′ − ξ′|(1 − χ(δ−1〈η′〉−1|η′ − ξ′|))
)
.

First, note that for |ω′| � 1, r ∈ [0, 1], Im Φ|Γr ≥ c|ω′|. Thus, the terms
coming from infinity in ω′ vanish and the contour deformation from Γ0 = R

3n

to Γ1 is justified by Stokes’ theorem.
Moreover, for |ξ′−η′| ≤ δ, by Taylor expansion of Φ|Γ1 around (z′c, ω′

c, s
′
c),

the phase satisfies

Φ|Γ1 = 〈x′ − y′, ξ′〉 + i

2〈η′〉(ξ
′ − η′)2

+
〈
z′ + iδω′

〈ω〉 , ω
′ + iδz′

〉
+ 〈s′, ω′ + iδz〉 + i

〈η′〉|s′|2
2

+ O

(
t

(
|ω′ + iδz′|2 +

∣∣∣∣z′ + iδω′

〈ω′〉

∣∣∣∣
2))

,

and for |ξ′ − η′| ≥ δ, Im Φ|Γ1 ≥ cδ. In particular, for t � δ, Γ1 is a good
contour for Φ and we may apply the method of analytic stationary phase in
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(z′, ω′, s′) to obtain

[EhγHPSϕ(|η′|g)](x′, y′, η′)

= 1
(2πh)n+n

4

∫
e
i[〈x′−y′,ξ′〉+ i

2〈η′〉 (ξ
′−η′)2]/h

(p(t, z′c, ξ′/h)ϕ(|ξ′|g(x′))ϕ(|η′|g(x′))b̄h(y′, η′, s′c) + O(h)C∞
c

)dξ′

+ O(e−C/h).

Here, we crucially use that, since a is polyhomogeneous of order 0, a(t, z′, ω′/h)
is uniformly bounded with all derivatives when |ω′| > c > 0.

Finally, we precompose with T to obtain the phase

Φ̃ = 〈x′ − w′, ξ′〉 + i

2〈η′〉(ξ
′ − η′)2 + i〈η′〉

2 (w′ − y′)2 + 〈w′ − y′, η′〉

and, using that R2n
(w′,η′) is a good contour, we may perform (analytic) station-

ary phase in w′, η′ to obtain

[EhγHPSϕ(|ξ|g)T ](x′, y′) = 1
(2πh)n

∫
ei[〈x

′−y′,ξ′〉]/h ãh(x′, y′, ξ)dξ′+O(h∞)C∞ ,

where ãh ∈ C∞
c , |ãh(x′, x′, ξ′)| > c > 0 on |ξ′|g = 1, |∂α1

x′ ∂
α2
y′ ∂

β
ξ ãh(x′, y′, ξ′)| ≤

Cα1α2β and. In particular, EhγHPSϕ(|ξ′|g)T∈ Ψ0(M), a semiclassical pseu-
dodifferential operator of order zero which is elliptic as claimed.

3.5. Lower bounds in a fixed non-geometric neighborhood: Proof
of Theorem 1

Proof. Recall from [GT19, Theorem 2] that, with T and S as in (3.1) and (3.2)
respectively, for ϕ ∈ C∞

c ((0,∞)) with ϕ ≡ 1 near 1,

u|∂Ω = Sϕ(|ξ′|g)Tu|∂Ω + O(e−C/h)L2 .

Next,

u|H = γH(P + K)u|∂Ω = γH(P + K)Sϕ(|ξ′|g)Tu|∂Ω + O(e−C/h)L2 .

Now, we have

KSϕ(|ξ′|g)T
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= 1
(2πh)3n/2

∫
K(x′, w′)e

i
h
(−〈exp−1

w′ (z′),ζ′〉+〈exp−1
y′ (z′),ζ′〉+ i〈ζ′〉

2 d(w′,z′)2+ i〈ζ′〉
2 d(y′,z′))

bh(w′, y′ζ ′)ah(z′, ζ ′, y′)ϕ(|ζ ′|g(z′))dz′dζ ′dw′,

Since K is analytic, by Stokes’ theorem we make the contour deformation
w′ �→ w′ + iδζ ′ with δ > 0 sufficiently small, and use that |ζ ′| > c > 0 to
obtain

KSϕ(|ξ′|g)T = O(e−C/h)L2→L2 ,

and hence
u|H = γHPSϕ(|ξ′|g)Tu|∂Ω + O(e−C/h)L2 .

Now, note that Eh naturally decomposes into a sum of operators acting
on from L2(Nj) → L2(Nj) where M = 
Nj and Nj are the connected compo-
nents of M . We assume that Ht = ϕN0(N0, t) with ϕN0 as in (1.4) and write
the component of Eh acting on N0 as E0

h. Therefore, with Eh as in (3.5) and
ϕ ∈ C∞

c (0, 1 + ε) with ϕ ≡ 1 near 1, we have by Lemma 3.1

E0
h(u|Ht) = E0

hγHPSϕ(|ξ′|g)Tu|∂Ω = Au|N0 + E0
hO(e−C/h)L2

where A ∈ Ψ0(∂Ω) is elliptic on

S∗∂Ω = {(x′, ξ′) : |ξ′|g(0,x′) = 1}.

In particular,

‖Au|N0‖ ≤ ‖E0
h‖L2→L2(‖u|Ht‖L2(Ht) + O(e−C/h))

≤ Cε sup
x∈Ht,|η|gHt

≤1+ε
eImψ(x,η)/h(‖u|Ht‖L2(Ht) + O(e−C/h)L2)

Now, since
WFh(u|∂Ω) ⊂ S∗∂Ω,

and A is elliptic on S∗∂Ω, we have by e.g. [DZ19, Theorem E.33]

‖u‖L2(N0) ≤ Cε‖Au‖L2(N0) + O(h∞)‖u‖L2(N0).

In particular, for h small enough

‖u‖L2(N0) ≤ Cε‖Au‖L2(N0)

≤ Cε sup
x∈Ht,|η′|gHt

≤1+ε
eImψ(x,η)/h(‖u|Ht‖L2(Ht) + O(e−C/h)L2).

Therefore, for t small enough, the proof is complete.
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4. Carleman estimates under control assumptions: Proof of
Theorem 2

Although the collar neighbourhood U in which the Poisson representation
in (3.3) is valid is fixed independent of h, the size of U is difficult to make
precise and could be quite small since it depends in a complicated fashion
on the analyticity properies of (Ω,M, g). Our aim in the next section is to
“bootstrap” the lower bounds in Theorem 1 further into the interior of Ω. To
set notation, we let N be a connected component of ∂Ω and Ht = ϕN (N, t)
with 0 < t < rmax,N and ϕN as in (1.4).

Proof. Let (x′, xn+1) : ΩN → R
n×R be the Fermi coordinates above adapted

to the boundary component N = {xn+1 = 0} and let ΩN := {0 ≤ xn+1 <
rmax,N} be the maximal Fermi tube containing the hypersurface Ht = {xn+1 =
t} with t < rmax,N . Fix UHt a neighbourhood of Ht and ε > 0. Let δUt > 0
such that {(x′, xn+1) : |t− xn+1| < 3δHt} ⊂ ΩN ∩ Ut and ε > 0.

Remark 4. We note here that Fermi neighbourhood ΩN of the boundary
depends only on the geometry of geodesic flow inside Ω and not on the analytic
modulus of the data (∂Ω, H, g). As such, it is often comparatively easy to
determine the maximal tube width t > 0 in Theorem 2.

4.1. Definition of cutoff functions

Let ε1 > 0 to be chosen small later such that

(4.1) ε1 < min
(
ε0

4 , t, rmax,N − t, δUHt

)
,

where we recall that Ht = {xn+1 = t} ⊂ ΩN and ε0 = ε0(M,Ω, g) is the
radius for which Theorem 1 holds.

Let χ+
ε1 ∈ C∞(R; [0, 1]) with

supp ∂χ+
ε1 ,⊂ { ε1

2 < xn+1 < ε1}

and

χ+
ε1(xn+1) = 1; xn+1 > 2ε1, χ+

ε1(xn+1) = 0; xn+1 < ε1
2 .

We let χ−
ε1 ∈ C∞(R; [0, 1]) be another cutoff with derivative localized

around the hypersurface {xn+1 = t}, satisfying

supp ∂χ−
ε1 ,⊂ {t− ε1 < xn+1 < t + ε1}
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and

χ−
ε1(xn+1) = 1; xn+1 < t− 2ε1, χ−

ε1(xn+1) = 0; xn+1 > t + 2ε1.

Finally, we set

(4.2) χε1(x′, xn+1) := χ+
ε1(xn+1) · χ−

ε1(xn+1) ∈ C∞
0 (ΩN (rmax,N ); [0, 1]),

where by Leibniz rule it follows that

(4.3) supp ∂χε1 ⊂ {(x′, xn+1) ∈ ΩN : xn+1 ∈ supp ∂χ+
ε1 ∪ supp ∂χ−

ε1}.

Next, we set
vh := χε1e

ψ/huh ∈ C∞
0 (ΩN ),

where ψ ∈ C∞(ΩN ) is a weight function that is defined below. As usual, one
then considers the conjugated operator Pψ(h) := eψ/hP (h)e−ψ/h : C∞

0 (ΩN ) →
C∞

0 (ΩN ) with principal symbol

pψ(x, ξ) = p(x, ξ + i∂xψ),

where p(x, ξ) = |ξ|2g. In Fermi coordinates (x′, xn+1) : ΩN → R
n+1,

(4.4) p(x, ξ) = ξ2
n + r(x, ξ′), r(x, ξ′) = r∂(x′, ξ′) + 2xn+1κ∂(x, ξ′)

where r is a quadratic form in ξ′. In the Taylor expansion (4.4), r∂ is the dual
metric form on T ∗∂Ω induced from the interior and κ∂(x′, xn+1 = 0, ξ′) is the
second fundamental form of the boundary.

4.2. Carleman weight

Fix δ > 0. We define the putative weight function to be

(4.5) ψN (xn+1) =
∫ xn+1

0
e

1
2

∫ s

0
fδ(t)dtds xn+1 ∈ [0, rmax,N ],

where fδ ∈ C∞([0, rmax,N ]) and satisfies

(4.6) δ ≤ fδ(xn+1) − sup
{(x′,ξ′);r(xn+1,x′,ξ′)=1}

∂xn+1r(xn+1, x
′, ξ′) ≤ 2δ,
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so that

(|ψ′
N (xn+1)|2)′

= fδ(xn+1) (ψ′
N (xn+1))2

≥
(

sup
{(x′,ξ′); r(xn+1,x′,ξ′)=1}

∂xn+1r(xn+1, x
′, ξ′)

)
(ψ′

N (xn+1))2 + δ (ψ′
N (xn+1))2,

=
(

sup
{(x′,ξ′); r(xn+1,x′,ξ′)=|ψ′

N (xn+1)|2}
∂xn+1r(xn+1, x

′, ξ′)
)

+ δ (ψ′
N (xn+1))2,

(4.7)

and
∂xn+1ψN |xn+1=0 = 1, ∂2

xn+1ψN |xn+1=0 = 1
2fδ(0).

The last line in (4.7) follows since r(x, ξ′) is quadratic in the fiber ξ′-variables.
To show that the function ψN in (4.5) is a legitmate Carleman weight,

we compute that in Fermi coordinates (x′, xn+1) : ΩN (rmax,N ) → R
n × R,

pψN (x, ξ) = (ξn+1 + i∂xn+1ψN )2 + r(x, ξ′)
= ξ2

n+1 + r(x, ξ′) − (∂xn+1ψN )2 + 2iξn+1∂xn+1ψN .

Since ∂xn+1ψN ≥ c > 0 it follows that

Char(pψN )(x, ξ) = {(x, ξ) ∈ T ∗ΩN : r(x, ξ′) = (∂xn+1ψN )2, ξn+1 = 0}
(4.8)

Then, since

Re pψN = ξ2
n+1 + r(x, ξ′) − (∂xn+1ψN )2 and Im pψN = 2∂xn+1ψNξn+1,

a direct computation gives

{Re pψN , Im pψN}(x, ξ)
=

{
ξ2
n+1 + r(x, ξ′) − (∂xn+1ψN )2, 2∂xn+1ψNξn+1

}
= 2∂xn+1ψN ·

(
∂xn+1 [(∂xn+1ψN )2] − ∂xn+1r(x, ξ′)

) (x, ξ) ∈ Char pψN .

(4.9)

Then, since ∂xn+1ψN ≥ c ≥ 0, it follows from (4.7) and (4.9) that

{Re pψN , Im pψN}(x, ξ) ≥ C1(δ)|∂xn+1ψN |2 ≥ C2(δ) > 0, (x, ξ) ∈ Char(pψN ).
(4.10)
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Consequently ψN is a legitimate Carleman weight in ΩN (rmax,N ) and so, by
the subelliptic Carleman estimates (see e.g. [Zwo12, Theorem 7.5])

(4.11) ‖PψN (h)vh‖2
L2(ΩN ) ≥ Ch ‖vh‖2

H1
h
(ΩN ).

4.3. Lower bounds: completion of the proof

Since P (h)uh = 0, it follows that PψN (h)vh = eψN/h[P (h), χε1 ]uh. Since
[P (h), χε1 ] is an h-differential operator of order one supported in supp ∂χε1 , it
follows from (4.11) and (4.3), that with Carleman weight ψN (xn+1) in (4.5),

(4.12) ‖eψN/h[P (h), χε1 ]uh‖2
supp ∂χ+

ε1
+ ‖eψN/h[P (h), χε1 ]uh‖2

supp ∂χ−
ε1

≥ Ch ‖eψN/hχε1uh‖2
H1

h
(ΩN ).

Since χε1 = 1 on the set Γ(t, ε1) := {2ε1 < xn+1 < t− 2ε1}, from (4.12),

(4.13) ‖eψN/h[P (h), χε1 ]uh‖2
supp ∂χ+

ε1
+ ‖eψN/h[P (h), χε1 ]uh‖2

supp ∂χ−
ε1

≥ Ch ‖eψN/huh‖2
H1

h
(Γ(t,ε1)),

and so,

(4.14) h2
(
‖eψN/huh‖2

H1
h
(supp ∂χ+

ε1 ) + ‖eψN/huh‖2
H1

h
(supp ∂χ−

ε1 )

)
≥ Ch‖eψN/huh‖2

H1
h
(Γ(t,ε1)).

To bound the first term on the LHS of (4.14) from above, we recall the
upper bound from [GT19]: for x ∈ ΩN (ε0)

|∂α
xuh(x)| ≤ CΩ,α exp

(
[−xn+1 + Csup(Ω)x2

n+1)]/h
)
‖u‖L2(N) + Ce−1/Ch.

Since supp ∂χ+
ε1 ⊂ { ε1

2 < xn+1 < ε1} and ε1 < ε0, it follows that

h2‖eψN/huh‖2
H1

h
(supp ∂χ+

ε1 )

≤ h2C2
Ω‖eψN/he[−xn+1+Csup(Ω)x2

n+1)]/h‖2
L2({0<xn+1<ε1})‖uh‖

2
L2(N) + Ce−1/Ch.

Using that ψN (xn+1) = xn+1 + 1
2ψ

′
N (0)x2

n+1 + O(x3
n+1),

‖eψN/he[−xn+1+Csup(Ω)x2
n+1)]/h‖2

L2({0<xn+1<ε1}) ≤ Ce(fδ(0)+Csup)ε12+Cε13/h,
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and consequently, for the first term on the LHS of (4.11),

h2‖eψN/huh‖2
H1

h
(supp ∂χ+

ε1 ) ≤ C2
Ωh

2e(fδ(0)+Csup)ε12+Cε13/h‖uh‖2
L2(N) + Ce−1/Ch.

(4.15)

To estimate the RHS of (4.14) from below, we use the local L2-restriction
lower bounds in Theorem 1 which gives that for all τ ∈ [0, ε0] and any δ1 > 0,
then, with h ∈ (0, h0(δ1, ε0)],

‖uh‖L2({xn+1=τ}) ≥ C(δ1)e−[ (τ+ 1
4 f0(0)τ2+Cτ3)(1+δ1) ]/h‖uh‖L2(N) − Ce−1/Ch.

Now, let ε1 < ε2 � min(δ, ε0). since { ε2
2 < xn+1 < ε2} ⊂ Γ(t, ε1), for the

RHS in (4.14),

‖eψN/huh‖2
H1

h
(Γ(t,ε1))

≥ ‖eψN/huh‖2
L2({ ε2

2 <xn+1<ε2}

≥ C(δ1)
∫ τ=ε2

τ= ε2
2

e2τ+ 1
2 fδ(0)τ

2−Cτ3/he−(2τ+1
2 f0(0)τ2+Cτ3)(1+δ1))/h dt‖uh‖2

L2(N)

− Ce−1/Ch

= C(δ1)
∫ τ=ε2

τ= ε2
2

eδτ
2−Cτ3−δ1(2τ+ 1

2 f0(0)τ2)/h dτ‖uh‖2
L2(N) − Ce−1/Ch

≥ C(δ1)
∫ τ=ε2

τ= ε2
2

e
δ
2 τ

2/h dτ‖uh‖2
L2(N) − Ce−1/Ch,

where the last line follows by choosing ε2 � δ and δ1 � ε2δ and noting that
from (4.6), fδ(0) − f0(0) ≥ δ.

Consequently, the end result is the following lower bound for the RHS in
(4.14):

(4.16) ‖eψN/huh‖2
H1

h
(Γ(t,ε1)) ≥ C(δ1)ε2e

δε2
2

2h ‖uh‖2
L2(N) − e−1/Ch.

By possibly shrinking ε1 > 0 further so that ε1 �
√
δε2, it follows from the

upper bound in (4.15) and the lower bound in (4.16), that the first term on
the LHS of (4.14) can be absorbed in the RHS. Consequently,

‖eψN/huh‖2
H1

h
(supp ∂χ−

ε1 ) ≥ C(ε1))‖uh‖2
L2(N) − Ce−1/Ch.(4.17)

Now, choose ε1 > 0 small enough so that

|ψN (xn+1) − ψN (t)| < ε, |xn+1 − t| < 2ε1.
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Then, we have

(4.18) ‖eψN/huh‖2
H1

h
(supp ∂χ−

ε1 ) ≤ eψN (t)/h+ε/h‖uh‖2
H1

h
((t−2ε1<xn+1<t+2ε1).

Now, since ε1 < δUHt
,

{(x′, xn+1) : t− 2ε1 < xn+1 < t + 2ε1} � UHt ,

by interior elliptic regularity for the Laplacian and the fact that Δguh|UHt
= 0,

it follow that

(4.19)
‖uh‖2

H1
h
((t−2ε1<xn+1<t+2ε1)) ≤ Cε1(‖ − Δguh‖2

UHt
+ ‖uh‖2

L2(UHt )
)

≤ Cε1‖uh‖2
L2(UHt )

.

Combining (4.17), (4.18), and (4.19) implies,

C(ε1)‖uh‖2
L2(N) − Ce−1/Ch ≤ Cε1e

ψN (t)/h+ε/h‖uh‖2
L2(UHt )

,

which completes the proof of Theorem 2.

5. Eigenfunction goodness estimates for Cauchy data: Proof
of Theorem 3

Proof. Let 0 ≤ t < rmax,∂Ω and Ht := ϕ∂Ω(∂Ω, t) so that in Fermi coordinates
(x′, xn+1) around ∂Ω,

Ht = {(x′, t)}.

Let UHt ⊂ Ω̊ be the domain interior to Ω bounded by Ht and for any fixed
ε > 0, let UHt,ε � UHt be a compact manifold with boundary, Ht,ε, strictly
contained in UHt with ε

2 ≤ d(Ht,ε, Ht) ≤ max(x,y)∈Ht,ε×Ht
d(x, y) ≤ ε. Then,

by e.g. [Aub82, Chapter 4], there exists a Green’s function G ∈ D′(UHt×UHt)
satisfying

−ΔxG(x, y) = δx(y), (x, y) ∈ UHt × UHt ,

with G(·, ·) ∈ C∞((UHt × UHt) \ {x = y}).
Then, for x ∈ UHt,ε an application of Green’s formula gives

(5.1) huh(x) =
∫
Ht

G(x, s)h∂νuh(s)dσ(s) − h

∫
Ht

∂ν(s)G(x, s)uh(s)dσ(s).
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Since d(x,Ht) > ε when x ∈ UHt,ε and so, G ∈ C∞(UHt,ε, Ht), differen-
tiation of (5.1) in the x-variables gives a similar formula for the derivatives
∂xk

uh. An application of Cauchy-Schwarz then implies that

(5.2) h2‖uh‖2
H1

h
(UHt,ε)

≤ C(ε)
(
‖uh‖2

L2(Ht) + ‖h∂νuh‖2
L2(Ht)

)
.

Finally, by Theorem 2, applied with Ht,ε = {d(x, ∂Ω) = t + ε}, for any
ε > 0,

‖u‖H1
h
(UHt,ε) ≥ Cεe

(−ψ∂Ω(t)−ε)/h,

which completes the proof.
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